1
|
Mahadev Bhat S, Sieck GC. Heterogeneous distribution of mitochondria and succinate dehydrogenase activity in human airway smooth muscle cells. FASEB Bioadv 2024; 6:159-176. [PMID: 38846375 PMCID: PMC11150758 DOI: 10.1096/fba.2024-00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Succinate dehydrogenase (SDH) is a key mitochondrial enzyme involved in the tricarboxylic acid cycle, where it facilitates the oxidation of succinate to fumarate, and is coupled to the reduction of ubiquinone in the electron transport chain as Complex II. Previously, we developed a confocal-based quantitative histochemical technique to determine the maximum velocity of the SDH reaction (SDHmax) in single cells and observed that SDHmax corresponds with mitochondrial volume density. In addition, mitochondrial volume and motility varied within different compartments of human airway smooth muscle (hASM) cells. Therefore, we hypothesize that the SDH activity varies relative to the intracellular mitochondrial volume within hASM cells. Using 3D confocal imaging of labeled mitochondria and a concentric shell method for analysis, we quantified mitochondrial volume density, mitochondrial complexity index, and SDHmax relative to the distance from the nuclear membrane. The mitochondria within individual hASM cells were more filamentous in the immediate perinuclear region and were more fragmented in the distal parts of the cell. Within each shell, SDHmax also corresponded to mitochondrial volume density, where both peaked in the perinuclear region and decreased in more distal parts of the cell. Additionally, when normalized to mitochondrial volume, SDHmax was lower in the perinuclear region when compared to the distal parts of the cell. In summary, our results demonstrate that SDHmax measures differences in SDH activity within different cellular compartments. Importantly, our data indicate that mitochondria within individual cells are morphologically heterogeneous, and their distribution varies substantially within different cellular compartments, with distinct functional properties.
Collapse
Affiliation(s)
- Sanjana Mahadev Bhat
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Gary C. Sieck
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
2
|
Ambhore NS, Balraj P, Pabelick CM, Prakash YS, Sathish V. Estrogen receptors differentially modifies lamellipodial and focal adhesion dynamics in airway smooth muscle cell migration. Mol Cell Endocrinol 2024; 579:112087. [PMID: 37827228 PMCID: PMC10842142 DOI: 10.1016/j.mce.2023.112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Sex-steroid signaling, especially estrogen, has a paradoxical impact on regulating airway remodeling. In our previous studies, we demonstrated differential effects of 17β-estradiol (E2) towards estrogen receptors (ERs: α and β) in regulating airway smooth muscle (ASM) cell proliferation and extracellular matrix (ECM) production. However, the role of ERs and their signaling on ASM migration is still unexplored. In this study, we examined how ERα versus ERβ affects the mitogen (Platelet-derived growth factor, PDGF)-induced human ASM cell migration as well as the underlying mechanisms involved. We used Lionheart-FX automated microscopy and transwell assays to measure cell migration and found that activating specific ERs had differential effects on PDGF-induced ASM cell migration. Pharmacological activation of ERβ or shRNA mediated knockdown of ERα and specific activation of ERβ blunted PDGF-induced cell migration. Furthermore, specific ERβ activation showed inhibition of actin polymerization by reducing the F/G-actin ratio. Using Zeiss confocal microscopy coupled with three-dimensional algorithmic ZEN-image analysis showed an ERβ-mediated reduction in PDGF-induced expressions of neural Wiskott-Aldrich syndrome protein (N-WASP) and actin-related proteins-2/3 (Arp2/3) complex, thereby inhibiting actin-branching and lamellipodia. In addition, ERβ activation also reduces the clustering of actin-binding proteins (vinculin and paxillin) at the leading edge of ASM cells. However, cells treated with E2 or ERα agonists do not show significant changes in actin/lamellipodial dynamics. Overall, these findings unveil the significance of ERβ activation in regulating lamellipodial and focal adhesion dynamics to regulate ASM cell migration and could be a novel target to blunt airway remodeling.
Collapse
Affiliation(s)
| | - Premanand Balraj
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
3
|
Vaghasiya J, Dalvand A, Sikarwar A, Mangat D, Ragheb M, Kowatsch K, Pandey D, Hosseini SM, Hackett TL, Karimi-Abdolrezaee S, Ravandi A, Pascoe CD, Halayko AJ. Oxidized Phosphatidylcholines Trigger TRPA1 and Ryanodine Receptor-dependent Airway Smooth Muscle Contraction. Am J Respir Cell Mol Biol 2023; 69:649-665. [PMID: 37552547 DOI: 10.1165/rcmb.2022-0457oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 08/07/2023] [Indexed: 08/10/2023] Open
Abstract
Asthma pathobiology includes oxidative stress that modifies cell membranes and extracellular phospholipids. Oxidized phosphatidylcholines (OxPCs) in lung lavage from allergen-challenged human participants correlate with airway hyperresponsiveness and induce bronchial narrowing in murine thin-cut lung slices. OxPCs activate many signaling pathways, but mechanisms for these responses are unclear. We hypothesize that OxPCs stimulate intracellular free Ca2+ flux to trigger airway smooth muscle contraction. Intracellular Ca2+ flux was assessed in Fura-2-loaded, cultured human airway smooth muscle cells. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) induced an approximately threefold increase in 20 kD myosin light chain phosphorylation. This correlated with a rapid peak in intracellular cytoplasmic Ca2+ concentration ([Ca2+]i) (143 nM) and a sustained plateau that included slow oscillations in [Ca2+]i. Sustained [Ca2+]i elevation was ablated in Ca2+-free buffer and by TRPA1 inhibition. Conversely, OxPAPC-induced peak [Ca2+]i was unaffected in Ca2+-free buffer, by TRPA1 inhibition, or by inositol 1,4,5-triphosphate receptor inhibition. Peak [Ca2+]i was ablated by pharmacologic inhibition of ryanodine receptor (RyR) Ca2+ release from the sarcoplasmic reticulum. Inhibiting the upstream RyR activator cyclic adenosine diphosphate ribose with 8-bromo-cyclic adenosine diphosphate ribose was sufficient to abolish OxPAPC-induced cytoplasmic Ca2+ flux. OxPAPC induced ∼15% bronchial narrowing in thin-cut lung slices that could be prevented by pharmacologic inhibition of either TRPA1 or RyR, which similarly inhibited OxPC-induced myosin light chain phosphorylation in cultured human airway smooth muscle cells. In summary, OxPC mediates airway narrowing by triggering TRPA1 and RyR-mediated mobilization of intracellular and extracellular Ca2+ in airway smooth muscle. These data suggest that OxPC in the airways of allergen-challenged subjects and subjects with asthma may contribute to airway hyperresponsiveness.
Collapse
Affiliation(s)
- Jignesh Vaghasiya
- Department of Physiology and Pathophysiology
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Azadeh Dalvand
- Department of Physiology and Pathophysiology
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Anurag Sikarwar
- Department of Physiology and Pathophysiology
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Divleen Mangat
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Mirna Ragheb
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Katarina Kowatsch
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Dheerendra Pandey
- Department of Physiology and Pathophysiology
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Seyed Mojtaba Hosseini
- Department of Physiology and Pathophysiology
- Manitoba Multiple Sclerosis Research Center, and
| | - Tillie L Hackett
- Department of Anesthesiology, Pharmacology & Therapeutics, Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada; and
| | | | - Amir Ravandi
- Department of Physiology and Pathophysiology
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Christopher D Pascoe
- Department of Physiology and Pathophysiology
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Delmotte P, Yap JQ, Dasgupta D, Sieck GC. Chemical Chaperone 4-PBA Mitigates Tumor Necrosis Factor Alpha-Induced Endoplasmic Reticulum Stress in Human Airway Smooth Muscle. Int J Mol Sci 2023; 24:15816. [PMID: 37958799 PMCID: PMC10649207 DOI: 10.3390/ijms242115816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Airway inflammation and pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα) underlie the pathophysiology of respiratory diseases, including asthma. Previously, we showed that TNFα activates the inositol-requiring enzyme 1α (IRE1α)/X-box binding protein 1 spliced (XBP1s) endoplasmic reticulum (ER) stress pathway in human airway smooth muscle (hASM) cells. The ER stress pathway is activated by the accumulation of unfolded proteins in the ER. Accordingly, chemical chaperones such as 4-phenylbutyric acid (4-PBA) may reduce ER stress activation. In the present study, we hypothesized that chemical chaperone 4-PBA mitigates TNFα-induced ER stress in hASM cells. hASM cells were isolated from bronchiolar tissue obtained from five patients with no history of smoking or respiratory diseases. The hASM cells' phenotype was confirmed via the expression of alpha-smooth muscle actin and elongated morphology. hASM cells from the same patient sample were then separated into three 12 h treatment groups: (1) TNFα (20 ng/mL), (2) TNFα + 4-PBA (1 μM, 30 min pretreatment), and (3) untreated control. The expressions of total IRE1α and phosphorylated IRE1α (pIRE1αS724) were determined through Western blotting. The splicing of XBP1 mRNA was analyzed using RT-PCR. We found that TNFα induced an increase in pIRE1αS724 phosphorylation, which was mitigated by treatment with chemical chaperone 4-PBA. We also found that TNFα induced an increase in XBP1s mRNA, which was also mitigated by treatment with chemical chaperone 4-PBA. These results support our hypothesis and indicate that chemical chaperone 4-PBA treatment mitigates TNFα-induced ER stress in hASM cells.
Collapse
Affiliation(s)
| | | | | | - Gary C. Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; (P.D.); (J.Q.Y.); (D.D.)
| |
Collapse
|
5
|
Mahadev Bhat S, Yap JQ, Ramirez-Ramirez OA, Delmotte P, Sieck GC. Cell-Based Measurement of Mitochondrial Function in Human Airway Smooth Muscle Cells. Int J Mol Sci 2023; 24:11506. [PMID: 37511264 PMCID: PMC10380259 DOI: 10.3390/ijms241411506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular mitochondrial function can be assessed using high-resolution respirometry that measures the O2 consumption rate (OCR) across a number of cells. However, a direct measurement of cellular mitochondrial function provides valuable information and physiological insight. In the present study, we used a quantitative histochemical technique to measure the activity of succinate dehydrogenase (SDH), a key enzyme located in the inner mitochondrial membrane, which participates in both the tricarboxylic acid (TCA) cycle and electron transport chain (ETC) as Complex II. In this study, we determine the maximum velocity of the SDH reaction (SDHmax) in individual human airway smooth muscle (hASM) cells. To measure SDHmax, hASM cells were exposed to a solution containing 80 mM succinate and 1.5 mM nitroblue tetrazolium (NBT, reaction indicator). As the reaction proceeded, the change in optical density (OD) due to the reduction of NBT to its diformazan (peak absorbance wavelength of 570 nm) was measured using a confocal microscope with the pathlength for light absorbance tightly controlled. SDHmax was determined during the linear period of the SDH reaction and expressed as mmol fumarate/liter of cell/min. We determine that this technique is rigorous and reproducible, and reliable for the measurement of mitochondrial function in individual cells.
Collapse
Affiliation(s)
| | | | | | | | - Gary C. Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; (S.M.B.); (J.Q.Y.); (O.A.R.-R.); (P.D.)
| |
Collapse
|
6
|
Higashitani A, Teranishi M, Nakagawa Y, Itoh Y, Sudevan S, Szewczyk NJ, Kubota Y, Abe T, Kobayashi T. Increased mitochondrial Ca 2+ contributes to health decline with age and Duchene muscular dystrophy in C. elegans. FASEB J 2023; 37:e22851. [PMID: 36935171 PMCID: PMC10946577 DOI: 10.1096/fj.202201489rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/21/2023]
Abstract
Sarcopenia is a geriatric syndrome characterized by an age-related decline in skeletal muscle mass and strength. Here, we show that suppression of mitochondrial calcium uniporter (MCU)-mediated Ca2+ influx into mitochondria in the body wall muscles of the nematode Caenorhabditis elegans improved the sarcopenic phenotypes, blunting movement and mitochondrial structural and functional decline with age. We found that normally aged muscle cells exhibited elevated resting mitochondrial Ca2+ levels and increased mitophagy to eliminate damaged mitochondria. Similar to aging muscle, we found that suppressing MCU function in muscular dystrophy improved movement via reducing elevated resting mitochondrial Ca2+ levels. Taken together, our results reveal that elevated resting mitochondrial Ca2+ levels contribute to muscle decline with age and muscular dystrophy. Further, modulation of MCU activity may act as a potential pharmacological target in various conditions involving muscle loss.
