1
|
Huang W, Carr AJ, Hajicek N, Sokolovski M, Siraliev-Perez E, Hardy PB, Pearce KH, Sondek J, Zhang Q. A High-Throughput Assay to Identify Allosteric Inhibitors of the PLC-γ Isozymes Operating at Membranes. Biochemistry 2020; 59:4029-4038. [PMID: 33028071 DOI: 10.1021/acs.biochem.0c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The two phospholipase C-γ (PLC-γ) isozymes are major signaling hubs and emerging therapeutic targets for various diseases, yet there are no selective inhibitors for these enzymes. We have developed a high-throughput, liposome-based assay that features XY-69, a fluorogenic, membrane-associated reporter for mammalian PLC isozymes. The assay was validated using a pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) in 384-well format; it is highly reproducible and has the potential to capture both orthosteric and allosteric inhibitors. Selected hit compounds were confirmed with secondary assays, and further profiling led to the interesting discovery that adenosine triphosphate potently inhibits the PLC-γ isozymes through noncompetitive inhibition, raising the intriguing possibility of endogenous, nucleotide-dependent regulation of these phospholipases. These results highlight the merit of the assay platform for large scale screening of chemical libraries to identify allosteric modulators of the PLC-γ isozymes as chemical probes and for drug discovery.
Collapse
|
2
|
Abstract
Understanding of the musculoskeletal system has evolved from the collection of individual phenomena in highly selected experimental preparations under highly controlled and often unphysiological conditions. At the systems level, it is now possible to construct complete and reasonably accurate models of the kinetics and energetics of realistic muscles and to combine them to understand the dynamics of complete musculoskeletal systems performing natural behaviors. At the reductionist level, it is possible to relate most of the individual phenomena to the anatomical structures and biochemical processes that account for them. Two large challenges remain. At a systems level, neuroscience must now account for how the nervous system learns to exploit the many complex features that evolution has incorporated into muscle and limb mechanics. At a reductionist level, medicine must now account for the many forms of pathology and disability that arise from the many diseases and injuries to which this highly evolved system is inevitably prone. © 2017 American Physiological Society. Compr Physiol 7:429-462, 2017.
Collapse
Affiliation(s)
| | - Gerald E Loeb
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Mempin R, Tran H, Chen C, Gong H, Kim Ho K, Lu S. Release of extracellular ATP by bacteria during growth. BMC Microbiol 2013; 13:301. [PMID: 24364860 PMCID: PMC3882102 DOI: 10.1186/1471-2180-13-301] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/18/2013] [Indexed: 12/17/2022] Open
Abstract
Background Adenosine triphosphate (ATP) is used as an intracellular energy source by all living organisms. It plays a central role in the respiration and metabolism, and is the most important energy supplier in many enzymatic reactions. Its critical role as the energy storage molecule makes it extremely valuable to all cells. Results We report here the detection of extracellular ATP in the cultures of a variety of bacterial species. The levels of the extracellular ATP in bacterial cultures peaked around the end of the log phase and decreased in the stationary phase of growth. Extracellular ATP levels were dependent on the cellular respiration as bacterial mutants lacking cytochrome bo oxidase displayed lower extracellular ATP levels. We have also shown that Escherichia coli (E. coli) and Salmonella actively depleted extracellular ATP and an ATP supplement in culture media enhanced the stationary survival of E. coli and Salmonella. In addition to E. coli and Salmonella the presence of the extracellular ATP was observed in a variety of bacterial species that contain human pathogens such as Acinetobacter, Pseudomonas, Klebsiella and Staphylococcus. Conclusion Our results indicate that extracellular ATP is produced by many bacterial species during growth and extracellular ATP may serve a role in the bacterial physiology.
Collapse
Affiliation(s)
| | | | | | | | | | - Sangwei Lu
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-7354, USA.
