1
|
Bogomolova AP, Katrukha IA. Troponins and Skeletal Muscle Pathologies. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2083-2106. [PMID: 39865025 DOI: 10.1134/s0006297924120010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 01/28/2025]
Abstract
Skeletal muscles account for ~30-40% of the total weight of human body and are responsible for its most important functions, including movement, respiration, thermogenesis, and glucose and protein metabolism. Skeletal muscle damage negatively impacts the whole-body functioning, leading to deterioration of the quality of life and, in severe cases, death. Therefore, timely diagnosis and therapy for skeletal muscle dysfunction are important goals of modern medicine. In this review, we focused on the skeletal troponins that are proteins in the thin filaments of muscle fibers. Skeletal troponins play a key role in regulation of muscle contraction. Biochemical properties of these proteins and their use as biomarkers of skeletal muscle damage are described in this review. One of the most convenient and sensitive methods of protein biomarker measurement in biological liquids is immunochemical analysis; hence, we examined the factors that influence immunochemical detection of skeletal troponins and should be taken into account when developing diagnostic test systems. Also, we reviewed the available data on the skeletal troponin mutations that are considered to be associated with pathologies leading to the development of diseases and discussed utilization of troponins as drug targets for treatment of the skeletal muscle disorders.
Collapse
Affiliation(s)
- Agnessa P Bogomolova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Hytest Ltd., Turku, Finland
| | - Ivan A Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Hytest Ltd., Turku, Finland
| |
Collapse
|
2
|
Ronca F, Raggi A. Role of the interaction between troponin T and AMP deaminase by zinc bridge in modulating muscle contraction and ammonia production. Mol Cell Biochem 2024; 479:793-809. [PMID: 37184757 PMCID: PMC11016001 DOI: 10.1007/s11010-023-04763-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
The N-terminal region of troponin T (TnT) does not bind any protein of the contractile machinery and the role of its hypervariability remains uncertain. In this review we report the evidence of the interaction between TnT and AMP deaminase (AMPD), a regulated zinc enzyme localized on the myofibril. In periods of intense muscular activity, a decrease in the ATP/ADP ratio, together with a decrease in the tissue pH, is the stimulus for the activation of the enzyme that deaminating AMP to IMP and NH3 displaces the myokinase reaction towards the formation of ATP. In skeletal muscle subjected to strong tetanic contractions, a calpain-like proteolytic activity produces the removal in vivo of a 97-residue N-terminal fragment from the enzyme that becomes desensitized towards the inhibition by ATP, leading to an unrestrained production of NH3. When a 95-residue N-terminal fragment is removed from AMPD by trypsin, simulating in vitro the calpain action, rabbit fast TnT or its phosphorylated 50-residue N-terminal peptide binds AMPD restoring the inhibition by ATP. Taking in consideration that the N-terminus of TnT expressed in human as well as rabbit white muscle contains a zinc-binding motif, we suggest that TnT might mimic the regulatory action of the inhibitory N-terminal domain of AMPD due to the presence of a zinc ion connecting the N-terminal and C-terminal regions of the enzyme, indicating that the two proteins might physiologically associate to modulate muscle contraction and ammonia production in fast-twitching muscle under strenuous conditions.
Collapse
Affiliation(s)
- Francesca Ronca
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| | - Antonio Raggi
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| |
Collapse
|
3
|
Alternative splicing diversifies the skeletal muscle transcriptome during prolonged spaceflight. Skelet Muscle 2022; 12:11. [PMID: 35642060 PMCID: PMC9153194 DOI: 10.1186/s13395-022-00294-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As the interest in manned spaceflight increases, so does the requirement to understand the transcriptomic mechanisms that underlay the detrimental physiological adaptations of skeletal muscle to microgravity. While microgravity-induced differential gene expression (DGE) has been extensively investigated, the contribution of differential alternative splicing (DAS) to the plasticity and functional status of the skeletal muscle transcriptome has not been studied in an animal model. Therefore, by evaluating both DGE and DAS across spaceflight, we set out to provide the first comprehensive characterization of the transcriptomic landscape of skeletal muscle during exposure to microgravity. METHODS RNA-sequencing, immunohistochemistry, and morphological analyses were conducted utilizing total RNA and tissue sections isolated from the gastrocnemius and quadriceps muscles of 30-week-old female BALB/c mice exposed to microgravity or ground control conditions for 9 weeks. RESULTS In response to microgravity, the skeletal muscle transcriptome was remodeled via both DGE and DAS. Importantly, while DGE showed variable gene network enrichment, DAS was enriched in structural and functional gene networks of skeletal muscle, resulting in the expression of alternatively spliced transcript isoforms that have been associated with the physiological changes to skeletal muscle in microgravity, including muscle atrophy and altered fiber type function. Finally, RNA-binding proteins, which are required for regulation of pre-mRNA splicing, were themselves differentially spliced but not differentially expressed, an upstream event that is speculated to account for the downstream splicing changes identified in target skeletal muscle genes. CONCLUSIONS Our work serves as the first investigation of coordinate changes in DGE and DAS in large limb muscles across spaceflight. It opens up a new opportunity to understand (i) the molecular mechanisms by which splice variants of skeletal muscle genes regulate the physiological adaptations of skeletal muscle to microgravity and (ii) how small molecule splicing regulator therapies might thwart muscle atrophy and alterations to fiber type function during prolonged spaceflight.
Collapse
|
4
|
Rasmussen M, Jin JP. Troponin Variants as Markers of Skeletal Muscle Health and Diseases. Front Physiol 2021; 12:747214. [PMID: 34733179 PMCID: PMC8559874 DOI: 10.3389/fphys.2021.747214] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022] Open
Abstract
Ca2 +-regulated contractility is a key determinant of the quality of muscles. The sarcomeric myofilament proteins are essential players in the contraction of striated muscles. The troponin complex in the actin thin filaments plays a central role in the Ca2+-regulation of muscle contraction and relaxation. Among the three subunits of troponin, the Ca2+-binding subunit troponin C (TnC) is a member of the calmodulin super family whereas troponin I (TnI, the inhibitory subunit) and troponin T (TnT, the tropomyosin-binding and thin filament anchoring subunit) are striated muscle-specific regulatory proteins. Muscle type-specific isoforms of troponin subunits are expressed in fast and slow twitch fibers and are regulated during development and aging, and in adaptation to exercise or disuse. TnT also evolved with various alternative splice forms as an added capacity of muscle functional diversity. Mutations of troponin subunits cause myopathies. Owing to their physiological and pathological importance, troponin variants can be used as specific markers to define muscle quality. In this focused review, we will explore the use of troponin variants as markers for the fiber contents, developmental and differentiation states, contractile functions, and physiological or pathophysiological adaptations of skeletal muscle. As protein structure defines function, profile of troponin variants illustrates how changes at the myofilament level confer functional qualities at the fiber level. Moreover, understanding of the role of troponin modifications and mutants in determining muscle contractility in age-related decline of muscle function and in myopathies informs an approach to improve human health.
Collapse
Affiliation(s)
- Monica Rasmussen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Lee EJ, Jang HC, Koo KH, Kim HY, Lim JY. Mechanical Properties of Single Muscle Fibers: Understanding Poor Muscle Quality in Older Adults with Diabetes. Ann Geriatr Med Res 2020; 24:267-273. [PMID: 33389973 PMCID: PMC7781968 DOI: 10.4235/agmr.20.0078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/21/2020] [Indexed: 12/25/2022] Open
Abstract
Background While aging causes muscle weakness, type 2 diabetes mellitus (T2DM) is also considered a high-risk factor for the induction of skeletal muscle weakness. Previous studies have reported increased collagen content in insulin-resistant skeletal muscles. Here, we studied the mechanical properties of aged skeletal muscle in patients with T2DM to investigate whether aged skeletal muscles with T2DM induce higher passive tension due to the abundance of extracellular matrix (ECM) inside or outside of the muscle fibers. Methods Samples from the gluteus maximus muscles of older adults with diabetes (T2DM) and non-diabetic (non-DM) older adults who underwent elective orthopedic surgery were collected. Permeabilized single muscle fibers from these samples were used to identify their mechanical properties. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to quantify titin and fiber type distributions in these samples. Results We confirmed a significant predominance of type I fiber ratio in both T2DM and non-DM aged muscles. While the average cross-sectional area and maximal active tension of the single fibers were smaller in the T2DM group than those in the non-DM group, the difference was not statistically significant. T2DM subjects showed significantly greater passive tension and lower titin-/ECM-based passive tension ratios than those in non-DM subjects, which indicated that more ECM but less titin contributed to the total passive tension. Conclusion Based on our findings, we concluded that T2DM may cause increased passive stiffness of single skeletal muscle fibers in older adults because of an excessive accumulation of ECM in and around single muscle fibers due to increased insulin resistance.