Collapse
Affiliation(s)
| | - Mika Teranishi
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Yui Nakagawa
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Yukou Itoh
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Surabhi Sudevan
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby HospitalUniversity of NottinghamDerbyUK
| | - Nathaniel J. Szewczyk
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby HospitalUniversity of NottinghamDerbyUK
- Ohio Musculoskeletal and Neurologic Institute, Heritage College of Osteopathic MedicineOhio UniversityAthensOhioUSA
| | | | - Takaaki Abe
- Division of Medical ScienceTohoku University Graduate School of Biomedical EngineeringSendaiJapan
- Department of Clinical Biology and Hormonal RegulationTohoku University Graduate School of MedicineSendaiJapan
| | | |
Collapse
|
7
|
Khalfaoui L, Pabelick CM. Airway smooth muscle in contractility and remodeling of asthma: potential drug target mechanisms. Expert Opin Ther Targets 2023; 27:19-29. [PMID: 36744401 DOI: 10.1080/14728222.2023.2177533] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Asthma is characterized by enhanced airway contractility and remodeling where airway smooth muscle (ASM) plays a key role, modulated by inflammation. Understanding the mechanisms by which ASM contributes to these features of asthma is essential for the development of novel asthma therapies. AREAS COVERED Inflammation in asthma contributes to a multitude of changes within ASM including enhanced airway contractility, proliferation, and fibrosis. Altered intracellular calcium ([Ca2+]i) regulation or Ca2+ sensitization contributes to airway hyperreactivity. Increased airway wall thickness from ASM proliferation and fibrosis contributes to structural changes seen with asthma. EXPERT OPINION ASM plays a significant role in multiple features of asthma. Increased ASM contractility contributes to hyperresponsiveness, while altered ASM proliferation and extracellular matrix production promote airway remodeling both influenced by inflammation of asthma and conversely even influencing the local inflammatory milieu. While standard therapies such as corticosteroids or biologics target inflammation, cytokines, or their receptors to alleviate asthma symptoms, these approaches do not address the underlying contribution of ASM to hyperresponsiveness and particularly remodeling. Therefore, novel therapies for asthma need to target abnormal contractility mechanisms in ASM and/or the contribution of ASM to remodeling, particularly in asthmatics resistant to current therapies.
Collapse
Affiliation(s)
- Latifa Khalfaoui
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA
| | - Christina M Pabelick
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Han YS, Delmotte P, Sieck GC. Effects of TNFα on Dynamic Cytosolic Ca 2 + and Force Responses to Muscarinic Stimulation in Airway Smooth Muscle. Front Physiol 2021; 12:730333. [PMID: 34393833 PMCID: PMC8363307 DOI: 10.3389/fphys.2021.730333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
Previously, we reported that in airway smooth muscle (ASM), the cytosolic Ca2+ ([Ca2+]cyt) and force response induced by acetyl choline (ACh) are increased by exposure to the pro-inflammatory cytokine tumor necrosis factor α (TNFα). The increase in ASM force induced by TNFα was not associated with an increase in regulatory myosin light chain (rMLC20) phosphorylation but was associated with an increase in contractile protein (actin and myosin) concentration and an enhancement of Ca2+ dependent actin polymerization. The sensitivity of ASM force generation to elevated [Ca2+]cyt (Ca2+ sensitivity) is dynamic involving both the shorter-term canonical calmodulin-myosin light chain kinase (MLCK) signaling cascade that regulates rMLC20 phosphorylation and cross-bridge recruitment as well as the longer-term regulation of actin polymerization that regulates contractile unit recruitment and actin tethering to the cortical cytoskeleton. In this study, we simultaneously measured [Ca2+]cyt and force responses to ACh and explored the impact of 24-h TNFα on the dynamic relationship between [Ca2+]cyt and force responses. The temporal delay between the onset of [Ca2+]cyt and force responses was not affected by TNFα. Similarly, the rates of rise of [Ca2+]cyt and force responses were not affected by TNFα. The absence of an impact of TNFα on the short delay relationships between [Ca2+]cyt and force was consistent with the absence of an effect of [Ca2+]cyt and force on rMLC20 phosphorylation. However, the integral of the phase-loop plot of [Ca2+]cyt and force increased with TNFα, consistent with an impact on actin polymerization and, contractile unit recruitment and actin tethering to the cortical cytoskeleton.
Collapse
Affiliation(s)
- Young-Soo Han
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
9
|
Banerjee P, Balraj P, Ambhore NS, Wicher SA, Britt RD, Pabelick CM, Prakash YS, Sathish V. Network and co-expression analysis of airway smooth muscle cell transcriptome delineates potential gene signatures in asthma. Sci Rep 2021; 11:14386. [PMID: 34257337 PMCID: PMC8277837 DOI: 10.1038/s41598-021-93845-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Airway smooth muscle (ASM) is known for its role in asthma exacerbations characterized by acute bronchoconstriction and remodeling. The molecular mechanisms underlying multiple gene interactions regulating gene expression in asthma remain elusive. Herein, we explored the regulatory relationship between ASM genes to uncover the putative mechanism underlying asthma in humans. To this end, the gene expression from human ASM was measured with RNA-Seq in non-asthmatic and asthmatic groups. The gene network for the asthmatic and non-asthmatic group was constructed by prioritizing differentially expressed genes (DEGs) (121) and transcription factors (TFs) (116). Furthermore, we identified differentially connected or co-expressed genes in each group. The asthmatic group showed a loss of gene connectivity due to the rewiring of major regulators. Notably, TFs such as ZNF792, SMAD1, and SMAD7 were differentially correlated in the asthmatic ASM. Additionally, the DEGs, TFs, and differentially connected genes over-represented in the pathways involved with herpes simplex virus infection, Hippo and TGF-β signaling, adherens junctions, gap junctions, and ferroptosis. The rewiring of major regulators unveiled in this study likely modulates the expression of gene-targets as an adaptive response to asthma. These multiple gene interactions pointed out novel targets and pathways for asthma exacerbations.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Premanand Balraj
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | | | - Sarah A Wicher
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Rodney D Britt
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Sudro 108A, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
10
|
Bhallamudi S, Roos BB, Teske JJ, Wicher SA, McConico A, M Pabelick C, Sathish V, Prakash YS. Glial-derived neurotrophic factor in human airway smooth muscle. J Cell Physiol 2021; 236:8184-8196. [PMID: 34170009 DOI: 10.1002/jcp.30489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/18/2021] [Accepted: 06/09/2021] [Indexed: 11/09/2022]
Abstract
Airway smooth muscle (ASM) cells modulate the local airway milieu via production of inflammatory mediators and growth factors including classical neurotrophins, such as brain-derived neurotrophic factor (BDNF). The glial cell-derived neurotrophic factor (GDNF) family of ligands (GFLs) are nonclassical neurotrophins and their role in the airway is barely understood. The major GFLs, GDNF and Neurturin (NRTN) bind to GDNF family receptor (GFR) α1 and α2 respectively that pair with Ret receptor to accomplish signaling. In this study, we found GDNF is expressed in human lung and increased in adult asthma, while human ASM expresses GDNF and its receptors. Accordingly, we used human ASM cells to test the hypothesis that ASM expression and autocrine signaling by GFLs regulate [Ca2+ ]i . Serum-deprived ASM cells from non-asthmatics were exposed to 10 ng/ml GDNF or NRTN for 15 min (acute) or 24 h (chronic). In fura-2 loaded cells, acute GDNF or NRTN alone induced [Ca2+ ]i responses, and further enhanced responses to 1 µM ACh or 10 µM histamine. Ret inhibitor (SPP86; 10 µM) or specific GDNF chelator GFRα1-Fc (1 µg/ml) showed roles of these receptors in GDNF effects. In contrast, NRTN did not enhance [Ca2+ ]i response to histamine. Furthermore, conditioned media of nonasthmatic and asthmatic ASM cells showed GDNF secretion. SPP86, Ret inhibitor and GFRα1-Fc chelator markedly decreased [Ca2+ ]i response compared with vehicle, highlighting autocrine effects of secreted GDNF. Chronic GDNF treatment increased histamine-induced myosin light chain phosphorylation. These novel data demonstrate GFLs particularly GDNF/GFRα1 influence ASM [Ca2+ ]i and raise the possibility that GFLs are potential targets of airway hyperresponsiveness.
Collapse
Affiliation(s)
- Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah A Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea McConico
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Han YS, Delmotte PF, Arteaga GM, Sieck GC. Dynamic cytosolic Ca 2+ and force responses to muscarinic stimulation in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2021; 321:L91-L101. [PMID: 33908264 DOI: 10.1152/ajplung.00596.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
During agonist stimulation of airway smooth muscle (ASM), agonists such as ACh induce a transient increase in cytosolic Ca2+ concentration ([Ca2+]cyt), which leads to a contractile response [excitation-contraction (E-C) coupling]. Previously, the sensitivity of the contractile response of ASM to elevated [Ca2+]cyt (Ca2+ sensitivity) was assessed as the ratio of maximum force to maximum [Ca2+]cyt. However, this static assessment of Ca2+ sensitivity overlooks the dynamic nature of E-C coupling in ASM. In this study, we simultaneously measured [Ca2+]cyt and isometric force responses to three concentrations of ACh (1, 2.6, and 10 μM). Both maximum [Ca2+]cyt and maximum force responses were ACh concentration dependent, but force increased disproportionately, thereby increasing static Ca2+ sensitivity. The dynamic properties of E-C coupling were assessed in several ways. The temporal delay between the onset of ACh-induced [Ca2+]cyt and onset force responses was not affected by ACh concentration. The rates of rise of the ACh-induced [Ca2+]cyt and force responses increased with increasing ACh concentration. The integral of the phase-loop plot of [Ca2+]cyt and force from onset to steady state also increased with increasing ACh concentration, whereas the rate of relaxation remained unchanged. Although these results suggest an ACh concentration-dependent increase in the rate of cross-bridge recruitment and in the rate of rise of [Ca2+]cyt, the extent of regulatory myosin light-chain (rMLC20) phosphorylation was not dependent on ACh concentration. We conclude that the dynamic properties of [Ca2+]cyt and force responses in ASM are dependent on ACh concentration but reflect more than changes in the extent of rMLC20 phosphorylation.
Collapse
Affiliation(s)
- Young-Soo Han
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Philippe F Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Grace M Arteaga
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
12
|
Delmotte P, Marin Mathieu N, Sieck GC. TNFα induces mitochondrial fragmentation and biogenesis in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2021; 320:L137-L151. [PMID: 33146568 PMCID: PMC7847063 DOI: 10.1152/ajplung.00305.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/06/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
In human airway smooth muscle (hASM), mitochondrial volume density is greater in asthmatic patients compared with normal controls. There is also an increase in mitochondrial fragmentation in hASM of moderate asthmatics associated with an increase in dynamin-related protein 1 (Drp1) and a decrease in mitofusin 2 (Mfn2) expression, mitochondrial fission, and fusion proteins, respectively. Proinflammatory cytokines such TNFα contribute to hASM hyperreactivity and cell proliferation associated with asthma. However, the involvement of proinflammatory cytokines in mitochondrial remodeling is not clearly established. In nonasthmatic hASM cells, mitochondria were labeled using MitoTracker Red and imaged in three dimensions using a confocal microscope. After 24-h TNFα exposure, mitochondria in hASM cells were more fragmented, evidenced by decreased form factor and aspect ratio and increased sphericity. Associated with increased mitochondrial fragmentation, Drp1 expression increased while Mfn2 expression was reduced. TNFα also increased mitochondrial biogenesis in hASM cells reflected by increased peroxisome proliferator-activated receptor-γ coactivator 1α expression and increased mitochondrial DNA copy number. Associated with mitochondrial biogenesis, TNFα exposure also increased mitochondrial volume density and porin expression, resulting in an increase in maximum O2 consumption rate. However, when normalized for mitochondrial volume density, O2 consumption rate per mitochondrion was reduced by TNFα exposure. Associated with mitochondrial fragmentation and biogenesis, TNFα also increased hASM cell proliferation, an effect mimicked by siRNA knockdown of Mfn2 expression and mitigated by Mfn2 overexpression. The results of this study support our hypothesis that in hASM cells exposed to TNFα mitochondria are more fragmented, with an increase in mitochondrial biogenesis and mitochondrial volume density resulting in reduced O2 consumption rate per mitochondrion.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Natalia Marin Mathieu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
13
|
Stasiak SE, Jamieson RR, Bouffard J, Cram EJ, Parameswaran H. Intercellular communication controls agonist-induced calcium oscillations independently of gap junctions in smooth muscle cells. SCIENCE ADVANCES 2020; 6:eaba1149. [PMID: 32821820 PMCID: PMC7406377 DOI: 10.1126/sciadv.aba1149] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
In this study, we report the existence of a communication system among human smooth muscle cells that uses mechanical forces to frequency modulate long-range calcium waves. An important consequence of this mechanical signaling is that changes in stiffness of the underlying extracellular matrix can interfere with the frequency modulation of Ca2+ waves, causing smooth muscle cells from healthy human donors to falsely perceive a much higher agonist dose than they actually received. This aberrant sensing of contractile agonist dose on stiffer matrices is completely absent in isolated smooth muscle cells, although the isolated cells can sense matrix rigidity. We show that the intercellular communication that enables this collective Ca2+ response in smooth muscle cells does not involve transport across gap junctions or extracellular diffusion of signaling molecules. Instead, our data support a collective model in which mechanical signaling among smooth muscle cells regulates their response to contractile agonists.