| |
Collapse
|
4
|
Park HS, Betzenhauser MJ, Won JH, Chen J, Yule DI. The type 2 inositol (1,4,5)-trisphosphate (InsP3) receptor determines the sensitivity of InsP3-induced Ca2+ release to ATP in pancreatic acinar cells. J Biol Chem 2008; 283:26081-8. [PMID: 18658132 DOI: 10.1074/jbc.m804184200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium release through inositol (1,4,5)-trisphosphate receptors (InsP(3)R) is the primary signal driving digestive enzyme and fluid secretion from pancreatic acinar cells. The type 2 (InsP(3)R2) and type 3 (InsP(3)R3) InsP(3)R are the predominant isoforms expressed in acinar cells and are required for proper exocrine gland function. Both InsP(3)R2 and InsP(3)R3 are positively regulated by cytosolic ATP, but InsP(3)R2 is 10-fold more sensitive than InsP(3)R3 to this form of modulation. In this study, we examined the role of InsP(3)R2 in setting the sensitivity of InsP(3)-induced Ca(2+) release (IICR) to ATP in pancreatic acinar cells. IICR was measured in permeabilized acinar cells from wild-type (WT) and InsP(3)R2 knock-out (KO) mice. ATP augmented IICR from WT pancreatic cells with an EC(50) of 38 microm. However, the EC(50) was 10-fold higher in acinar cells isolated from InsP(3)R2-KO mice, indicating a role for InsP(3)R2 in setting the sensitivity of IICR to ATP. Consistent with this idea, heterologous expression of InsP(3)R2 in RinM5F cells, which natively express predominately InsP(3)R3, increased the sensitivity of IICR to ATP. Depletion of ATP attenuated agonist-induced Ca(2+) signaling in WT pancreatic acinar cells. This effect was more profound in acinar cells prepared from InsP(3)R2-KO mice. These data suggest that the sensitivity of IICR to ATP depletion is regulated by the particular complement of InsP(3)R expressed in an individual cell. The effects of metabolic stress on intracellular Ca(2+) signals can therefore be determined by the relative amount of InsP(3)R2 expressed in cells.
Collapse
Affiliation(s)
- Hyung Seo Park
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
5
|
Mukherjee K, Sharma M, Urlaub H, Bourenkov GP, Jahn R, Südhof TC, Wahl MC. CASK Functions as a Mg2+-independent neurexin kinase. Cell 2008; 133:328-39. [PMID: 18423203 DOI: 10.1016/j.cell.2008.02.036] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 10/30/2007] [Accepted: 02/06/2008] [Indexed: 01/09/2023]
Abstract
CASK is a unique MAGUK protein that contains an N-terminal CaM-kinase domain besides the typical MAGUK domains. The CASK CaM-kinase domain is presumed to be a catalytically inactive pseudokinase because it lacks the canonical DFG motif required for Mg2+ binding that is thought to be indispensable for kinase activity. Here we show, however, that CASK functions as an active protein kinase even without Mg2+ binding. High-resolution crystal structures reveal that the CASK CaM-kinase domain adopts a constitutively active conformation that binds ATP and catalyzes phosphotransfer without Mg2+. The CASK CaM-kinase domain phosphorylates itself and at least one physiological interactor, the synaptic protein neurexin-1, to which CASK is recruited via its PDZ domain. Thus, our data indicate that CASK combines the scaffolding activity of MAGUKs with an unusual kinase activity that phosphorylates substrates recuited by the scaffolding activity. Moreover, our study suggests that other pseudokinases (10% of the kinome) could also be catalytically active.
Collapse
Affiliation(s)
- Konark Mukherjee
- Department of Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9111, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Gorelikov PL, Saveliev SV. Involvement of N-cholinergic peripheral synapses in energy exchange within a sympathetic ganglion. NEUROCHEM J+ 2007. [DOI: 10.1134/s1819712407030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Michailova A, Lorentz W, McCulloch A. Modeling transmural heterogeneity of K(ATP) current in rabbit ventricular myocytes. Am J Physiol Cell Physiol 2007; 293:C542-57. [PMID: 17329404 DOI: 10.1152/ajpcell.00148.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the mechanisms regulating excitation-metabolic coupling in rabbit epicardial, midmyocardial, and endocardial ventricular myocytes we extended the LabHEART model (Puglisi JL and Bers DM. Am J Physiol Cell Physiol 281: C2049-C2060, 2001). We incorporated equations for Ca(2+) and Mg(2+) buffering by ATP and ADP, equations for nucleotide regulation of ATP-sensitive K(+) channel and L-type Ca(2+) channel, Na(+)-K(+)-ATPase, and sarcolemmal and sarcoplasmic Ca(2+)-ATPases, and equations describing the basic pathways (creatine and adenylate kinase reactions) known to communicate the flux changes generated by intracellular ATPases. Under normal conditions and during 20 min of ischemia, the three regions were characterized by different I(Na), I(to), I(Kr), I(Ks), and I(Kp) channel properties. The results indicate that the ATP-sensitive K(+) channel is activated by the smallest reduction in ATP in epicardial cells and largest in endocardial cells when cytosolic ADP, AMP, PCr, Cr, P(i), total Mg(2+), Na(+), K(+), Ca(2+), and pH diastolic levels are normal. The model predicts that only K(ATP) ionophore (Kir6.2 subunit) and not the regulatory subunit (SUR2A) might differ from endocardium to epicardium. The analysis suggests that during ischemia, the inhomogeneous accumulation of the metabolites in the tissue sublayers may alter in a very irregular manner the K(ATP) channel opening through metabolic interactions with the endogenous PI cascade (PIP(2), PIP) that in turn may cause differential action potential shortening among the ventricular myocyte subtypes. The model predictions are in qualitative agreement with experimental data measured under normal and ischemic conditions in rabbit ventricular myocytes.
