1
|
Mair DB, Tsui JH, Higashi T, Koenig P, Dong Z, Chen JF, Meir JU, Smith AST, Lee PHU, Ahn EH, Countryman S, Sniadecki NJ, Kim DH. Spaceflight-induced contractile and mitochondrial dysfunction in an automated heart-on-a-chip platform. Proc Natl Acad Sci U S A 2024; 121:e2404644121. [PMID: 39312653 PMCID: PMC11459163 DOI: 10.1073/pnas.2404644121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
With current plans for manned missions to Mars and beyond, the need to better understand, prevent, and counteract the harmful effects of long-duration spaceflight on the body is becoming increasingly important. In this study, an automated heart-on-a-chip platform was flown to the International Space Station on a 1-mo mission during which contractile cardiac function was monitored in real-time. Upon return to Earth, engineered human heart tissues (EHTs) were further analyzed with ultrastructural imaging and RNA sequencing to investigate the impact of prolonged microgravity on cardiomyocyte function and health. Spaceflight EHTs exhibited significantly reduced twitch forces, increased incidences of arrhythmias, and increased signs of sarcomere disruption and mitochondrial damage. Transcriptomic analyses showed an up-regulation of genes and pathways associated with metabolic disorders, heart failure, oxidative stress, and inflammation, while genes related to contractility and calcium signaling showed significant down-regulation. Finally, in silico modeling revealed a potential link between oxidative stress and mitochondrial dysfunction that corresponded with RNA sequencing results. This represents an in vitro model to faithfully reproduce the adverse effects of spaceflight on three-dimensional (3D)-engineered heart tissue.
Collapse
Affiliation(s)
- Devin B. Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Jonathan H. Tsui
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Ty Higashi
- Department of Mechanical Engineering, University of Washington, Seattle, WA98195
| | - Paul Koenig
- BioServe Space Technologies, Ann and HJ Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO80303
| | - Zhipeng Dong
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Jeffrey F. Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Jessica U. Meir
- The National Aeronautics and Space Administration, NASA Johnson Space Center, Houston, TX77058
| | - Alec S. T. Smith
- Department of Physiology and Biophysics, University of Washington, Seattle, WA98195
| | - Peter H. U. Lee
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI02912
| | - Eun Hyun Ahn
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD21205
| | - Stefanie Countryman
- BioServe Space Technologies, Ann and HJ Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO80303
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA98195
- Department of Bioengineering, University of Washington, Seattle, WA98195
- Center for Cardiovascular Biology, University of Washington, Seattle, WA98109
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA98109
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
- Department of Bioengineering, University of Washington, Seattle, WA98195
- Center for Cardiovascular Biology, University of Washington, Seattle, WA98109
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA98109
- Department of Medicine, Johns Hopkins University, Baltimore, MD21205
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
2
|
Ni JB, Ding CJ, Zhang JS, Fang XM, Xiao HW. Insight into the surface discharge cold plasma efficient inactivation of Pseudomonas fluorescens in water based on exogenous reactive oxygen and nitrogen species: Synergistic mechanism and energy benefits. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134984. [PMID: 38943891 DOI: 10.1016/j.jhazmat.2024.134984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
As well known, surface discharge cold plasma has efficient inactivation ability and a variety of RONS are main active particles for inactivation, but their synergistic mechanism is still not clear. Therefore, surface discharge cold plasma system was applied to treat Pseudomonas fluorescens to study bacterial inactivation mechanism and energy benefit. Results showed that energy efficiency was directly proportional to applied voltage and inversely proportional to initial concentration. Cold plasma treatment for 20 min was inactivated by approximately > 4-log10Pseudomonas fluorescens and application of •OH and 1O2 scavengers significantly improved survival rate. In addition, •OH and 1O2 destroyed cell membrane structure and membrane permeability, which promoted diffusion of RONS into cells and affecting energy metabolism and antioxidant capacity, leading to bacterial inactivation. Furthermore, accumulation of intracellular NO and ONOOH was related to infiltration of exogenous RNS, while accumulation of •OH, H2O2, 1O2, O2- was the result of joint action of endogenous and exogenous ROS. Transcriptome analysis revealed that different RONS of cold plasma were responsible for Pseudomonas fluorescens inactivation and related to activation of intracellular antioxidant defense system and regulation of genes expression related to amino acid metabolism and energy metabolism, which promoting cellular process, catalytic activity and other biochemical pathways.
Collapse
Affiliation(s)
- Jia-Bao Ni
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Chang-Jiang Ding
- College of Science, Inner Mongolia University of Technology, Hohhot, China
| | - Jing-Shou Zhang
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Xiao-Ming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China.
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| |
Collapse
|
3
|
Angelova PR, Abramov AY. Interplay of mitochondrial calcium signalling and reactive oxygen species production in the brain. Biochem Soc Trans 2024; 52:1939-1946. [PMID: 39171662 DOI: 10.1042/bst20240261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Intracellular communication and regulation in brain cells is controlled by the ubiquitous Ca2+ and by redox signalling. Both of these independent signalling systems regulate most of the processes in cells including the cell surviving mechanism or cell death. In physiology Ca2+ can regulate and trigger reactive oxygen species (ROS) production by various enzymes and in mitochondria but ROS could also transmit redox signal to calcium levels via modification of calcium channels or phospholipase activity. Changes in calcium or redox signalling could lead to severe pathology resulting in excitotoxicity or oxidative stress. Interaction of the calcium and ROS is essential to trigger opening of mitochondrial permeability transition pore - the initial step of apoptosis, Ca2+ and ROS-induced oxidative stress involved in necrosis and ferroptosis. Here we review the role of redox signalling and Ca2+ in cytosol and mitochondria in the physiology of brain cells - neurons and astrocytes and how this integration can lead to pathology, including ischaemia injury and neurodegeneration.
Collapse
Affiliation(s)
- Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, U.K
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, U.K
| |
Collapse
|
4
|
Liu Y, Qi Q, Jiang Y, Zhao P, Chen L, Ma X, Shi Y, Xu J, Li J, Chen F, Chen J, Zhang L, Wu Y, Jiang X, Jin D, Xu T, Bu W. Ion Current Rectification Activity Induced by Boron Hydride Nanosheets to Enhance Magnesium Analgesia. Angew Chem Int Ed Engl 2024; 63:e202405131. [PMID: 38845566 DOI: 10.1002/anie.202405131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Indexed: 07/23/2024]
Abstract
The limited analgesic efficiency of magnesium restricts its application in pain management. Here, we report boron hydride (BH) with ion currents rectification activity that can enhance the analgesic efficiency of magnesium without the risks of drug tolerance or addiction. We synthesize MgB2, comprising hexagonal boron sheets alternating with Mg2+. In pathological environment, Mg2+ is exchanged by H+, forming two-dimensional borophene-analogue BH sheets. BH interacts with the charged cations via cation-pi interaction, leading to dynamic modulation of sodium and potassium ion currents around neurons. Additionally, released Mg2+ competes Ca2+ to inhibit its influx and neuronal excitation. In vitro cultured dorsal root neurons show a remarkable increase in threshold potential from the normal -35.9 mV to -5.9 mV after the addition of MgB2, indicating potent analgesic effect. In three typical pain models, including CFA-induced inflammatory pain, CINP- or CCI-induced neuropathic pain, MgB2 exhibits analgesic efficiency approximately 2.23, 3.20, and 2.0 times higher than clinical MgSO4, respectively, and even about 1.04, 1.66, and 1.95 times higher than morphine, respectively. The development of magnesium based intermetallic compounds holds promise in addressing the non-opioid medical need for pain relief.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Qi Qi
- Department of Anesthesiology, Shanghai Sixth Peoples Hospital Affiliated to Shanghai Jiao tong University, Shanghai, 200233, China
| | - Yaqin Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Lijie Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Xiaqing Ma
- Department of Anesthesiology, Shanghai Sixth Peoples Hospital Affiliated to Shanghai Jiao tong University, Shanghai, 200233, China
| | - Yuhan Shi
- Baylor College of medicine, Houston, TX 77030, USA
| | - Jianxun Xu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Jinjin Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Feixiang Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Jian Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Le Zhang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Yelin Wu
- Department of Medical Ultrasound, Shanghai Tenth people's hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Tao Xu
- Department of Anesthesiology, Shanghai Sixth Peoples Hospital Affiliated to Shanghai Jiao tong University, Shanghai, 200233, China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| |
Collapse
|
5
|
Morishima M, Wang P, Horii K, Horikawa K, Ono K. Eicosapentaenoic Acid Rescues Cav1.2-L-Type Ca 2+ Channel Decline Caused by Saturated Fatty Acids via Both Free Fatty Acid Receptor 4-Dependent and -Independent Pathways in Cardiomyocytes. Int J Mol Sci 2024; 25:7570. [PMID: 39062812 PMCID: PMC11276759 DOI: 10.3390/ijms25147570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary intake of omega-3 polyunsaturated fatty acids (eicosapentaenoic acid, EPA) exerts antiarrhythmic effects, although the mechanisms are poorly understood. Here, we investigated the possible beneficial actions of EPA on saturated fatty acid-induced changes in the L-type Ca2+ channel in cardiomyocytes. Cardiomyocytes were cultured with an oleic acid/palmitic acid mixture (OAPA) in the presence or absence of EPA. Beating rate reduction in cardiomyocytes caused by OAPA were reversed by EPA. EPA also retrieved a reduction in Cav1.2 L-type Ca2+ current, mRNA, and protein caused by OAPA. Immunocytochemical analysis revealed a distinct downregulation of the Cav1.2 channel caused by OAPA with a concomitant decrease in the phosphorylated component of a transcription factor adenosine-3',5'-cyclic monophosphate (cAMP) response element binding protein (CREB) in the nucleus, which were rescued by EPA. A free fatty acid receptor 4 (FFAR4) agonist TUG-891 reversed expression of Cav1.2 and CREB mRNA caused by OAPA, whereas an FFAR4 antagonist AH-7614 abolished the effects of EPA. Excessive reactive oxygen species (ROS) accumulation caused by OAPA decreased Cav1.2 and CREB mRNA expressions, which was reversed by an ROS scavenger. Our data suggest that EPA rescues cellular Cav1.2-Ca2+ channel decline caused by OAPA lipotoxicity and oxidative stresses via both free fatty acid receptor 4-dependent and -independent pathways.