Collapse
Affiliation(s)
- S. E. Stasiak
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - R. R. Jamieson
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - J. Bouffard
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - E. J. Cram
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - H. Parameswaran
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
14
|
Yap J, Chen X, Delmotte P, Sieck GC. TNFα selectively activates the IRE1α/XBP1 endoplasmic reticulum stress pathway in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2020; 318:L483-L493. [PMID: 31940218 DOI: 10.1152/ajplung.00212.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Airway inflammation is a key aspect of diseases such as asthma. Proinflammatory cytokines such as TNFα mediate the inflammatory response. In various diseases, inflammation leads to endoplasmic reticulum (ER) stress, the accumulation of unfolded proteins, which triggers homeostatic responses to restore normal cellular function. We hypothesized that TNFα triggers ER stress through an increase in reactive oxygen species generation in human airway smooth muscle (hASM) with a downstream effect on mitofusin 2 (Mfn2). In hASM cells isolated from lung specimens incidental to patient surgery, dose- and time-dependent effects of TNFα exposure were assessed. Exposure of hASM to tunicamycin was used as a positive control. Tempol (500 μM) was used as superoxide scavenger. Activation of three ER stress pathways were evaluated by Western blotting: 1) autophosphorylation of inositol-requiring enzyme1 (IRE1α) leading to splicing of X-box binding protein 1 (XBP1); 2) autophosphorylation of protein kinase RNA-like endoplasmic reticulum kinase (PERK) leading to phosphorylation of eukaryotic initiation factor 2α; and 3) translocation and cleavage of activating transcription factor 6 (ATF6). We found that exposure of hASM cells to tunicamycin activated all three ER stress pathways. In contrast, TNFα selectively activated the IRE1α/XBP1 pathway in a dose- and time-dependent fashion. Our results indicate that TNFα does not activate the PERK and ATF6 pathways. Exposure of hASM cells to TNFα also decreased Mfn2 protein expression. Concurrent exposure to TNFα and tempol reversed the effect of TNFα on IRE1α phosphorylation and Mfn2 protein expression. Selective activation of the IRE1α/XBP1 pathway in hASM cells after exposure to TNFα may reflect a unique homeostatic role of this pathway in the inflammatory response of hASM cells.
Collapse
Affiliation(s)
- John Yap
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Xujiao Chen
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
15
|
Ambhore NS, Kalidhindi RSR, Pabelick CM, Hawse JR, Prakash YS, Sathish V. Differential estrogen-receptor activation regulates extracellular matrix deposition in human airway smooth muscle remodeling via NF-κB pathway. FASEB J 2019; 33:13935-13950. [PMID: 31638834 DOI: 10.1096/fj.201901340r] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Altered airway smooth muscle (ASM) mass and extracellular matrix (ECM) deposition in airways are characteristic features of remodeling in asthma. Increased ECM production modulates ASM cell proliferation and leads to airway remodeling. Our previous studies showed that ASM from patients with asthma exhibited increased expression of estrogen receptor (ER)-β, which upon activation down-regulated ASM proliferation, implicating an important role for estrogen signaling in airway physiology. There is no current information on the effect of differential ER activation on ECM production. In this study, we evaluated the effect of ER-α vs. ER-β activation on ECM production, deposition, and underlying pathways. Primary human ASM cells isolated from asthmatics and nonasthmatics were treated with E2, an ER-α agonist [propylpyrazoletriol (PPT)], and an ER-β agonist [WAY-200070 (WAY)] with TNF-α or platelet-derived growth factor (PDGF) followed by evaluation of ECM production and deposition. Expression of proteins and genes corresponding to ECM were measured using Western blotting and quantitative RT-PCR with subsequent matrix metalloproteinase (MMP) activity. Molecular mechanisms of ER activation in regulating ECM were evaluated by luciferase reporter assays for activator protein 1 (AP-1) and NF-κB. TNF-α or PDGF significantly (P < 0.001) increased ECM deposition and MMP activity in human ASM cells, which was significantly reduced with WAY treatment but not with PPT. Furthermore, TNF-α- or PDGF-induced ECM gene expression in ASM cells was significantly reduced with WAY (P < 0.001). Moreover, WAY significantly down-regulated the activation of NF-κB (P < 0.001) and AP-1 (P < 0.01, P < 0.05) in ASM cells from asthmatics and nonasthmatics. Overall, we demonstrate differential ER signaling in controlling ECM production and deposition. Activation of ER-β diminishes ECM deposition via suppressing the NF-κB pathway activity and might serve as a novel target to blunt airway remodeling.-Ambhore, N. S., Kalidhindi, R. S. R., Pabelick, C. M., Hawse, J. R., Prakash, Y. S., Sathish, V. Differential estrogen-receptor activation regulates extracellular matrix deposition in human airway smooth muscle remodeling via NF-κB pathway.
Collapse
Affiliation(s)
- Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | | | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA; and
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA; and
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
16
|
Bhallamudi S, Connell J, Pabelick CM, Prakash YS, Sathish V. Estrogen receptors differentially regulate intracellular calcium handling in human nonasthmatic and asthmatic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2019; 318:L112-L124. [PMID: 31617730 DOI: 10.1152/ajplung.00206.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Asthma is defined as chronic inflammation of the airways and is characterized by airway remodeling, hyperresponsiveness, and acute bronchoconstriction of airway smooth muscle (ASM) cells. Clinical findings suggest a higher incidence and severity of asthma in adult women, indicating a concrete role of sex steroids in modulating the airway tone. Estrogen, a major female sex steroid mediates its role through estrogen receptors (ER) ERα and ERβ, which are shown to be expressed in human ASM, and their expression is upregulated in lung inflammation and asthma. Previous studies suggested rapid, nongenomic signaling of estrogen via ERs reduces intracellular calcium ([Ca2+]i), thereby promoting relaxation of ASM. However, long-term ER activation on [Ca2+]i regulation in human ASM during inflammation or in asthma is still not known. In Fura-2-loaded nonasthmatic and asthmatic human ASM cells, we found that prolonged (24 h) exposure to ERα agonist (PPT) increased [Ca2+]i response to histamine, whereas ERβ activation (WAY) led to decreased [Ca2+] compared with vehicle. This was further confirmed by ER overexpression and knockdown studies using various bronchoconstrictor agents. Interestingly, ERβ activation was more effective than 17β-estradiol in reducing [Ca2+]i responses in the presence of TNF-α or IL-13, while no observable changes were noticed with PPT in the presence of either cytokine. The [Ca2+]i-reducing effects of ERβ were mediated partially via L-type calcium channel inhibition and increased Ca2+ sequestration by sarcoplasmic reticulum. Overall, these data highlight the differential signaling of ERα and ERβ in ASM during inflammation. Specific ERβ activation reduces [Ca2+]i in the inflamed ASM cells and is likely to play a crucial role in regulating ASM contractility, thereby relaxing airways.
Collapse
Affiliation(s)
- Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| | - Jennifer Connell
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
17
|
Sieck GC, Dogan M, Young‐Soo H, Osorio Valencia S, Delmotte P. Mechanisms underlying TNFα-induced enhancement of force generation in airway smooth muscle. Physiol Rep 2019; 7:e14220. [PMID: 31512410 PMCID: PMC6739507 DOI: 10.14814/phy2.14220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 11/24/2022] Open
Abstract
Airway diseases such as asthma are triggered by inflammation and mediated by proinflammatory cytokines such as tumor necrosis factor alpha (TNFα). Our goal was to systematically examine the potential mechanisms underlying the effect of TNFα on airway smooth muscle (ASM) contractility. Porcine ASM strips were incubated for 24 h with and without TNFα. Exposure to TNFα increased maximum ASM force in response to acetylcholine (Ach), with an increase in ACh sensitivity (hyperreactivity), as reflected by a leftward shift in the dose-response curve (EC50 ). At the EC50 , the [Ca2+ ]cyt response to ACh was similar between TNFα and control ASM, while force increased; thus, Ca2+ sensitivity appeared to increase. Exposure to TNFα increased the basal level of regulatory myosin light chain (rMLC) phosphorylation in ASM; however, the ACh-dependent increase in rMLC phosphorylation was blunted by TNFα with no difference in the extent of rMLC phosphorylation at the EC50 ACh concentration. In TNFα-treated ASM, total actin and myosin heavy chain concentrations increased. TNFα exposure also enhanced the ACh-dependent polymerization of G- to F-actin. The results of this study confirm TNFα-induced hyperreactivity to ACh in porcine ASM. We conclude that the TNFα-induced increase in ASM force, cannot be attributed to an enhanced [Ca2+ ]cyt response or to an increase in rMLC phosphorylation. Instead, TNFα increases Ca2+ sensitivity of ASM force generation due to increased contractile protein content (greater number of contractile units) and enhanced cytoskeletal remodeling (actin polymerization) resulting in increased tethering of contractile elements to the cortical cytoskeleton and force translation to the extracellular matrix.
Collapse
Affiliation(s)
- Gary C. Sieck
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Murat Dogan
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Han Young‐Soo
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Sara Osorio Valencia
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Philippe Delmotte
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| |
Collapse
|
18
|
Pan S, Conaway S, Deshpande DA. Mitochondrial regulation of airway smooth muscle functions in health and pulmonary diseases. Arch Biochem Biophys 2019; 663:109-119. [PMID: 30629957 DOI: 10.1016/j.abb.2019.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/28/2018] [Accepted: 01/04/2019] [Indexed: 12/24/2022]
Abstract
Mitochondria are important for airway smooth muscle physiology due to their diverse yet interconnected roles in calcium handling, redox regulation, and cellular bioenergetics. Increasing evidence indicates that mitochondria dysfunction is intimately associated with airway diseases such as asthma, IPF and COPD. In these pathological conditions, increased mitochondrial ROS, altered bioenergetics profiles, and calcium mishandling contribute collectively to changes in cellular signaling, gene expression, and ultimately changes in airway smooth muscle contractile/proliferative properties. Therefore, understanding the basic features of airway smooth muscle mitochondria and their functional contribution to airway biology and pathology are key to developing novel therapeutics for airway diseases. This review summarizes the recent findings of airway smooth muscle mitochondria focusing on calcium homeostasis and redox regulation, two key determinants of physiological and pathological functions of airway smooth muscle.
