1
|
Synergistic effects of agonists and two-pore-domain potassium channels on secretory responses of human pancreatic duct cells Capan-1. Pflugers Arch 2023; 475:361-379. [PMID: 36534232 PMCID: PMC9908661 DOI: 10.1007/s00424-022-02782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Mechanisms of synergistic agonist stimulation and modulation of the electrochemical driving force for anion secretion are still not fully explored in human pancreatic duct epithelial cells. The first objective of this study was therefore to test whether combined agonist stimulation augments anion transport responses in the Capan-1 monolayer model of human pancreatic duct epithelium. The second objective was to test the influence of H+,K+-ATPase inhibition on anion transport in Capan-1 monolayers. The third objective was to analyze the expression and function of K+ channels in Capan-1, which could support anion secretion and cooperate with H+,K+-ATPases in pH and potassium homeostasis. The human pancreatic adenocarcinoma cell line Capan-1 was cultured conventionally or as polarized monolayers that were analyzed by Ussing chamber electrophysiological recordings. Single-cell intracellular calcium was assayed with Fura-2. mRNA isolated from Capan-1 was analyzed by use of the nCounter assay or RT-PCR. Protein expression was assessed by immunofluorescence and western blot analyses. Combined stimulation with different physiological agonists enhanced anion transport responses compared to single agonist stimulation. The responsiveness of Capan-1 cells to histamine was also revealed in these experiments. The H+,K+-ATPase inhibitor omeprazole reduced carbachol- and riluzole-induced anion transport responses. Transcript analyses revealed abundant TASK-2, TWIK-1, TWIK-2, TASK-5, KCa3.1, and KCNQ1 mRNA expression. KCNE1 mRNA and TREK-1, TREK-2, TASK-2, and KCNQ1 protein expression were also shown. This study shows that the Capan-1 model recapitulates key physiological aspects of a bicarbonate-secreting epithelium and constitutes a valuable model for functional studies on human pancreatic duct epithelium.
Collapse
|
2
|
Expression of Adenosine Receptors in Rodent Pancreas. Int J Mol Sci 2019; 20:ijms20215329. [PMID: 31717704 PMCID: PMC6862154 DOI: 10.3390/ijms20215329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Adenosine regulates exocrine and endocrine secretions in the pancreas. Adenosine is considered to play a role in acini-to-duct signaling in the exocrine pancreas. To identify the molecular basis of functional adenosine receptors in the exocrine pancreas, immunohistochemical analysis was performed in the rat, mouse, and guinea pig pancreas, and the secretory rate and concentration of HCO3− in pancreatic juice from the rat pancreas were measured. The A2A adenosine receptor colocalized with ezrin, an A-kinase anchoring protein, in the luminal membrane of duct cells in the mouse and guinea pig pancreas. However, a strong signal ascribed to A2B adenosine receptors was detected in insulin-positive β cells in islets of Langerhans. The A2A adenosine receptor agonist 4-[2-[[6-Amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid (CGS 21680) stimulated HCO3−-rich fluid secretion from the rat pancreas. These results indicate that A2A adenosine receptors may be, at least in part, involved in the exocrine secretion of pancreatic duct cells via acini-to-duct signaling. The adenosine receptors may be a potential therapeutic target for cancer as well as exocrine dysfunctions of the pancreas.
Collapse
|
3
|
The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells. Pflugers Arch 2016; 468:1171-1181. [PMID: 26965147 PMCID: PMC4943985 DOI: 10.1007/s00424-016-1806-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
Abstract
Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl− channels important for anion secretion, we herein performed experiments on Capan-1, a human pancreatic duct cell line, using open-circuit Ussing chamber and gramicidin-perforated patch-clamp techniques. The luminal addition of adenosine increased the negative transepithelial potential difference (Vte) in Capan-1 monolayers with a half-maximal effective concentration value of approximately 10 μM, which corresponded to the value obtained on whole-cell Cl− currents in Capan-1 single cells. The effects of adenosine on Vte, an equivalent short-circuit current (Isc), and whole-cell Cl− currents were inhibited by CFTRinh-172, a cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel inhibitor. The adenosine A2B receptor agonist, BAY 60-6583, increased Isc and whole-cell Cl− currents through CFTR Cl− channels, whereas the A2A receptor agonist, CGS 21680, had negligible effects. The A2B receptor antagonist, PSB 603, inhibited the response of Isc to adenosine. Immunohistochemical analysis showed that the A2A and A2B receptors colocalized with Ezrin in the luminal membranes of Capan-1 monolayers and in rat pancreatic ducts. Adenosine elicited the whole-cell Cl− currents in guinea pig duct cells. These results demonstrate that luminal adenosine regulates anion secretion by activating CFTR Cl− channels via adenosine A2B receptors on the luminal membranes of Capan-1 cells. The present study endorses that purinergic signaling is important in the regulation of pancreatic secretion.