Collapse
Affiliation(s)
- Anushka Michailova
- Dept of Bioengineering, PFBH 241, University of California San Diego, La Jolla, CA 92093-0412, USA.
| | | | | |
Collapse
|
8
|
Abstract
Mitochondria often reside in subcellular regions with high metabolic demands. We examined the mechanisms that can govern the relocation of mitochondria to these sites in respiratory neurons. Mitochondria were visualized using tetramethylrhodamineethylester, and their movements were analyzed by applying single-particle tracking. Intracellular ATP ([ATP](i)) was assessed by imaging the luminescence of luciferase, the fluorescence of the ATP analog TNP-ATP, and by monitoring the activity of K(ATP) channels. Directed movements of mitochondria were accompanied by transient increases in TNP-ATP fluorescence. Application of glutamate and hypoxia reversibly decreased [ATP](i) levels and inhibited the directed transport. Injections of ATP did not rescue the motility of mitochondria after its inhibition by hypoxia. Introduction of ADP suppressed mitochondrial movements and occluded the effects of subsequent hypoxia. Mitochondria decreased their velocity in the proximity of synapses that correlated with local [ATP](i) depletions. Using a model of motor-assisted transport and Monte Carlo simulations, we showed that mitochondrial traffic is more sensitive to increases in [ADP](i) than to [ATP](i) depletions. We propose that consumption of synaptic ATP can produce local increases in [ADP](i) and facilitate the targeting of mitochondria to synapses.
Collapse
Affiliation(s)
- Sergej L Mironov
- DFG-Center Molecular Physiology of the Brain, Department of Neuro and Sensory Physiology, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
9
|
Jones PP, Bazzazi H, Kargacin GJ, Colyer J. Inhibition of cAMP-dependent protein kinase under conditions occurring in the cardiac dyad during a Ca2+ transient. Biophys J 2006; 91:433-43. [PMID: 16632511 PMCID: PMC1483070 DOI: 10.1529/biophysj.106.083931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The space between the t-tubule invagination and the sarcoplasmic reticulum (SR) membrane, the dyad, in ventricular myocytes has been predicted to experience very high [Ca2+] for short periods of time during a Ca2+ transient. The dyadic space accommodates many protein kinases responsible for the regulation of Ca2+ handling proteins of the cell. We show in vitro that cAMP-dependent protein kinase (PKA) is inhibited by high [Ca2+] through a shift in the ratio of CaATP/MgATP toward CaATP. We further generate a three-dimensional mathematical model of Ca2+ and ATP diffusion within dyad. We use this model to predict the extent to which PKA would be inhibited by an increased CaATP/MgATP ratio during a Ca2+ transient in the dyad in vivo. Our results suggest that under normal physiological conditions a myocyte paced at 1 Hz would experience up to 55% inhibition of PKA within the cardiac dyad, with inhibition averaging 5% throughout the transient, an effect which becomes more pronounced as the myocyte contractile frequency increases (at 7 Hz, PKA inhibition averages 28% across the dyad throughout the duration of a Ca2+ transient).
Collapse
Affiliation(s)
- Peter P Jones
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | | | | | | |
Collapse
|
10
|
Bazzazi H, Kargacin ME, Kargacin GJ. Ca2+ regulation in the near-membrane microenvironment in smooth muscle cells. Biophys J 2003; 85:1754-65. [PMID: 12944290 PMCID: PMC1303349 DOI: 10.1016/s0006-3495(03)74605-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The microenvironment between the plasma membrane and the near-membrane sarcoplasmic reticulum (SR) may play an important role in Ca(2+) regulation in smooth muscle cells. We used a three-dimensional mathematical model of Ca(2+) diffusion and regulation and experimental measurements of SR Ca(2+) uptake and the distribution of the SR in isolated smooth muscle cells to predict the extent that the near-membrane SR could load Ca(2+) after the opening of single plasma membrane Ca(2+) channels. We also modeled the effect of SR uptake on 1), single-channel Ca(2+) transients in the near-membrane space; 2), the association of Ca(2+) with Ca(2+) buffers in this space; and 3), the amount of Ca(2+) reaching the central cytoplasm of the cell. Our results indicate that, although single-channel Ca(2+) transients could increase SR Ca(2+) to a certain extent, SR Ca(2+) uptake is not rapid enough to greatly affect the magnitude of these transients or their spread to the central cytoplasm unless the Ca(2+) uptake rate of the peripheral SR is an order-of-magnitude higher than the mean rate derived from our experiments. Immunofluorescence imaging, however, did not reveal obvious differences in the density of SR Ca(2+) pumps or phospholamban between the peripheral and central SR in smooth muscle cells.