Collapse
Affiliation(s)
- Shi Pan
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Stanley Conaway
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Deepak A Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
19
|
Li X, Zhang S, Liu X, Wang X, Zhou A, Liu P. Dynamic analysis on the calcium oscillation model considering the influences of mitochondria. Biosystems 2017; 163:36-46. [PMID: 29229425 DOI: 10.1016/j.biosystems.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 10/08/2017] [Accepted: 12/05/2017] [Indexed: 11/26/2022]
Abstract
Based on the model considering the influences of mitochondria, a further theoretical study on the dynamic behaviors of calcium signals is made. First of all, the reason for the generation and disappearance of calcium oscillations is verified in theory. Second, an analysis on the model considering the influences of mitochondria and the model neglecting the influences of mitochondria is carried out. Third, β (representing calcium leak) is introduced and it can be found that with the increase of β, the Hopf bifurcation points of system move towards the decreasing direction of μ (representing stimulus intensity) and calcium oscillations region gradually decreases. Forth, the study on τh (representing relaxation time) indicates that with the increase of τh, the second Hopf bifurcation point of system moves towards the increasing direction of μ and calcium oscillations region gradually increases. Under certain stimulus intensity, when relaxation time increases, calcium oscillation peak rises rapidly and the period increases obviously. Fifth, two-parameter bifurcation diagram of Vm1 (representing mitochondria activity) and μ contains three regions: stable region, oscillation region and unstable region. When the parameters fall in the unstable region Ca2+ gather towards mitochondria and further lead to cell apoptosis. With the increase of Vm1, calcium oscillations region shrinks gradually. Vm1 and μ both play a key role in regulating cell apoptosis. Only when Vm1 and μ are high enough can cells enter into programmed cell death and the higher Vm1 is, the lower the stimulus intensity required by cell apoptosis is.
Collapse
Affiliation(s)
- Xiang Li
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300354, PR China; Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300354, PR China.
| | - Suxia Zhang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300354, PR China; Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300354, PR China.
| | - Xijun Liu
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300354, PR China; Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300354, PR China
| | - Xiaojing Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Anqi Zhou
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300354, PR China; Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300354, PR China
| | - Peng Liu
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300354, PR China; Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300354, PR China
| |
Collapse
|
20
|
Zuccolo E, Lim D, Kheder DA, Perna A, Catarsi P, Botta L, Rosti V, Riboni L, Sancini G, Tanzi F, D'Angelo E, Guerra G, Moccia F. Acetylcholine induces intracellular Ca 2+ oscillations and nitric oxide release in mouse brain endothelial cells. Cell Calcium 2017; 66:33-47. [PMID: 28807148 DOI: 10.1016/j.ceca.2017.06.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/05/2017] [Accepted: 06/10/2017] [Indexed: 01/29/2023]
Abstract
Basal forebrain neurons increase cortical blood flow by releasing acetylcholine (Ach), which stimulates endothelial cells (ECs) to produce the vasodilating gasotransmitter, nitric oxide (NO). Surprisingly, the mechanism whereby Ach induces NO synthesis in brain microvascular ECs is unknown. An increase in intracellular Ca2+ concentration recruits a multitude of endothelial Ca2+-dependent pathways, such as Ca2+/calmodulin endothelial NO synthase (eNOS). The present investigation sought to investigate the role of intracellular Ca2+ signaling in Ach-induced NO production in bEND5 cells, an established model of mouse brain microvascular ECs, by conventional imaging of cells loaded with the Ca2+-sensitive dye, Fura-2/AM, and the NO-sensitive fluorophore, DAF-DM diacetate. Ach induced dose-dependent Ca2+ oscillations in bEND5 cells, 300 μM being the most effective dose to generate a prolonged Ca2+ burst. Pharmacological manipulation revealed that Ach-evoked Ca2+ oscillations required metabotropic muscarinic receptor (mAchR) activation and were patterned by a complex interplay between repetitive ER Ca2+ release via inositol-1,4,5-trisphosphate receptors (InsP3Rs) and store-operated Ca2+ entry (SOCE). A comprehensive real time-polymerase chain reaction analysis demonstrated the expression of the transcripts encoding for M3-mAChRs, InsP3R1 and InsP3R3, Stim1-2 and Orai2. Next, we found that Ach-induced NO production was hindered by L-NAME, a selective NOS inhibitor, and BAPTA, a membrane permeable intracellular Ca2+ buffer. Moreover, Ach-elicited NO synthesis was blocked by the pharmacological abrogation of the accompanying Ca2+ spikes. Overall, these data shed novel light on the molecular mechanisms whereby neuronally-released Ach controls neurovascular coupling in blood microvessels.
Collapse
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, University of Eastern Piedment "Amedeo Avogadro", Novara, Italy
| | - Dlzar Ali Kheder
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy; Department of Biology, University of Zakho, Kurdistan-Region of Iraq, Iraq
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Santis, 86100 Campobasso, Italy
| | - Paolo Catarsi
- Center for the Study of Myelofibrosis, Research Laboratory of Biotechnology, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Research Laboratory of Biotechnology, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Segrate, 20090 Milan, Italy
| | - Giulio Sancini
- Department of Experimental Medicine, University of Milano-Bicocca, 20900 Monza, Italy
| | - Franco Tanzi
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; Brain Connectivity Center, C. Mondino National Neurological Institute, 27100 Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Santis, 86100 Campobasso, Italy.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
21
|
Delmotte P, Zavaletta VA, Thompson MA, Prakash YS, Sieck GC. TNFα decreases mitochondrial movement in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2017; 313:L166-L176. [PMID: 28473328 DOI: 10.1152/ajplung.00538.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/04/2017] [Accepted: 04/26/2017] [Indexed: 02/02/2023] Open
Abstract
In airway smooth muscle (ASM) cells, excitation-contraction coupling is accomplished via a cascade of events that connect an elevation of cytosolic Ca2+ concentration ([Ca2+]cyt) with cross-bridge attachment and ATP-consuming mechanical work. Excitation-energy coupling is mediated by linkage of the elevation of [Ca2+]cyt to an increase in mitochondrial Ca2+ concentration, which in turn stimulates ATP production. Proximity of mitochondria to the sarcoplasmic reticulum (SR) and plasma membrane is thought to be an important mechanism to facilitate mitochondrial Ca2+ uptake. In this regard, mitochondrial movement in ASM cells may be key in establishing proximity. Mitochondria also move where ATP or Ca2+ buffering is needed. Mitochondrial movement is mediated through interactions with the Miro-Milton molecular complex, which couples mitochondria to kinesin motors at microtubules. We examined mitochondrial movement in human ASM cells and hypothesized that, at basal [Ca2+]cyt levels, mitochondrial movement is necessary to establish proximity of mitochondria to the SR and that, during the transient increase in [Ca2+]cyt induced by agonist stimulation, mitochondrial movement is reduced, thereby promoting transient mitochondrial Ca2+ uptake. We further hypothesized that airway inflammation disrupts basal mitochondrial movement via a reduction in Miro and Milton expression, thereby disrupting the ability of mitochondria to establish proximity to the SR and, thus, reducing transient mitochondrial Ca2+ uptake during agonist activation. The reduced proximity of mitochondria to the SR may affect establishment of transient "hot spots" of higher [Ca2+]cyt at the sites of SR Ca2+ release that are necessary for mitochondrial Ca2+ uptake via the mitochondrial Ca2+ uniporter.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Vanessa A Zavaletta
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Michael A Thompson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
22
|
Deshpande DA, Guedes AGP, Lund FE, Subramanian S, Walseth TF, Kannan MS. CD38 in the pathogenesis of allergic airway disease: Potential therapeutic targets. Pharmacol Ther 2016; 172:116-126. [PMID: 27939939 DOI: 10.1016/j.pharmthera.2016.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CD38 is an ectoenzyme that catalyzes the conversion of β-nicotinamide adenine dinucleotide (β-NAD) to cyclic adenosine diphosphoribose (cADPR) and adenosine diphosphoribose (ADPR) and NADP to nicotinic acid adenine dinucleotide phosphate (NAADP) and adenosine diphosphoribose-2'-phosphate (ADPR-P). The metabolites of NAD and NADP have roles in calcium signaling in different cell types including airway smooth muscle (ASM) cells. In ASM cells, inflammatory cytokines augment CD38 expression and to a greater magnitude in cells from asthmatics, indicating a greater capacity for the generation of cADPR and ADPR in ASM from asthmatics. CD38 deficient mice develop attenuated airway responsiveness to inhaled methacholine following allergen sensitization and challenge compared to wild-type mice indicating its potential role in asthma. Regulation of CD38 expression in ASM cells is achieved by mitogen activated protein kinases, specific isoforms of PI3 kinases, the transcription factors NF-κB and AP-1, and post-transcriptionally by microRNAs. This review will focus on the role of CD38 in intracellular calcium regulation in ASM, contribution to airway inflammation and airway hyperresponsiveness in mouse models of allergic airway inflammation, the transcriptional and post-transcriptional mechanisms of regulation of expression, and outline approaches to inhibit its expression and activity.
Collapse
Affiliation(s)
| | - Alonso G P Guedes
- Department of Veterinary Clinical Sciences, University of Minnesota at Twin Cities, USA
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, USA
| | | | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota at Twin Cities, USA
| | - Mathur S Kannan
- Department of Veterinary and Biomedical Sciences, University of Minnesota at Twin Cities, USA.
| |
Collapse
|
23
|
Chen J, Sanderson MJ. Store-operated calcium entry is required for sustained contraction and Ca 2+ oscillations of airway smooth muscle. J Physiol 2016; 595:3203-3218. [PMID: 27396568 DOI: 10.1113/jp272694] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Airway hyper-responsiveness in asthma is driven by excessive contraction of airway smooth muscle cells (ASMCs). Agonist-induced Ca2+ oscillations underlie this contraction of ASMCs and the magnitude of this contraction is proportional to the Ca2+ oscillation frequency. Sustained contraction and Ca2+ oscillations require an influx of extracellular Ca2+ , although the mechanisms and pathways mediating this Ca2+ influx during agonist-induced ASMC contraction are not well defined. By inhibiting store-operated calcium entry (SOCE) or voltage-gated Ca2+ channels (VGCCs), we show that SOCE, rather than Ca2+ influx via VGCCs, provides the major Ca2+ entry pathway into ASMCs to sustain ASMCs contraction and Ca2+ oscillations. SOCE may therefore serve as a potential target for new bronchodilators to reduce airway hyper-responsiveness in asthma. ABSTRACT Asthma is characterized by airway hyper-responsiveness: the excessive contraction of airway smooth muscle. The extent of this airway contraction is proportional to the frequency of Ca2+ oscillations within airway smooth muscle cells (ASMCs). Sustained Ca2+ oscillations require a Ca2+ influx to replenish Ca2+ losses across the plasma membrane. Our previous studies implied store-operated calcium entry (SOCE) as the major pathway for this Ca2+ influx. In the present study, we explore this hypothesis, by examining the effects of SOCE inhibitors (GSK7975A and GSK5498A) as well as L-type voltage-gated Ca2+ channel inhibitors (nifedipine and nimodipine) on airway contraction and Ca2+ oscillations and SOCE-mediated Ca2+ influx in ASMCs within mouse precision-cut lung slices. We found that both GSK7975A and GSK5498A were able to fully relax methacholine-induced airway contraction by abolishing the Ca2+ oscillations, in a manner similar to that observed in zero extracellular Ca2+ ([Ca2+ ]e ). In addition, GSK7975A and GSK5498A inhibited increases in intracellular Ca2+ ([Ca2+ ]i ) in ASMCs with depleted Ca2+ -stores in response to increased [Ca2+ ]e , demonstrating a response consistent with the inhibition of SOCE. However, GSK7975A and GSK5498A did not reduce Ca2+ release via IP3 receptors stimulated with IP3 released from caged-IP3 . By contrast, nifedipine and nimodipine only partially reduced airway contraction, Ca2+ oscillation frequency and SOCE-mediated Ca2+ influx. These data suggest that SOCE is the major Ca2+ influx pathway for ASMCs with respect to sustaining agonist-induced airway contraction and the underlying Ca2+ oscillations. The mechanisms of SOCE may therefore form novel targets for new bronchodilators.