Collapse
Affiliation(s)
- Eun-Jeong Lee
- Department of Kinesiology, School of Health and Human Science, Concordia University Irvine, Irvine, CA, USA.,Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hak Chul Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Kyung-Hoi Koo
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hye-Young Kim
- Division of Liberal Arts and Science, Korea National Sport University, Seoul, Korea
| | - Jae-Young Lim
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
6
|
Cao T, Jin JP. Evolution of Flight Muscle Contractility and Energetic Efficiency. Front Physiol 2020; 11:1038. [PMID: 33162892 PMCID: PMC7581897 DOI: 10.3389/fphys.2020.01038] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
The powered flight of animals requires efficient and sustainable contractions of the wing muscles of various flying species. Despite their high degree of phylogenetic divergence, flight muscles in insects and vertebrates are striated muscles with similarly specialized sarcomeric structure and basic mechanisms of contraction and relaxation. Comparative studies examining flight muscles together with other striated muscles can provide valuable insights into the fundamental mechanisms of muscle contraction and energetic efficiency. Here, we conducted a literature review and data mining to investigate the independent emergence and evolution of flight muscles in insects, birds, and bats, and the likely molecular basis of their contractile features and energetic efficiency. Bird and bat flight muscles have different metabolic rates that reflect differences in energetic efficiencies while having similar contractile machinery that is under the selection of similar natural environments. The significantly lower efficiency of insect flight muscles along with minimized energy expenditure in Ca2+ handling is discussed as a potential mechanism to increase the efficiency of mammalian striated muscles. A better understanding of the molecular evolution of myofilament proteins in the context of physiological functions of invertebrate and vertebrate flight muscles can help explore novel approaches to enhance the performance and efficiency of skeletal and cardiac muscles for the improvement of human health.
Collapse
Affiliation(s)
| | - J.-P. Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
7
|
Cao T, Sujkowski A, Cobb T, Wessells RJ, Jin JP. The glutamic acid-rich-long C-terminal extension of troponin T has a critical role in insect muscle functions. J Biol Chem 2020; 295:3794-3807. [PMID: 32024695 PMCID: PMC7086023 DOI: 10.1074/jbc.ra119.012014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The troponin complex regulates the Ca2+ activation of myofilaments during striated muscle contraction and relaxation. Troponin genes emerged 500-700 million years ago during early animal evolution. Troponin T (TnT) is the thin-filament-anchoring subunit of troponin. Vertebrate and invertebrate TnTs have conserved core structures, reflecting conserved functions in regulating muscle contraction, and they also contain significantly diverged structures, reflecting muscle type- and species-specific adaptations. TnT in insects contains a highly-diverged structure consisting of a long glutamic acid-rich C-terminal extension of ∼70 residues with unknown function. We found here that C-terminally truncated Drosophila TnT (TpnT-CD70) retains binding of tropomyosin, troponin I, and troponin C, indicating a preserved core structure of TnT. However, the mutant TpnTCD70 gene residing on the X chromosome resulted in lethality in male flies. We demonstrate that this X-linked mutation produces dominant-negative phenotypes, including decreased flying and climbing abilities, in heterozygous female flies. Immunoblot quantification with a TpnT-specific mAb indicated expression of TpnT-CD70 in vivo and normal stoichiometry of total TnT in myofilaments of heterozygous female flies. Light and EM examinations revealed primarily normal sarcomere structures in female heterozygous animals, whereas Z-band streaming could be observed in the jump muscle of these flies. Although TpnT-CD70-expressing flies exhibited lower resistance to cardiac stress, their hearts were significantly more tolerant to Ca2+ overloading induced by high-frequency electrical pacing. Our findings suggest that the Glu-rich long C-terminal extension of insect TnT functions as a myofilament Ca2+ buffer/reservoir and is potentially critical to the high-frequency asynchronous contraction of flight muscles.
Collapse
Affiliation(s)
- Tianxin Cao
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Alyson Sujkowski
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Tyler Cobb
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Robert J Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
8
|
Pellerin D, Aykanat A, Ellezam B, Troiano EC, Karamchandani J, Dicaire MJ, Petitclerc M, Robertson R, Allard-Chamard X, Brunet D, Konersman CG, Mathieu J, Warman Chardon J, Gupta VA, Beggs AH, Brais B, Chrestian N. Novel Recessive TNNT1 Congenital Core-Rod Myopathy in French Canadians. Ann Neurol 2020; 87:568-583. [PMID: 31970803 DOI: 10.1002/ana.25685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 01/06/2020] [Accepted: 01/19/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Recessive null variants of the slow skeletal muscle troponin T1 (TNNT1) gene are a rare cause of nemaline myopathy that is fatal in infancy due to respiratory insufficiency. Muscle biopsy shows rods and fiber type disproportion. We report on 4 French Canadians with a novel form of recessive congenital TNNT1 core-rod myopathy. METHODS Patients underwent full clinical characterization, lower limb magnetic resonance imaging (MRI), muscle biopsy, and genetic testing. A zebrafish loss-of-function model using morpholinos was created to assess the pathogenicity of the identified variant. Wild-type or mutated human TNNT1 mRNAs were coinjected with morpholinos to assess their abilities to rescue the morphant phenotype. RESULTS Three adults and 1 child shared a novel missense homozygous variant in the TNNT1 gene (NM_003283.6: c.287T > C; p.Leu96Pro). They developed from childhood very slowly progressive limb-girdle weakness with rigid spine and disabling contractures. They suffered from restrictive lung disease requiring noninvasive mechanical ventilation in 3 patients, as well as recurrent episodes of rhabdomyolysis triggered by infections, which were relieved by dantrolene in 1 patient. Older patients remained ambulatory into their 60s. MRI of the leg muscles showed fibrofatty infiltration predominating in the posterior thigh and the deep posterior leg compartments. Muscle biopsies showed multiminicores and lobulated fibers, rods in half the patients, and no fiber type disproportion. Wild-type TNNT1 mRNA rescued the zebrafish morphants, but mutant transcripts failed to do so. INTERPRETATION This study expands the phenotypic spectrum of TNNT1 myopathy and provides functional evidence for the pathogenicity of the newly identified missense mutation. ANN NEUROL 2020;87:568-583.
Collapse
Affiliation(s)
- David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Asli Aykanat
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Emily C Troiano
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Jason Karamchandani
- Department of Pathology, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Marie-Josée Dicaire
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Marc Petitclerc
- Department of Neurology, Hôpital Hôtel-Dieu de Lévis, Lévis, Quebec, Canada
| | - Rebecca Robertson
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Xavier Allard-Chamard
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Denis Brunet
- Department of Neurology, Hôpital de l'Enfant Jésus, Université Laval, Quebec City, Quebec, Canada
| | | | - Jean Mathieu
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Neuromuscular Disease Clinic, Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Jonquière, Quebec, Canada
| | - Jodi Warman Chardon
- Department of Neurosciences, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Vandana A Gupta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada.,Neuromuscular Disease Clinic, Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Jonquière, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Nicolas Chrestian
- Department of Child Neurology, Centre Hospitalier de l'Université Laval et Centre Mère-Enfant Soleil, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
9
|
Melby JA, Jin Y, Lin Z, Tucholski T, Wu Z, Gregorich ZR, Diffee GM, Ge Y. Top-Down Proteomics Reveals Myofilament Proteoform Heterogeneity among Various Rat Skeletal Muscle Tissues. J Proteome Res 2020; 19:446-454. [PMID: 31647247 PMCID: PMC7487979 DOI: 10.1021/acs.jproteome.9b00623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterogeneity in skeletal muscle contraction time, peak power output, and resistance to fatigue, among others, is necessary to accommodate the wide range of functional demands imposed on the body. Underlying this functional heterogeneity are a myriad of differences in the myofilament protein isoform expression and post-translational modifications; yet, characterizing this heterogeneity remains challenging. Herein, we have utilized top-down liquid chromatography (LC)-mass spectrometry (MS)-based proteomics to characterize myofilament proteoform heterogeneity in seven rat skeletal muscle tissues including vastus lateralis, vastus medialis, vastus intermedius, rectus femoris, soleus, gastrocnemius, and plantaris. Top-down proteomics revealed that myofilament proteoforms varied greatly across the seven different rat skeletal muscle tissues. Subsequently, we quantified and characterized myofilament proteoforms using online LC-MS. We have comprehensively characterized the fast and slow skeletal troponin I isoforms, which demonstrates the ability of top-down MS to decipher isoforms with high sequence homology. Taken together, we have shown that top-down proteomics can be used as a robust and high-throughput method to characterize the molecular heterogeneity of myofilament proteoforms from various skeletal muscle tissues.