Collapse
Affiliation(s)
- Hojjat Bazzazi
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
11
|
Beebe JA, Wiepz GJ, Guadarrama AG, Bertics PJ, Burke TJ. A carboxyl-terminal mutation of the epidermal growth factor receptor alters tyrosine kinase activity and substrate specificity as measured by a fluorescence polarization assay. J Biol Chem 2003; 278:26810-6. [PMID: 12746449 DOI: 10.1074/jbc.m301397200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of certain COOH-terminal truncation mutants of the epidermal growth factor receptor (EGFR) can lead to cell transformation, and with ligand stimulation, a broader spectrum of phosphorylated proteins appears compared with EGF-treated cells expressing wild-type EGFR. Accordingly, it has been proposed that elements within the COOH terminus may determine substrate specificity of the EGFR tyrosine kinase (Decker, S. J., Alexander, C., and Habib, T. (1992) J. Biol. Chem. 267, 1104-1108; Walton, G. M., Chen, W. S., Rosenfeld, M. G., and Gill, G. N. (1990) J. Biol. Chem. 265, 1750-1754). To address this hypothesis, we analyzed in vitro the steady-state kinetic parameters for phosphorylation of several substrates by both wild-type EGFR and an oncogenic EGFR mutant (the ct1022 mutant) truncated at residue 1022. The substrates included: (i) a phospholipase C-gamma fragment (residues 530-850); (ii) the 46-kDa isoform of the Shc adapter protein; (iii) a 13-residue peptide mimic for the region around the major autophosphorylation tyrosine and the Shc binding site (the Y1173 peptide); (iv) a poly(Glu,Tyr) 4:1 copolymer; and (v) the 8-residue peptide, angiotensin II. Our data demonstrate that the steady-state kinetic parameters for the ct1022 mutant differ from those of the wild-type enzyme, and the differences are substrate-dependent. These results support the concept that this oncogenic truncation/mutation alters EGFR substrate specificity, rather than causing a general alteration of activity. We performed the experiments using a non-radioactive fluorescence polarization assay that quantifies the degree of phosphorylation of peptide as well as natural substrates. The results are consistent with those from the traditional [gamma-32P]ATP/filtration assay.
Collapse
|
12
|
Kargacin GJ. Responses of Ca2+-binding proteins to localized, transient changes in intracellular [Ca2+]. J Theor Biol 2003; 221:245-58. [PMID: 12628231 DOI: 10.1006/jtbi.2003.3187] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In smooth muscle cells, various transient, localized [Ca(2+)] changes have been observed that are thought to regulate cell function without necessarily inducing contraction. Although a great deal of effort has been put into detecting these transients and elucidating the mechanisms involved in their generation, the extent to which these transient Ca(2+) signals interact with intracellular Ca(2+)-binding molecules remains relatively unknown. To understand how the spatial and temporal characteristics of an intracellular Ca(2+) signal influence its interaction with Ca(2+)-binding proteins, mathematical models of Ca(2+) diffusion and regulation in smooth muscle cells were used to study Ca(2+) binding to prototypical proteins with one or two Ca(2+)-binding sites. Simulations with the models: (1) demonstrate the extent to which the rate constants for Ca(2+)-binding to proteins and the spatial and temporal characteristics of different Ca(2+) transients influence the magnitude and time course of the responses of these proteins to the transients; (2) predict significant differences in the responses of proteins with one or two Ca(2+)-binding sites to individual Ca(2+) transients and to trains of transients; (3) demonstrate how the kinetic characteristics determine the fidelity with which the responses of Ca(2+)-sensitive molecules reflect the magnitude and time course of transient Ca(2+) signals. Overall, this work demonstrates the clear need for complete information about the kinetics of Ca(2+) binding for determining how well Ca(2+)-binding molecules respond to different types of Ca(2+) signals. These results have important implications when considering the possible modulation of Ca(2+)- and Ca(2+)/calmodulin-dependent proteins by localized intracellular Ca(2+) transients in smooth muscle cells and, more generally, in other cell types.