Collapse
Affiliation(s)
- Jun Chen
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael J Sanderson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
24
|
Andreeva LA, Grishina EV, Sergeev AI, Lobanov AV, Slastcheva GA, Rykov VA, Temyakov AV, Dynnik VV. Emergence of acetylcholine resistance and loss of rhythmic activity associated with the development of hypertension, obesity, and type 2 diabetes. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2016; 10:199-206. [DOI: 10.1134/s1990747816020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
25
|
Liu X, Li X. Systematical bifurcation analysis of an intracellular calcium oscillation model. Biosystems 2016; 145:33-40. [DOI: 10.1016/j.biosystems.2016.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/05/2016] [Accepted: 04/28/2016] [Indexed: 11/16/2022]
|
26
|
Borysova L, Burdyga T. Evidence that NO/cGMP/PKG signalling cascade mediates endothelium dependent inhibition of IP₃R mediated Ca²⁺ oscillations in myocytes and pericytes of ureteric microvascular network in situ. Cell Calcium 2015; 58:535-40. [PMID: 26344105 PMCID: PMC4655834 DOI: 10.1016/j.ceca.2015.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/13/2015] [Accepted: 08/25/2015] [Indexed: 11/26/2022]
Abstract
Endothelium-dependent inhibition of Ca2+ oscillations in myocytes and pericytes was reversed by ODQ, an inhibitor of soluble guanylyl cyclase (sGC). Selective PKG inhibitor Rp-8-pCPT-cGMPS, reversed endothelium- dependent termination of agonist-induced Ca2+ oscillations in myocytes and pericytes. Selective PKG activator 8pCPT-cGMP induced inhibition of the agonist-induced Ca2+ oscillations in myocytes and pericytes. Inhibitory effect of SNAP was markedly enhanced by zaprinast. Inhibitory effect of NO/cGMP/PKG cascade is associated with suppressed Ca2+ release via IP3Rs of myocytes and pericytes.
In ureteric microvessels the antagonistic relationship between Ca2+ signalling in endothelium and Ca2+ oscillations in myocytes and pericytes of arterioles and venules involves nitric oxide (NO), but the underlying mechanisms are not well understood. In the present study we investigated the effects of carbachol and NO donor SNAP on Ca2+ signalling and vasomotor responses of arterioles and venules in intact urteric microvascular network in situ using confocal microscopy. Vasomotor responses of arterioles and venules induced by AVP correlated with the occurrence of Ca2+ oscillations in the myocytes and pericytes and were not abolished by the removal of Ca2+ from extracellular fluid. Carbachol-induced rise of intracellular Ca2+ in endothelium was accompanied by the termination of the Ca2+ oscillations in myocytes and pericytes. This carbachol-induced inhibitory effect on Ca2+ oscillations in myocytes and pericytes was reversed by ODQ, an inhibitor of soluble guanylyl cyclase (sGC) and by Rp-8-pCPT-cGMPS, an inhibitor of protein kinase G (PKG). Ca2+ oscillations in myocytes and pericytes were also effectively blocked by NO donor SNAP. An Inhibitory effect of SNAP was markedly enhanced by zaprinast, a selective inhibitor of cGMP-specific phosphodiesterase-5, and reversed by sGC inhibitor, ODQ and PKG inhibitor, Rp-8-pCPT-cGMPS. The cGMP analogue and selective PKG activator 8pCPT-cGMP also induced inhibition of the AVP-induced Ca2+ oscillations in myocytes and pericytes. SNAP had no effects on Ca2+ oscillations induced by caffeine in distributing arcade arterioles. Consequently, we conclude that NO- mediated inhibition of Ca2+ oscillations in myocytes and pericytes predominantly recruits the cGMP/PKG dependent pathway. The inhibitory effect of NO/cGMP/PKG cascade is associated with suppressed Ca2+ release from the SR of myocytes and pericytes selectively via the inositol triphosphate receptor (IP3R) channels.
Collapse
Affiliation(s)
- Lyudmyla Borysova
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, L8 7SS, UK.
| | - Theodor Burdyga
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, L8 7SS, UK
| |
Collapse
|
27
|
Wylam ME, Sathish V, VanOosten SK, Freeman M, Burkholder D, Thompson MA, Pabelick CM, Prakash YS. Mechanisms of Cigarette Smoke Effects on Human Airway Smooth Muscle. PLoS One 2015; 10:e0128778. [PMID: 26075746 PMCID: PMC4468194 DOI: 10.1371/journal.pone.0128778] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/30/2015] [Indexed: 11/19/2022] Open
Abstract
Cigarette smoke contributes to or exacerbates airway diseases such as asthma and COPD, where airway hyperresponsiveness and airway smooth muscle (ASM) proliferation are key features. While factors such as inflammation contribute to asthma in part by enhancing agonist-induced intracellular Ca(2+) ([Ca(2+)]i) responses of ASM, the mechanisms by which cigarette smoke affect ASM are still under investigation. In the present study, we tested the hypothesis that cigarette smoke enhances the expression and function of Ca(2+) regulatory proteins leading to increased store operated Ca(2+) entry (SOCE) and cell proliferation. Using isolated human ASM (hASM) cells, incubated in the presence and absence cigarette smoke extract (CSE) we determined ([Ca(2+)]i) responses and expression of relevant proteins as well as ASM proliferation, reactive oxidant species (ROS) and cytokine generation. CSE enhanced [Ca(2+)]i responses to agonist and SOCE: effects mediated by increased expression of TRPC3, CD38, STIM1, and/or Orai1, evident by attenuation of CSE effects when siRNAs against these proteins were used, particularly Orai1. CSE also increased hASM ROS generation and cytokine secretion. In addition, we found in the airways of patients with long-term smoking history, TRPC3 and CD38 expression were significantly increased compared to life-long never-smokers, supporting the role of these proteins in smoking effects. Finally, CSE enhanced hASM proliferation, an effect confirmed by upregulation of PCNA and Cyclin E. These results support a critical role for Ca(2+) regulatory proteins and enhanced SOCE to alter airway structure and function in smoking-related airway disease.
Collapse
Affiliation(s)
- Mark E. Wylam
- Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Department of Pediatrics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| | - Venkatachalem Sathish
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Sarah Kay VanOosten
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Michelle Freeman
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - David Burkholder
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Michael A. Thompson
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Christina M. Pabelick
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Y. S. Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| |
Collapse
|
28
|
Delmotte P, Sieck GC. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM). Can J Physiol Pharmacol 2014; 93:97-110. [PMID: 25506723 DOI: 10.1139/cjpp-2014-0361] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 4-184 West Joseph SMH, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
29
|
Chang JP, Sawisky GR, Davis PJ, Pemberton JG, Rieger AM, Barreda DR. Relationship between nitric oxide- and calcium-dependent signal transduction pathways in growth hormone release from dispersed goldfish pituitary cells. Gen Comp Endocrinol 2014; 206:118-29. [PMID: 25038498 DOI: 10.1016/j.ygcen.2014.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/05/2014] [Accepted: 07/08/2014] [Indexed: 11/17/2022]
Abstract
Nitric oxide (NO) and Ca(2+) are two of the many intracellular signal transduction pathways mediating the control of growth hormone (GH) secretion from somatotropes by neuroendocrine factors. We have previously shown that the NO donor sodium nitroprusside (SNP) elicits Ca(2+) signals in identified goldfish somatotropes. In this study, we examined the relationships between NO- and Ca(2+)-dependent signal transduction mechanisms in GH secretion from primary cultures of dispersed goldfish pituitary cells. Morphologically identified goldfish somatotropes stained positively for an NO-sensitive dye indicating they may be a source of NO production. In 2h static incubation experiments, GH release responses to the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) were attenuated by CoCl2, nifedipine, verapamil, TMB-8, BHQ, and KN62. In column perifusion experiments, the ability of SNP to induce GH release was impaired in the presence of TMB-8, BHQ, caffeine, and thapsigargin, but not ryanodine. Caffeine-elicited GH secretion was not affected by the NO scavenger PTIO. These results suggest that NO-stimulated GH release is dependent on extracellular Ca(2+) availability and voltage-sensitive Ca(2+) channels, as well as intracellular Ca(2+) store(s) that possess BHQ- and/or thapsigargin-inhibited sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases, as well as TMB-8- and/or caffeine-sensitive, but not ryanodine-sensitive, Ca(2+)-release channels. Calmodulin kinase-II also likely participates in NO-elicited GH secretion but caffeine-induced GH release is not upstream of NO production. These findings provide insights into how NO actions many integrate with Ca(2+)-dependent signalling mechanisms in goldfish somatotropes and how such interactions may participate in the GH-releasing actions of regulators that utilize both NO- and Ca(2+)-dependent transduction pathways.
Collapse
Affiliation(s)
- John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | - Grant R Sawisky
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Philip J Davis
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Aja M Rieger
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; Department of Agriculture, Forestry and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
30
|
Thompson MA, Prakash YS, Pabelick CM. Arachidonate-regulated Ca(2+) influx in human airway smooth muscle. Am J Respir Cell Mol Biol 2014; 51:68-76. [PMID: 24471656 DOI: 10.1165/rcmb.2013-0144oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Plasma membrane Ca(2+) influx, especially store-operated Ca(2+) entry triggered by sarcoplasmic reticulum (SR) Ca(2+) release, is a key component of intracellular calcium concentration ([Ca(2+)]i) regulation in airway smooth muscle (ASM). Agonist-induced Ca(2+) oscillations in ASM that involve both influx and SR mechanisms have been previously demonstrated. In nonexcitable cells, [Ca(2+)]i oscillations involve Ca(2+) influx via arachidonic acid (AA) -stimulated channels, which show similarities to store-operated Ca(2+) entry, although their molecular identity remains undetermined. Little is known about AA-regulated Ca(2+) channels or their regulation in ASM. In enzymatically dissociated human ASM cells loaded with the Ca(2+) indicator, fura-2, AA (1-10 μM) triggered [Ca(2+)]i oscillations that were inhibited by removal of extracellular Ca(2+). Other fatty acids, such as the diacylglycerol analog, 1-oleoyl-2-acetyl-SN-glycerol, oleic acid, and palmitic acid (10 μM each), failed to elicit similar [Ca(2+)]i responses. Preincubation with LaCl3 (1 μM or 1 mM) inhibited AA-induced oscillations. Inhibition of receptor-operated channels (SKF96,365 [10 μM]), lipoxygenase (zileuton [10 μM]), or cyclooxygenase (indomethacin [10 μM]) did not affect oscillation parameters. Inhibition of SR Ca(2+) release (ryanodine [10 μM] or inositol 1,4,5-trisphosphate receptor inhibitor, xestospongin C [1 μM]) decreased [Ca(2+)]i oscillation frequency and amplitude. Small interfering RNA against caveolin-1, stromal interaction molecule 1, or Orai3 (20 nM each) reduced the frequency and amplitude of AA-induced [Ca(2+)]i oscillations. In ASM cells derived from individuals with asthma, AA increased oscillation amplitude, but not frequency. These results are highly suggestive of a novel AA-mediated Ca(2+)-regulatory mechanism in human ASM, reminiscent of agonist-induced oscillations. Given the role of AA in ASM intracellular signaling, especially with inflammation, AA-regulated Ca(2+) channels could potentially contribute to increased [Ca(2+)]i in diseases such asthma.
Collapse
|
31
|
Koopmans T, Anaparti V, Castro-Piedras I, Yarova P, Irechukwu N, Nelson C, Perez-Zoghbi J, Tan X, Ward JPT, Wright DB. Ca2+ handling and sensitivity in airway smooth muscle: emerging concepts for mechanistic understanding and therapeutic targeting. Pulm Pharmacol Ther 2014; 29:108-20. [PMID: 24831539 DOI: 10.1016/j.pupt.2014.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/28/2014] [Accepted: 05/01/2014] [Indexed: 02/01/2023]
Abstract
Free calcium ions within the cytosol serve as a key secondary messenger system for a diverse range of cellular processes. Dysregulation of cytosolic Ca(2+) handling in airway smooth muscle (ASM) has been implicated in asthma, and it has been hypothesised that this leads, at least in part, to associated changes in both the architecture and function of the lung. Significant research is therefore directed towards furthering our understanding of the mechanisms which control ASM cytosolic calcium, in addition to those regulating the sensitivity of its downstream effector targets to calcium. Key aspects of the recent developments in this field were discussed at the 8th Young Investigators' Symposium on Smooth Muscle (2013, Groningen, The Netherlands), and are outlined in this review.