Collapse
Affiliation(s)
- Masaki Morishima
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara 6318505, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara 6318505, Japan;
| | - Pu Wang
- Department of Pathophysiology, Oita University School of Medicine, Yufu 8795593, Japan;
| | - Kosuke Horii
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara 6318505, Japan;
| | - Kazuki Horikawa
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, Tokushima 7708503, Japan;
| | - Katsushige Ono
- Department of Pathophysiology, Oita University School of Medicine, Yufu 8795593, Japan;
- Oita Shimogori Hospital, Oita 8700926, Japan
| |
Collapse
|
6
|
Dos Santos TM, Righetti RF, do Nascimento Camargo L, Leick EA, Fukuzaki S, de Campos EC, Galli TT, Saraiva-Romanholo BM, da Silva LLS, Barbosa JAS, João JMLG, Prado CM, de Rezende BG, Bourotte CLM, Dos Santos Lopes FDTQ, de Arruda Martins M, Bensenor IM, de Oliveira Cirillo JV, Bezerra SKM, Silva FJA, Paulo MSL, Lotufo PA, Lopes Calvo Tibério IDF. Effect of VAChT reduction on lung alterations induced by exposure to iron particles in an asthma model. J Inflamm (Lond) 2024; 21:24. [PMID: 38961398 PMCID: PMC11223391 DOI: 10.1186/s12950-024-00399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
INTRODUCTION Pollution harms the health of people with asthma. The effect of the anti-inflammatory cholinergic pathway in chronic allergic inflammation associated to pollution is poorly understood. METHODS One hundred eight animals were divided into 18 groups (6 animals). Groups included: wild type mice (WT), genetically modified with reduced VAChT (VAChTKD), and those sensitized with ovalbumin (VAChTKDA), exposed to metal powder due to iron pelletizing in mining company (Local1) or 3.21 miles away from a mining company (Local2) in their locations for 2 weeks during summer and winter seasons. It was analyzed for hyperresponsivity, inflammation, remodeling, oxidative stress responses and the cholinergic system. RESULTS During summer, animals without changes in the cholinergic system revealed that Local1 exposure increased the hyperresponsiveness (%Rrs, %Raw), and inflammation (IL-17) relative to vivarium animals, while animals exposed to Local2 also exhibited elevated IL-17. During winter, animals without changes in the cholinergic system revealed that Local2 exposure increased the hyperresponsiveness (%Rrs) relative to vivarium animals. Comparing the exposure local of these animals during summer, animals exposed to Local1 showed elevated %Rrs, Raw, and IL-5 compared to Local 2, while in winter, Local2 exposure led to more IL-17 than Local1. Animals with VAChT attenuation displayed increased %Rrs, NFkappaB, IL-5, and IL-13 but reduced alpha-7 compared to animals without changes in the cholinergic system WT. Animals with VAChT attenuation and asthma showed increased the hyperresponsiveness, all inflammatory markers, remodeling and oxidative stress compared to animals without chronic lung inflammation. Exposure to Local1 exacerbated the hyperresponsiveness, oxidative stressand inflammation in animals with VAChT attenuation associated asthma, while Local2 exposure led to increased inflammation, remodeling and oxidative stress. CONCLUSIONS Reduced cholinergic signaling amplifies lung inflammation in a model of chronic allergic lung inflammation. Furthermore, when associated with pollution, it can aggravate specific responses related to inflammation, oxidative stress, and remodeling.
Collapse
Affiliation(s)
- Tabata Maruyama Dos Santos
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil.
- Hospital Sírio Libanês, São Paulo, SP, Brazil.
| | - Renato Fraga Righetti
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Hospital Sírio Libanês, São Paulo, SP, Brazil
| | - Leandro do Nascimento Camargo
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Hospital Sírio Libanês, São Paulo, SP, Brazil
| | | | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Hospital Alemão Oswaldo Cruz, São Paulo, Brazil
| | - Elaine Cristina de Campos
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Hospital Sírio Libanês, São Paulo, SP, Brazil
| | | | | | | | | | | | - Carla Máximo Prado
- Department of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | | | | | | | | | - Isabela M Bensenor
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | | | | | | | | | - Paulo A Lotufo
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
7
|
Aquilani R, Brugnatelli S, Maestri R, Iadarola P, Corallo S, Pagani A, Serra F, Bellini A, Buonocore D, Dossena M, Boschi F, Verri M. Chemotherapy-Induced Changes in Plasma Amino Acids and Lipid Oxidation of Resected Patients with Colorectal Cancer: A Background for Future Studies. Int J Mol Sci 2024; 25:5300. [PMID: 38791339 PMCID: PMC11121634 DOI: 10.3390/ijms25105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Previous studies have documented that FOLFOX and XELOX therapies negatively impact the metabolism of skeletal muscle and extra-muscle districts. This pilot study tested whether three-month FOLFOX or XELOX therapy produced changes in plasma amino acid levels (PAAL) (an estimation of whole-body amino acid metabolism) and in plasma levels of malondialdehyde (MDA), a marker of lipid hyper oxidation. Fourteen ambulatory, resected patients with colorectal cancer scheduled to receive FOLFOX (n = 9) or XELOX (n = 5) therapy, after overnight fasting, underwent peripheral venous blood sampling, to determine PAAL and MDA before, during, and at the end of three-month therapy. Fifteen healthy matched subjects (controls) only underwent measures of PAAL at baseline. The results showed changes in 87.5% of plasma essential amino acids (EAAs) and 38.4% of non-EAAs in patients treated with FOLFOX or XELOX. These changes in EAAs occurred in two opposite directions: EAAs decreased with FOLFOX and increased or did not decrease with XELOX (interactions: from p = 0.034 to p = 0.003). Baseline plasma MDA levels in both FOLFOX and XELOX patients were above the normal range of values, and increased, albeit not significantly, during therapy. In conclusion, three-month FOLFOX or XELOX therapy affected plasma EAAs differently but not the baseline MDA levels, which were already high.
Collapse
Affiliation(s)
- Roberto Aquilani
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (P.I.); (A.B.); (D.B.); (M.D.)
| | - Silvia Brugnatelli
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.B.); (S.C.); (A.P.); (F.S.)
| | - Roberto Maestri
- Department of Biomedical Engineering of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, 27040 Montescano, Italy;
| | - Paolo Iadarola
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (P.I.); (A.B.); (D.B.); (M.D.)
| | - Salvatore Corallo
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.B.); (S.C.); (A.P.); (F.S.)
| | - Anna Pagani
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.B.); (S.C.); (A.P.); (F.S.)
| | - Francesco Serra
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.B.); (S.C.); (A.P.); (F.S.)
| | - Anna Bellini
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (P.I.); (A.B.); (D.B.); (M.D.)
| | - Daniela Buonocore
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (P.I.); (A.B.); (D.B.); (M.D.)
| | - Maurizia Dossena
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (P.I.); (A.B.); (D.B.); (M.D.)
| | - Federica Boschi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Manuela Verri
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (P.I.); (A.B.); (D.B.); (M.D.)
| |
Collapse
|
8
|
Sallam NA, Wang B, Laher I. Exercise training and vascular heterogeneity in db/db mice: evidence for regional- and duration-dependent effects. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2421-2436. [PMID: 37843589 DOI: 10.1007/s00210-023-02775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
Exercise training (ET) has several health benefits; however, our understanding of regional adaptations to ET is limited. We examined the functional and molecular adaptations to short- and long-term ET in elastic and muscular conduit arteries of db/db mice in relation to changes in cardiovascular risk factors. Diabetic mice and their controls were exercised at moderate intensity for 4 or 8 weeks. The vasodilatory and contractile responses of thoracic aortae and femoral arteries isolated from the same animals were examined. Blood and aortic samples were used to measure hyperglycemia, oxidative stress, inflammation, dyslipidemia, protein expression of SOD isoforms, COX, eNOS, and Akt. Short-term ET improved nitric oxide (NO) mediated vasorelaxation in the aortae and femoral arteries of db/db mice in parallel with increased SOD2 and SOD3 expression, reduced oxidative stress and triglycerides, and independent of weight loss, glycemia, or inflammation. Long-term ET reduced body weight in parallel with reduced systemic inflammation and improved insulin sensitivity along with increased SOD1, Akt, and eNOS expression and improved NO vasorelaxation. Exercise did not restore NOS- and COX-independent vasodilatation in femoral arteries, nor did it mitigate the hypercontractility in the aortae of db/db mice; rather ET transiently increased contractility in association with upregulated COX-2. Long-term ET differentially affected the aortae and femoral arteries contractile responses. ET improved NO-mediated vasodilation in both arteries likely due to collective systemic effects. ET did not mitigate all diabetes-induced vasculopathies. Optimization of the ET regimen can help develop comprehensive management of type 2 diabetes.
Collapse
Affiliation(s)
- Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Baohua Wang
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
| |
Collapse
|
9
|
Krishnan R, Kannan MS, Deshpande DA. Superoxide Anions Inhibit Intracellular Calcium Response in Porcine Airway Smooth Muscle Cells. AJP Rep 2024; 14:e162-e169. [PMID: 38784940 PMCID: PMC11115973 DOI: 10.1055/a-2318-0625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Background Superoxide anions (O 2 - ) have multiple effects on pulmonary parenchyma altering cell proliferation, cellular metabolism, and airway smooth muscle (ASM) contraction. Intracellular calcium ([Ca 2+ ] i ) concentration plays a significant role in the regulation of ASM contraction, relaxation, proliferation, and gene expression. Objective We investigated the effects of O 2 - on agonist-stimulated changes in [Ca 2+ ] i in ASM cells. Design/Methods Fura-2 AM-loaded, freshly isolated porcine ASM (PASM) cells were used to examine [Ca 2+ ] i release in response to acetylcholine (ACh), histamine, endothelin, caffeine, and thapsigargin (TPG) in the presence or absence of extracellular Ca 2+ . Results Exposure of PASM cells to xanthine and xanthine oxidase (X + XO) resulted in a time-dependent generation of O 2 - , inhibited by superoxide dismutase (SOD). Preincubating PASM cells with X + XO for 15- or 45-minute inhibited net [Ca 2+ ] i responses to ACh, histamine, caffeine, and TPG compared with control cells. Pretreating PASM cells with SOD for 30 minutes mitigated the inhibitory effect of X + XO treatment on ACh-induced Ca 2+ elevation suggesting role of O 2 - . X + XO treatment also inhibited caffeine- and TPG-induced Ca 2+ elevation suggesting effect of O 2 - on [Ca 2+ ] i release and reuptake mechanisms. Conclusion Superoxide attenuates [Ca 2+ ] i release, reuptake, and may interfere with physiological functions of ASM cells.
Collapse
Affiliation(s)
- Ramesh Krishnan
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Mathur S. Kannan
- Departments of Pediatrics and Veterinary Pathobiology, University of Minnesota, Minneapolis, Minnesota
| | - Deepak A. Deshpande
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Joshi P, Estes S, DeMazumder D, Knollmann BC, Dey S. Ryanodine receptor 2 inhibition reduces dispersion of cardiac repolarization, improves contractile function, and prevents sudden arrhythmic death in failing hearts. eLife 2023; 12:RP88638. [PMID: 38078905 PMCID: PMC10712946 DOI: 10.7554/elife.88638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Sudden cardiac death (SCD) from ventricular tachycardia/fibrillation (VT/VF) is a leading cause of death, but current therapies are limited. Despite extensive research on drugs targeting sarcolemmal ion channels, none have proven sufficiently effective for preventing SCD. Sarcoplasmic ryanodine receptor 2 (RyR2) Ca2+ release channels, the downstream effectors of sarcolemmal ion channels, are underexplored in this context. Recent evidence implicates reactive oxygen species (ROS)-mediated oxidation and hyperactivity of RyR2s in the pathophysiology of SCD. We tested the hypothesis that RyR2 inhibition of failing arrhythmogenic hearts reduces sarcoplasmic Ca2+ leak and repolarization lability, mitigates VT/VF/SCD and improves contractile function. We used a guinea pig model that replicates key clinical aspects of human nonischemic HF, such as a prolonged QT interval, a high prevalence of spontaneous arrhythmic SCD, and profound Ca2+ leak via a hyperactive RyR2. HF animals were randomized to receive dantrolene (DS) or placebo in early or chronic HF. We assessed the incidence of VT/VF and SCD (primary outcome), ECG heart rate and QT variability, echocardiographic left ventricular (LV) structure and function, immunohistochemical LV fibrosis, and sarcoplasmic RyR2 oxidation. DS treatment prevented VT/VF and SCD by decreasing dispersion of repolarization and ventricular arrhythmias. Compared to placebo, DS lowered resting heart rate, preserved chronotropic competency during transient β-adrenergic challenge, and improved heart rate variability and cardiac function. Inhibition of RyR2 hyperactivity with dantrolene mitigates the vicious cycle of sarcoplasmic Ca2+ leak-induced increases in diastolic Ca2+ and ROS-mediated RyR2 oxidation, thereby reducing repolarization lability and protecting against VT/VF/SCD. Moreover, the consequent increase in sarcoplasmic Ca2+ load improves contractile function. These potentially life-saving effects of RyR2 inhibition warrant further investigation, such as clinical studies of repurposing dantrolene as a potential new therapy for heart failure and/or SCD.