Collapse
Affiliation(s)
- Gary J Kargacin
- Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1.
| |
Collapse
|
13
|
Michailova A, DelPrincipe F, Egger M, Niggli E. Spatiotemporal features of Ca2+ buffering and diffusion in atrial cardiac myocytes with inhibited sarcoplasmic reticulum. Biophys J 2002; 83:3134-51. [PMID: 12496084 PMCID: PMC1302392 DOI: 10.1016/s0006-3495(02)75317-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ca(2+) signaling in cells is largely governed by Ca(2+) diffusion and Ca(2+) binding to mobile and stationary Ca(2+) buffers, including organelles. To examine Ca(2+) signaling in cardiac atrial myocytes, a mathematical model of Ca(2+) diffusion was developed which represents several subcellular compartments, including a subsarcolemmal space with restricted diffusion, a myofilament space, and the cytosol. The model was used to quantitatively simulate experimental Ca(2+) signals in terms of amplitude, time course, and spatial features. For experimental reference data, L-type Ca(2+) currents were recorded from atrial cells with the whole-cell voltage-clamp technique. Ca(2+) signals were simultaneously imaged with the fluorescent Ca(2+) indicator Fluo-3 and a laser-scanning confocal microscope. The simulations indicate that in atrial myocytes lacking T-tubules, Ca(2+) movement from the cell membrane to the center of the cells relies strongly on the presence of mobile Ca(2+) buffers, particularly when the sarcoplasmic reticulum is inhibited pharmacologically. Furthermore, during the influx of Ca(2+) large and steep concentration gradients are predicted between the cytosol and the submicroscopically narrow subsarcolemmal space. In addition, the computations revealed that, despite its low Ca(2+) affinity, ATP acts as a significant buffer and carrier for Ca(2+), even at the modest elevations of [Ca(2+)](i) reached during influx of Ca(2+).
Collapse
Affiliation(s)
- Anushka Michailova
- Department of Physiology, University of Bern, Buehlplatz 5, CH-3012 Bern, Switzerland.
| | | | | | | |
Collapse
|
14
|
Michailova A, McCulloch A. Model study of ATP and ADP buffering, transport of Ca(2+) and Mg(2+), and regulation of ion pumps in ventricular myocyte. Biophys J 2001; 81:614-29. [PMID: 11463611 PMCID: PMC1301539 DOI: 10.1016/s0006-3495(01)75727-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We extended the model of the ventricular myocyte by Winslow et al. (Circ. Res 1999, 84:571-586) by incorporating equations for Ca(2+) and Mg(2+) buffering and transport by ATP and ADP and equations for MgATP regulation of ion transporters (Na(+)-K(+) pump, sarcolemmal and sarcoplasmic Ca(2+) pumps). The results indicate that, under normal conditions, Ca(2+) binding by low-affinity ATP and diffusion of CaATP may affect the amplitude and time course of intracellular Ca(2+) signals. The model also suggests that a fall in ATP/ADP ratio significantly reduces sarcoplasmic Ca(2+) content, increases diastolic Ca(2+), lowers systolic Ca(2+), increases Ca(2+) influx through L-type channels, and decreases the efficiency of the Na(+)/Ca(2+) exchanger in extruding Ca(2+) during periodic voltage-clamp stimulation. The analysis suggests that the most important reason for these changes during metabolic inhibition is the down-regulation of the sarcoplasmic Ca(2+)-ATPase pump by reduced diastolic MgATP levels. High Ca(2+) concentrations developed near the membrane might have a greater influence on Mg(2+), ATP, and ADP concentrations than that of the lower Ca(2+) concentrations in the bulk myoplasm. The model predictions are in general agreement with experimental observations measured under normal and pathological conditions.