Collapse
Affiliation(s)
- Jake A. Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Zachery R. Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Gary M. Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
10
|
Jin Y, Diffee GM, Colman RJ, Anderson RM, Ge Y. Top-down Mass Spectrometry of Sarcomeric Protein Post-translational Modifications from Non-human Primate Skeletal Muscle. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2460-2469. [PMID: 30834509 PMCID: PMC6722035 DOI: 10.1007/s13361-019-02139-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 05/22/2023]
Abstract
Sarcomeric proteins, including myofilament and Z-disk proteins, play critical roles in regulating muscle contractile properties. A variety of isoforms and post-translational modifications (PTMs) of sarcomeric proteins have been shown to be associated with modulation of muscle functions and the occurrence of muscle diseases. Non-human primates (NHPs) are excellent research models for sarcopenia, a disease associated with alterations in sarcomeric proteins, due to their marked similarities to humans. However, the sarcomeric proteins in NHP skeletal muscle have not been well characterized. To gain a deeper understanding of sarcomeric proteins in NHP skeletal muscle, we employed top-down mass spectrometry (MS) to conduct a comprehensive analysis on isoforms and PTMs of sarcomeric proteins in rhesus macaque skeletal muscle. We identified 23 protein isoforms with 46 proteoforms of sarcomeric proteins, including 6 isoforms with 18 proteoforms from fast skeletal troponin T. Particularly, for the first time, a novel PDZ/LIM domain protein isoform, PDLIM7, was characterized with a newly identified protein sequence. Moreover, we also identified multiple PTMs on these proteins, including deamidation, methylation, acetylation, tri-methylation, phosphorylation, and S-glutathionylation. Most PTM sites were localized, including Asn13 deamidation on MLC-2S; His73 methylation on αactin; N-terminal acetylation on most identified proteins; N-terminal tri-methylation on MLC-1S, MLC-1F, MLC-2S, and MLC-2F; Ser14 phosphorylation on MLC-2S; and Ser15 and Ser16 phosphorylation on MLC-2F. In summary, a comprehensive characterization of sarcomeric proteins including multiple isoforms and PTMs in NHP skeletal muscle was achieved by analyzing intact proteins in the top-down MS approach.
Collapse
Affiliation(s)
- Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gary M Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Rozalyn M Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
11
|
Lindqvist J, Lee EJ, Karimi E, Kolb J, Granzier H. Omecamtiv mecarbil lowers the contractile deficit in a mouse model of nebulin-based nemaline myopathy. PLoS One 2019; 14:e0224467. [PMID: 31721788 PMCID: PMC6853306 DOI: 10.1371/journal.pone.0224467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/14/2019] [Indexed: 01/10/2023] Open
Abstract
Nemaline myopathy (NEM) is a congenital neuromuscular disorder primarily caused by nebulin gene (NEB) mutations. NEM is characterized by muscle weakness for which currently no treatments exist. In NEM patients a predominance of type I fibers has been found. Thus, therapeutic options targeting type I fibers could be highly beneficial for NEM patients. Because type I muscle fibers express the same myosin isoform as cardiac muscle (Myh7), the effect of omecamtiv mecarbil (OM), a small molecule activator of Myh7, was studied in a nebulin-based NEM mouse model (Neb cKO). Skinned single fibers were activated by exogenous calcium and force was measured at a wide range of calcium concentrations. Maximal specific force of type I fibers was much less in fibers from Neb cKO animals and calcium sensitivity of permeabilized single fibers was reduced (pCa50 6.12 ±0.08 (cKO) vs 6.36 ±0.08 (CON)). OM increased the calcium sensitivity of type I single muscle fibers. The greatest effect occurred in type I fibers from Neb cKO muscle where OM restored the calcium sensitivity to that of the control type I fibers. Forces at submaximal activation levels (pCa 6.0–6.5) were significantly increased in Neb cKO fibers (~50%) but remained below that of control fibers. OM also increased isometric force and power during isotonic shortening of intact whole soleus muscle of Neb cKO mice, with the largest effects at physiological stimulation frequencies. We conclude that OM has the potential to improve the quality of life of NEM patients by increasing the force of type I fibers at submaximal activation levels.
Collapse
Affiliation(s)
- Johan Lindqvist
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Eun-Jeong Lee
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Esmat Karimi
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
12
|
Oki K, Wei B, Feng HZ, Jin JP. The loss of slow skeletal muscle isoform of troponin T in spindle intrafusal fibres explains the pathophysiology of Amish nemaline myopathy. J Physiol 2019; 597:3999-4012. [PMID: 31148174 PMCID: PMC6675633 DOI: 10.1113/jp278119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/29/2019] [Indexed: 01/17/2023] Open
Abstract
KEY POINTS The pathogenic mechanism and the neuromuscular reflex-related phenotype (e.g. tremors accompanied by clonus) of Amish nemaline myopathy, as well as of other recessively inherited TNNT1 myopathies, remain to be clarified. The truncated slow skeletal muscle isoform of troponin T (ssTnT) encoded by the mutant TNNT1 gene is unable to incorporate into myofilaments and is degraded in muscle cells. By contrast to extrafusal muscle fibres, spindle intrafusal fibres of normal mice contain a significant level of cardiac TnT and a low molecular weight splice form of ssTnT. Intrafusal fibres of ssTnT-knockout mice have significantly increased cardiac TnT. Rotarod and balance beam tests have revealed abnormal neuromuscular co-ordination in ssTnT-knockout mice and a blunted response to a spindle sensitizer, succinylcholine. The loss of ssTnT and a compensatory increase of cardiac TnT in intrafusal nuclear bag fibres may increase myofilament Ca2+ -sensitivity and tension, impairing spindle function, thus identifying a novel mechanism for the development of targeted treatment. ABSTRACT A nonsense mutation at codon Glu180 of TNNT1 gene causes Amish nemaline myopathy (ANM), a recessively inherited disease with infantile lethality. TNNT1 encodes the slow skeletal muscle isoform of troponin T (ssTnT). The truncated ssTnT is unable to incorporate into myofilament and is degraded in muscle cells. The symptoms of ANM include muscle weakness, atrophy, contracture and tremors accompanied by clonus. An ssTnT-knockout (KO) mouse model recapitulates key features of ANM such as atrophy of extrafusal slow muscle fibres and increased fatigability. However, the neuromuscular reflex-related symptoms of ANM have not been explained. By isolating muscle spindles from ssTnT-KO and control mice aiming to examine the composition of myofilament proteins, we found that, in contrast to extrafusal fibres, intrafusal fibres contain a significant level of cardiac TnT and the low molecular weight splice form of ssTnT. Intrafusal fibres from ssTnT-KO mice have significantly increased cardiac TnT. Rotarod and balance beam tests revealed impaired neuromuscular co-ordination in ssTnT-KO mice, indicating abnormality in spindle functions. Unlike the wild-type control, the beam running ability of ssTnT-KO mice had a blunted response to a spindle sensitizer, succinylcholine. Immunohistochemistry detected ssTnT and cardiac TnT in nuclear bag fibres, whereas fast skeletal muscle TnT was detected in nuclear chain fibres, and cardiac α-myosin was present in one of the two nuclear bag fibres. The loss of ssTnT and a compensatory increase of cardiac TnT in nuclear bag fibres would increase myofilament Ca2+ -sensitivity and tension, thus affecting spindle activities. This mechanism provides an explanation for the pathophysiology of ANM, as well as a novel target for treatment.
Collapse
Affiliation(s)
| | | | - Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - J.-P. Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
13
|
Invertebrate troponin: Insights into the evolution and regulation of striated muscle contraction. Arch Biochem Biophys 2019; 666:40-45. [PMID: 30928296 DOI: 10.1016/j.abb.2019.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
The troponin complex plays a central role in regulating the contraction and relaxation of striated muscles. Among the three protein subunits of troponin, the calcium receptor subunit, TnC, belongs to the calmodulin family of calcium signaling proteins whereas the inhibitory subunit, TnI, and tropomyosin-binding/thin filament-anchoring subunit, TnT, are striated muscle-specific regulatory proteins. TnI and TnT emerged early in bilateral symmetric invertebrate animals and have co-evolved during the 500-700 million years of muscle evolution. To understand the divergence as well as conservation of the structures of TnI and TnT in invertebrate and vertebrate organisms adds novel insights into the structure-function relationship of troponin and the muscle type isoforms of TnI and TnT. Based on the significant growth of genomic database of multiple species in the past decade, this focused review studied the primary structure features of invertebrate troponin subunits in comparisons with the vertebrate counterparts. The evolutionary data demonstrate valuable information for a better understanding of the thin filament regulation of striated muscle contractility in health and diseases.