Collapse
Affiliation(s)
- Pooja Joshi
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Shanea Estes
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Deeptankar DeMazumder
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Internal Medicine, Veterans Affairs Pittsburgh Health SystemPittsburghUnited States
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Internal Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghUnited States
- Department of Surgery, University of Pittsburgh School of MedicinePittsburghUnited States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Swati Dey
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| |
Collapse
|
11
|
Gomez F, El-Ghanem M, Feldstein E, Jagdeo M, Koul P, Nuoman R, Gupta G, Gandhi CD, Amuluru K, Al-Mufti F. Cerebral Ischemic Reperfusion Injury: Preventative and Therapeutic Strategies. Cardiol Rev 2023; 31:287-292. [PMID: 36129330 DOI: 10.1097/crd.0000000000000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acute ischemic stroke is a leading cause of morbidity and mortality in the United States. Treatment goals remain focused on restoring blood flow to compromised areas. However, a major concern arises after reperfusion occurs. Cerebral ischemic reperfusion injury is defined as damage to otherwise salvageable brain tissue occurring with the reestablishment of the vascular supply to that region. The pool of eligible patients for revascularization continues to grow, especially with the recently expanded endovascular therapeutic window. Neurointensivists should understand and manage complications of successful recanalization. In this review, we examine the pathophysiology, diagnosis, and potential management strategies in cerebral ischemic reperfusion injury.
Collapse
Affiliation(s)
- Francisco Gomez
- From the Department of Neurology, University of Missouri School of Medicine, Columbia, MO
| | - Mohammad El-Ghanem
- Department of Neuroendovascular Surgery, HCA Houston Healthcare, Houston, TX
| | - Eric Feldstein
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| | - Matt Jagdeo
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| | - Prateeka Koul
- Department of Neurology, Northshore-Long Island Jewish Medical Center, Manhasset, NY
| | - Rolla Nuoman
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| | - Gaurav Gupta
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Chirag D Gandhi
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| | - Krishna Amuluru
- Department of Neurological Surgery, University of Indiana, Indianapolis, IN
| | - Fawaz Al-Mufti
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| |
Collapse
|
12
|
Aquilani R, Verri M. Nutrition for Podocyte Repair in Nephrotic Syndrome? Nutrients 2023; 15:4615. [PMID: 37960268 PMCID: PMC10650452 DOI: 10.3390/nu15214615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
Nephrotic syndrome (NS) poses a number of nutritional and metabolic problems due to glomerulus injured podocytes, which are responsible for the loss of barrier function, causing proteinuria, altered fluid and electrolyte balances, and hypoalbuminemia [...].
Collapse
Affiliation(s)
| | - Manuela Verri
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
13
|
Dey S, Joshi P, O'Rourke B, Estes S, DeMazumder D. Cardiac sympathetic denervation prevents sudden cardiac arrest and improves cardiac function by enhancing mitochondrial-antioxidant capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526082. [PMID: 36778270 PMCID: PMC9915471 DOI: 10.1101/2023.01.29.526082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE Sudden cardiac arrest (SCA) and heart failure (HF) are leading causes of death. The underlying mechanisms are incompletely understood, limiting the design of new therapies. Whereas most autonomic modulation therapies have not shown clear benefit in HF patients, growing evidence indicates cardiac sympathetic denervation (CSD) exerts cardioprotective effects. The underlying molecular and cellular mechanisms remain unexplored. OBJECTIVE Based on the hypothesis that mitochondrial reactive oxygen species (mROS) drive the pathogenesis of HF and SCA, we investigated whether CSD prevents SCA and HF by improving mitochondrial antioxidant capacity and redox balance, to correct impaired Ca2+ handling and repolarization reserve. METHODS AND RESULTS We interrogated CSD-specific responses in pressure-overload HF models with spontaneous SCA using in vivo echocardiographic and electrocardiographic studies and in vitro biochemical and functional studies including ratiometric measures of mROS, Ca2+ and sarcomere dynamics in left ventricular myocytes. Pressure-overloaded HF reduced mitochondrial antioxidant capacity and increased mROS, which impaired β-adrenergic signaling and caused SR Ca2+ leak, reducing SR Ca2+ and increasing diastolic Ca2+, impaired myofilament contraction and further increased the sympathetic stress response. CSD improved contractile function and mitigated mROS-mediated diastolic Ca2+ overload, dispersion of repolarization, triggered activity and SCA by upregulating mitochondrial antioxidant and NADPH-producing enzymes. CONCLUSIONS Our findings support a fundamental role of sympathetic stress-induced downregulation of mROS scavenging enzymes and RyR-leak mediated diastolic Ca2+ overload in HF and SCA pathogenesis that are mitigated by CSD. This first report on the molecular and cellular mechanisms of CSD supports its evaluation in additional high-risk patient groups.
Collapse
|
14
|
Stavely R, Ott LC, Rashidi N, Sakkal S, Nurgali K. The Oxidative Stress and Nervous Distress Connection in Gastrointestinal Disorders. Biomolecules 2023; 13:1586. [PMID: 38002268 PMCID: PMC10669114 DOI: 10.3390/biom13111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is increasingly recognized as a central player in a range of gastrointestinal (GI) disorders, as well as complications stemming from therapeutic interventions. This article presents an overview of the mechanisms of oxidative stress in GI conditions and highlights a link between oxidative insult and disruption to the enteric nervous system (ENS), which controls GI functions. The dysfunction of the ENS is characteristic of a spectrum of disorders, including neurointestinal diseases and conditions such as inflammatory bowel disease (IBD), diabetic gastroparesis, and chemotherapy-induced GI side effects. Neurons in the ENS, while essential for normal gut function, appear particularly vulnerable to oxidative damage. Mechanistically, oxidative stress in enteric neurons can result from intrinsic nitrosative injury, mitochondrial dysfunction, or inflammation-related pathways. Although antioxidant-based therapies have shown limited efficacy, recognizing the multifaceted role of oxidative stress in GI diseases offers a promising avenue for future interventions. This comprehensive review summarizes the literature to date implicating oxidative stress as a critical player in the pathophysiology of GI disorders, with a focus on its role in ENS injury and dysfunction, and highlights opportunities for the development of targeted therapeutics for these diseases.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leah C. Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Niloufar Rashidi
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
- Department of Medicine Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
| |
Collapse
|
15
|
Joshi P, Estes S, DeMazumder D, Knollmann BC, Dey S. Ryanodine receptor 2 inhibition reduces dispersion of cardiac repolarization, improves contractile function and prevents sudden arrhythmic death in failing hearts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526151. [PMID: 37662391 PMCID: PMC10473608 DOI: 10.1101/2023.01.29.526151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Introduction Sudden cardiac death (SCD) from ventricular tachycardia/fibrillation (VT/VF) are a leading cause of death, but current therapies are limited. Despite extensive research on drugs targeting sarcolemmal ion channels, none have proven sufficiently effective for preventing SCD. Sarcoplasmic ryanodine receptor 2 (RyR2) Ca 2+ release channels, the downstream effectors of sarcolemmal ion channels, are underexplored in this context. Recent evidence implicates reactive oxygen species (ROS)- mediated oxidation and hyperactivity of RyR2s in the pathophysiology of SCD. Objective To test the hypothesis that RyR2 inhibition of failing arrhythmogenic hearts reduces sarcoplasmic Ca 2+ leak and repolarization lability, mitigates VT/VF/SCD and improves contractile function. Methods We used a guinea pig model that replicates key clinical aspects of human nonischemic HF, such as a prolonged QT interval, a high prevalence of spontaneous arrhythmic SCD, and profound Ca 2+ leak via a hyperactive RyR2. HF animals were randomized to receive dantrolene (DS) or placebo in early or chronic HF. We assessed the incidence of VT/VF and SCD (primary outcome), ECG heart rate and QT variability, echocardiographic left ventricular (LV) structure and function, immunohistochemical LV fibrosis, and sarcoplasmic RyR2 oxidation. Results DS treatment prevented VT/VF and SCD by decreasing dispersion of repolarization and ventricular arrhythmias. Compared to placebo, DS lowered resting heart rate, preserved chronotropic competency during transient β-adrenergic challenge, and improved heart rate variability and cardiac function. Conclusion Inhibition of RyR2 hyperactivity with dantrolene mitigates the vicious cycle of sarcoplasmic Ca 2+ leak-induced increases in diastolic Ca 2+ and ROS-mediated RyR2 oxidation, thereby increasing repolarization lability and protecting against VT/VF/SCD. Moreover, the consequent increase in sarcoplasmic Ca 2+ load improves contractile function. These potentially life-saving effects of RyR2 inhibition warrant further investigation, such as clinical studies of repurposing dantrolene as a potential new therapy for heart failure and/or SCD.
Collapse
|
16
|
Hwang SY, Liu H, Lee SS. Dysregulated Calcium Handling in Cirrhotic Cardiomyopathy. Biomedicines 2023; 11:1895. [PMID: 37509534 PMCID: PMC10377313 DOI: 10.3390/biomedicines11071895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Cirrhotic cardiomyopathy is a syndrome of blunted cardiac systolic and diastolic function in patients with cirrhosis. However, the mechanisms remain incompletely known. Since contractility and relaxation depend on cardiomyocyte calcium transients, any factors that impact cardiac contractile and relaxation functions act eventually through calcium transients. In addition, calcium transients play an important role in cardiac arrhythmias. The present review summarizes the calcium handling system and its role in cardiac function in cirrhotic cardiomyopathy and its mechanisms. The calcium handling system includes calcium channels on the sarcolemmal plasma membrane of cardiomyocytes, the intracellular calcium-regulatory apparatus, and pertinent proteins in the cytosol. L-type calcium channels, the main calcium channel in the plasma membrane of cardiomyocytes, are decreased in the cirrhotic heart, and the calcium current is decreased during the action potential both at baseline and under stimulation of beta-adrenergic receptors, which reduces the signal to calcium-induced calcium release. The study of sarcomere length fluctuations and calcium transients demonstrated that calcium leakage exists in cirrhotic cardiomyocytes, which decreases the amount of calcium storage in the sarcoplasmic reticulum (SR). The decreased storage of calcium in the SR underlies the reduced calcium released from the SR, which results in decreased cardiac contractility. Based on studies of heart failure with non-cirrhotic cardiomyopathy, it is believed that the calcium leakage is due to the destabilization of interdomain interactions (dispersion) of ryanodine receptors (RyRs). A similar dispersion of RyRs may also play an important role in reduced contractility. Multiple defects in calcium handling thus contribute to the pathogenesis of cirrhotic cardiomyopathy.