Collapse
Affiliation(s)
- T Koopmans
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - V Anaparti
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - I Castro-Piedras
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - P Yarova
- Cardiff School of Biosciences, Cardiff University, UK
| | - N Irechukwu
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - C Nelson
- School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - J Perez-Zoghbi
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - X Tan
- Lung Inflammation & Infection Lab, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - J P T Ward
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - D B Wright
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Division of Asthma, Allergy and Lung Biology, King's College London, UK.
| |
Collapse
|
32
|
Jia L, Delmotte P, Aravamudan B, Pabelick CM, Prakash YS, Sieck GC. Effects of the inflammatory cytokines TNF-α and IL-13 on stromal interaction molecule-1 aggregation in human airway smooth muscle intracellular Ca(2+) regulation. Am J Respir Cell Mol Biol 2014; 49:601-8. [PMID: 23713409 DOI: 10.1165/rcmb.2013-0040oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Inflammation elevates intracellular Ca(2+) ([Ca(2+)]i) concentrations in airway smooth muscle (ASM). Store-operated Ca(2+) entry (SOCE) is an important source of [Ca(2+)]i mediated by stromal interaction molecule-1 (STIM1), a sarcoplasmic reticulum (SR) protein. In transducing SR Ca(2+) depletion, STIM1 aggregates to form puncta, thereby activating SOCE via interactions with a Ca(2+) release-activated Ca(2+) channel protein (Orai1) in the plasma membrane. We hypothesized that STIM1 aggregation is enhanced by inflammatory cytokines, thereby augmenting SOCE in human ASM cells. We used real-time fluorescence microscopic imaging to assess the dynamics of STIM1 aggregation and SOCE after exposure to TNF-α or IL-13 in ASM cells overexpressing yellow fluorescent protein-tagged wild-type STIM1 (WT-STIM1) and STIM1 mutants lacking the Ca(2+)-sensing EF-hand (STIM1-D76A), or lacking the cytoplasmic membrane binding site (STIM1ΔK). STIM1 aggregation was analyzed by monitoring puncta size during the SR Ca(2+) depletion induced by cyclopiazonic acid (CPA). We found that puncta size was increased in cells expressing WT-STIM1 after CPA. However, STIM1-D76A constitutively formed puncta, whereas STIM1ΔK failed to form puncta. Furthermore, cytokines increased basal WT-STIM1 puncta size, and the SOCE triggered by SR Ca(2+) depletion was increased in cells expressing WT-STIM1 or STIM1-D76A. Meanwhile, SOCE in cells expressing STIM1ΔK and STIM1 short, interfering RNA (siRNA) was decreased. Similarly, in cells overexpressing STIM1, the siRNA knockdown of Orai1 blunted SOCE. However, exposure to cytokines increased SOCE in all cells, increased basal [Ca(2+)]i, and decreased SR Ca(2+) content. These data suggest that cytokines induce a constitutive increase in STIM1 aggregation that contributes to enhanced SOCE in human ASM after inflammation. Such effects of inflammation on STIM1 aggregations may contribute to airway hyperresponsiveness.
Collapse
Affiliation(s)
- Li Jia
- 1 Department of Physiology and Biomedical Engineering, and
| | | | | | | | | | | |
Collapse
|
33
|
Prakash YS. Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol 2013; 305:L912-33. [PMID: 24142517 PMCID: PMC3882535 DOI: 10.1152/ajplung.00259.2013] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/12/2013] [Indexed: 12/12/2022] Open
Abstract
It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca(2+)]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM "activity" result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Y S Prakash
- Dept. of Anesthesiology, Mayo Clinic, 4-184 W Jos SMH, 200 First St. SW, Rochester, MN 55905.
| |
Collapse
|
34
|
Sathish V, Thompson MA, Sinha S, Sieck GC, Prakash YS, Pabelick CM. Inflammation, caveolae and CD38-mediated calcium regulation in human airway smooth muscle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:346-51. [PMID: 24275509 DOI: 10.1016/j.bbamcr.2013.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/11/2013] [Accepted: 11/14/2013] [Indexed: 01/10/2023]
Abstract
The pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) increases expression of CD38 (a membrane-associated bifunctional enzyme regulating cyclic ADP ribose), and enhances agonist-induced intracellular Ca(2+) ([Ca(2+)]i) responses in human airway smooth muscle (ASM). We previously demonstrated that caveolae and their constituent protein caveolin-1 are important for ASM [Ca(2+)]i regulation, which is further enhanced by TNFα. Whether caveolae and CD38 are functionally linked in mediating TNFα effects is unknown. In this regard, whether the related cavin proteins (cavin-1 and -3) that maintain structure and function of caveolae play a role is also not known. In the present study, we hypothesized that TNFα effects on CD38 expression and function in human ASM involve caveolae. Caveolar fractions from isolated human ASM cells expressed CD38 and its expression was upregulated by exposure to 20ng/ml TNFα (48h). ASM cells expressed cavin-1 and cavin-3, which were also upregulated by TNFα. Knockdown of caveolin-1, cavin-1 or cavin-3 (using siRNA) all significantly reduced CD38 expression and ADP-ribosyl cyclase activity in the presence or absence of TNFα. Furthermore, caveolin-1, cavin-1 and cavin-3 siRNAs reduced [Ca(2+)]i responses to histamine under control conditions, and blunted the enhanced [Ca(2+)]i responses in TNFα-exposed cells. These data demonstrate that CD38 is expressed within caveolae and its function is linked to the caveolar regulatory proteins caveolin-1, cavin-1 and -3. The link between caveolae and CD38 is further enhanced during airway inflammation demonstrating the important role of caveolae in regulation of [Ca(2+)]i and contractility in the airway.
Collapse
Affiliation(s)
- Venkatachalem Sathish
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA; Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Sutapa Sinha
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gary C Sieck
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Departments of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Y S Prakash
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA; Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Christina M Pabelick
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA; Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
35
|
Delmotte P, Yang B, Thompson MA, Pabelick CM, Prakash YS, Sieck GC. Inflammation alters regional mitochondrial Ca²+ in human airway smooth muscle cells. Am J Physiol Cell Physiol 2012; 303:C244-56. [PMID: 22673614 DOI: 10.1152/ajpcell.00414.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regulation of cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in airway smooth muscle (ASM) is a key aspect of airway contractility and can be modulated by inflammation. Mitochondria have tremendous potential for buffering [Ca(2+)](cyt), helping prevent Ca(2+) overload, and modulating other intracellular events. Here, compartmentalization of mitochondria to different cellular regions may subserve different roles. In the present study, we examined the role of Ca(2+) buffering by mitochondria and mitochondrial Ca(2+) transport mechanisms in the regulation of [Ca(2+)](cyt) in enzymatically dissociated human ASM cells upon exposure to the proinflammatory cytokines TNF-α and IL-13. Cells were loaded simultaneously with fluo-3 AM and rhod-2 AM, and [Ca(2+)](cyt) and mitochondrial Ca(2+) concentration ([Ca(2+)](mito)) were measured, respectively, using real-time two-color fluorescence microscopy in both the perinuclear and distal, perimembranous regions of cells. Histamine induced a rapid increase in both [Ca(2+)](cyt) and [Ca(2+)](mito), with a significant delay in the mitochondrial response. Inhibition of the mitochondrial Na(+)/Ca(2+) exchanger (1 μM CGP-37157) increased [Ca(2+)](mito) responses in perinuclear mitochondria but not distal mitochondria. Inhibition of the mitochondrial uniporter (1 μM Ru360) decreased [Ca(2+)](mito) responses in perinuclear and distal mitochondria. CGP-37157 and Ru360 significantly enhanced histamine-induced [Ca(2+)](cyt). TNF-α and IL-13 both increased [Ca(2+)](cyt), which was associated with decreased [Ca(2+)](mito) in the case of TNF-α but not IL-13. The effects of TNF-α on both [Ca(2+)](cyt) and [Ca(2+)](mito) were affected by CGP-37157 but not by Ru360. Overall, these data demonstrate that in human ASM cells, mitochondria buffer [Ca(2+)](cyt) after agonist stimulation and its enhancement by inflammation. The differential regulation of [Ca(2+)](mito) in different parts of ASM cells may serve to locally regulate Ca(2+) fluxes from intracellular sources versus the plasma membrane as well as respond to differential energy demands at these sites. We propose that such differential mitochondrial regulation, and its disruption, may play a role in airway hyperreactivity in diseases such as asthma, where [Ca(2+)](cyt) is increased.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
36
|
Grim KJ, Abcejo AJ, Barnes A, Sathish V, Smelter DF, Ford GC, Thompson MA, Prakash YS, Pabelick CM. Caveolae and propofol effects on airway smooth muscle. Br J Anaesth 2012; 109:444-53. [PMID: 22542538 DOI: 10.1093/bja/aes130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The i.v. anaesthetic propofol produces bronchodilatation. Airway relaxation involves reduced intracellular Ca(2+) ([Ca(2+)](i)) in airway smooth muscle (ASM) and lipid rafts (caveolae), and constitutional caveolin proteins regulate [Ca(2+)](i). We postulated that propofol-induced bronchodilatation involves caveolar disruption. METHODS Caveolar fractions of human ASM cells were tested for propofol content. [Ca(2+)](i) responses of ASM cells loaded with fura-2 were performed in the presence of 10 µM histamine with and without clinically relevant concentrations of propofol (10 and 30 μM and intralipid control). Effects on sarcoplasmic reticulum (SR) Ca(2+) release were evaluated in zero extracellular Ca(2+) using the blockers Xestospongin C and ryanodine. Store-operated Ca(2+) entry (SOCE) after SR depletion was evaluated using established techniques. The role of caveolin-1 in the effect of propofol was tested using small interference RNA (siRNA) suppression. Changes in intracellular signalling cascades relevant to [Ca(2+)](i) and force regulation were also evaluated. RESULTS Propofol was present in ASM caveolar fractions in substantial concentrations. Exposure to 10 or 30 µM propofol form decreased [Ca(2+)](i) peak (but not plateau) responses to histamine by ~40%, an effect persistent in zero extracellular Ca(2+). Propofol effects were absent in caveolin-1 siRNA-transfected cells. Inhibition of ryanodine receptors prevented propofol effects on [Ca(2+)](i), while propofol blunted [Ca(2+)](i) responses to caffeine. Propofol reduced SOCE, an effect also prevented by caveolin-1 siRNA. Propofol effects were associated with decreased caveolin-1 expression and extracellular signal-regulated kinase phosphorylation. CONCLUSIONS These novel data suggest a role for caveolae (specifically caveolin-1) in propofol-induced bronchodilatation. Due to its lipid nature, propofol may transiently disrupt caveolar regulation, thus altering ASM [Ca(2+)](i).
Collapse
Affiliation(s)
- K J Grim
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Narayanan D, Adebiyi A, Jaggar JH. Inositol trisphosphate receptors in smooth muscle cells. Am J Physiol Heart Circ Physiol 2012; 302:H2190-210. [PMID: 22447942 DOI: 10.1152/ajpheart.01146.2011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are a family of tetrameric intracellular calcium (Ca(2+)) release channels that are located on the sarcoplasmic reticulum (SR) membrane of virtually all mammalian cell types, including smooth muscle cells (SMC). Here, we have reviewed literature investigating IP(3)R expression, cellular localization, tissue distribution, activity regulation, communication with ion channels and organelles, generation of Ca(2+) signals, modulation of physiological functions, and alterations in pathologies in SMCs. Three IP(3)R isoforms have been identified, with relative expression and cellular localization of each contributing to signaling differences in diverse SMC types. Several endogenous ligands, kinases, proteins, and other modulators control SMC IP(3)R channel activity. SMC IP(3)Rs communicate with nearby ryanodine-sensitive Ca(2+) channels and mitochondria to influence SR Ca(2+) release and reactive oxygen species generation. IP(3)R-mediated Ca(2+) release can stimulate plasma membrane-localized channels, including transient receptor potential (TRP) channels and store-operated Ca(2+) channels. SMC IP(3)Rs also signal to other proteins via SR Ca(2+) release-independent mechanisms through physical coupling to TRP channels and local communication with large-conductance Ca(2+)-activated potassium channels. IP(3)R-mediated Ca(2+) release generates a wide variety of intracellular Ca(2+) signals, which vary with respect to frequency, amplitude, spatial, and temporal properties. IP(3)R signaling controls multiple SMC functions, including contraction, gene expression, migration, and proliferation. IP(3)R expression and cellular signaling are altered in several SMC diseases, notably asthma, atherosclerosis, diabetes, and hypertension. In summary, IP(3)R-mediated pathways control diverse SMC physiological functions, with pathological alterations in IP(3)R signaling contributing to disease.