Collapse
|
14
|
Johnson D, Angus CW, Chalovich JM. Stepwise C-Terminal Truncation of Cardiac Troponin T Alters Function at Low and Saturating Ca 2. Biophys J 2018; 115:702-712. [PMID: 30057009 DOI: 10.1016/j.bpj.2018.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 11/16/2022] Open
Abstract
Activation of striated muscle contraction occurs in response to Ca2+ binding to troponin C. The resulting reorganization of troponin repositions tropomyosin on actin and permits activation of myosin-catalyzed ATP hydrolysis. It now appears that the C-terminal 14 amino acids of cardiac troponin T (TnT) control the level of activity at both low and high Ca2+. We made a series of C-terminal truncation mutants of human cardiac troponin T, isoform 2, to determine if the same residues of TnT are involved in the low and high Ca2+ effects. We measured the effect of these mutations on the normalized ATPase activity at saturating Ca2+. Changes in acrylodan tropomyosin fluorescence and the degree of Ca2+ stimulation of the rate of binding of rigor myosin subfragment 1 to pyrene-labeled actin-tropomyosin-troponin were measured at low Ca2+. These measurements define the distribution of actin-tropomyosin-troponin among the three regulatory states. Residues SKTR and GRWK of TnT were required for the functioning of TnT at both low and high Ca2+. Thus, the effects on forming the inactive B-state and in retarding formation of the active M-state require the same regions of TnT. We also observed that the rate of binding of rigor subfragment 1 to pyrene-labeled regulated actin at saturating Ca2+ was higher for the truncation mutants than for wild-type TnT. This violated an assumption necessary for determining the B-state population by this kinetic method.
Collapse
Affiliation(s)
- Dylan Johnson
- Department of Biochemistry, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - C William Angus
- Department of Biochemistry, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Joseph M Chalovich
- Department of Biochemistry, Brody School of Medicine, East Carolina University, Greenville, North Carolina.
| |
Collapse
|
15
|
Tallis J, James RS, Seebacher F. The effects of obesity on skeletal muscle contractile function. ACTA ACUST UNITED AC 2018; 221:221/13/jeb163840. [PMID: 29980597 DOI: 10.1242/jeb.163840] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity can cause a decline in contractile function of skeletal muscle, thereby reducing mobility and promoting obesity-associated health risks. We reviewed the literature to establish the current state-of-knowledge of how obesity affects skeletal muscle contraction and relaxation. At a cellular level, the dominant effects of obesity are disrupted calcium signalling and 5'-adenosine monophosphate-activated protein kinase (AMPK) activity. As a result, there is a shift from slow to fast muscle fibre types. Decreased AMPK activity promotes the class II histone deacetylase (HDAC)-mediated inhibition of the myocyte enhancer factor 2 (MEF2). MEF2 promotes slow fibre type expression, and its activity is stimulated by the calcium-dependent phosphatase calcineurin. Obesity-induced attenuation of calcium signalling via its effects on calcineurin, as well as on adiponectin and actinin affects excitation-contraction coupling and excitation-transcription coupling in the myocyte. These molecular changes affect muscle contractile function and phenotype, and thereby in vivo and in vitro muscle performance. In vivo, obesity can increase the absolute force and power produced by increasing the demand on weight-supporting muscle. However, when normalised to body mass, muscle performance of obese individuals is reduced. Isolated muscle preparations show that obesity often leads to a decrease in force produced per muscle cross-sectional area, and power produced per muscle mass. Obesity and ageing have similar physiological consequences. The synergistic effects of obesity and ageing on muscle function may exacerbate morbidity and mortality. Important future research directions include determining: the relationship between time course of weight gain and changes in muscle function; the relative effects of weight gain and high-fat diet feeding per se; the effects of obesity on muscle function during ageing; and if the effects of obesity on muscle function are reversible.
Collapse
Affiliation(s)
- Jason Tallis
- Center for Sport, Exercise and Life Sciences, Science and Health Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Rob S James
- Center for Sport, Exercise and Life Sciences, Science and Health Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences, Heydon Laurence Building A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Sun X, Liu Z, Wu B, Zhou L, Wang Q, Wu W, Yang A. Differences between fast and slow muscles in scallops revealed through proteomics and transcriptomics. BMC Genomics 2018; 19:377. [PMID: 29783952 PMCID: PMC5963113 DOI: 10.1186/s12864-018-4770-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Scallops possess striated and catch adductor muscles, which have different structure and contractile properties. The striated muscle contracts very quickly for swimming, whereas the smooth catch muscle can keep the shells closed for long periods with little expenditure of energy. In this study, we performed proteomic and transcriptomic analyses of differences between the striated (fast) and catch (slow) adductor muscles in Yesso scallop Patinopecten yessoensis. RESULTS Transcriptomic analysis reveals 1316 upregulated and 8239 downregulated genes in slow compared to fast adductor muscle. For the same comparison, iTRAQ-based proteomics reveals 474 differentially expressed proteins (DEPs), 198 up- and 276 downregulated. These DEPs mainly comprise muscle-specific proteins of the sarcoplasmic reticulum, extracellular matrix, and metabolic pathways. A group of conventional muscle proteins-myosin heavy chain, myosin regulatory light chain, myosin essential light chain, and troponin-are enriched in fast muscle. In contrast, paramyosin, twitchin, and catchin are preferentially expressed in slow muscle. The association analysis of proteomic and transcriptomic data provides the evidences of regulatory events at the transcriptional and posttranscriptional levels in fast and slow muscles. Among 1236 differentially expressed unigenes, 22.7% show a similar regulation of mRNA levels and protein abundances. In contrast, more unigenes (53.2%) exhibit striking differences between gene expression and protein abundances in the two muscles, which indicates the existence of fiber-type specific, posttranscriptional regulatory events in most of myofibrillar proteins, such as myosin heavy chain, titin, troponin, and twitchin. CONCLUSIONS This first, global view of protein and mRNA expression levels in scallop fast and slow muscles reveal that regulatory mechanisms at the transcriptional and posttranscriptional levels are essential in the maintenance of muscle structure and function. The existence of fiber-type specific, posttranscriptional regulatory mechanisms in myofibrillar proteins will greatly improve our understanding of the molecular basis of muscle contraction and its regulation in non-model invertebrates.
Collapse
Affiliation(s)
- Xiujun Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Zhihong Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Biao Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Liqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Qi Wang
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Wei Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Aiguo Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China. .,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
17
|
Suess B, Kemmerer K, Weigand JE. Splicing and Alternative Splicing Impact on Gene Design. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Beatrix Suess
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| | - Katrin Kemmerer
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| | - Julia E. Weigand
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| |
Collapse
|
18
|
Schilder RJ, Raynor M. Molecular plasticity and functional enhancements of leg muscles in response to hypergravity in the fruit fly Drosophila melanogaster. ACTA ACUST UNITED AC 2017; 220:3508-3518. [PMID: 28978639 DOI: 10.1242/jeb.160523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/24/2017] [Indexed: 12/24/2022]
Abstract
Studies of organismal and tissue biomechanics have clearly demonstrated that musculoskeletal design is strongly dependent on experienced loads, which can vary in the short term, as a result of growth during life history and during the evolution of animal body size. However, how animals actually perceive and make adjustments to their load-bearing musculoskeletal elements that accommodate variation in their body weight is poorly understood. We developed an experimental model system that can be used to start addressing these open questions, and uses hypergravity centrifugation to experimentally manipulate the loads experienced by Drosophila melanogaster We examined effects of this manipulation on leg muscle alternative splicing of the sarcomere gene troponin T (Dmel\up; Fbgn0004169, herein referred to by its synonym TnT), a process that was previously demonstrated to precisely correlate with quantitative variation in body weight in Lepidoptera and rat. In a similar fashion, hypergravity centrifugation caused fast (i.e. within 24 h) changes to fly leg muscle TnT alternative splicing that correlated with body weight variation across eight D. melanogaster lines. Hypergravity treatment also appeared to enhance leg muscle function, as centrifuged flies showed an increased negative geotaxis response and jump ability. Although the identity and location of the sensors and effectors involved remains unknown, our results provide further support for the existence of an evolutionarily conserved mechanism that translates signals that encode body weight into appropriate skeletal muscle molecular and functional responses.