Collapse
Affiliation(s)
- A Michailova
- Department of Biophysics, Bulgarian Academy of Science, Sofia, Bulgaria
| | | |
Collapse
|
15
|
Mak DOD, McBride S, Foskett JK. ATP regulation of recombinant type 3 inositol 1,4,5-trisphosphate receptor gating. J Gen Physiol 2001; 117:447-56. [PMID: 11331355 PMCID: PMC2233659 DOI: 10.1085/jgp.117.5.447] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A family of inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) Ca2+ release channels plays a central role in Ca2+ signaling in most cells, but functional correlates of isoform diversity are unclear. Patch-clamp electrophysiology of endogenous type 1 (X-InsP3R-1) and recombinant rat type 3 InsP3R (r-InsP3R-3) channels in the outer membrane of isolated Xenopus oocyte nuclei indicated that enhanced affinity and reduced cooperativity of Ca2+ activation sites of the InsP3-liganded type 3 channel distinguished the two isoforms. Because Ca2+ activation of type 1 channel was the target of regulation by cytoplasmic ATP free acid concentration ([ATP](i)), here we studied the effects of [ATP]i on the dependence of r-InsP(3)R-3 gating on cytoplasmic free Ca2+ concentration ([Ca2+]i. As [ATP]i was increased from 0 to 0.5 mM, maximum r-InsP3R-3 channel open probability (Po) remained unchanged, whereas the half-maximal activating [Ca2+]i and activation Hill coefficient both decreased continuously, from 800 to 77 nM and from 1.6 to 1, respectively, and the half-maximal inhibitory [Ca2+]i was reduced from 115 to 39 microM. These effects were largely due to effects of ATP on the mean closed channel duration. Whereas the r-InsP3R-3 had a substantially higher Po than X-InsP3R-1 in activating [Ca2+]i (< 1 microM) and 0.5 mM ATP, the Ca2+ dependencies of channel gating of the two isoforms became remarkably similar in the absence of ATP. Our results suggest that ATP binding is responsible for conferring distinct gating properties on the two InsP3R channel isoforms. Possible molecular models to account for the distinct regulation by ATP of the Ca2+ activation properties of the two channel isoforms and the physiological implications of these results are discussed. Complex regulation by ATP of the types 1 and 3 InsP3R channel activities may enable cells to generate sophisticated patterns of Ca2+ signals with cytoplasmic ATP as one of the second messengers.
Collapse
Affiliation(s)
- Don-On Daniel Mak
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sean McBride
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - J. Kevin Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
16
|
Portaro FC, Hayashi MA, Silva CL, de Camargo AC. Free ATP inhibits thimet oligopeptidase (EC 3.4.24.15) activity, induces autophosphorylation in vitro, and controls oligopeptide degradation in macrophage. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:887-94. [PMID: 11179954 DOI: 10.1046/j.1432-1327.2001.01978.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fate of the proteasome-generated peptides depends upon the cytosolic peptidases whose activities ought to be regulated. One of the most important oligopeptide-degrading and -binding proteins in the cytosol is the thimet oligopeptidase (EC 3.4.24.15), ubiquitously found in mammalian tissues. To date, there is no indication whether thimet oligopeptidase activities are physiologically regulated. Here, we present evidences suggesting that the concentration of unbound ATP in the cytosol regulates the thimet oligopeptidase activities both, in vitro and ex vivo. To perform these studies two oligopeptides were used: a quenched fluorescent peptide, which is susceptible to thimet oligopeptidase degradation, and the ovalbumin257-264 (MHC class I ovalbumin epitope), which displays high affinity to the thimet oligopeptidase without being degraded. We also showed that the thimet oligopeptidase undergoes autophosphorylation by ATP, a modification that does not affect the peptidase activity. The autophosphorylation is abolished in the presence of the thimet oligopeptidase substrates, as well as by the effect of a site directed inhibitor of this enzyme, and by the substitution of Glu474 for Asp at the metallo-peptidase motif. Altogether, the results presented here suggest that Zn2+ at the active center of the thimet oligopeptidase is the target for the ATP binding, leading to the inhibition of the enzyme activity, and inducing autophosphorylation. These effects, which depend upon the concentration of the unbound ATP, may help to explain the fate of the proteasomal-generated oligopeptides in the cytosol.