Collapse
|
4
|
Liu S, Saloustros E, Mertz EL, Tsang K, Starost MF, Salpea P, Faucz FR, Szarek E, Nesterova M, Leikin S, Stratakis CA. Haploinsufficiency for either one of the type-II regulatory subunits of protein kinase A improves the bone phenotype of Prkar1a+/- mice. Hum Mol Genet 2015; 24:6080-92. [PMID: 26246497 DOI: 10.1093/hmg/ddv320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/31/2015] [Indexed: 01/01/2023] Open
Abstract
Carney Complex (CNC), a human genetic syndrome predisposing to multiple neoplasias, is associated with bone lesions such as osteochondromyxomas (OMX). The most frequent cause for CNC is PRKAR1A deficiency; PRKAR1A codes for type-I regulatory subunit of protein kinase A (PKA). Prkar1a(+/-) mice developed OMX, fibrous dysplasia-like lesions (FDL) and other tumors. Tumor tissues in these animals had increased PKA activity due to an unregulated PKA catalytic subunit and increased PKA type II (PKA-II) activity mediated by the PRKAR2A and PRKAR2B subunits. To better understand the effect of altered PKA activity on bone, we studied Prkar2a and Prkar2b knock out (KO) and heterozygous mice; none of these mice developed bone lesions. When Prkar2a(+/-) and Prkar2b(+/-) mice were used to generate Prkar1a(+/-)Prkar2a(+/-) and Prkar1a(+/-)Prkar2b(+/-) animals, bone lesions formed that looked like those of the Prkar1a(+/-) mice. However, better overall bone organization and mineralization and fewer FDL lesions were found in both double heterozygote groups, indicating a partial restoration of the immature bone structure observed in Prkar1a(+/-) mice. Further investigation indicated increased osteogenesis and higher new bone formation rates in both Prkar1a(+/-)Prkar2a(+/-) and Prkar1a(+/-)Prkar2b(+/-) mice with some minor differences between them. The observations were confirmed with a variety of markers and studies. PKA activity measurements showed the expected PKA-II decrease in both double heterozygote groups. Thus, haploinsufficiency for either of PKA-II regulatory subunits improved bone phenotype of mice haploinsufficient for Prkar1a, in support of the hypothesis that the PRKAR2A and PRKAR2B regulatory subunits were in part responsible for the bone phenotype of Prkar1a(+/-) mice.
Collapse
Affiliation(s)
- Sisi Liu
- Section on Endocrinology and Genetics (SEGEN), Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
| | - Emmanouil Saloustros
- Section on Endocrinology and Genetics (SEGEN), Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
| | - Edward L Mertz
- Section on Physical Biochemistry, Office of the Scientific Director, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and
| | - Kitman Tsang
- Section on Endocrinology and Genetics (SEGEN), Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
| | - Matthew F Starost
- Office of Research Services (ORS), Division of Veterinary Resources (DVR), Office of the Director (OD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Paraskevi Salpea
- Section on Endocrinology and Genetics (SEGEN), Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
| | - Fabio R Faucz
- Section on Endocrinology and Genetics (SEGEN), Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
| | - Eva Szarek
- Section on Endocrinology and Genetics (SEGEN), Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
| | - Maria Nesterova
- Section on Endocrinology and Genetics (SEGEN), Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
| | - Sergey Leikin
- Section on Physical Biochemistry, Office of the Scientific Director, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics (SEGEN), Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD),
| |
Collapse
|
5
|
Ion transport in human pancreatic duct epithelium, Capan-1 cells, is regulated by secretin, VIP, acetylcholine, and purinergic receptors. Pancreas 2013; 42:452-60. [PMID: 22982819 DOI: 10.1097/mpa.0b013e318264c302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The objective of the study was to establish a solid model of polarized epithelium for human pancreatic ducts, where electrical parameters could be measured as indicators of ion transport. Further, we aimed to determine functional expression of several receptors, in particular, purinergic receptors, and determine their effects on ion transport. METHODS Human adenocarcinoma cell line Capan-1 cells were grown on permeable supports and set in Ussing chambers for electrophysiological recordings. Transepithelial voltage (Vte), resistance, and short-circuit currents (Isc) were measured in response to agonists. RESULTS Secretin, vasoactive intestinal peptide (VIP), acetylcholine, forskolin, ionomycin, adenosine 5'-triphosphate (ATP), uridine 5'-triphosphate (UTP), 3'-O-(4-benzoyl)benzoyl ATP, and adenosine induced lumen negative Vte and Isc. These changes were consistent with anion secretion, as verified in forskolin-stimulated preparations. Extracellular nucleotides, ATP, and UTP, applied from luminal and basolateral sides, caused largest responses: Vte increased up to -5 mV, Isc increased to 20 to 30 μA/cm, and resistance decreased by up to 200 Ω·cm. CONCLUSIONS Transepithelial transport in human pancreatic duct epithelium, Capan-1 cells, is regulated by secretin, VIP, acetylcholine, adenosine, and purinergic P2 receptors; and this human model has a good potential for studies of physiology and pathophysiology of pancreatic duct ion transport.