Collapse
Affiliation(s)
- Sang Youn Hwang
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Department of Internal Medicine, Dongnam Institute of Radiological & Medical Sciences, Busan 46033, Republic of Korea
| | - Hongqun Liu
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Samuel S Lee
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
17
|
Mehra A, Gomez F, Bischof H, Diedrich D, Laudanski K. Cortical Spreading Depolarization and Delayed Cerebral Ischemia; Rethinking Secondary Neurological Injury in Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:9883. [PMID: 37373029 DOI: 10.3390/ijms24129883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Poor outcomes in Subarachnoid Hemorrhage (SAH) are in part due to a unique form of secondary neurological injury known as Delayed Cerebral Ischemia (DCI). DCI is characterized by new neurological insults that continue to occur beyond 72 h after the onset of the hemorrhage. Historically, it was thought to be a consequence of hypoperfusion in the setting of vasospasm. However, DCI was found to occur even in the absence of radiographic evidence of vasospasm. More recent evidence indicates that catastrophic ionic disruptions known as Cortical Spreading Depolarizations (CSD) may be the culprits of DCI. CSDs occur in otherwise healthy brain tissue even without demonstrable vasospasm. Furthermore, CSDs often trigger a complex interplay of neuroinflammation, microthrombi formation, and vasoconstriction. CSDs may therefore represent measurable and modifiable prognostic factors in the prevention and treatment of DCI. Although Ketamine and Nimodipine have shown promise in the treatment and prevention of CSDs in SAH, further research is needed to determine the therapeutic potential of these as well as other agents.
Collapse
Affiliation(s)
- Ashir Mehra
- Department of Neurology, University of Missouri, Columbia, MO 65212, USA
| | - Francisco Gomez
- Department of Neurology, University of Missouri, Columbia, MO 65212, USA
| | - Holly Bischof
- Penn Presbyterian Medical Center, Philadelphia, PA 19104, USA
| | - Daniel Diedrich
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55905, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
18
|
Voltarelli VA, Alves de Souza RW, Miyauchi K, Hauser CJ, Otterbein LE. Heme: The Lord of the Iron Ring. Antioxidants (Basel) 2023; 12:antiox12051074. [PMID: 37237940 DOI: 10.3390/antiox12051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Heme is an iron-protoporphyrin complex with an essential physiologic function for all cells, especially for those in which heme is a key prosthetic group of proteins such as hemoglobin, myoglobin, and cytochromes of the mitochondria. However, it is also known that heme can participate in pro-oxidant and pro-inflammatory responses, leading to cytotoxicity in various tissues and organs such as the kidney, brain, heart, liver, and in immune cells. Indeed, heme, released as a result of tissue damage, can stimulate local and remote inflammatory reactions. These can initiate innate immune responses that, if left uncontrolled, can compound primary injuries and promote organ failure. In contrast, a cadre of heme receptors are arrayed on the plasma membrane that is designed either for heme import into the cell, or for the purpose of activating specific signaling pathways. Thus, free heme can serve either as a deleterious molecule, or one that can traffic and initiate highly specific cellular responses that are teleologically important for survival. Herein, we review heme metabolism and signaling pathways, including heme synthesis, degradation, and scavenging. We will focus on trauma and inflammatory diseases, including traumatic brain injury, trauma-related sepsis, cancer, and cardiovascular diseases where current work suggests that heme may be most important.
Collapse
Affiliation(s)
- Vanessa Azevedo Voltarelli
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rodrigo W Alves de Souza
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kenji Miyauchi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Leo Edmond Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
19
|
Xie C, Li X, Guo Z, Dong Y, Zhang S, Li A, Ma S, Xu J, Pang Q, Peijnenburg WJGM, Lynch I, Zhang P. Graphene oxide disruption of homeostasis and regeneration processes in freshwater planarian Dugesia japonica via intracellular redox deviation and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114431. [PMID: 36521269 DOI: 10.1016/j.ecoenv.2022.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The aquatic system is a major sink for engineered nanomaterials released into the environment. Here, we assessed the toxicity of graphene oxide (GO) using the freshwater planarian Dugesia japonica, an invertebrate model that has been widely used for studying the effects of toxins on tissue regeneration and neuronal development. GO not only impaired the growth of normal (homeostatic) worms, but also inhibited the regeneration processes of regenerating (amputated) worms, with LC10 values of 9.86 mg/L and 9.32 mg/L for the 48-h acute toxicity test, respectively. High concentration (200 mg/L) of GO killed all the worms after 3 (regenerating) or 4 (homeostasis) days of exposure. Whole-mount in situ hybridization (WISH) and immunofluorescence analyses suggest GO impaired stem cell proliferation and differentiation, and subsequently caused cell apoptosis and oxidative DNA damage during planarian regeneration. Mechanistic analysis suggests that GO disturbed the antioxidative system (enzymatic and non-enzymatic) and energy metabolism in the planarian at both molecular and genetic levels, thus causing reactive oxygen species (ROS) over accumulation and oxidative damage, including oxidative DNA damage, loss of mitochondrial membrane integrity, lack of energy supply for cell differentiation and proliferation leading to retardance of neuron regeneration. The intrinsic oxidative potential of GO contributes to the GO-induced toxicity in planarians. These data suggest that GO in aquatic systems can cause oxidative stress and neurotoxicity in planarians. Overall, regenerated tissues are more sensitive to GO toxicity than homeostatic ones, suggesting that careful handling and appropriate decisions are needed in the application of GO to achieve healing and tissue regeneration.
Collapse
Affiliation(s)
- Changjian Xie
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Xiaowei Li
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Yuling Dong
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Shujing Zhang
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Ao Li
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Shan Ma
- Zibo Environment Monitoring Center, Zibo 25500, Shandong, China
| | - Jianing Xu
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Qiuxiang Pang
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Einsteinweg 2, 2333 CC Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
20
|
Lemminger AK, Fiorenza M, Eibye K, Bangsbo J, Hostrup M. High-Intensity Exercise Training Alters the Effect of N-Acetylcysteine on Exercise-Related Muscle Ionic Shifts in Men. Antioxidants (Basel) 2022; 12:antiox12010053. [PMID: 36670915 PMCID: PMC9855150 DOI: 10.3390/antiox12010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
This study investigated whether high-intensity exercise training alters the effect of N-acetylcysteine (a precursor of antioxidant glutathione) on exercise-related muscle ionic shifts. We assigned 20 recreationally-active men to 6 weeks of high-intensity exercise training, comprising three weekly sessions of 4-10 × 20-s all-out bouts interspersed by 2 min recovery (SET, n = 10), or habitual lifestyle maintenance (n = 10). Before and after SET, we measured ionic shifts across the working muscle, using leg arteriovenous balance technique, during one-legged knee-extensor exercise to exhaustion with and without N-acetylcysteine infusion. Furthermore, we sampled vastus lateralis muscle biopsies for analyses of metabolites, mitochondrial respiratory function, and proteins regulating ion transport and antioxidant defense. SET lowered exercise-related H+, K+, lactate-, and Na+ shifts and enhanced exercise performance by ≈45%. While N-acetylcysteine did not affect exercise-related ionic shifts before SET, it lowered H+, HCO3-, and Na+ shifts after SET. SET enhanced muscle mitochondrial respiratory capacity and augmented the abundance of Na+/K+-ATPase subunits (α1 and β1), ATP-sensitive K+ channel subunit (Kir6.2), and monocarboxylate transporter-1, as well as superoxide dismutase-2 and glutathione peroxidase-1. Collectively, these findings demonstrate that high-intensity exercise training not only induces multiple adaptations that enhance the ability to counter exercise-related ionic shifts but also potentiates the effect of N-acetylcysteine on ionic shifts during exercise.
Collapse
|
21
|
Hegde AS, Gupta S, Sharma S, Srivatsan V, Kumari P. Edible rose flowers: A doorway to gastronomic and nutraceutical research. Food Res Int 2022; 162:111977. [DOI: 10.1016/j.foodres.2022.111977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022]
|
22
|
Martins D, Garcia LR, Queiroz DAR, Lazzarin T, Tonon CR, Balin PDS, Polegato BF, de Paiva SAR, Azevedo PS, Minicucci MF, Zornoff L. Oxidative Stress as a Therapeutic Target of Cardiac Remodeling. Antioxidants (Basel) 2022; 11:antiox11122371. [PMID: 36552578 PMCID: PMC9774406 DOI: 10.3390/antiox11122371] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Cardiac remodeling is defined as a group of molecular, cellular, and interstitial changes that clinically manifest as changes in the heart's size, mass, geometry, and function after different stimuli. It is important to emphasize that remodeling plays a pathophysiological role in the onset and progression of ventricular dysfunction and subsequent heart failure. Therefore, strategies to mitigate this process are critical. Different factors, including neurohormonal activation, can regulate the remodeling process and increase cell death, alterations in contractile and regulatory proteins, alterations in energy metabolism, changes in genomics, inflammation, changes in calcium transit, metalloproteases activation, fibrosis, alterations in matricellular proteins, and changes in left ventricular geometry, among other mechanisms. More recently, the role of reactive oxygen species and oxidative stress as modulators of remodeling has been gaining attention. Therefore, this review assesses the role of oxidative stress as a therapeutic target of cardiac remodeling.
Collapse
Affiliation(s)
- Danilo Martins
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Leonardo Rufino Garcia
- Surgery and Orthopedics Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Diego Aparecido Rios Queiroz
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Taline Lazzarin
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Carolina Rodrigues Tonon
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Paola da Silva Balin
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Bertha Furlan Polegato
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Sergio Alberto Rupp de Paiva
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Paula Schmidt Azevedo
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Marcos Ferreira Minicucci
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Leonardo Zornoff
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
- Correspondence:
| |
Collapse
|
23
|
Beentjes D, Shears RK, French N, Neill DR, Kadioglu A. Mechanistic Insights into the Impact of Air Pollution on Pneumococcal Pathogenesis and Transmission. Am J Respir Crit Care Med 2022; 206:1070-1080. [PMID: 35649181 PMCID: PMC9704843 DOI: 10.1164/rccm.202112-2668tr] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the leading cause of pneumonia and bacterial meningitis. A number of recent studies indicate an association between the incidence of pneumococcal disease and exposure to air pollution. Although the epidemiological evidence is substantial, the underlying mechanisms by which the various components of air pollution (particulate matter and gases such as NO2 and SO2) can increase susceptibility to pneumococcal infection are less well understood. In this review, we summarize the various effects air pollution components have on pneumococcal pathogenesis and transmission; exposure to air pollution can enhance host susceptibility to pneumococcal colonization by impairing the mucociliary activity of the airway mucosa, reducing the function and production of key antimicrobial peptides, and upregulating an important pneumococcal adherence factor on respiratory epithelial cells. Air pollutant exposure can also impair the phagocytic killing ability of macrophages, permitting increased replication of S. pneumoniae. In addition, particulate matter has been shown to activate various extra- and intracellular receptors of airway epithelial cells, which may lead to increased proinflammatory cytokine production. This increases recruitment of innate immune cells, including macrophages and neutrophils. The inflammatory response that ensues may result in significant tissue damage, thereby increasing susceptibility to invasive disease, because it allows S. pneumoniae access to the underlying tissues and blood. This review provides an in-depth understanding of the interaction between air pollution and the pneumococcus, which has the potential to aid the development of novel treatments or alternative strategies to prevent disease, especially in areas with high concentrations of air pollution.