Collapse
Affiliation(s)
- F C Portaro
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, Brazil
| | | | | | | |
Collapse
|
17
|
Maes K, Missiaen L, De Smet P, Vanlingen S, Callewaert G, Parys JB, De Smedt H. Differential modulation of inositol 1,4,5-trisphosphate receptor type 1 and type 3 by ATP. Cell Calcium 2000; 27:257-67. [PMID: 10859592 DOI: 10.1054/ceca.2000.0121] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Binding of ATP to the inositol 1,4,5-trisphosphate receptor (IP(3)R) results in a more pronounced Ca(2+)release in the presence of inositol 1,4,5-trisphosphate (IP(3)). Two recently published studies demonstrated a different ATP sensitivity of IP(3)-induced Ca(2+)release in cell types expressing different IP(3)R isoforms. Cell types expressing mainly IP(3)R3 were less sensitive to ATP than cell types expressing mainly IP(3)R1 (Missiaen L, Parys JB, Sienaert I et al. Functional properties of the type 3 InsP(3)receptor in 16HBE14o- bronchial mucosal cells. J Biol Chem 1998;273: 8983-8986; Miyakawa T, Maeda A, Yamazawa T et al. Encoding of Ca(2+)signals by differential expression of IP(3)receptor subtypes. EMBO J 1999;18: 1303-1308). In order to investigate the difference in ATP sensitivity between IP(3)R isoforms at the molecular level, microsomes of Sf9 insect cells expressing full-size IP(3)R1 or IP(3)R3 were covalently labeled with ATP by using the photoaffinity label 8-azido[alpha-(32)P]ATP. ATP labeling of the IP(3)R was measured after immunoprecipitation of IP(3)Rs with isoform-specific antibodies, SDS-PAGE and Phosphorimaging. Unlabeled ATP inhibited covalent linking of 8-azido[alpha-(32)P]ATP to the recombinant IP(3)R1 and IP(3)R3 with an IC(50)of 1.6 microM and 177 microM, respectively. MgATP was as effective as ATP in displacing 8-azido[alpha-(32)P]ATP from the ATP-binding sites on IP(3)R1 and IP(3)R3, and in stimulating IP(3)-induced Ca(2+)release from permeabilized A7r5 and 16HBE14o- cells. The interaction of ATP with the ATP-binding sites on IP(3)R1 and IP(3)R3 was different from its interaction with the IP(3)-binding domains, since ATP inhibited IP(3)binding to the N-terminal 581 amino acids of IP(3)R1 and IP(3)R3 with an IC(50)of 353 microM and 4.0 mM, respectively. The ATP-binding sites of IP(3)R1 bound much better ATP than ADP, AMP and particularly GTP, while IP(3)R3 displayed a much broader nucleotide specificity. These results therefore provide molecular evidence for a differential regulation of IP(3)R1 and IP(3)R3 by ATP.
Collapse
Affiliation(s)
- K Maes
- Laboratorium voor Fysiologie, K U Leuven Campus Gasthuisberg, Herestraat 49, Leuven, B-3000,
| | | | | | | | | | | | | |
Collapse
|
18
|
Mak DO, McBride S, Foskett JK. ATP regulation of type 1 inositol 1,4,5-trisphosphate receptor channel gating by allosteric tuning of Ca(2+) activation. J Biol Chem 1999; 274:22231-7. [PMID: 10428789 DOI: 10.1074/jbc.274.32.22231] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (InsP(3)) mobilizes intracellular Ca(2+) by binding to its receptor (InsP(3)R), an endoplasmic reticulum-localized Ca(2+) release channel. Patch clamp electrophysiology of Xenopus oocyte nuclei was used to study the effects of cytoplasmic ATP concentration on the cytoplasmic Ca(2+) ([Ca(2+)](i)) dependence of single type 1 InsP(3)R channels in native endoplasmic reticulum membrane. Cytoplasmic ATP free-acid ([ATP](i)), but not the MgATP complex, activated gating of the InsP(3)-liganded InsP(3)R, by stabilizing open channel state(s) and destabilizing the closed state(s). Activation was associated with a reduction of the half-maximal activating [Ca(2+)](i) from 500 +/- 50 nM in 0 [ATP](i) to 29 +/- 4 nM in 9.5 mM [ATP](i), with apparent ATP affinity = 0.27 +/- 0.04 mM, similar to in vivo concentrations. In contrast, ATP was without effect on maximum open probability or the Hill coefficient for Ca(2+) activation. Thus, ATP enhances gating of the InsP(3)R by allosteric regulation of the Ca(2+) sensitivity of the Ca(2+) activation sites of the channel. By regulating the Ca(2+)-induced Ca(2+) release properties of the InsP(3)R, ATP may play an important role in shaping cytoplasmic Ca(2+) signals, possibly linking cell metabolic state to important Ca(2+)-dependent processes.