Collapse
|
6
|
Abstract
Alcoholic liver disease (ALD) is a major cause of morbidity and mortality worldwide. The spectrum of disease ranges from fatty liver to hepatic inflammation, necrosis, progressive fibrosis and hepatocellular carcinoma. In developed countries, ALD is a major cause of end-stage liver disease that requires transplantation. The most effective therapy for ALD is alcohol abstinence. However, for patients with severe forms of ALD (that is, alcoholic hepatitis) and for those who do not achieve abstinence from alcohol, targeted therapies are urgently needed. The development of new drugs for ALD is hampered by the scarcity of studies and the drawbacks of existing animal models, which do not reflect all the features of the human disease. However, translational research using liver samples from patients with ALD has identified new potential therapeutic targets, such as CXC chemokines, osteopontin and tumor necrosis factor receptor superfamily member 12A. The pathogenetic roles of these targets, however, remain to be confirmed in animal models. This Review summarizes the epidemiology, natural history, risk factors and current knowledge of the pathogenetic mechanisms of ALD. In addition, this article provides a detailed description of the findings of these translational studies and of the animal models used to study ALD.
Collapse
|
7
|
Abstract
Gastroesophageal reflux disease (GERD) is typically heralded by the substernal burning pain of heartburn. On endoscopic examination, about one third of GERD subjects with heartburn have erosive disease, and the remainder have nonerosive reflux disease (NERD). Unlike patients with erosive disease, those with NERD (approximately 50%) often do not respond to therapy with proton pump inhibitors (PPIs), raising the question of whether they have NERD and, if they do, whether the cause of their symptoms is similar to those who respond to PPIs. Recently, biopsies established that subjects with heartburn and PPI-responsive NERD, like those with erosive esophagitis, have lesions within the esophageal epithelium known as dilated intercellular space (DIS). In this article, we discuss the physicochemical basis for DIS in acid-injured esophageal epithelium and its significance in GERD. Although DIS is not pathognomic of GERD, it is a marker of a break in the epithelial (junctional) barrier reflecting an increase in paracellular permeability.
Collapse
|
8
|
Abstract
Nonerosive reflux disease (NERD) is the most common phenotype of gastroesophageal reflux disease. By definition, patients with NERD have typical reflux symptoms caused by the intraesophageal reflux of gastric contents but have no visible esophageal mucosal injury. This is in contrast to patients with reflux esophagitis, also known as erosive reflux disease, and Barrett's esophagus, who have obvious esophageal mucosal injury on endoscopy. Only 50% of patients with NERD have pathologic esophageal acid contact time (ACT) as detected on 24-hour pH monitoring (ie, NERD-positive). NERD patients with physiologic esophageal ACT and good temporal correlation of symptoms with reflux events (symptom index > 50% or symptom-association probability > 95%) are considered to have esophageal hypersensitivity (ie, NERD-negative). Finally, patients with physiologic esophageal ACT but poor symptom-reflux correlation are now considered to have functional heartburn and not NERD. NERD-positive patients have motor dysfunction and acidic reflux abnormalities that are similar to patients with reflux esophagitis and Barrett's esophagus, whereas NERD-negative patients have minimal abnormalities that are not much different than healthy controls. The histopathologic feature most indicative of NERD is the presence of dilated intercellular spaces within squamous epithelium, an ultrastructural abnormality readily identified on transmission electron microscopy and on light microscopy.
Collapse
Affiliation(s)
- John D Long
- Section of Gastroenterology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
9
|
Steagall WK, Barrow BJ, Glasgow CG, Mendoza JW, Ehrmantraut M, Lin JP, Insel PA, Moss J. Beta-2-adrenergic receptor polymorphisms in cystic fibrosis. Pharmacogenet Genomics 2007; 17:425-30. [PMID: 17502834 PMCID: PMC3021988 DOI: 10.1097/fpc.0b013e3280119349] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cystic fibrosis (CF), an autosomal recessive disease affecting the lung, pancreas, gut, liver, and reproductive tract, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a cyclic adenosine 3', 5' monophosphate-regulated chloride channel. The variability of disease progression among patients with CF suggests effects of genetic modifiers of disease. Beta-2 adrenergic receptors (beta2AR), which are abundant in airway epithelial cells, accelerate the formation of cyclic adenosine 3', 5' monophosphate, which can modulate CFTR activity and affect smooth muscle contractility. We tested the hypothesis that genetic variants of the beta2AR gene, which have been shown to influence receptor desensitization, are more frequent in patients than in controls. METHODS We genotyped 130 adult CF patients and 1 : 1 age-matched, sex-matched, and ethnicity-matched normal volunteers for GlyArg and GlnGlu beta2AR. RESULTS We found that CF patients were more likely than controls to be Gly homozygotes (48 and 32%, respectively) (P<0.01) and Glu homozygotes (29 and 10%, respectively) (P<0.01). CONCLUSIONS Our results, showing a higher frequency of Gly and Glu beta2AR alleles in adult CF patients than in the control population, contrast with data from children with CF, who are reported to have lower frequency of Gly and similar frequency of G1u, and with data from young adults with CF, who showed no differences in frequencies of beta2AR variants. The GlyGlu variant of beta2AR may have properties that lead to enhanced beta2AR function, resulting in the upregulation of CFTR activity and the improvement of CF disease.