Collapse
Affiliation(s)
- Rudolf J Schilder
- Department of Entomology, Pennsylvania State University, 501 Ag Sciences & Industries Building, University Park, PA 16802, USA .,Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.,Department of Cellular & Molecular Physiology, Pennsylvania State University, 500 University Drive, Hershey, PA 17033, USA
| | - Megan Raynor
- Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| |
Collapse
|
19
|
Schilder RJ. (How) do animals know how much they weigh? ACTA ACUST UNITED AC 2017; 219:1275-82. [PMID: 27208031 DOI: 10.1242/jeb.120410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
Animal species varying in size and musculoskeletal design all support and move their body weight. This implies the existence of evolutionarily conserved feedback between sensors that produce quantitative signals encoding body weight and proximate determinants of musculoskeletal designs. Although studies at the level of whole organisms and tissue morphology and function clearly indicate that musculoskeletal designs are constrained by body weight variation, the corollary to this - i.e. that the molecular-level composition of musculoskeletal designs is sensitive to body weight variation - has been the subject of only minimal investigation. The main objective of this Commentary is to briefly summarize the former area of study but, in particular, to highlight the latter hypothesis and the relevance of understanding the mechanisms that control musculoskeletal function at the molecular level. Thus, I present a non-exhaustive overview of the evidence - drawn from different fields of study and different levels of biological organization - for the existence of body weight sensing mechanism(s).
Collapse
Affiliation(s)
- Rudolf J Schilder
- Department of Entomology and Biology, Pennsylvania State University, 501 Ag Sci Ind Bldg, University Park, PA 16802, USA
| |
Collapse
|
20
|
Eshima H, Tamura Y, Kakehi S, Kurebayashi N, Murayama T, Nakamura K, Kakigi R, Okada T, Sakurai T, Kawamori R, Watada H. Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle. Physiol Rep 2017; 5:5/7/e13250. [PMID: 28408640 PMCID: PMC5392533 DOI: 10.14814/phy2.13250] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 12/25/2022] Open
Abstract
In this study, we investigated the effects of a short-term and long-term high-fat diet (HFD) on morphological and functional features of fast-twitch skeletal muscle. Male C57BL/6J mice were fed a HFD (60% fat) for 4 weeks (4-week HFD) or 12 weeks (12-week HFD). Subsequently, the fast-twitch extensor digitorum longus muscle was isolated, and the composition of muscle fiber type, expression levels of proteins involved in muscle contraction, and force production on electrical stimulation were analyzed. The 12-week HFD, but not the 4-week HFD, resulted in a decreased muscle tetanic force on 100 Hz stimulation compared with control (5.1 ± 1.4 N/g in the 12-week HFD vs. 7.5 ± 1.7 N/g in the control group; P < 0.05), whereas muscle weight and cross-sectional area were not altered after both HFD protocols. Morphological analysis indicated that the percentage of type IIx myosin heavy chain fibers, mitochondrial oxidative enzyme activity, and intramyocellular lipid levels increased in the 12-week HFD group, but not in the 4-week HFD group, compared with controls (P < 0.05). No changes in the expression levels of calcium handling-related proteins and myofibrillar proteins (myosin heavy chain and actin) were detected in the HFD models, whereas fast-troponin T-protein expression was decreased in the 12-week HFD group, but not in the 4-week HFD group (P < 0.05). These findings indicate that a long-term HFD, but not a short-term HFD, impairs contractile force in fast-twitch muscle fibers. Given that skeletal muscle strength largely depends on muscle fiber type, the impaired muscle contractile force by a HFD might result from morphological changes of fiber type composition.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan .,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saori Kakehi
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kyoko Nakamura
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryo Kakigi
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takao Okada
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure-function relationships. Gene 2016; 582:1-13. [PMID: 26774798 DOI: 10.1016/j.gene.2016.01.006] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 12/18/2022]
Abstract
Troponin T (TnT) is a central player in the calcium regulation of actin thin filament function and is essential for the contraction of striated muscles. Three homologous genes have evolved in vertebrates to encode three muscle type-specific TnT isoforms: TNNT1 for slow skeletal muscle TnT, TNNT2 for cardiac muscle TnT, and TNNT3 for fast skeletal muscle TnT. Alternative splicing and posttranslational modifications confer additional structural and functional variations of TnT during development and muscle adaptation to various physiological and pathological conditions. This review focuses on the TnT isoform genes and their molecular evolution, alternative splicing, developmental regulation, structure-function relationships of TnT proteins, posttranslational modifications, and myopathic mutations and abnormal splicing. The goal is to provide a concise summary of the current knowledge and some perspectives for future research and translational applications.
Collapse
|
22
|
Yang HS, Lee B, Tsui JH, Macadangdang J, Jang SY, Im SG, Kim DH. Electroconductive Nanopatterned Substrates for Enhanced Myogenic Differentiation and Maturation. Adv Healthc Mater 2016; 5:137-45. [PMID: 25988569 PMCID: PMC5003176 DOI: 10.1002/adhm.201500003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/14/2015] [Indexed: 11/09/2022]
Abstract
Electrically conductive materials provide a suitable platform for the in vitro study of excitable cells, such as skeletal muscle cells, due to their inherent conductivity and electroactivity. Here it is demonstrated that bioinspired electroconductive nanopatterned substrates enhance myogenic differentiation and maturation. The topographical cues from the highly aligned collagen bundles that form the extracellular matrix of skeletal muscle tissue are mimicked using nanopatterns created with capillary force lithography. Electron beam deposition is then utilized to conformally coat nanopatterned substrates with a thin layer of either gold or titanium to create electroconductive substrates with well-defined, large-area nanotopographical features. C2C12 cells, a myoblast cell line, are cultured for 7 d on substrates and the effects of topography and electrical conductivity on cellular morphology and myogenic differentiation are assessed. It is found that biomimetic nanotopography enhances the formation of aligned myotubes and the addition of an electroconductive coating promotes myogenic differentiation and maturation, as indicated by the upregulation of myogenic regulatory factors Myf5, MyoD, and myogenin (MyoG). These results suggest the suitability of electroconductive nanopatterned substrates as a biomimetic platform for the in vitro engineering of skeletal muscle tissue.
Collapse
Affiliation(s)
- Hee Seok Yang
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Bora Lee
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Jonathan H Tsui
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jesse Macadangdang
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Seok-Young Jang
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
23
|
Jin JP. Evolution, Regulation, and Function of N-terminal Variable Region of Troponin T: Modulation of Muscle Contractility and Beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 321:1-28. [DOI: 10.1016/bs.ircmb.2015.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Ravi S, Schilder RJ, Berg AS, Kimball SR. Effects of age and hindlimb immobilization and remobilization on fast troponin T precursor mRNA alternative splicing in rat gastrocnemius muscle. Appl Physiol Nutr Metab 2015; 41:142-9. [PMID: 26799695 DOI: 10.1139/apnm-2015-0381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fast skeletal muscle troponin T (TNNT3) is an important component of the skeletal muscle contractile machinery. The precursor mRNA (pre-mRNA) encoding TNNT3 is alternatively spliced, and changes in the pattern of TNNT3 splice form expression are associated with alterations in thin-filament calcium sensitivity and force production during muscle contraction and thereby regulate muscle function. Interestingly, during aging, the muscle force/cross-sectional area is reduced, suggesting that loss of mass does not completely account for the impaired muscle function that develops during the aging process. Therefore, in this study, we tested the hypothesis that age and changes in muscle loading are associated with alterations in Tnnt3 alternative splicing in the rat gastrocnemius muscle. We found that the relative abundance of several Tnnt3 splice forms varied significantly with age among 2-, 9-, and 18-month-old rats and that the pattern correlated with changes in body mass rather than muscle mass. Hindlimb immobilization for 7 days resulted in dramatic alterations in splice form relative abundance such that the pattern was similar to that observed in lighter animals. Remobilization for 7 days restored the splicing pattern toward that observed in the nonimmobilized limb, even though muscle mass had not yet begun to recover. In conclusion, the results suggest that Tnnt3 pre-mRNA alternative splicing is modulated rapidly (i.e., within days) in response to changes in the load placed on the muscle. Moreover, the results show that restoration of Tnnt3 alternative splicing to control patterns is initiated prior to an increase in muscle mass.