Collapse
Affiliation(s)
- Daan Beentjes
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca K Shears
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Neil French
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel R Neill
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
24
|
The Modulation of Ubiquinone, a Lipid Antioxidant, on Neuronal Voltage-Gated Sodium Current. Nutrients 2022; 14:nu14163393. [PMID: 36014898 PMCID: PMC9413396 DOI: 10.3390/nu14163393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Ubiquinone, composed of a 1,4-benzoquinone and naturally produced in the body, actively participates in the mitochondrial redox reaction and functions as an endogenous lipid antioxidant, protecting against peroxidation in the pituitary-dependent hormonal system. However, the questions of if and how ubiquinone directly affects neuronal ionic currents remain largely unsettled. We investigated its effects on ionic currents in pituitary neurons (GH3 and MMQ cells) with the aid of patch-clamp technology. Ubiquinone decreased the peak amplitude of the voltage-gated Na+ current (INa) with a slowing of the inactivation rate. Neither menadione nor superoxide dismutase modified the ubiquinone-induced INa inhibition. In response to an isosceles-triangular ramp pulse, the persistent INa (INa(P)) at high- and low- threshold potentials occurred concurrently with a figure-eight hysteresis loop. With ubiquinone, the INa(P) increased with no change in the intersection voltage, and the magnitude of the voltage-dependent hysteresis of the current was enhanced. Ubiquinone was ineffective in modifying the gating of hyperpolarization-activated cation currents. In MMQ lactotrophs, ubiquinone effectively decreased the amplitude of the INa and the current inactivation rate. In sum, the effects of ubiquinone demonstrated herein occur upstream of its effects on mitochondrial redox processes, involved in its modulation of sodium channels and neuronal excitability.
Collapse
|
25
|
Gao L, Ortega-Sáenz P, Moreno-Domínguez A, López-Barneo J. Mitochondrial Redox Signaling in O 2-Sensing Chemoreceptor Cells. Antioxid Redox Signal 2022; 37:274-289. [PMID: 35044243 DOI: 10.1089/ars.2021.0255] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Acute responses to hypoxia are essential for the survival of mammals. The carotid body (CB), the main arterial chemoreceptor, contains glomus cells with oxygen (O2)-sensitive K+ channels, which are inhibited during hypoxia to trigger adaptive cardiorespiratory reflexes. Recent Advances: In this review, recent advances in molecular mechanisms of acute O2 sensing in CB glomus cells are discussed, with a special focus on the signaling role of mitochondria through regulating cellular redox status. These advances have been achieved thanks to the use of genetically engineered redox-sensitive green fluorescent protein (roGFP) probes, which allowed us to monitor rapid changes in ROS production in real time in different subcellular compartments during hypoxia. This methodology was used in combination with conditional knockout mice models, pharmacological approaches, and transcriptomic studies. We have proposed a mitochondria-to-membrane signaling model of acute O2 sensing in which H2O2 released in the mitochondrial intermembrane space serves as a signaling molecule to inhibit K+ channels on the plasma membrane. Critical Issues: Changes in mitochondrial reactive oxygen species (ROS) production during acute hypoxia are highly compartmentalized in the submitochondrial regions. The use of redox-sensitive probes targeted to specific compartments is essential to fully understand the role of mitochondrial ROS in acute O2 sensing. Future Directions: Further studies are needed to specify the ROS and to characterize the target(s) of ROS in chemoreceptor cells during acute hypoxia. These data may also contribute to a more complete understanding of the implication of ROS in acute responses to hypoxia in O2-sensing cells in other organs. Antioxid. Redox Signal. 37, 274-289.
Collapse
Affiliation(s)
- Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
26
|
Cantero MDR, Cantiello HF. Polycystin-2 (TRPP2): Ion channel properties and regulation. Gene 2022; 827:146313. [PMID: 35314260 DOI: 10.1016/j.gene.2022.146313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 12/01/2022]
Abstract
Polycystin-2 (TRPP2, PKD2, PC2) is the product of the PKD2 gene, whose mutations cause Autosomal Dominant Polycystic Kidney Disease (ADPKD). PC2 belongs to the superfamily of TRP (Transient Receptor Potential) proteins that generally function as Ca2+-permeable nonselective cation channels implicated in Ca2+ signaling. PC2 localizes to various cell domains with distinct functions that likely depend on interactions with specific channel partners. Functions include receptor-operated, nonselective cation channel activity in the plasma membrane, intracellular Ca2+ release channel activity in the endoplasmic reticulum (ER), and mechanosensitive channel activity in the primary cilium of renal epithelial cells. Here we summarize our current understanding of the properties of PC2 and how other transmembrane and cytosolic proteins modulate this activity, providing functional diversity and selective regulatory mechanisms to its role in the control of cellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- María Del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina.
| | - Horacio F Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina
| |
Collapse
|
27
|
Jia R, Hou Y, Feng W, Li B, Zhu J. Alterations at biochemical, proteomic and transcriptomic levels in liver of tilapia (Oreochromis niloticus) under chronic exposure to environmentally relevant level of glyphosate. CHEMOSPHERE 2022; 294:133818. [PMID: 35114268 DOI: 10.1016/j.chemosphere.2022.133818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The toxicity of glyphosate (Gly) on aquatic animals has received attention from many researchers. However, the chronic toxicity mechanism of Gly on fish has not yet been clarified entirely. Thus, this study aimed to explore the potential toxicity mechanism of Gly at 2 mg/L, a possibly existing concentration in the aquatic environment, via biochemical, transcriptomic and proteomic analyses in the liver of tilapia. Long-term Gly exposure increased lipid content, and altered redox status in liver. Transcriptomic analysis revealed that Gly exposure changed dramatically the expression of 225 genes in liver, including 94 up-regulated genes and 131 down-regulated genes. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses showed that these genes were predominantly enriched in ion transport, lipid metabolism and PPAR (peroxisome proliferator-activated receptor) signaling pathway. Meanwhile, at proteomic level, long-term Gly exposure resulted in alteration of 21 proteins, which were principally related to hepatic metabolism function. In conclusion, our data displayed a potential toxicity, mainly manifested as redox imbalance and dysregulation of metabolism function, in the liver of tilapia after long-term Gly exposure at 2 mg/L. This study provided novel insight into underlying toxicity mechanism of long-term Gly exposure at an environmentally relevant concentration in fish.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yiran Hou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bing Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Jian Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
28
|
Chavda V, Chaurasia B, Garg K, Deora H, Umana GE, Palmisciano P, Scalia G, Lu B. Molecular mechanisms of oxidative stress in stroke and cancer. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2021.100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
29
|
Pluta R, Kiś J, Januszewski S, Jabłoński M, Czuczwar SJ. Cross-Talk between Amyloid, Tau Protein and Free Radicals in Post-Ischemic Brain Neurodegeneration in the Form of Alzheimer’s Disease Proteinopathy. Antioxidants (Basel) 2022; 11:antiox11010146. [PMID: 35052650 PMCID: PMC8772936 DOI: 10.3390/antiox11010146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 02/04/2023] Open
Abstract
Recent years have seen remarkable progress in research into free radicals oxidative stress, particularly in the context of post-ischemic recirculation brain injury. Oxidative stress in post-ischemic tissues violates the integrity of the genome, causing DNA damage, death of neuronal, glial and vascular cells, and impaired neurological outcome after brain ischemia. Indeed, it is now known that DNA damage and repair play a key role in post-stroke white and gray matter remodeling, and restoring the integrity of the blood-brain barrier. This review will present one of the newly characterized mechanisms that emerged with genomic and proteomic development that led to brain ischemia to a new level of post-ischemic neuropathological mechanisms, such as the presence of amyloid plaques and the development of neurofibrillary tangles, which further exacerbate oxidative stress. Finally, we hypothesize that modified amyloid and the tau protein, along with the oxidative stress generated, are new key elements in the vicious circle important in the development of post-ischemic neurodegeneration in a type of Alzheimer’s disease proteinopathy.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 Str., 02-106 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-608-6540
| | - Jacek Kiś
- Department of Urology, 1st Military Clinical Hospital with the Outpatient Clinic, Al. Racławickie 23, 20-049 Lublin, Poland;
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 Str., 02-106 Warsaw, Poland;
| | - Mirosław Jabłoński
- Department of Rehabilitation and Orthopedics, Medical University of Lublin, Jaczewskiego 8 Str., 20-090 Lublin, Poland;
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b Str., 20-090 Lublin, Poland;
| |
Collapse
|
30
|
Panagopoulos DJ, Karabarbounis A, Yakymenko I, Chrousos GP. Human‑made electromagnetic fields: Ion forced‑oscillation and voltage‑gated ion channel dysfunction, oxidative stress and DNA damage (Review). Int J Oncol 2021; 59:92. [PMID: 34617575 PMCID: PMC8562392 DOI: 10.3892/ijo.2021.5272] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure of animals/biological samples to human‑made electromagnetic fields (EMFs), especially in the extremely low frequency (ELF) band, and the microwave/radio frequency (RF) band which is always combined with ELF, may lead to DNA damage. DNA damage is connected with cell death, infertility and other pathologies, including cancer. ELF exposure from high‑voltage power lines and complex RF exposure from wireless communication antennas/devices are linked to increased cancer risk. Almost all human‑made RF EMFs include ELF components in the form of modulation, pulsing and random variability. Thus, in addition to polarization and coherence, the existence of ELFs is a common feature of almost all human‑made EMFs. The present study reviews the DNA damage and related effects induced by human‑made EMFs. The ion forced‑oscillation mechanism for irregular gating of voltage‑gated ion channels on cell membranes by polarized/coherent EMFs is extensively described. Dysfunction of ion channels disrupts intracellular ionic concentrations, which determine the cell's electrochemical balance and homeostasis. The present study shows how this can result in DNA damage through reactive oxygen species/free radical overproduction. Thus, a complete picture is provided of how human‑made EMF exposure may indeed lead to DNA damage and related pathologies, including cancer. Moreover, it is suggested that the non‑thermal biological effects attributed to RF EMFs are actually due to their ELF components.
Collapse
Affiliation(s)
- Dimitris J. Panagopoulos
- Laboratory of Health Physics, Radiobiology and Cytogenetics, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research 'Demokritos', 15310 Athens, Greece
- Choremeion Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Electromagnetic Field-Biophysics Research Laboratory, 10681 Athens, Greece
| | - Andreas Karabarbounis
- Department of Physics, Section of Nuclear and Particle Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Igor Yakymenko
- Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Science of Ukraine, 03022 Kyiv, Ukraine
- Department of Public Health, Kyiv Medical University, 02000 Kyiv, Ukraine
| | - George P. Chrousos
- Choremeion Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
31
|
Ahmed HAI, Shabala L, Shabala S. Tissue-specificity of ROS-induced K + and Ca 2+ fluxes in succulent stems of the perennial halophyte Sarcocornia quinqueflora in the context of salinity stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:1022-1031. [PMID: 34274889 DOI: 10.1016/j.plaphy.2021.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 05/11/2023]
Abstract
The ability of halophytes to thrive under saline conditions implies efficient ROS detoxification and signalling. In this work, the causal relationship between key membrane transport processes involved in maintaining plant ionic homeostasis and oxidative stress tolerance was investigated in a succulent perennial halophyte Sarcocornia quinqueflora. The flux responses to oxidative stresses induced by either hydroxyl radicals (OH•) or hydrogen peroxide (H2O2) were governed largely by (1) the type of ROS applied; (2) the tissue-specific origin and function (parenchymatic or chlorenchymatic); and (3) the tissue location in respect to the suberized endodermal barrier. The latter implied significant differences in responses between outer (water storage-WS; palisade tissue-Pa) and inner (internal photosynthetic layer-IP; stele parenchyma-SP) stem tissues. The ability of the cell to retain K+ under OH• stress varied between different tissues and was ranked in the following descending order: WS>Pa>IP>SP. OH• always led to Ca2+ influx in all stem tissues, while treatment with H2O2 induced tissue-specific Ca2+ "signatures". The inner/outer K+ ratio was the highest (~2.6) under the optimum NaCl dosage (200 mM) in comparison to non-saline (~0.4) and severe (800 mM; ~0.7) conditions, implying that a higher K+ concentration in the inner tissues is important for optimum growth. The overall results demonstrate a clear link between plant anatomical structure and ability of its tissues to maintain ionic homeostasis, via modulating their ROS sensitivity.