Collapse
Affiliation(s)
- Wendy K. Steagall
- Pulmonary-Critical Care Medicine Branch, National Institutes of Health, Bethesda, Maryland
| | - Bethany J. Barrow
- Pulmonary-Critical Care Medicine Branch, National Institutes of Health, Bethesda, Maryland
| | - Connie G. Glasgow
- Pulmonary-Critical Care Medicine Branch, National Institutes of Health, Bethesda, Maryland
| | - Jennifer Woo Mendoza
- Pulmonary-Critical Care Medicine Branch, National Institutes of Health, Bethesda, Maryland
| | - Mary Ehrmantraut
- Pulmonary-Critical Care Medicine Branch, National Institutes of Health, Bethesda, Maryland
| | - Jing-Ping Lin
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul A. Insel
- Departments of Pharmacology and Medicine, University of California San Diego, La Jolla, California, USA
| | - Joel Moss
- Pulmonary-Critical Care Medicine Branch, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
O'Mahony F, Alzamora R, Betts V, LaPaix F, Carter D, Irnaten M, Harvey BJ. Female gender-specific inhibition of KCNQ1 channels and chloride secretion by 17beta-estradiol in rat distal colonic crypts. J Biol Chem 2007; 282:24563-73. [PMID: 17556370 DOI: 10.1074/jbc.m611682200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The estrogen sex steroid 17beta-estradiol rapidly inhibits secretagogue-stimulated cAMP-dependent Cl(-) secretion in the female rat distal colonic crypt by the inhibition of basolateral K(+) channels. In Ussing chamber studies, both the anti-secretory response and inhibition of basolateral K(+) current was shown to be attenuated by pretreatment with rottlerin, a PKCdelta-specific inhibitor. In whole cell patch-clamp analysis, 17beta-estradiol inhibited a chromanol 293B-sensitive KCNQ1 channel current in isolated female rat distal colonic crypts. Estrogen had no effect on KCNQ1 channel currents in colonic crypts isolated from male rats. Female distal colonic crypts expressed a significantly higher amount of PKCdelta in comparison to male tissue. PKCdelta and PKA were activated at 5 min in response to 17beta-estradiol in female distal colonic crypts only. Both PKCdelta- and PKA-associated with the KCNQ1 channel in response to 17beta-estradiol in female distal colonic crypts, and no associations were observed in crypts from males. PKA activation, association with KCNQ1, and phosphorylation of the channel were regulated by PKCdelta as the responses were blocked by pretreatment with rottlerin. Taken together, our experiments have identified the molecular targets underlying the anti-secretory response to estrogen involving the inhibition of KCNQ1 channel activity via PKCdelta- and PKA-dependent signaling pathways. This is a novel gender-specific mechanism of regulation of an ion channel by estrogen. The anti-secretory response described in this study provides molecular insights whereby estrogen causes fluid retention effects in the female during periods of high circulating plasma estrogen levels.
Collapse
Affiliation(s)
- Fiona O'Mahony
- Department of Molecular Medicine, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin 9, Ireland.
| | | | | | | | | | | | | |
Collapse
|
11
|
Szucs A, Demeter I, Burghardt B, Ovári G, Case RM, Steward MC, Varga G. Vectorial bicarbonate transport by Capan-1 cells: a model for human pancreatic ductal secretion. Cell Physiol Biochem 2007; 18:253-64. [PMID: 17167230 DOI: 10.1159/000097672] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2006] [Indexed: 11/19/2022] Open
Abstract
Human pancreatic ducts secrete a bicarbonate-rich fluid but our knowledge of the secretory process is based mainly on studies of animal models. Our aim was to determine whether the HCO(3)(-) transport mechanisms in a human ductal cell line are similar to those previously identified in guinea-pig pancreatic ducts. Intracellular pH was measured by microfluorometry in Capan-1 cell monolayers grown on permeable filters and loaded with BCECF. Epithelial polarization was assessed by immunolocalization of occludin. Expression of mRNA for key electrolyte transporters and receptors was evaluated by RT-PCR. Capan-1 cells grown on permeable supports formed confluent, polarized monolayers with well developed tight junctions. The recovery of pH(i) from an acid load, induced by a short NH(4)(+) pulse, was mediated by Na(+)-dependent transporters located exclusively at the basolateral membrane. One was independent of HCO(3)(-) and blocked by EIPA (probably NHE1) while the other was HCO(3)(-)-dependent and blocked by H(2)DIDS (probably pNBC1). Changes in pH(i) following blockade of basolateral HCO(3)(-) accumulation confirmed that the cells achieve vectorial HCO(3)(-) secretion. Dose-dependent increases in HCO(3)(-) secretion were observed in response to stimulation of both secretin and VPAC receptors. ATP and UTP applied to the apical membrane stimulated HCO(3)(-) secretion but were inhibitory when applied to the basolateral membrane. HCO(3)(-) secretion in guinea-pig ducts and Capan-1 cell monolayers share many common features, suggesting that the latter is an excellent model for studies of human pancreatic HCO(3)(-) secretion.