Collapse
Affiliation(s)
- Suhana Ravi
- a Department of Cellular and Molecular Physiology, H166, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Rudolf J Schilder
- b Departments of Entomology and Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Arthur S Berg
- c Department of Public Health Sciences, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Scot R Kimball
- a Department of Cellular and Molecular Physiology, H166, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
25
|
Amarasinghe C, Jin JP. N-Terminal Hypervariable Region of Muscle Type Isoforms of Troponin T Differentially Modulates the Affinity of Tropomyosin-Binding Site 1. Biochemistry 2015; 54:3822-30. [DOI: 10.1021/acs.biochem.5b00348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chinthaka Amarasinghe
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - J.-P. Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| |
Collapse
|
26
|
Coble J, Schilder RJ, Berg A, Drummond MJ, Rasmussen BB, Kimball SR. Influence of ageing and essential amino acids on quantitative patterns of troponin T alternative splicing in human skeletal muscle. Appl Physiol Nutr Metab 2015. [PMID: 26201856 DOI: 10.1139/apnm-2014-0568] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ageing is associated with a loss of skeletal muscle performance, a condition referred to as sarcopenia. In part, the age-related reduction in performance is due to a selective loss of muscle fiber mass, but mass-independent effects have also been demonstrated. An important mass-independent determinant of muscle performance is the pattern of expression of isoforms of proteins that participate in muscle contraction (e.g., the troponins). In the present study, we tested the hypothesis that ageing impairs alternative splicing of the pre-mRNA encoding fast skeletal muscle troponin T (TNNT3) in human vastus lateralis muscle. Furthermore, we hypothesized that resistance exercise alone or in combination with consumption of essential amino acids would attenuate age-associated effects on TNNT3 alternative splicing. Our results indicate that ageing negatively affects the pattern of TNNT3 alternative splicing in a manner that correlates quantitatively with age-associated reductions in muscle performance. Interestingly, whereas vastus lateralis TNNT3 alternative splicing was unaffected by a bout of resistance exercise 24 h prior to muscle biopsy, ingestion of a mixture of essential amino acids after resistance exercise resulted in a significant shift in the pattern of TNNT3 splice form expression in both age groups to one predicted to promote greater muscle performance. We conclude that essential amino acid supplementation after resistance exercise may provide a means to reduce impairments in skeletal muscle quality during ageing in humans.
Collapse
Affiliation(s)
- Joel Coble
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Rudolf J Schilder
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Arthur Berg
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Micah J Drummond
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX 77555
| | - Blake B Rasmussen
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX 77555
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
27
|
Wei H, Jin JP. NH2-terminal truncations of cardiac troponin I and cardiac troponin T produce distinct effects on contractility and calcium homeostasis in adult cardiomyocytes. Am J Physiol Cell Physiol 2015; 308:C397-404. [PMID: 25518962 PMCID: PMC4346733 DOI: 10.1152/ajpcell.00358.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/10/2014] [Indexed: 12/12/2022]
Abstract
Cardiac troponin I (TnI) has an NH2-terminal extension that is an adult heart-specific regulatory structure. Restrictive proteolytic truncation of the NH2-terminal extension of cardiac TnI occurs in normal hearts and is upregulated in cardiac adaptation to hemodynamic stress or β-adrenergic deficiency. NH2-terminal truncated cardiac TnI (cTnI-ND) alters the conformation of the core structure of cardiac TnI similarly to that produced by PKA phosphorylation of Ser(23/24) in the NH2-terminal extension. At organ level, cTnI-ND enhances ventricular diastolic function. The NH2-terminal region of cardiac troponin T (TnT) is another regulatory structure that can be selectively cleaved via restrictive proteolysis. Structural variations in the NH2-terminal region of TnT also alter the molecular conformation and function. Transgenic mouse hearts expressing NH2-terminal truncated cardiac TnT (cTnT-ND) showed slower contractile velocity to prolong ventricular rapid-ejection time, resulting in higher stroke volume. Our present study compared the effects of cTnI-ND and cTnT-ND in cardiomyocytes isolated from transgenic mice on cellular morphology, contractility, and calcium kinetics. Resting cTnI-ND, but not cTnT-ND, cardiomyocytes had shorter length than wild-type cells with no change in sarcomere length. cTnI-ND, but not cTnT-ND, cardiomyocytes produced higher contractile amplitude and faster shortening and relengthening velocities in the absence of external load than wild-type controls. Although the baseline and peak levels of cytosolic Ca(2+) were not changed, Ca(2+) resequestration was faster in both cTnI-ND and cTnT-ND cardiomyocytes than in wild-type control. The distinct effects of cTnI-ND and cTnT-ND demonstrate their roles in selectively modulating diastolic or systolic functions of the heart.
Collapse
Affiliation(s)
- Hongguang Wei
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
28
|
Zhang T, Choi SJ, Wang ZM, Birbrair A, Messi ML, Jin JP, Marsh AP, Nicklas B, Delbono O. Human slow troponin T (TNNT1) pre-mRNA alternative splicing is an indicator of skeletal muscle response to resistance exercise in older adults. J Gerontol A Biol Sci Med Sci 2014; 69:1437-47. [PMID: 24368775 PMCID: PMC4296115 DOI: 10.1093/gerona/glt204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/14/2013] [Indexed: 12/25/2022] Open
Abstract
Slow skeletal muscle troponin T (TNNT1) pre-messenger RNA alternative splicing (AS) provides transcript diversity and increases the variety of proteins the gene encodes. Here, we identified three major TNNT1 splicing patterns (AS1-3), quantified their expression in the vastus lateralis muscle of older adults, and demonstrated that resistance training modifies their relative abundance; specifically, upregulating AS1 and downregulating AS2 and AS3. In addition, abundance of TNNT1 AS2 correlated negatively with single muscle fiber-specific force after resistance training, while abundance of AS1 correlated negatively with V max. We propose that TNNT1 AS1, AS2 and the AS1/AS2 ratio are potential quantitative biomarkers of skeletal muscle adaptation to resistance training in older adults, and that their profile reflects enhanced single fiber muscle force in the absence of significant increases in fiber cross-sectional area.
Collapse
Affiliation(s)
- Tan Zhang
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Seung Jun Choi
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina. Present address: Division of Sports and Health, KyungSung University, Busan, South Korea
| | - Zhong-Min Wang
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Alexander Birbrair
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - María L Messi
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine
| | - Anthony P Marsh
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina
| | - Barbara Nicklas
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina. J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Osvaldo Delbono
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina. J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
29
|
Ciapaite J, van den Berg SA, Houten SM, Nicolay K, van Dijk KW, Jeneson JA. Fiber-type-specific sensitivities and phenotypic adaptations to dietary fat overload differentially impact fast- versus slow-twitch muscle contractile function in C57BL/6J mice. J Nutr Biochem 2014; 26:155-64. [PMID: 25516489 DOI: 10.1016/j.jnutbio.2014.09.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023]
Abstract
High-fat diets (HFDs) have been shown to interfere with skeletal muscle energy metabolism and cause peripheral insulin resistance. However, understanding of HFD impact on skeletal muscle primary function, i.e., contractile performance, is limited. Male C57BL/6J mice were fed HFD containing lard (HFL) or palm oil (HFP), or low-fat diet (LFD) for 5weeks. Fast-twitch (FT) extensor digitorum longus (EDL) and slow-twitch (ST) soleus muscles were characterized with respect to contractile function and selected biochemical features. In FT EDL muscle, a 30%-50% increase in fatty acid (FA) content and doubling of long-chain acylcarnitine (C14-C18) content in response to HFL and HFP feeding were accompanied by increase in protein levels of peroxisome proliferator-activated receptor-γ coactivator-1α, mitochondrial oxidative phosphorylation complexes and acyl-CoA dehydrogenases involved in mitochondrial FA β-oxidation. Peak force of FT EDL twitch and tetanic contractions was unaltered, but the relaxation time (RT) of twitch contractions was 30% slower compared to LFD controls. The latter was caused by accumulation of lipid intermediates rather than changes in the expression levels of proteins involved in calcium handling. In ST soleus muscle, no evidence for lipid overload was found in any HFD group. However, particularly in HFP group, the peak force of twitch and tetanic contractions was reduced, but RT was faster than LFD controls. The latter was associated with a fast-to-slow shift in troponin T isoform expression. Taken together, these data highlight fiber-type-specific sensitivities and phenotypic adaptations to dietary lipid overload that differentially impact fast- versus slow-twitch skeletal muscle contractile function.