Collapse
Affiliation(s)
- Hassan Ahmed Ibraheem Ahmed
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, 7005, Australia; Department of Botany, Faculty of Science, Port Said University, Port Said, 42526, Egypt.
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, 7005, Australia; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China.
| |
Collapse
|
32
|
Nabeh OA, Helaly MM, Menshawey R, Menshawey E, Nasser MMM, Diaa El-deen AM. Contemporary approach to understand and manage COVID-19-related arrhythmia. Egypt Heart J 2021; 73:76. [PMID: 34459992 PMCID: PMC8403826 DOI: 10.1186/s43044-021-00201-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Arrhythmia, one of the most common complications of COVID-19, was reported in nearly one-third of diagnosed COVID-19 patients, with higher prevalence rate among ICU admitted patients. The underlying etiology for arrhythmia in these cases are mostly multifactorial as those patients may suffer from one or more of the following predisposing mechanisms; catecholamine surge, hypoxia, myocarditis, cytokine storm, QTc prolongation, electrolyte disturbance, and pro-arrhythmic drugs usage. Obviously, the risk for arrhythmia and the associated lethal outcome would rise dramatically among patients with preexisting cardiac disease such as myocardial ischemia, heart failure, cardiomyopathy, and hereditary arrhythmias. Considering all of these variables, the management strategy of COVID-19 patients should expand from managing a viral infection and related host immune response to include the prevention of predictable causes for arrhythmia. This may necessitate the need to investigate the role of some drugs that modulate the pathway of arrhythmia generation. Of these drugs, we discuss the potential role of adrenergic antagonists, trimetazidine, ranolazine, and the debatable angiotensin converting enzyme inhibitors drugs. We also recommend monitoring the level of: unbound free fatty acids, serum electrolytes, troponin, and QTc (even in the absence of apparent pro-arrhythmic drug use) as these may be the only indicators for patients at risk for arrhythmic complications.
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- Department of Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maiada Mohamed Helaly
- Department of Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rahma Menshawey
- Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Esraa Menshawey
- Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | |
Collapse
|
33
|
Val‐Blasco A, Gil‐Fernández M, Rueda A, Pereira L, Delgado C, Smani T, Ruiz Hurtado G, Fernández‐Velasco M. Ca 2+ mishandling in heart failure: Potential targets. Acta Physiol (Oxf) 2021; 232:e13691. [PMID: 34022101 DOI: 10.1111/apha.13691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Ca2+ mishandling is a common feature in several cardiovascular diseases such as heart failure (HF). In many cases, impairment of key players in intracellular Ca2+ homeostasis has been identified as the underlying mechanism of cardiac dysfunction and cardiac arrhythmias associated with HF. In this review, we summarize primary novel findings related to Ca2+ mishandling in HF progression. HF research has increasingly focused on the identification of new targets and the contribution of their role in Ca2+ handling to the progression of the disease. Recent research studies have identified potential targets in three major emerging areas implicated in regulation of Ca2+ handling: the innate immune system, bone metabolism factors and post-translational modification of key proteins involved in regulation of Ca2+ handling. Here, we describe their possible contributions to the progression of HF.
Collapse
Affiliation(s)
| | | | - Angélica Rueda
- Department of Biochemistry Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV‐IPN) México City Mexico
| | - Laetitia Pereira
- INSERM UMR‐S 1180 Laboratory of Ca Signaling and Cardiovascular Physiopathology University Paris‐Saclay Châtenay‐Malabry France
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols Madrid Spain
- Department of Metabolism and Cell Signalling Biomedical Research Institute "Alberto Sols" CSIC‐UAM Madrid Spain
| | - Tarik Smani
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) Madrid Spain
- Department of Medical Physiology and Biophysics University of Seville Seville Spain
- Group of Cardiovascular Pathophysiology Institute of Biomedicine of Seville University Hospital of Virgen del Rocío, University of Seville, CSIC Seville Spain
| | - Gema Ruiz Hurtado
- Cardiorenal Translational Laboratory Institute of Research i+12 University Hospital 12 de Octubre Madrid Spain
- CIBER‐CV University Hospita1 12 de Octubre Madrid Spain
| | - Maria Fernández‐Velasco
- La Paz University Hospital Health Research Institute IdiPAZ Madrid Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) Madrid Spain
| |
Collapse
|
34
|
Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev 2021; 101:1177-1235. [PMID: 33570461 PMCID: PMC8526340 DOI: 10.1152/physrev.00039.2019] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The carotid body (CB) is the main peripheral chemoreceptor for arterial respiratory gases O2 and CO2 and pH, eliciting reflex ventilatory, cardiovascular, and humoral responses to maintain homeostasis. This review examines the fundamental biology underlying CB chemoreceptor function, its contribution to integrated physiological responses, and its role in maintaining health and potentiating disease. Emphasis is placed on 1) transduction mechanisms in chemoreceptor (type I) cells, highlighting the role played by the hypoxic inhibition of O2-dependent K+ channels and mitochondrial oxidative metabolism, and their modification by intracellular molecules and other ion channels; 2) synaptic mechanisms linking type I cells and petrosal nerve terminals, focusing on the role played by the main proposed transmitters and modulatory gases, and the participation of glial cells in regulation of the chemosensory process; 3) integrated reflex responses to CB activation, emphasizing that the responses differ dramatically depending on the nature of the physiological, pathological, or environmental challenges, and the interactions of the chemoreceptor reflex with other reflexes in optimizing oxygen delivery to the tissues; and 4) the contribution of enhanced CB chemosensory discharge to autonomic and cardiorespiratory pathophysiology in obstructive sleep apnea, congestive heart failure, resistant hypertension, and metabolic diseases and how modulation of enhanced CB reactivity in disease conditions may attenuate pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, and Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mark W Chapleau
- Department of Internal Medicine, University of Iowa and Department of Veterans Affairs Medical Center, Iowa City, Iowa
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
35
|
Pillai V, Buck L, Lari E. Scavenging of reactive oxygen species mimics the anoxic response in goldfish pyramidal neurons. J Exp Biol 2021; 224:268949. [PMID: 34047778 DOI: 10.1242/jeb.238147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
Goldfish are one of a few species able to avoid cellular damage during month-long periods in severely hypoxic environments. By suppressing action potentials in excitatory glutamatergic neurons, the goldfish brain decreases its overall energy expenditure. Coincident with reductions in O2 availability is a natural decrease in cellular reactive oxygen species (ROS) generation, which has been proposed to function as part of a low-oxygen signal transduction pathway. Using live-tissue fluorescence microscopy, we found that ROS production decreased by 10% with the onset of anoxia in goldfish telencephalic brain slices. Employing whole-cell patch-clamp recording, we found that, similar to severe hypoxia, the ROS scavengers N-acetyl cysteine (NAC) and MitoTEMPO, added during normoxic periods, depolarized membrane potential (severe hypoxia -73.6 to -61.4 mV, NAC -76.6 to -66.2 mV and MitoTEMPO -71.5 mV to -62.5 mV) and increased whole-cell conductance (severe hypoxia 5.7 nS to 8.0 nS, NAC 6.0 nS to 7.5 nS and MitoTEMPO 6.0 nS to 7.6 nS). Also, in a subset of active pyramidal neurons, these treatments reduced action potential firing frequency (severe hypoxia 0.18 Hz to 0.03 Hz, NAC 0.27 Hz to 0.06 Hz and MitoTEMPO 0.35 Hz to 0.08 Hz). Neither severe hypoxia nor ROS scavenging impacted action potential threshold. The addition of exogenous hydrogen peroxide could reverse the effects of the antioxidants. Taken together, this supports a role for a reduction in [ROS] as a low-oxygen signal in goldfish brain.
Collapse
Affiliation(s)
- Varshinie Pillai
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada, M3A 3A7
| | - Leslie Buck
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada, M3A 3A7
| | - Ebrahim Lari
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada, M3A 3A7
| |
Collapse
|
36
|
Triolo M, Hood DA. Manifestations of Age on Autophagy, Mitophagy and Lysosomes in Skeletal Muscle. Cells 2021; 10:cells10051054. [PMID: 33946883 PMCID: PMC8146406 DOI: 10.3390/cells10051054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/18/2023] Open
Abstract
Sarcopenia is the loss of both muscle mass and function with age. Although the molecular underpinnings of sarcopenia are not fully understood, numerous pathways are implicated, including autophagy, in which defective cargo is selectively identified and degraded at the lysosome. The specific tagging and degradation of mitochondria is termed mitophagy, a process important for the maintenance of an organelle pool that functions efficiently in energy production and with relatively low reactive oxygen species production. Emerging data, yet insufficient, have implicated various steps in this pathway as potential contributors to the aging muscle atrophy phenotype. Included in this is the lysosome, the end-stage organelle possessing a host of proteolytic and degradative enzymes, and a function devoted to the hydrolysis and breakdown of defective molecular complexes and organelles. This review provides a summary of our current understanding of how the autophagy-lysosome system is regulated in aging muscle, highlighting specific areas where knowledge gaps exist. Characterization of the autophagy pathway with a particular focus on the lysosome will undoubtedly pave the way for the development of novel therapeutic strategies to combat age-related muscle loss.
Collapse
Affiliation(s)
- Matthew Triolo
- Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | - David A. Hood
- Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
- Correspondence: ; Tel.: +(416)-736-2100 (ext. 66640)
| |
Collapse
|
37
|
Maietta V, Reyes-García J, Yadav VR, Zheng YM, Peng X, Wang YX. Cellular and Molecular Processes in Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:21-38. [PMID: 34019261 DOI: 10.1007/978-3-030-68748-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulmonary hypertension (PH) is a progressive lung disease characterized by persistent pulmonary vasoconstriction. Another well-recognized characteristic of PH is the muscularization of peripheral pulmonary arteries. This pulmonary vasoremodeling manifests in medial hypertrophy/hyperplasia of smooth muscle cells (SMCs) with possible neointimal formation. The underlying molecular processes for these two major vascular responses remain not fully understood. On the other hand, a series of very recent studies have shown that the increased reactive oxygen species (ROS) seems to be an important player in mediating pulmonary vasoconstriction and vasoremodeling, thereby leading to PH. Mitochondria are a primary site for ROS production in pulmonary artery (PA) SMCs, which subsequently activate NADPH oxidase to induce further ROS generation, i.e., ROS-induced ROS generation. ROS control the activity of multiple ion channels to induce intracellular Ca2+ release and extracellular Ca2+ influx (ROS-induced Ca2+ release and influx) to cause PH. ROS and Ca2+ signaling may synergistically trigger an inflammatory cascade to implicate in PH. Accordingly, this paper explores the important roles of ROS, Ca2+, and inflammatory signaling in the development of PH, including their reciprocal interactions, key molecules, and possible therapeutic targets.