Collapse
Affiliation(s)
- Akos Szucs
- Molecular Oral Biology Research Group, Department of Oral Biology, Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
12
|
Tang CH, Lee TH. The effect of environmental salinity on the protein expression of Na+/K+-ATPase, Na+/K+/2Cl- cotransporter, cystic fibrosis transmembrane conductance regulator, anion exchanger 1, and chloride channel 3 in gills of a euryhaline teleost, Tetraodon nigroviridis. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:521-8. [PMID: 17347004 DOI: 10.1016/j.cbpa.2007.01.679] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 01/30/2007] [Accepted: 01/30/2007] [Indexed: 11/29/2022]
Abstract
Chloride transport mechanisms in the gills of the estuarine spotted green pufferfish (Tetraodon nigroviridis) were investigated. Protein abundance of Na(+)/K(+)-ATPase (NKA) and the other four chloride transporters, i.e., Na(+)/K(+)/2Cl(-) cotransporter (NKCC), cystic fibrosis transmembrane conductance regulator (CFTR), Cl(-)/HCO(3)(-) anion exchanger 1 (AE1), and chloride channel 3 (CLC-3) in gills of the seawater- (SW; 35 per thousand) or freshwater (FW)-acclimatized fish were examined by immunoblot analysis. Appropriate negative controls were used to confirm the specificity of the antibodies to the target proteins. The relative protein abundance of NKA was higher (i.e., 2-fold) in gills of the SW group compared to the FW group. NKCC and CFTR were expressed in gills of the SW group but not in the FW group. In contrast, the levels of relative protein abundance of branchial AE1 and CLC-3 in the FW group were 23-fold and 2.7-fold higher, respectively, compared to those of the SW group. This study is first of its kind to provide direct in vivo evidence of the protein expression of CLC-3 in teleostean gills, as well as to examine the simultaneous protein expression of the Cl(-) transporters, especially AE1 and CLC-3 of FW- and SW-acclimatized teleosts. The differential protein expression of NKA, chloride transporters in gills of the FW- and SW-acclimatized T. nigroviridis observed in the present study shows their close relationship to the physiological homeostasis (stable blood osmolality), as well as explains the impressive ionoregulatory ability of this euryhaline species in response to salinity challenges.
Collapse
Affiliation(s)
- C H Tang
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | | |
Collapse
|
13
|
Abstract
Alcohol-induced diseases of the gastrointestinal tract play an important role in clinical gastroenterology. However, the precise pathophysiological mechanisms are still largely unknown. Alcohol research depends essentially on animal models due to the fact that controlled experimental studies of ethanol-induced diseases in humans are unethical. Animal models have already been successfully applied to disclose and analyze molecular mechanisms in alcohol-induced diseases, partially by using knockout technology. Because of a lack of transferability of some animal models to the human condition, results have to be interpreted cautiously. For some alcohol-related diseases like chronic alcoholic pancreatitis, the ideal animal model does not yet exist. Here we provide an overview of the most commonly used animal models in gastrointestinal alcohol research. We will also briefly discuss the findings based on animal models as well as the current concepts of pathophysiological mechanisms involved in acute and chronic alcoholic damage of the esophagus, stomach, small and large intestine, pancreas and liver.
Collapse
Affiliation(s)
- Soren V Siegmund
- Department of Medicine II (Gastroenterology, Hepatology, Infectious Diseases), University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | |
Collapse
|
14
|
Abstract
Computerized assays on cultured cells ex vivo have been used to screen thousands of compounds for their effectiveness in correcting the basic physiological defect in cystic fibrosis (CF). While a number of these compounds appear promising, their effectiveness will almost certainly need to be demonstrated in animals before therapeutic tests in humans will be possible. We show herein that the function of salivary secretion in the mouse model for CF could be used as a simple, easy and rapid in vivo assay for drug effects. We demonstrate that salivary secretory capacity stimulated with a beta-adrenergic agonist closely reflects the genotype of origin. Specifically, the mean maximal secretory rate of saliva in normal wild type (+/+) mice was about 1.5 times higher than that of the mean rate in heterozygote (+/-) mice and more than 50 times greater than in CF (-/-) mice. Total saliva secreted per stimulated period obeyed a similar phenotype-genotype segregation. The data indicate that salivary secretory rates in CF mice could be used to assay potential drugs for their effectiveness in correcting the secretory defect in cystic fibrosis.