Collapse
Affiliation(s)
- Jolita Ciapaite
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, NL-5600 MB Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, PO Box 94215, NL-1090GE Amsterdam, The Netherlands; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Building 3226, 9713 AV Groningen, The Netherlands.
| | - Sjoerd A van den Berg
- Netherlands Consortium for Systems Biology, PO Box 94215, NL-1090GE Amsterdam, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, NL- 2333ZA Leiden, The Netherlands
| | - Sander M Houten
- Laboratory Genetic Metabolic Diseases, Departments of Pediatrics and Clinical Chemistry, Academic Medical Center, Meibergdreef 9, NL-1105AZ Amsterdam, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, NL-5600 MB Eindhoven, The Netherlands
| | - Ko Willems van Dijk
- Netherlands Consortium for Systems Biology, PO Box 94215, NL-1090GE Amsterdam, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, NL- 2333ZA Leiden, The Netherlands
| | - Jeroen A Jeneson
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, NL-5600 MB Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, PO Box 94215, NL-1090GE Amsterdam, The Netherlands; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Building 3226, 9713 AV Groningen, The Netherlands
| |
Collapse
|
30
|
Feng HZ, Chen G, Nan C, Huang X, Jin JP. Abnormal splicing in the N-terminal variable region of cardiac troponin T impairs systolic function of the heart with preserved Frank-Starling compensation. Physiol Rep 2014; 2:2/9/e12139. [PMID: 25194024 PMCID: PMC4270238 DOI: 10.14814/phy2.12139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abnormal splice‐out of the exon 7‐encoded segment in the N‐terminal variable region of cardiac troponin T (cTnT‐ΔE7) was found in turkeys and, together with the inclusion of embryonic exon (eTnT), in adult dogs with a correlation with dilated cardiomyopathy. Overexpression of these cTnT variants in transgenic mouse hearts significantly decreased cardiac function. To further investigate the functional effect of cTnT‐ΔE7 or ΔE7+eTnT in vivo under systemic regulation, echocardiography was carried out in single and double‐transgenic mice. No atrial enlargement, ventricular hypertrophy or dilation was detected in the hearts of 2‐month‐old cTnT‐ΔE7 and ΔE7+eTnT mice in comparison to wild‐type controls, indicating a compensated state. However, left ventricular fractional shortening and ejection fraction were decreased in ΔE7 and ΔE7+eTnT mice, and the response to isoproterenol was lower in ΔE7+eTnT mice. Left ventricular outflow tract velocity and gradient were decreased in the transgenic mouse hearts, indicating decreased systolic function. Ex vivo working heart function showed that high afterload or low preload resulted in more severe decreases in the systolic function and energetic efficiency of cTnT‐ΔE7 and ΔE7+eTnT hearts. On the other hand, increases in preload demonstrated preserved Frank‐Starling responses and minimized the loss of cardiac function and efficiency. The data demonstrate that the N‐terminal variable region of cardiac TnT regulates systolic function of the heart. Using transgenic mouse models expressing myopathic splicing variants of cardiac troponin T, we demonstrated that abnormality in the N‐terminal variable region of troponin T selectively affects the systolic function of the heart, whereas the Frank‐Starling response is preserved.
Collapse
Affiliation(s)
- Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Guozhen Chen
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Changlong Nan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Xupei Huang
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
31
|
Complex tropomyosin and troponin T isoform expression patterns in orbital and global fibers of adult dog and rat extraocular muscles. J Muscle Res Cell Motil 2013; 34:211-31. [PMID: 23700265 DOI: 10.1007/s10974-013-9346-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/02/2013] [Indexed: 12/12/2022]
Abstract
We reported marked differences in the myosin heavy and light chain (MHC and MLC) isoform composition of fast and slow fibers between the global and orbital layers of dog extraocular muscles. Many dog extraocular fibers, especially orbital fibers, have MHC and MLC isoform patterns that are distinct from those in limb skeletal muscles. Additional observations suggested possible differences in the tropomyosin (Tm) and troponin T (TnT) isoform composition of global and orbital fibers. Therefore, we tested, using SDS-PAGE and immunoblotting, whether differences in Tm and TnT isoform expression do, in fact, exist between global and orbital layers of dog and rat EOMs and to compare expression patterns among identified fast and slow single fibers from both muscle layers. The Tm isoforms expressed in global fast and slow fibers are the same as in limb fast (α-Tm and β-Tm) and slow (γ-Tm and β-Tm) fibers, respectively. Orbital slow orbital fibers, on the other hand, each co-express all three sarcomeric Tm isoforms (α, β and γ). The results indicate that fast global and orbital fibers express only fast isoforms of TnT, but the relative amounts of the individual isoforms are different from those in limb fast muscle fibers and an abundant fast TnT isoform in the orbital layer was not detected in fast limb muscles. Slow fibers in both layers express slow TnT isoforms and the relative amounts also differ from those in limb slow fibers. Unexpectedly, significant amounts of cardiac TnT isoforms were also detected in slow fibers, especially in the orbital layer in both species. TnI and TnC isoform patterns are the same as in fast and slow fibers in limb muscles. These results expand the understanding of the elaborate diversity in contractile protein isoform expression in mammalian extraocular muscle fibers and suggest that major differences in calcium-activation properties exist among these fibers, based upon Tm and TnT isoform expression patterns.
Collapse
|
32
|
Debold EP. Recent insights into muscle fatigue at the cross-bridge level. Front Physiol 2012; 3:151. [PMID: 22675303 PMCID: PMC3365633 DOI: 10.3389/fphys.2012.00151] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/02/2012] [Indexed: 11/22/2022] Open
Abstract
The depression in force and/or velocity associated with muscular fatigue can be the result of a failure at any level, from the initial events in the motor cortex of the brain to the formation of an actomyosin cross-bridge in the muscle cell. Since all the force and motion generated by muscle ultimately derives from the cyclical interaction of actin and myosin, researchers have focused heavily on the impact of the accumulation of intracellular metabolites [e.g., P(i), H(+) and adenosine diphoshphate (ADP)] on the function these contractile proteins. At saturating Ca(++) levels, elevated P(i) appears to be the primary cause for the loss in maximal isometric force, while increased [H(+)] and possibly ADP act to slow unloaded shortening velocity in single muscle fibers, suggesting a causative role in muscular fatigue. However the precise mechanisms through which these metabolites might affect the individual function of the contractile proteins remain unclear because intact muscle is a highly complex structure. To simplify problem isolated actin and myosin have been studied in the in vitro motility assay and more recently the single molecule laser trap assay with the findings showing that both P(i) and H(+) alter single actomyosin function in unique ways. In addition to these new insights, we are also gaining important information about the roles played by the muscle regulatory proteins troponin (Tn) and tropomyosin (Tm) in the fatigue process. In vitro studies, suggest that both the acidosis and elevated levels of P(i) can inhibit velocity and force at sub-saturating levels of Ca(++) in the presence of Tn and Tm and that this inhibition can be greater than that observed in the absence of regulation. To understand the molecular basis of the role of regulatory proteins in the fatigue process researchers are taking advantage of modern molecular biological techniques to manipulate the structure and function of Tn/Tm. These efforts are beginning to reveal the relevant structures and how their functions might be altered during fatigue. Thus, it is a very exciting time to study muscle fatigue because the technological advances occurring in the fields of biophysics and molecular biology are providing researchers with the ability to directly test long held hypotheses and consequently reshaping our understanding of this age-old question.
Collapse
Affiliation(s)
- Edward P. Debold
- Department of Kinesiology, University of Massachusetts, AmherstMA, USA
| |
Collapse
|
33
|
Schilder RJ, Kimball SR, Jefferson LS. Cell-autonomous regulation of fast troponin T pre-mRNA alternative splicing in response to mechanical stretch. Am J Physiol Cell Physiol 2012; 303:C298-307. [PMID: 22592404 DOI: 10.1152/ajpcell.00400.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
How mechanochemical signals induced by the amount of weight borne by the skeletal musculature are translated into modifications to muscle sarcomeres is poorly understood. Our laboratory recently demonstrated that, in response to experimentally induced increases in the weight load borne by a rat, alternative splicing of the fast skeletal muscle troponin T (Tnnt3) pre-mRNA in gastrocnemius was adjusted in a correlated fashion with the amount of added weight. (Schilder RJ, Kimball SR, Marden JH, Jefferson LS. J Exp Biol 214: 1523-1532, 2011). Thus muscle load is perceived quantitatively by the body, and mechanisms that sense it appear to control processes that generate muscle sarcomere composition plasticity, such as alternative pre-mRNA splicing. Here we demonstrate how mechanical stretch (see earlier comment) of C2C12 muscle cells in culture results in changes to Tnnt3 pre-mRNA alternative splicing that are qualitatively similar to those observed in response to added weight in rats. Moreover, inhibition of Akt signaling, but not that of ERK1/2, prevents the stretch-induced effect on Tnnt3 pre-mRNA alternative splicing. These findings suggest that effects of muscle load on Tnnt3 pre-mRNA alternative splicing are controlled by a cell-autonomous mechanism, rather than systemically. They also indicate that, in addition to its regulatory role in protein synthesis and muscle mass plasticity, Akt signaling may regulate muscle sarcomere composition by modulating alternative splicing events in response to load. Manipulation of Tnnt3 pre-mRNA alternative splicing by mechanical stretch of cells in culture provides a model to investigate the biology of weight sensing by skeletal muscles and facilitates identification of mechanisms through which skeletal muscles match their performance and experienced load.