Collapse
Affiliation(s)
- Vic Maietta
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Jorge Reyes-García
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA.,Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Vishal R Yadav
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Yun-Min Zheng
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX, USA.
| | - Yong-Xiao Wang
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
38
|
Abbasi A, Pakravan N, Hassan ZM. Hyaluronic Acid Improves Hydrogen Peroxide Modulatory Effects on Calcium Channel and Sodium-Potassium Pump in 4T1 Breast Cancer Cell Line. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8681349. [PMID: 33456676 PMCID: PMC7787766 DOI: 10.1155/2020/8681349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 11/19/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022]
Abstract
Maintaining homeostasis of ion concentrations is critical in cancer cells. Under hypoxia, the levels of channels and pumps in cancer cells are more active than normal cells suggesting ion channels as a suitable therapeutic target. One of the contemporary ways for cancer therapy is oxidative stress. However, the effective concentration of oxidative stress on tumor cells has been reported to be toxic for normal cells as well. In this study, we benefited from the modifying effects of hyaluronic acid (HA) on H2O2, as a free radical source, to make a gradual release of oxidative stress on cancer cells while preventing/decreasing damage to normal cells under normoxia and hypoxic conditions. To do so, we initially investigated the optimal concentration of HA antioxidant capacity by the DPPH test. In the next step, we found optimum H2O2 dose by treating the 4T1 breast cancer cell line with increasing concentrations (0, 10, 20, 50,100, 200, 500, and 1000 μM) of H2O2 alone or H2O2 + HA (83%) for 24 hrs. The calcium channel and the sodium-potassium pumps were then evaluated by measuring the levels of calcium, sodium, and potassium ions using an atomic absorption flame spectrophotometer. The results revealed that treatment with H2O2 or H2O2+ HA led to an intracellular increase of calcium, sodium, and potassium in the normoxic and hypoxic circumstances in a dose-dependent manner. It is noteworthy that H2O2 + HA treatment had more favorable and controllable effects compared with H2O2 alone. Moreover, HA optimizes the antitumor effect of oxidative stress exerted by H2O2 making H2O2 + HA suitable for clinical use in cancer treatment along with chemotherapy.
Collapse
Affiliation(s)
- Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Pakravan
- Department of Immunology, Medical School, Alborz University of Medical Sciences, Karaj, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
39
|
Veldhuizen RAW, Zuo YY, Petersen NO, Lewis JF, Possmayer F. The COVID-19 pandemic: a target for surfactant therapy? Expert Rev Respir Med 2020; 15:597-608. [PMID: 33331197 DOI: 10.1080/17476348.2021.1865809] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The dramatic impact of COVID-19 on humans worldwide has initiated an extraordinary search for effective treatment approaches. One of these is the administration of exogenous surfactant, which is being tested in ongoing clinical trials. AREAS COVERED Exogenous surfactant is a life-saving treatment for premature infants with neonatal respiratory distress syndrome. This treatment has also been tested for acute respiratory distress syndrome (ARDS) with limited success possibly due to the complexity of that syndrome. The 60-year history of successes and failures associated with surfactant therapy distinguishes it from many other treatments currently being tested for COVID-19 and provides the opportunity to discuss the factors that may influence the success of this therapy. EXPERT OPINION Clinical data provide a strong rationale for using exogenous surfactant in COVID-19 patients. Success of this therapy may be influenced by the mechanical ventilation strategy, the timing of treatment, the doses delivered, the method of delivery and the preparations utilized. In addition, future development of enhanced preparations may improve this treatment approach. Overall, results from ongoing trials may not only provide data to indicate if this therapy is effective for COVID-19 patients, but also lead to further scientific understanding and improved treatment strategies.
Collapse
Affiliation(s)
- Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii, USA.,Department of Pediatrics, University of Hawaii, Honolulu, Hawaii, USA
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Chemistry, Western University, London, Ontario, Canada
| | - James F Lewis
- Department of Physiology & Pharmacology, Western University, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada
| | - Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario, Canada.,Department of Obstetrics/Gynaecology, Western University, London, Ontario, Canada
| |
Collapse
|
40
|
Andreasen M, Nedergaard S. Effect of acute mitochondrial dysfunction on hyperexcitable network activity in rat hippocampus in vitro. Brain Res 2020; 1751:147193. [PMID: 33157100 DOI: 10.1016/j.brainres.2020.147193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/15/2022]
Abstract
Metabolic stress imposed by epileptic seizures can result in mitochondrial dysfunction, believed to act as positive feedback on epileptogenesis and seizure susceptibility. As the mechanism behind this positive feedback is unclear, the aim of the present study was to investigate the causal link between acute mitochondrial dysfunction and increased seizure susceptibility in hyperexcitable hippocampal networks. Following the induction of spontaneous interictal-like discharges, acute selective pharmacological blockade of either of the mitochondrial respiratory complexes (MRC) I-IV induced seizure-like events (SLE) in 78-100% of experiments. A similar result was obtained by uncoupling the oxidative phosphorylation (OXPHOS) but not by selective blockade of MRCV (ATP synthase) which did not induce SLE. The reactive oxygen species (ROS) scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (tempol, 2 mM) significantly reduced the proconvulsant effect of blocking MRCI but did not reduce the proconvulsant effect of OXPHOS uncoupling. These findings indicate that acute mitochondrial dysfunction can lead to a convulsive state within a short timeframe, and that increased ROS production makes substantial contribution to such induction in addition to other mitochondrial related factors, which appears to be independent of changes in ROS and ATP production.
Collapse
Affiliation(s)
- Mogens Andreasen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Steen Nedergaard
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
41
|
Song Y, Xie L, Lee Y, Tollefsen KE. De Novo Development of a Quantitative Adverse Outcome Pathway (qAOP) Network for Ultraviolet B (UVB) Radiation Using Targeted Laboratory Tests and Automated Data Mining. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13147-13156. [PMID: 32924456 DOI: 10.1021/acs.est.0c03794] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ultraviolet B (UVB) radiation is a natural nonchemical stressor posing potential hazards to organisms such as planktonic crustaceans. The present study was conducted to revisit the lethal effects of UVB on crustaceans, generate new experimental evidence to fill in knowledge gaps, and develop novel quantitative adverse outcome pathways (qAOPs) for UVB. A combination of laboratory and computational approaches was deployed to achieve the goals. For targeted laboratory tests, Daphnia magna was used as a prototype and exposed to a gradient of artificial UVB. Targeted bioassays were used to quantify the effects of UVB at multiple levels of biological organization. A toxicity pathway network was assembled based on the new experimental evidence and previously published data extracted using a novel computational tool, the NIVA Risk Assessment Database (NIVA RAdb). A network of AOPs was developed, and weight of evidence was assessed based on a combination of the current and existing data. In addition, quantitative key event relationships in the AOPs were developed by fitting the D. magna data to predefined models. A complete workflow for assembly and evaluation of qAOPs has been presented, which may serve as a good example for future de novo qAOP development for chemical and nonchemical stressors.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo Norway
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo Norway
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - YeonKyeong Lee
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo Norway
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| |
Collapse
|
42
|
Powers SK, Ozdemir M, Hyatt H. Redox Control of Proteolysis During Inactivity-Induced Skeletal Muscle Atrophy. Antioxid Redox Signal 2020; 33:559-569. [PMID: 31941357 PMCID: PMC7454189 DOI: 10.1089/ars.2019.8000] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Skeletal muscles play essential roles in key body functions including breathing, locomotion, and glucose homeostasis; therefore, maintaining healthy skeletal muscles is important. Prolonged periods of muscle inactivity (e.g., bed rest, mechanical ventilation, or limb immobilization) result in skeletal muscle atrophy and weakness. Recent Advances: Disuse skeletal muscle atrophy occurs due to both accelerated proteolysis and decreased protein synthesis with proteolysis playing a leading role in some types of inactivity-induced atrophy. Although all major proteolytic systems are involved in inactivity-induced proteolysis in skeletal muscles, growing evidence indicates that both calpain and autophagy play an important role. Regulation of proteolysis in skeletal muscle is under complex control, but it is established that activation of both calpain and autophagy is directly linked to oxidative stress. Critical Issues: In this review, we highlight the experimental evidence that supports a cause and effect link between reactive oxygen species (ROS) and activation of both calpain and autophagy in skeletal muscle fibers during prolonged inactivity. We also review the sources of oxidant production in muscle fibers during inactivity-induced atrophy, and provide a detailed discussion on how ROS activates both calpain and autophagy during disuse muscle wasting. Future Directions: Future studies are required to delineate the specific mechanisms by which ROS activates both calpain and autophagy in skeletal muscles during prolonged periods of contractile inactivity. This knowledge is essential to develop the most effective strategies to protect against disuse muscle atrophy. Antioxid. Redox Signal. 33, 559-569.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Mustafa Ozdemir
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Hayden Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
43
|
Vitamin E Blocks Connexin Hemichannels and Prevents Deleterious Effects of Glucocorticoid Treatment on Skeletal Muscles. Int J Mol Sci 2020; 21:ijms21114094. [PMID: 32521774 PMCID: PMC7312599 DOI: 10.3390/ijms21114094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoids are frequently used as anti-inflammatory and immunosuppressive agents. However, high doses and/or prolonged use induce undesired secondary effects such as muscular atrophy. Recently, de novo expression of connexin43 and connexin45 hemichannels (Cx43 HCs and Cx45 HCs, respectively) has been proposed to play a critical role in the mechanism underlying myofiber atrophy induced by dexamethasone (Dex: a synthetic glucocorticoid), but their involvement in specific muscle changes promoted by Dex remains poorly understood. Moreover, treatments that could prevent the undesired effects of glucocorticoids on skeletal muscles remain unknown. In the present work, a 7-day Dex treatment in adult mice was found to induce weight loss and skeletal muscle changes including expression of functional Cx43/Cx45 HCs, elevated atrogin immunoreactivity, atrophy, oxidative stress and mitochondrial dysfunction. All these undesired effects were absent in muscles of mice simultaneously treated with Dex and vitamin E (VitE). Moreover, VitE was found to rapidly inhibit the activity of Cx HCs in freshly isolated myofibers of Dex treated mice. Exposure to alkaline pH induced free radical generation only in HeLa cells expressing Cx43 or Cx45 where Ca2+ was present in the extracellular milieu, response that was prevented by VitE. Besides, VitE and two other anti-oxidant compounds, Tempol and Resveratrol, were found to inhibit Cx43 HCs in HeLa cells transfectants. Thus, we propose that in addition to their intrinsic anti-oxidant potency, some antioxidants could be used to reduce expression and/or opening of Cx HCs and consequently reduce the undesired effect of glucocorticoids on skeletal muscles.