Collapse
Affiliation(s)
- John Adam Best
- University of California, San Diego, Department of Pediatrics, 9500 Gilman Drive, La Jolla, CA 92093-0831, USA.
| | | |
Collapse
|
15
|
Abstract
The natural history of gastro-oesophageal reflux disease (GORD) is still a matter for research. The follow-up of GORD patients under placebo and after suspension of the drugs that healed the disease, along with observations of large patient populations treated with, or without, antisecretory drugs for long periods of time, may give some information on the spontaneous evolution of the disease. To single out the outcome of each patient, predictive factors based on demographic, morphologic and pathophysiologic characteristics have been devised, but their reliability is debatable. The reason for their many discrepancies could lie in the fact that, to date, the large majority of investigators have focused their research on the characteristics of gastro-oesophageal reflux and underlying motor activity, and have overlooked the resistance of the oesophageal mucosa. As many studies have shown that the severity of GORD is not proportional to the amount of reflux, we strongly believe that knowledge of the capacity of the mucosa to resist injury and repair the damage is the key to understanding why patients with low reflux may have severe disease, while patients with high reflux may not. Research on the kind and degree of mucosal defects in patients with GORD should receive more attention and because it may help to clarify the laws that govern the GORD evolution.
Collapse
Affiliation(s)
- M Bortolotti
- Dept. of Internal Medicine, University of Bologna, Italy.
| |
Collapse
|
16
|
Marshall WS, Singer TD. Cystic fibrosis transmembrane conductance regulator in teleost fish. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1566:16-27. [PMID: 12421534 DOI: 10.1016/s0005-2736(02)00584-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gills and intestinal epithelia of teleost fish express cystic fibrosis transmembrane conductance regulator (CFTR), and utilize this low conductance anion channel in the apical membrane for ion secretion in seawater gill and in the basolateral membrane for ion absorption in freshwater gill. Similarly, in the intestine CFTR is present in the basolateral membrane for intestinal absorption and also in the apical membrane of secreting intestine. The expression of CFTR and the directed trafficking of the protein to the apical or basolateral membrane is salinity-dependent. The CFTR gene has been cloned and sequenced from several teleost species and although all the major elements in the human gene are present, including two nucleotide binding domains that are common to all ATP binding cassette (ABC) transporters, the sequences are divergent compared to shark or human. In euryhaline fish adapting to seawater, CFTR, localized immunocytochemically, redistributes slowly from a basolateral location to the apical membrane while ion secretory capacity increases. The facility with which teleosts regulate CFTR expression and activation during salinity adaptation make this system an appealing model for the expression and trafficking operation of this labile gene product.
Collapse
Affiliation(s)
- W S Marshall
- Department of Biology, St. Francis Xavier University, Nova Scotia, Antigonish, Canada.
| | | |
Collapse
|
17
|
Widenhouse TV, Lester GD, Merritt AM. Effect of hydrochloric acid, pepsin, or taurocholate on bioelectric properties of gastric squamous mucosa in horses. Am J Vet Res 2002; 63:744-9. [PMID: 12013478 DOI: 10.2460/ajvr.2002.63.744] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the effect of pH with or without pepsin or taurocholic acid on the bioelectric properties of gastric squamous mucosa in horses. SAMPLE POPULATION Gastric tissues obtained from 16 adult horses that did not have evidence of gastric disease. PROCEDURE Bioelectric properties of squamous mucosa were determined, using modified Ussing chambers. Tissues then were exposed to mucosal pepsin (1 mg/ml) or taurocholic acid (2.5 mM) under neutral (pH 74) or acidic (pH 1.7) conditions. RESULTS Exposure of mucosal sheets to an acidic pH resulted in an immediate and sustained decrease in transmembrane potential difference and calculated tissue resistance. Pepsin or taurocholic acid did not significantly affect bioelectric variables when added to a mucosal bath solution of pH 7.4. A synergistic effect between pepsin or taurocholic acid and mucosal acidification was not detected. CONCLUSIONS AND CLINICAL RELEVANCE Mucosal acidification with or without pepsin or taurocholic acid resulted in reduced tissue resistance. These data support the contention that squamous erosions or ulcers in horses are mediated, in part, by prolonged exposure of gastric squamous mucosa to luminal acid.