Collapse
Affiliation(s)
- D O Mak
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6100, USA
| | | | | |
Collapse
|
19
|
Gallitelli MF, Schultz M, Isenberg G, Rudolf F. Twitch-potentiation increases calcium in peripheral more than in central mitochondria of guinea-pig ventricular myocytes. J Physiol 1999; 518 ( Pt 2):433-47. [PMID: 10381590 PMCID: PMC2269425 DOI: 10.1111/j.1469-7793.1999.0433p.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The mitochondrial total calcium content ([Ca]mt) was studied with electron probe microanalysis (EPMA) in isolated guinea-pig ventricular myocytes in order to answer the question of whether electrical stimulation increases [Ca]mt in subsarcolemmal and central mitochondria to a different extent. 2. In unstimulated myocytes subsarcolemmal [Ca]mt was (mean +/- s.e.m.) 535 +/- 229 micromol (kg dry weight (DW))-1 and central [Ca]mt was 513 +/- 162 micromol (kg DW)-1. These values do not differ and correspond to approximately 180 micromol calcium per litre of mitochondria or 180 microM. 3. Contractions were potentiated to an optimum by stimulation with trains of 12 paired stimuli. After potentiation with 12 paired action potentials, cells were shock-frozen 120 ms after the start of the first action potential of the 13th pair. Subsarcolemmal [Ca]mt was 1.3 +/- 0.4 mmol (kg DW)-1 (433 microM) and central [Ca]mt was 227 +/- 104 micromol (kg DW)-1 (76 microM). The difference was significant. 4. After potentiation with 12 paired voltage-clamp pulses, cells were shock-frozen 120 ms after the start of the first pulse of the 13th pair. Subsarcolemmal [Ca]mt was 2.2 +/- 1.0 mmol (kg DW)-1 (733 microM) and central [Ca]mt was 630 +/- 180 micromol (kg DW)-1 (210 microM). After removal of extracellular K+, five paired voltage-clamp pulses increased subsarcolemmal [Ca]mt to 2.1 +/- 0.8 mmol (kg DW)-1 (700 microM), which was significantly higher than the central [Ca]mt of 389 +/- 88 micromol (kg DW) -1 or 130 microM. 5. In unstimulated cells, [Na] and [K] in subsarcolemmal and central mitochondria were not different. In potentiated myocytes, subsarcolemmal [Na]mt was 236 +/- 20 mmol (kg DW)-1 or 79 mM, which is significantly higher than the central [Na]mt of 50 +/- 5 mmol (kg DW)-1 or 16 mM. 6. The differences in [Ca]mt and [Na]mt are attributed to subsarcolemmal cytosolic microdomains of elevated [Ca2+] and [Na+] generated during contractile potentiation by transmembrane Ca2+ and Na+ fluxes.
Collapse
Affiliation(s)
- M F Gallitelli
- Julius-Bernstein-Institute of Physiology, University of Halle, Magdeburger Strasse 6, D-06097 Halle/Saale, Germany.
| | | | | | | |
Collapse
|
20
|
Baylor SM, Hollingworth S. Model of sarcomeric Ca2+ movements, including ATP Ca2+ binding and diffusion, during activation of frog skeletal muscle. J Gen Physiol 1998; 112:297-316. [PMID: 9725890 PMCID: PMC2229419 DOI: 10.1085/jgp.112.3.297] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/1998] [Accepted: 06/29/1998] [Indexed: 01/29/2023] Open
Abstract
Cannell and Allen (1984. Biophys. J. 45:913-925) introduced the use of a multi-compartment model to estimate the time course of spread of calcium ions (Ca2+) within a half sarcomere of a frog skeletal muscle fiber activated by an action potential. Under the assumption that the sites of sarcoplasmic reticulum (SR) Ca2+ release are located radially around each myofibril at the Z line, their model calculated the spread of released Ca2+ both along and into the half sarcomere. During diffusion, Ca2+ was assumed to react with metal-binding sites on parvalbumin (a diffusible Ca2+- and Mg2+-binding protein) as well as with fixed sites on troponin. We have developed a similar model, but with several modifications that reflect current knowledge of the myoplasmic environment and SR Ca2+ release. We use a myoplasmic diffusion constant for free Ca2+ that is twofold smaller and an SR Ca2+ release function in response to an action potential that is threefold briefer than used previously. Additionally, our model includes the effects of Ca2+ and Mg2+ binding by adenosine 5'-triphosphate (ATP) and the diffusion of Ca2+-bound ATP (CaATP). Under the assumption that the total myoplasmic concentration of ATP is 8 mM and that the amplitude of SR Ca2+ release is sufficient to drive the peak change in free [Ca2+] (Delta[Ca2+]) to 18 microM (the approximate spatially averaged value that is observed experimentally), our model calculates that (a) the spatially averaged peak increase in [CaATP] is 64 microM; (b) the peak saturation of troponin with Ca2+ is high along the entire thin filament; and (c) the half-width of Delta[Ca2+] is consistent with that observed experimentally. Without ATP, the calculated half-width of spatially averaged Delta[Ca2+] is abnormally brief, and troponin saturation away from the release sites is markedly reduced. We conclude that Ca2+ binding by ATP and diffusion of CaATP make important contributions to the determination of the amplitude and the time course of Delta[Ca2+].
Collapse
Affiliation(s)
- S M Baylor
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6085, USA.
| | | |
Collapse
|
21
|
Szewczyk A, Pikuła S. Adenosine 5'-triphosphate: an intracellular metabolic messenger. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:333-53. [PMID: 9711292 DOI: 10.1016/s0005-2728(98)00094-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- A Szewczyk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | |
Collapse
|