Collapse
|
44
|
Todorović D, Ilijin L, Mrdaković M, Vlahović M, Grčić A, Petković B, Perić-Mataruga V. The impact of chronic exposure to a magnetic field on energy metabolism and locomotion of Blaptica dubia. Int J Radiat Biol 2020; 96:1076-1083. [PMID: 32412321 DOI: 10.1080/09553002.2020.1770360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: This study deals with a comparative analysis of the effects of chronic exposure to a static magnetic field (SMF) and an extremely low frequency magnetic field (ELF MF) in Blaptica dubia nymphs. The outcome of such treatment on insect and fat body mass, glycogen and total lipid content in the fat body and locomotion, as an energy demanding process, were examined.Materials and methods: One-month-old nymphs of B. dubia were exposed to an SMF (110 mT) or ELF MF (50 Hz, 10 mT) for 5 months. Their locomotion was monitored in the 'open-field' test for 10 min and expressed as travel distance, time in movement and average speed while in motion. After that, fat body mass and content of its main components (glycogen and total lipids) were determined. Nymph body mass was also estimated after 1 and 5 months of MF treatment.Results: Chronic exposure to the SMF and ELF MF decreased nymph body mass and glycogen content in the fat body but increased all examined parameters of locomotion. In addition, chronic SMF treatment elevated total lipid content in the fat body, while chronic ELF MF treatment reduced fat body mass and total lipid content.Conclusions: These findings indicate that B. dubia nymphs are sensitive to the applied MFs and possess different strategies for fuel usage in response to the SMF and ELF MF in order to satisfy increased energy demands and to overcome stressful conditions.
Collapse
Affiliation(s)
- Dajana Todorović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Larisa Ilijin
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Mrdaković
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milena Vlahović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Anja Grčić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka Petković
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
45
|
Batista-Silva H, Dambrós BF, Rodrigues K, Cesconetto PA, Zamoner A, Sousa de Moura KR, Gomes Castro AJ, Van Der Kraak G, Mena Barreto Silva FR. Acute exposure to bis(2-ethylhexyl)phthalate disrupts calcium homeostasis, energy metabolism and induces oxidative stress in the testis of Danio rerio. Biochimie 2020; 175:23-33. [PMID: 32417457 DOI: 10.1016/j.biochi.2020.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
Abstract
Bis(2-ethylhexyl)phthalate (BEHP) negatively affects testicular functions in different animal species, disturbing reproductive physiology and male fertility. The present study investigated the in vitro acute effect of BEHP on the mechanism of action of ionic calcium (Ca2+) homeostasis and energy metabolism. In addition, the effect of BEHP on oxidative stress was studied in vitro and in vivo in the testis of Danio rerio (D. rerio). Testes were treated in vitro for 30 min with 1 μM BEHP for 45Ca2+ influx measurements. Testes were also incubated with 1 μM BEHP for 1 h (in vitro) or 12 h (in vivo) for the measurements of lactate content, 14C-deoxy-d-glucose uptake, lactate dehydrogenase (LDH) and gamma-glutamyl transpeptidase (GGT) activity, total reactive oxygen species (ROS) production and lipid peroxidation. In addition, the effect of BEHP (1 μM) on GGT, glutamic oxaloacetic transferase (GOT) and glutamic pyruvic transferase (GPT) activity in the liver was evaluated after in vivo treatment for 12 h. BEHP disturbs the Ca2+ balance in the testis when given acutely in vitro. BEHP stimulated Ca2+ influx occurs through L-type voltage-dependent Ca2+ channels (L-VDCC), transitory receptor potential vaniloid (TRPV1) channels, reverse-mode Na+/Ca2+ exchanger (NCX) activation and inhibition of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). BEHP affected energy metabolism in the testis by decreasing the lactate content and LDH activity. In vitro and in vivo acute effects of BEHP promoted oxidative stress by increasing ROS production, lipid peroxidation and GGT activity in the testis. Additionally, BEHP caused liver damage by increasing GPT activity.
Collapse
Affiliation(s)
- Hemily Batista-Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Betina Fernanda Dambrós
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Keyla Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Patrícia Acordi Cesconetto
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Ariane Zamoner
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | | | - Allisson Jhonatan Gomes Castro
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
46
|
Glencross DA, Ho TR, Camiña N, Hawrylowicz CM, Pfeffer PE. Air pollution and its effects on the immune system. Free Radic Biol Med 2020; 151:56-68. [PMID: 32007522 DOI: 10.1016/j.freeradbiomed.2020.01.179] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
A well-functioning immune system is vital for a healthy body. Inadequate and excessive immune responses underlie diverse pathologies such as serious infections, metastatic malignancies and auto-immune conditions. Therefore, understanding the effects of ambient pollutants on the immune system is vital to understanding how pollution causes disease, and how that pathology could be abrogated. The immune system itself consists of multiple types of immune cell that act together to generate (or fail to generate) immune responses and in this article we review evidence of how air pollutants can affect different immune cell types such as particle-clearing macrophages, inflammatory neutrophils, dendritic cells that orchestrate adaptive immune responses and lymphocytes that enact those responses. Common themes that emerge are of the capacity of air pollutants to stimulate pro-inflammatory immune responses across multiple classes of immune cell. Air pollution can enhance T helper lymphocyte type 2 (Th2) and T helper lymphocyte type 17 (Th17) adaptive immune responses, as seen in allergy and asthma, and dysregulate anti-viral immune responses. The clinical effects of air pollution, in particular the known association between elevated ambient pollution and exacerbations of asthma and chronic obstructive pulmonary disease (COPD), are consistent with these identified immunological mechanisms. Further to this, as inhaled air pollution deposits primarily on the respiratory mucosa this review focuses on mechanisms of respiratory disease. However, as discussed in the article, air pollution also affects the wider immune system for example in the neonate and gastrointestinal tract. Whilst the many identified actions of air pollution on the immune system are notably diverse, immunological research does suggest potential strategies to ameliorate such effects, for example with vitamin D supplementation. An in-depth understanding of the immunological effects of ambient pollutants should hopefully yield new ideas on how to reduce the adverse health effects of air pollution.
Collapse
Affiliation(s)
- Drew A Glencross
- Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, London, SE1 9RT, UK; MRC Centre for Environment and Health, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Tzer-Ren Ho
- Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, London, SE1 9RT, UK; MRC Centre for Environment and Health, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Nuria Camiña
- MRC Centre for Environment and Health, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Catherine M Hawrylowicz
- Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| | - Paul E Pfeffer
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
47
|
Loughland I, Seebacher F. Differences in oxidative status explain variation in thermal acclimation capacity between individual mosquitofish (
Gambusia holbrooki
). Funct Ecol 2020. [DOI: 10.1111/1365-2435.13563] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Isabella Loughland
- School of Life and Environmental Sciences A08 University of Sydney Sydney NSW Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08 University of Sydney Sydney NSW Australia
| |
Collapse
|
48
|
The effects of melatonin prophylaxis on sensory recovery and postoperative pain following orthognathic surgery: a triple-blind randomized controlled trial and biochemical analysis. Int J Oral Maxillofac Surg 2020; 49:446-453. [DOI: 10.1016/j.ijom.2019.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/21/2019] [Accepted: 07/04/2019] [Indexed: 01/30/2023]
|
49
|
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 2020; 21:363-383. [PMID: 32231263 DOI: 10.1038/s41580-020-0230-3] [Citation(s) in RCA: 2301] [Impact Index Per Article: 575.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
'Reactive oxygen species' (ROS) is an umbrella term for an array of derivatives of molecular oxygen that occur as a normal attribute of aerobic life. Elevated formation of the different ROS leads to molecular damage, denoted as 'oxidative distress'. Here we focus on ROS at physiological levels and their central role in redox signalling via different post-translational modifications, denoted as 'oxidative eustress'. Two species, hydrogen peroxide (H2O2) and the superoxide anion radical (O2·-), are key redox signalling agents generated under the control of growth factors and cytokines by more than 40 enzymes, prominently including NADPH oxidases and the mitochondrial electron transport chain. At the low physiological levels in the nanomolar range, H2O2 is the major agent signalling through specific protein targets, which engage in metabolic regulation and stress responses to support cellular adaptation to a changing environment and stress. In addition, several other reactive species are involved in redox signalling, for instance nitric oxide, hydrogen sulfide and oxidized lipids. Recent methodological advances permit the assessment of molecular interactions of specific ROS molecules with specific targets in redox signalling pathways. Accordingly, major advances have occurred in understanding the role of these oxidants in physiology and disease, including the nervous, cardiovascular and immune systems, skeletal muscle and metabolic regulation as well as ageing and cancer. In the past, unspecific elimination of ROS by use of low molecular mass antioxidant compounds was not successful in counteracting disease initiation and progression in clinical trials. However, controlling specific ROS-mediated signalling pathways by selective targeting offers a perspective for a future of more refined redox medicine. This includes enzymatic defence systems such as those controlled by the stress-response transcription factors NRF2 and nuclear factor-κB, the role of trace elements such as selenium, the use of redox drugs and the modulation of environmental factors collectively known as the exposome (for example, nutrition, lifestyle and irradiation).
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany. .,Leibniz Research Institute for Environmental Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
50
|
Antwi-Boasiako C, Dankwah GB, Aryee R, Hayfron-Benjamin C, Aboagye G, Campbell AD. Correlation of lipid peroxidation and nitric oxide metabolites, trace elements, and antioxidant enzymes in patients with sickle cell disease. J Clin Lab Anal 2020; 34:e23294. [PMID: 32170816 PMCID: PMC7370710 DOI: 10.1002/jcla.23294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/21/2020] [Accepted: 02/17/2020] [Indexed: 01/28/2023] Open
Abstract
Background Lipid peroxidation plays a very important role in sickle cell pathophysiology. The formation of malondialdehyde (MDA) in patients with sickle cell disease (SCD) may lead to endothelial dysfunction. Nitric oxide (NO) is a known vasodilator which plays a role in endothelial function. The current study determined the association between MDA and NO metabolites (NOx), trace elements, and antioxidant enzymes (SOD and CAT) in patients with SCD. The ratio of MDA/NOx was also determined as an index of oxidative stress in the study groups. Methods This was a cross‐sectional study involving 90 patients with SCD and 50 “healthy” controls. Blood samples (n = 140) were collected from the study groups. The plasma, sera, and red cells were kept at −20°C for biochemical analyses. Hemoglobin (Hb) and NOx levels were determined in the plasma using Labsystem Multiskan MS and Griess reagent system, respectively. Super oxide dismutase (SOD) and catalase (CAT) levels were determined in the red cells using assay kits from Cayman chemicals. Lipid peroxidation biomarker MDA was determined in the sera using the TBARS assay. Levels of iron (Fe), copper (Cu), and zinc (Zn) were also determined in the sera using Variant 240FS. MDA and NOx ratio was computed for the study groups and compared. Results Levels of Hb, NOx, SOD, CAT, and Zn were significantly lower in the patients with SCD (P < .001). MDA, Fe, and MDA/ NOx ratio were, however, significantly higher in the patients with SCD (P < .001). There was no significant correlation between MDA and NOx, SOD, CAT, Fe, and Zn in the study groups. MDA, however, correlated positively and significantly with Cu in the HbSS patients with vaso‐occlusive crises (VOC). Gender did not affect the levels of oxidative stress markers. Conclusions Findings from this study suggest a link between lipid peroxidation and Cu in HbSS patients with VOC. Increased MDA/NOx ratio may contribute to sickle cell pathophysiology by promoting oxidative stress.
Collapse
Affiliation(s)
- Charles Antwi-Boasiako
- Department of Physiology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Gifty Boatemaah Dankwah
- Department of Physiology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Robert Aryee
- Department of Physiology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Charles Hayfron-Benjamin
- Department of Physiology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana.,Department of Anaesthesia, School of Medicine and Dentistry, University of Ghana, Accra, Ghana
| | - George Aboagye
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Andrew D Campbell
- Center for Cancer and Blood Disorders, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|