Collapse
Affiliation(s)
- Tamara Vetro Widenhouse
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville 32610-0136, USA
| | | | | |
Collapse
|
18
|
Kulka M, Gilchrist M, Duszyk M, Befus AD. Expression and functional characterization of CFTR in mast cells. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.1.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- M. Kulka
- Pulmonary Research Group, University of Alberta, Edmonton, Canada
| | - M. Gilchrist
- Pulmonary Research Group, University of Alberta, Edmonton, Canada
| | - M. Duszyk
- Pulmonary Research Group, University of Alberta, Edmonton, Canada
| | - A. D. Befus
- Pulmonary Research Group, University of Alberta, Edmonton, Canada
| |
Collapse
|
19
|
Schwede F, Maronde E, Genieser H, Jastorff B. Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol Ther 2000; 87:199-226. [PMID: 11008001 DOI: 10.1016/s0163-7258(00)00051-6] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyclic AMP (cAMP) and cyclic GMP (cGMP) are key second messengers involved in a multitude of cellular events. From the wealth of synthetic analogs of cAMP and cGMP, only a few have been explored with regard to their therapeutic potential. Some of the first-generation cyclic nucleotide analogs were promising enough to be tested as drugs, for instance N(6),O(2)'-dibutyryl-cAMP and 8-chloro-cAMP (currently in clinical Phase II trials as an anticancer agent). Moreover, 8-bromo and dibutyryl analogs of cAMP and cGMP have become standard tools for investigations of biochemical and physiological signal transduction pathways. The discovery of the Rp-diastereomers of adenosine 3',5'-cyclic monophosphorothioate and guanosine 3',5'-cyclic monophosphorothioate as competitive inhibitors of cAMP- and cGMP-dependent protein kinases, as well as subsequent development of related analogs, has proven very useful for studying the molecular basis of signal transduction. These analogs exhibit a higher membrane permeability, increased resistance against degradation, and improved target specificity. Furthermore, better understanding of signaling pathways and ligand/protein interactions has led to new therapeutic strategies. For instance, Rp-8-bromo-adenosine 3',5'-cyclic monophosphorothioate is employed against diseases of the immune system. This review will focus mainly on recent developments in cyclic nucleotide-related biochemical and pharmacological research, but also highlights some historical findings in the field.
Collapse
Affiliation(s)
- F Schwede
- Center for Environmental Research and Environmental Technology, Department of Bioorganic Chemistry, University of Bremen, Leobener Strasse, D-28359, Bremen, Germany
| | | | | | | |
Collapse
|
20
|
Huang P, Trotter K, Boucher RC, Milgram SL, Stutts MJ. PKA holoenzyme is functionally coupled to CFTR by AKAPs. Am J Physiol Cell Physiol 2000; 278:C417-22. [PMID: 10666038 DOI: 10.1152/ajpcell.2000.278.2.c417] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cystic fibrosis transmembrane regulator (CFTR) is reported to be preferentially regulated by membrane-bound protein kinase A (PKAII). We tested for close physical and functional association of PKA with CFTR in inside-out membrane patches excised from Calu-3 cells. In the presence of MgATP, 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate (CPT-cAMP) increased the product of CFTR channel number and open probability (from 0.36 +/- 0.12 to 1.23 +/- 0.57, n = 20, P < 0.0025), and this stimulation was abolished by PKI. Thus Calu-3 membrane isolated from cells retains PKA holoenzyme that is functionally coupled to CFTR. PKAII is anchored at specific subcellular sites by A kinase anchoring proteins (AKAPs). Exposure of excised patches to HT-31, a peptide that disrupts the association of PKAII and AKAPs, prevented CPT-cAMP stimulation of CFTR. Therefore, PKA holoenzyme in isolated membrane patches is bound to AKAPs. In whole cell voltage-clamp studies, intracellular dialysis of Calu-3 cells with HT-31 blocked the activation of CFTR by extracellular adenosine. These results suggest that AKAPs mediate PKA compartmentalization with CFTR and are required for activation of CFTR by physiological regulators.
Collapse
Affiliation(s)
- P Huang
- Departments of Medicine and CF/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | |
Collapse
|
21
|
Steagall WK, Elmer HL, Brady KG, Kelley TJ. Cystic fibrosis transmembrane conductance regulator-dependent regulation of epithelial inducible nitric oxide synthase expression. Am J Respir Cell Mol Biol 2000; 22:45-50. [PMID: 10615064 DOI: 10.1165/ajrcmb.22.1.3789] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Recent evidence has shown that the inducible form of nitric oxide (NO) synthase (NOS2) has reduced expression in airway epithelia of patients with cystic fibrosis (CF) despite the presence of chronic inflammation. The goal of this paper is to determine whether NOS2 expression is regulated by the presence of functional CF transmembrane conductance regulator (CFTR). Using a human trachea epithelial cell line in which CFTR activity is blocked by the overexpression of the CFTR regulatory domain, we found that loss of CFTR activity reduces NOS2 messenger RNA expression as determined by reverse transcriptase/polymerase chain reaction and reduces overall NO production compared with mock-transfected controls. An in vivo model using mice lacking CFTR expression (cftr -/-), wild-type mice (cftr +/+), and cftr -/- mice that have had human CFTR introduced to the intestinal epithelium using the fatty acid binding protein (FABP) promoter (FABP-hcftr) was also examined. Electrical characterization confirmed that FABP-hcftr mice had corrected electrophysiologic properties compared with cftr -/- mice in the ileum, but FABP-hcftr nasal transepithelial potential difference measurements were identical to cftr -/- values showing specific intestinal correction. NOS2-specific immunostaining revealed that NOS2 expression is evident in sections of ileum and nasal epithelium of cftr +/+ mice but is absent in both tissues in cftr -/- mice. FABP-hcftr mice, however, show strong NOS2 staining in epithelial cells of the ileum but reduced staining in the nasal epithelium, suggesting a CFTR-related influence in the regulation of NOS2 expression in epithelial cells.