Collapse
Affiliation(s)
- Damodaran Narayanan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, 38163, USA
| | | | | |
Collapse
|
38
|
Sodium-calcium exchange in intracellular calcium handling of human airway smooth muscle. PLoS One 2011; 6:e23662. [PMID: 21858195 PMCID: PMC3156227 DOI: 10.1371/journal.pone.0023662] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/22/2011] [Indexed: 02/03/2023] Open
Abstract
Enhanced airway contractility following inflammation by cytokines such as tumor necrosis factor alpha (TNFα) or interleukin-13 (IL-13) involves increased intracellular Ca2+ ([Ca2+]i) levels in airway smooth muscle (ASM). In ASM, plasma membrane Ca2+ fluxes form a key component of [Ca2+]i regulation. There is now growing evidence that the bidirectional plasma membrane Na+/Ca2+ exchanger (NCX) contributes to ASM [Ca2+]i regulation. In the present study, we examined NCX expression and function in human ASM cells under normal conditions, and following exposure to TNFα or IL-13. Western blot analysis showed significant expression of the NCX1 isoform, with increased NCX1 levels by both cytokines, effects blunted by inhibitors of nuclear factor NF-κB or mitogen-activated protein kinase. Cytokine-mediated increase in NCX1 involved enhanced transcription followed by protein synthesis. NCX2 and NCX3 remained undetectable even in cytokine-stimulated ASM. In fura-2 loaded human ASM cells, NCX-mediated inward Ca2+ exchange as well as outward exchange (measured as rates of change in [Ca2+]i) was elicited by altering extracellular Na+ and Ca2+ levels. Contribution of NCX was verified by measuring [Na+]i using the fluorescent Na+ indicator SBFI. NCX-mediated inward exchange was verified by demonstrating prevention of rising [Ca2+]i or falling [Na+]i in the presence of the NCX inhibitor KBR7943. Inward exchange-mode NCX was increased by both TNFα and IL-13 to a greater extent than outward exchange. NCX siRNA transfection substantially blunted outward exchange and inward exchange modes. Finally, inhibition of NCX expression or function blunted peak [Ca2+]i and rate of fall of [Ca2+]i following histamine stimulation. These data suggest that NCX-mediated Ca2+ fluxes normally exist in human ASM (potentially contributing to rapid Ca2+ fluxes), and contribute to enhanced [Ca2+]i regulation in airway inflammation.
Collapse
|
39
|
Meuchel LW, Stewart A, Smelter DF, Abcejo AJ, Thompson MA, Zaidi SIA, Martin RJ, Prakash YS. Neurokinin-neurotrophin interactions in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 301:L91-8. [PMID: 21515660 DOI: 10.1152/ajplung.00320.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Neurally derived tachykinins such as substance P (SP) play a key role in modulating airway contractility (especially with inflammation). Separately, the neurotrophin brain-derived neurotrophic factor (BDNF; potentially derived from nerves as well as airway smooth muscle; ASM) and its tropomyosin-related kinase receptor, TrkB, are involved in enhanced airway contractility. In this study, we hypothesized that neurokinins and neurotrophins are linked in enhancing intracellular Ca(2+) concentration ([Ca(2+)](i)) regulation in ASM. In rat ASM cells, 24 h exposure to 10 nM SP significantly increased BDNF and TrkB expression (P < 0.05). Furthermore, [Ca(2+)](i) responses to 1 μM ACh as well as BDNF (30 min) effects on [Ca(2+)](i) regulation were enhanced by prior SP exposure, largely via increased Ca(2+) influx (P < 0.05). The enhancing effect of SP on BDNF signaling was blunted by the neurokinin-2 receptor antagonist MEN-10376 (1 μM, P < 0.05) to a greater extent than the neurokinin-1 receptor antagonist RP-67580 (5 nM). Chelation of extracellular BDNF (chimeric TrkB-F(c); 1 μg/ml), as well as tyrosine kinase inhibition (100 nM K252a), substantially blunted SP effects (P < 0.05). Overnight (24 h) exposure of ASM cells to 50% oxygen increased BDNF and TrkB expression and potentiated both SP- and BDNF-induced enhancement of [Ca(2+)](i) (P < 0.05). These results suggest a novel interaction between SP and BDNF in regulating agonist-induced [Ca(2+)](i) regulation in ASM. The autocrine mechanism we present here represents a new area in the development of bronchoconstrictive reflex response and airway hyperreactive disorders.
Collapse
Affiliation(s)
- Lucas W Meuchel
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sathish V, Yang B, Meuchel LW, VanOosten SK, Ryu AJ, Thompson MA, Prakash YS, Pabelick CM. Caveolin-1 and force regulation in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 300:L920-9. [PMID: 21421751 DOI: 10.1152/ajplung.00322.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caveolae are specialized membrane microdomains expressing the scaffolding protein caveolin-1. We recently demonstrated the presence of caveolae in human airway smooth muscle (ASM) and the contribution of caveolin-1 to intracellular calcium ([Ca(2+)](i)) regulation. In the present study, we tested the hypothesis that caveolin-1 regulates ASM contractility. We examined the role of caveolins in force regulation of porcine ASM under control conditions as well as TNF-α-induced airway inflammation. In porcine ASM strips, exposure to 10 mM methyl-β-cyclodextrin (CD) or 5 μM of the caveolin-1 specific scaffolding domain inhibitor peptide (CSD) resulted in time-dependent decrease in force responses to 1 μM ACh. Overnight exposure to the cytokine TNF-α (50 ng/ml) accelerated and increased caveolin-1 expression and enhanced force responses to ACh. Suppression of caveolin-1 with small interfering RNA mimicked the effects of CD or CSD. Regarding mechanisms by which caveolae contribute to contractile changes, inhibition of MAP kinase with 10 μM PD98059 did not alter control or TNF-α-induced increases in force responses to ACh. However, inhibiting RhoA with 100 μM fasudil or 10 μM Y27632 resulted in significant decreases in force responses, with lesser effects in TNF-α exposed samples. Furthermore, Ca(2+) sensitivity for force generation was substantially reduced by fasudil or Y27632, an effect even more enhanced in the absence of caveolin-1 signaling. Overall, these results indicate that caveolin-1 is a critical player in enhanced ASM contractility with airway inflammation.
Collapse
Affiliation(s)
- Venkatachalem Sathish
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Miner SES, Al-Hesayen A, Nield LE, Gori T, Parker JD. Acetylcholine acutely modifies nitric oxide synthase function in the human coronary circulation. Exp Physiol 2010; 95:1167-76. [DOI: 10.1113/expphysiol.2010.053926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Wang IY, Bai Y, Sanderson MJ, Sneyd J. A mathematical analysis of agonist- and KCl-induced Ca(2+) oscillations in mouse airway smooth muscle cells. Biophys J 2010; 98:1170-81. [PMID: 20371316 DOI: 10.1016/j.bpj.2009.12.4273] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 10/24/2022] Open
Abstract
Airway hyperresponsiveness is a major characteristic of asthma and is generally ascribed to excessive airway narrowing associated with the contraction of airway smooth muscle cells (ASMCs). ASMC contraction is initiated by a rise in intracellular calcium concentration ([Ca(2+)](i)), observed as oscillatory Ca(2+) waves that can be induced by either agonist or high extracellular K(+) (KCl). In this work, we present a model of oscillatory Ca(2+) waves based on experimental data that incorporate both the inositol trisphosphate receptor and the ryanodine receptor. We then combined this Ca(2+) model and our modified actin-myosin cross-bridge model to investigate the role and contribution of oscillatory Ca(2+) waves to contractile force generation in mouse ASMCs. The model predicts that: 1), the difference in behavior of agonist- and KCl-induced Ca(2+) waves results principally from the fact that the sarcoplasmic reticulum is depleted during agonist-induced oscillations, but is overfilled during KCl-induced oscillations; 2), regardless of the order in which agonist and KCl are added into the cell, the resulting [Ca(2+)](i) oscillations will always be the short-period, agonist-induced-like oscillations; and 3), both the inositol trisphosphate receptor and the ryanodine receptor densities are higher toward one end of the cell. In addition, our results indicate that oscillatory Ca(2+) waves generate less contraction than whole-cell Ca(2+) oscillations induced by the same agonist concentration. This is due to the spatial inhomogeneity of the receptor distributions.
Collapse
Affiliation(s)
- Inga Y Wang
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
43
|
Perez-Zoghbi JF, Bai Y, Sanderson MJ. Nitric oxide induces airway smooth muscle cell relaxation by decreasing the frequency of agonist-induced Ca2+ oscillations. ACTA ACUST UNITED AC 2010; 135:247-59. [PMID: 20176853 PMCID: PMC2828908 DOI: 10.1085/jgp.200910365] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nitric oxide (NO) induces airway smooth muscle cell (SMC) relaxation, but the underlying mechanism is not well understood. Consequently, we investigated the effects of NO on airway SMC contraction, Ca2+ signaling, and Ca2+ sensitivity in mouse lung slices with phase-contrast and confocal microscopy. Airways that were contracted in response to the agonist 5-hydroxytryptamine (5-HT) transiently relaxed in response to the NO donor, NOC-5. This NO-induced relaxation was enhanced by zaprinast or vardenafil, two selective inhibitors of cGMP-specific phosphodiesterase-5, but blocked by ODQ, an inhibitor of soluble guanylyl cyclase, and by Rp-8-pCPT-cGMPS, an inhibitor of protein kinase G (PKG). Simultaneous measurements of airway caliber and SMC [Ca2+]i revealed that airway contraction induced by 5-HT correlated with the occurrence of Ca2+ oscillations in the airway SMCs. Airway relaxation induced by NOC-5 was accompanied by a decrease in the frequency of these Ca2+ oscillations. The cGMP analogues and selective PKG activators 8Br-cGMP and 8pCPT-cGMP also induced airway relaxation and decreased the frequency of the Ca2+ oscillations. NOC-5 inhibited the increase of [Ca2+]i and contraction induced by the photolytic release of inositol 1,4,5-trisphosphate (IP3) in airway SMCs. The effect of NO on the Ca2+ sensitivity of the airway SMCs was examined in lung slices permeabilized to Ca2+ by treatment with caffeine and ryanodine. Neither NOC-5 nor 8pCPT-cGMP induced relaxation in agonist-contracted Ca2+-permeabilized airways. Consequently, we conclude that NO, acting via the cGMP–PKG pathway, induced airway SMC relaxation by predominately inhibiting the release of Ca2+ via the IP3 receptor to decrease the frequency of agonist-induced Ca2+ oscillations.
Collapse
Affiliation(s)
- Jose F Perez-Zoghbi
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
44
|
Abstract
The sarcoplasmic reticulum (SR) of smooth muscles presents many intriguing facets and questions concerning its roles, especially as these change with development, disease, and modulation of physiological activity. The SR's function was originally perceived to be synthetic and then that of a Ca store for the contractile proteins, acting as a Ca amplification mechanism as it does in striated muscles. Gradually, as investigators have struggled to find a convincing role for Ca-induced Ca release in many smooth muscles, a role in controlling excitability has emerged. This is the Ca spark/spontaneous transient outward current coupling mechanism which reduces excitability and limits contraction. Release of SR Ca occurs in response to inositol 1,4,5-trisphosphate, Ca, and nicotinic acid adenine dinucleotide phosphate, and depletion of SR Ca can initiate Ca entry, the mechanism of which is being investigated but seems to involve Stim and Orai as found in nonexcitable cells. The contribution of the elemental Ca signals from the SR, sparks and puffs, to global Ca signals, i.e., Ca waves and oscillations, is becoming clearer but is far from established. The dynamics of SR Ca release and uptake mechanisms are reviewed along with the control of luminal Ca. We review the growing list of the SR's functions that still includes Ca storage, contraction, and relaxation but has been expanded to encompass Ca homeostasis, generating local and global Ca signals, and contributing to cellular microdomains and signaling in other organelles, including mitochondria, lysosomes, and the nucleus. For an integrated approach, a review of aspects of the SR in health and disease and during development and aging are also included. While the sheer versatility of smooth muscle makes it foolish to have a "one model fits all" approach to this subject, we have tried to synthesize conclusions wherever possible.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom.
| | | |
Collapse
|
45
|
Townsend EA, Thompson MA, Pabelick CM, Prakash YS. Rapid effects of estrogen on intracellular Ca2+ regulation in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2010; 298:L521-30. [PMID: 20097735 DOI: 10.1152/ajplung.00287.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The severity of asthma, a disease characterized by airway hyperresponsiveness and inflammation, is enhanced in some women during the menstrual cycle and during pregnancy but relieved in others. These clinical findings suggest that sex steroids modulate airway tone. Based on well-known relaxant effects of estrogens on vascular smooth muscle, we hypothesized that estrogens relax airway smooth muscle (ASM), thus facilitating bronchodilation. In ASM tissues from female patients, Western and immunocytochemical analyses confirmed the presence of both estrogen receptor (ER) isoforms, ERalpha and ERbeta. In fura 2-loaded, dissociated ASM cells maintained in culture, acute exposure to physiological concentrations of 17beta-estradiol (E(2); 100 pM to 10 nM) decreased the intracellular Ca(2+) ([Ca(2+)](i)) response to 1 muM histamine, an effect reversed by the ER antagonist ICI-182,780. The ERalpha-selective agonist (R,R)-THC had a greater reducing effect on [Ca(2+)](i) responses to histamine and 1 muM ACh compared with the ERbeta-selective agonist (DPN). The effects of E(2) on [Ca(2+)](i) were mediated, at least in part, via decreased Ca(2+) influx through l-type channels and store-operated Ca(2+) entry but not via Ca(2+)-activated K(+) channels, receptor-operated entry, or sarcoplasmic reticulum reuptake. Overall, these data support our hypothesis that estrogens relax ASM and suggest a potentially novel therapeutic target in airway hyperresponsiveness.
Collapse
Affiliation(s)
- Elizabeth A Townsend
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
46
|
Ressmeyer AR, Bai Y, Delmotte P, Uy KF, Thistlethwaite P, Fraire A, Sato O, Ikebe M, Sanderson MJ. Human airway contraction and formoterol-induced relaxation is determined by Ca2+ oscillations and Ca2+ sensitivity. Am J Respir Cell Mol Biol 2009; 43:179-91. [PMID: 19767449 DOI: 10.1165/rcmb.2009-0222oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The etiology of airway hyperresponsiveness associated with asthma requires an understanding of the regulatory mechanisms mediating human airway smooth muscle cell (SMC) contraction. The objective of this study was to determine how human airway SMC contraction (induced by histamine) and relaxation (induced by formoterol) are regulated by Ca(2+) oscillations and Ca(2+) sensitivity. The responses of human small airways and their associated SMCs were studied in human lung slices cut from agarose-inflated lungs. Airway contraction was measured with phase-contrast video microscopy. Ca(2+) signaling and Ca(2+) sensitivity of airway SMCs were measured with two-photon fluorescence microscopy and Ca(2+)-permeabilized lung slices. The agonist histamine induced contraction of human small airways by stimulating both an increase in intracellular Ca(2+) concentration in the SMCs in the form of oscillatory Ca(2+) waves and an increase in Ca(2+) sensitivity. The frequency of the Ca(2+) oscillations increased with histamine concentration, and correlated with increased contraction. Formoterol induced airway relaxation at low concentrations by initially decreasing SMC Ca(2+) sensitivity. At higher concentrations, formoterol additionally slowed or inhibited the Ca(2+) oscillations of the SMCs to relax the airways. The action of formoterol was only slowly reversed. Human lung slices provide a powerful experimental assay for the investigation of small airway physiology and pharmacology. Histamine induces contraction by simultaneously increasing SMC Ca(2+) signaling and Ca(2+) sensitivity. Formoterol induces long-lasting relaxation by initially reducing the Ca(2+) sensitivity and, subsequently, the frequency of the Ca(2+) oscillations of the airway SMCs.
Collapse
Affiliation(s)
- Anna-Rebekka Ressmeyer
- Department of Physiology, University of Massachusetts Medical School, Worcester, 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Delmotte P, Sanderson MJ. Effects of formoterol on contraction and Ca2+ signaling of mouse airway smooth muscle cells. Am J Respir Cell Mol Biol 2009; 42:373-81. [PMID: 19502388 DOI: 10.1165/rcmb.2008-0403oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Formoterol, a long-acting beta(2)-receptor agonist, is used to relieve bronchial constriction. However, formoterol is often a racemic formulation, and contains both (R,R)- and (S,S)-enantiomers. Because the activity of each isomer is poorly defined, the mechanisms by which formoterol relaxes smooth muscle cells (SMCs) of intrapulmonary airways are not well understood. Consequently, we compared the effects of (S,S)-, (R,R)-, and racemic formoterol, as well as (R)-albuterol, on the contraction and Ca(2+) signaling of airway SMCs in mouse lung slices with phase-contrast and confocal microscopy. Small airways were contracted with methacholine and the associated SMCs displayed sustained Ca(2+) oscillations and an increase in Ca(2+) sensitivity. These contracted airways displayed a substantial, concentration-dependent relaxation in response to (R,R)-formoterol. Racemic formoterol had a similar potency as (R,R)-formoterol for relaxing airways. By contrast, (S,S)-formoterol only induced a small relaxation. In conjunction with relaxation, (R,R)- and racemic formoterol stopped and decreased the methacholine-induced Ca(2+) oscillations and Ca(2+) sensitivity of the SMCs, respectively, whereas (S,S)-formoterol only decreased the Ca(2+) sensitivity. In these studies, (R,R)- and racemic formoterol had a similar, but much greater, potency than (R)-albuterol for relaxing mice airways. This action was quickly initiated at high concentrations by decreasing the frequency of Ca(2+) oscillations, but was more usually mediated at lower concentrations by decreasing the Ca(2+) sensitivity of the SMCs.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | |
Collapse
|
48
|
Bai Y, Edelmann M, Sanderson MJ. The contribution of inositol 1,4,5-trisphosphate and ryanodine receptors to agonist-induced Ca(2+) signaling of airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2009; 297:L347-61. [PMID: 19465516 DOI: 10.1152/ajplung.90559.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relative contribution of inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) and ryanodine receptors (RyRs) to agonist-induced Ca(2+) signaling in mouse airway smooth muscle cells (SMCs) was investigated in lung slices with phase-contrast or laser scanning microscopy. At room temperature (RT), methacholine (MCh) or 5-hydroxytryptamine (5-HT) induced Ca(2+) oscillations and an associated contraction in small airway SMCs. The subsequent exposure to an IP(3)R antagonist, 2-aminoethoxydiphenyl borate (2-APB), inhibited the Ca(2+) oscillations and induced airway relaxation in a concentration-dependent manner. 2-APB also inhibited Ca(2+) waves generated by the photolytic release of IP(3). However, the RyR antagonist ryanodine had no significant effect, at any concentration, on airway contraction or agonist- or IP(3)-induced Ca(2+) oscillations or Ca(2+) wave propagation. By contrast, a second RyR antagonist, tetracaine, relaxed agonist-contracted airways and inhibited agonist-induced Ca(2+) oscillations in a concentration-dependent manner. However, tetracaine did not affect IP(3)-induced Ca(2+) release or wave propagation nor the Ca(2+) content of SMC Ca(2+) stores as evaluated by Ca(2+)-release induced by caffeine. Conversely, both ryanodine and tetracaine completely blocked agonist-independent slow Ca(2+) oscillations induced by KCl. The inhibitory effects of 2-APB and absence of an effect of ryanodine on MCh-induced airway contraction or Ca(2+) oscillations of SMCs were also observed at 37 degrees C. In Ca(2+)-permeable SMCs, tetracaine inhibited agonist-induced contraction without affecting intracellular Ca(2+) levels indicating that relaxation also resulted from a reduction in Ca(2+) sensitivity. These results indicate that agonist-induced Ca(2+) oscillations in mouse small airway SMCs are primary mediated via IP(3)Rs and that tetracaine induces relaxation by both decreasing Ca(2+) sensitivity and inhibiting agonist-induced Ca(2+) oscillations via an IP(3)-dependent mechanism.
Collapse
Affiliation(s)
- Yan Bai
- Dept. of Physiology, Univ. of Massachusetts Medical School, Worcester, 01655, USA
| | | | | |
Collapse
|
49
|
Sathish V, Thompson MA, Bailey JP, Pabelick CM, Prakash YS, Sieck GC. Effect of proinflammatory cytokines on regulation of sarcoplasmic reticulum Ca2+ reuptake in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2009; 297:L26-34. [PMID: 19395670 DOI: 10.1152/ajplung.00026.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway inflammation leads to increased intracellular Ca(2+) ([Ca(2+)](i)) levels in airway smooth muscle (ASM) cells. Sarcoplasmic reticulum Ca(2+) release and reuptake are key components of ASM [Ca(2+)](i) regulation. Ca(2+) reuptake occurs via sarcoendoplasmic reticulum Ca(2+) ATPase (SERCA) and is regulated by the inhibitory protein phospholamban (PLB) in many cell types. In human ASM, we tested the hypothesis that inflammation increases PLB, thus inhibiting SERCA function, and leading to maintained [Ca(2+)](i) levels. Surprisingly, we found that human ASM does not express PLB protein (although mRNA is detectable). Overnight exposure to the proinflammatory cytokines TNFalpha and IL-13 did not induce PLB expression, raising the issue of how SERCA is regulated. We then found that direct SERCA phosphorylation (via CaMKII) occurs in human ASM. In fura-2-loaded human ASM cells, we found that the CaMKII antagonist KN-93 significantly slowed the rate of fall of [Ca(2+)](i) transients induced by ACh or bradykinin (in zero extracellular Ca(2+)), suggesting a role for CaMKII-mediated SERCA regulation. SERCA expression was decreased by cytokine exposure, and the rate of fall of [Ca(2+)](i) transients was slowed in cells exposed to TNFalpha and IL-13. Cytokine effects on Ca(2+) reuptake were unaffected by additional exposure to KN-93. These data indicate that in human ASM, SERCA is regulated by mechanisms such as CaMKII and that airway inflammation maintains [Ca(2+)](i) levels by decreasing SERCA expression and slowing Ca(2+) reuptake.
Collapse
Affiliation(s)
- Venkatachalem Sathish
- Departments of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
50
|
Prakash YS, Thompson MA, Pabelick CM. Brain-derived neurotrophic factor in TNF-alpha modulation of Ca2+ in human airway smooth muscle. Am J Respir Cell Mol Biol 2009; 41:603-11. [PMID: 19213875 DOI: 10.1165/rcmb.2008-0151oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is increasing recognition that neurotrophin (NT) signaling occurs in non-neuronal tissues, including airway smooth muscle (ASM). We recently demonstrated that NTs, such as brain-derived neurotrophic factor (BDNF), enhance intracellular Ca2+ ([Ca2+](i)) and force regulation in human ASM. Increased NT expression has been observed in airway diseases, such as asthma and allergy. In the present study, we tested the hypothesis that NTs contribute to inflammation-induced enhancement of ASM contractility. Using human ASM cells and real-time fluorescence [Ca2+](i) imaging, we examined the contribution of the high-affinity tropomyosin-related kinase and low-affinity, pan-NT p75NTR receptors to [Ca2+](i) regulation under control conditions and after exposure to the proinflammatory cytokine TNF-alpha (20 ng/ml). Exposure to TNF-alpha enhanced [Ca2+](i) responses to agonist (acetylcholine, histamine). Exposure to 10 nM BDNF for even 30 minutes substantially and synergistically enhanced TNF-alpha effects on [Ca2+](i) responses to agonist. Small interfering RNA suppression of tropomyosin-related kinase substantially blunted the effect of BDNF on [Ca2+](i) responses to agonist (with greater effect on Ca2+ influx via store-operated Ca2+ entry compared with sarcoplasmic reticulum Ca2+ release) in both control and TNF-alpha-exposed cells. However, p75NTR suppression by small interfering RNA had no significant effect on [Ca2+](i) responses in either cell group. These novel data demonstrate that NTs influence ASM contractility, and suggest a potential role for NTs in airway diseases.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | |
Collapse
|