Collapse
Affiliation(s)
- W K Steagall
- Departments of Pediatrics and Genetics, and Center for Human Genetics, Case Western Reserve University, Cleveland, Ohio 44106-4948, USA
| | | | | | | |
Collapse
|
22
|
Kunzelmann K. The cystic fibrosis transmembrane conductance regulator and its function in epithelial transport. Rev Physiol Biochem Pharmacol 1999; 137:1-70. [PMID: 10207304 DOI: 10.1007/3-540-65362-7_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CF is a well characterized disease affecting a variety of epithelial tissues. Impaired function of the cAMP activated CFTR Cl- channel appears to be the basic defect detectable in epithelial and non-epithelial cells derived from CF patients. Apart from cAMP-dependent Cl- channels also Ca2+ and volume activated Cl- currents may be changed in the presence of CFTR mutations. This is supported by recent additional findings showing that different intracellular messengers converge on the CFTR Cl- channel. Analysis of the ion transport in CF airways and intestinal epithelium identified additional defects in Na+ transport. It became clear recently that mutations of CFTR may also affect the activity of other membrane conductances including epithelial Na+ channels, KvLQT-1 K+ channels and aquaporins (Fig. 7). Several additional, initially unexpected effects of CFTR on cellular functions, such as exocytosis, mucin secretion and regulation of the intracellular pH were reported during the past. Taken together, these results clearly indicate that CFTR not only acts as a cAMP regulated Cl- channel, but may fulfill several other cellular functions, particularly by regulating other membrane conductances. Failure in CFTR dependent regulation of these membrane conductances is likely to contribute to the defects observed in CF. Currently, no general concept is available that can explain how CFTR controls this variety of cellular functions. Further studies will have to verify whether direct protein interaction, specific effects on membrane turnover, changes of the intracellular ion concentration or additional proteins are involved in these regulatory loops. At the end of this review one cannot share the provocative and reassuring title "CFTR!" of a review written a few years ago [114]. Today one might rather finish with the statement "CFTR?".
Collapse
Affiliation(s)
- K Kunzelmann
- Physiologisches Institut, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
23
|
Qi Z, Hao CM, Salter K, Redha R, Breyer MD. Type II cAMP-dependent protein kinase regulates electrogenic ion transport in rabbit collecting duct. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:F622-8. [PMID: 10198423 DOI: 10.1152/ajprenal.1999.276.4.f622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cAMP mediates many of the effects of vasopressin, prostaglandin E2, and beta-adrenergic agents upon salt and water transport in the renal collecting duct. The present studies examined the role of cAMP-dependent protein kinase (PKA) in mediating these effects. PKA is a heterotetramer comprised of two regulatory (R) subunits and two catalytic (C) subunits. The four PKA isoforms may be distinguished by their R subunits that have been designated RIalpha, RIbeta, RIIalpha, and RIIbeta. Three regulatory subunits, RIalpha, RIIalpha, and RIIbeta, were detected by immunoblot and ribonuclease protection in both primary cultures and fresh isolates of rabbit cortical collecting ducts (CCDs). Monolayers of cultured CCDs grown on semipermeable supports were mounted in an Ussing chamber, and combinations of cAMP analogs that selectively activate PKA type I vs. PKA type II were tested for their effect on electrogenic ion transport. Short-circuit current (Isc) was significantly increased by the PKA type II-selective analog pairs N6-monobutyryl-cAMP plus 8-(4-chlorophenylthio)-cAMP or N6-monobutyryl-cAMP plus 8-chloro-cAMP. In contrast the PKA type I-selective cAMP analog pair [N6-monobutyryl-cAMP plus 8-(6-aminohexyl)-amino-cAMP] had no effect on Isc. These results suggest PKA type II is the major isozyme regulating electrogenic ion transport in the rabbit collecting duct.
Collapse
Affiliation(s)
- Z Qi
- Division of Nephrology, Departments of Medicine and Molecular Physiology and Biophysics, Veterans Affairs Medical Center, and Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | | | | | | | | |
Collapse
|