Collapse
Affiliation(s)
- Rudolf J Schilder
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.
| | | | | |
Collapse
|
34
|
Udaka J, Terui T, Ohtsuki I, Marumo K, Ishiwata S, Kurihara S, Fukuda N. Depressed contractile performance and reduced fatigue resistance in single skinned fibers of soleus muscle after long-term disuse in rats. J Appl Physiol (1985) 2011; 111:1080-7. [DOI: 10.1152/japplphysiol.00330.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Long-term disuse results in atrophy in skeletal muscle, which is characterized by reduced functional capability, impaired locomotor condition, and reduced resistance to fatigue. Here we show how long-term disuse affects contractility and fatigue resistance in single fibers of soleus muscle taken from the hindlimb immobilization model of the rat. We found that long-term disuse results in depression of caffeine-induced transient contractions in saponin-treated single fibers. However, when normalized to maximal Ca2+-activated force, the magnitude of the transient contractions became similar to that in control fibers. Control experiments indicated that the active force depression in disused muscle is not coupled with isoform switching of myosin heavy chain or troponin, or with disruptions of sarcomere structure or excessive internal sarcomere shortening during contraction. In contrast, our electronmicroscopic observation supported our earlier observation that interfilament lattice spacing is expanded after disuse. Then, to investigate the molecular mechanism of the reduced fatigue resistance in disused muscle, we compared the inhibitory effects of inorganic phosphate (Pi) on maximal Ca2+-activated force in control vs. disused fibers. The effect of Pi was more pronounced in disused fibers, and it approached that observed in control fibers after osmotic compression. These results suggest that contractile depression in disuse results from the lowering of myofibrillar force-generating capacity, rather than from defective Ca2+ mobilization, and the reduced resistance to fatigue is from an enhanced inhibitory effect of Pi coupled with a decrease in the number of attached cross bridges, presumably due to lattice spacing expansion.
Collapse
Affiliation(s)
- Jun Udaka
- Departments of 1Cell Physiology,
- Orthopedic Surgery, and
| | - Takako Terui
- Departments of 1Cell Physiology,
- Anesthesiology, The Jikei University School of Medicine, Tokyo; and
| | | | | | | | | | | |
Collapse
|
35
|
Burniston JG, Hoffman EP. Proteomic responses of skeletal and cardiac muscle to exercise. Expert Rev Proteomics 2011; 8:361-77. [PMID: 21679117 DOI: 10.1586/epr.11.17] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regular exercise is effective in the prevention of chronic diseases and confers a lower risk of death in individuals displaying risk factors such as hypertension and dyslipidemia. Thus, knowledge of the molecular responses to exercise provides a valuable contrast for interpreting investigations of disease and can highlight novel therapeutic targets. While exercise is an everyday experience and can be conceptualized in simple terms, it is also a complex physiological phenomenon and investigation of exercise responses requires sophisticated analytical techniques and careful standardization of the exercise stimulus. Proteomic investigation of exercise is in its infancy but the ability to link changes in function with comprehensive changes in protein expression and post-translational modification holds great promise for advancing physiology. This article highlights recent pioneering work investigating the effects of exercise in skeletal and cardiac muscle that has uncovered novel mechanisms underlying the benefits of physical activity.
Collapse
Affiliation(s)
- Jatin G Burniston
- Muscle Physiology and Proteomics Laboratory, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | | |
Collapse
|
36
|
Schilder RJ, Kimball SR, Marden JH, Jefferson LS. Body weight-dependent troponin T alternative splicing is evolutionarily conserved from insects to mammals and is partially impaired in skeletal muscle of obese rats. ACTA ACUST UNITED AC 2011; 214:1523-32. [PMID: 21490260 DOI: 10.1242/jeb.051763] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Do animals know at a physiological level how much they weigh, and, if so, do they make homeostatic adjustments in response to changes in body weight? Skeletal muscle is a likely tissue for such plasticity, as weight-bearing muscles receive mechanical feedback regarding body weight and consume ATP in order to generate forces sufficient to counteract gravity. Using rats, we examined how variation in body weight affected alternative splicing of fast skeletal muscle troponin T (Tnnt3), a component of the thin filament that regulates the actin-myosin interaction during contraction and modulates force output. In response to normal growth and experimental body weight increases, alternative splicing of Tnnt3 in rat gastrocnemius muscle was adjusted in a quantitative fashion. The response depended on weight per se, as externally attached loads had the same effect as an equal change in actual body weight. Examining the association between Tnnt3 alternative splicing and ATP consumption rate, we found that the Tnnt3 splice form profile had a significant association with nocturnal energy expenditure, independently of effects of weight. For a subset of the Tnnt3 splice forms, obese Zucker rats failed to make the same adjustments; that is, they did not show the same relationship between body weight and the relative abundance of five Tnnt3 β splice forms (i.e. Tnnt3 β2-β5 and β8), four of which showed significant effects on nocturnal energy expenditure in Sprague-Dawley rats. Heavier obese Zucker rats displayed certain splice form relative abundances (e.g. Tnnt3 β3) characteristic of much lighter, lean animals, resulting in a mismatch between body weight and muscle molecular composition. Consequently, we suggest that body weight-inappropriate skeletal muscle Tnnt3 expression in obesity is a candidate mechanism for muscle weakness and reduced mobility. Weight-dependent quantitative variation in Tnnt3 alternative splicing appears to be an evolutionarily conserved feature of skeletal muscle and provides a quantitative molecular marker to track how an animal perceives and responds to body weight.
Collapse
Affiliation(s)
- Rudolf J Schilder
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA. rjs360@psu
| | | | | | | |
Collapse
|
37
|
Bicer S, Patel RJ, Williams JB, Reiser PJ. Patterns of tropomyosin and troponin-T isoform expression in jaw-closing muscles of mammals and reptiles that express masticatory myosin. ACTA ACUST UNITED AC 2011; 214:1077-85. [PMID: 21389191 DOI: 10.1242/jeb.049213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We recently reported that masticatory ('superfast') myosin is expressed in jaw-closing muscles of some rodent species. Most mammalian limb muscle fibers express tropomyosin-β (Tm-β), along with fast-type or slow-type tropomyosin-β (Tm-β), but jaw-closing muscle fibers in members of Carnivora express a unique isoform of Tm [Tm-masticatory (Tm-M)] and little or no Tm-β. The goal of this study was to determine patterns of Tm and troponin-T (TnT) isoform expression in the jaw-closing muscles of rodents and other vertebrate species that express masticatory myosin, and compare the results to those from members of Carnivora. Comparisons of electrophoretic mobility, immunoblotting and mass spectrometry were used to probe the Tm and fast-type TnT isoform composition of jaw-closing and limb muscles of six species of Carnivora, eight species of Rodentia, five species of Marsupialia, big brown bat, long-tailed macaque and six species of Reptilia. Extensive heterogeneity exists in Tm and TnT isoform expression in jaw-closing muscles between phylogenetic groups, but there are fairly consistent patterns within each group. We propose that the differences in Tm and TnT isoform expression patterns between phylogenetic groups, which share the expression of masticatory myosin, may impart fundamental differences in thin-filament-mediated muscle activation to accommodate markedly different feeding styles that may require high force generation in some species (e.g. many members of Carnivora) and high speed in others (e.g. Rodentia).
Collapse
Affiliation(s)
- Sabahattin Bicer
- Department of Oral Biology, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
38
|
Troponin T isoforms and posttranscriptional modifications: Evolution, regulation and function. Arch Biochem Biophys 2010; 505:144-54. [PMID: 20965144 DOI: 10.1016/j.abb.2010.10.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 12/11/2022]
Abstract
Troponin-mediated Ca²(+)-regulation governs the actin-activated myosin motor function which powers striated (skeletal and cardiac) muscle contraction. This review focuses on the structure-function relationship of troponin T, one of the three protein subunits of the troponin complex. Molecular evolution, gene regulation, alternative RNA splicing, and posttranslational modifications of troponin T isoforms in skeletal and cardiac muscles are summarized with emphases on recent research progresses. The physiological and pathophysiological significances of the structural diversity and regulation of troponin T are discussed for impacts on striated muscle function and adaptation in health and diseases.
Collapse
|
39
|
Holloway KV, O'Gorman M, Woods P, Morton JP, Evans L, Cable NT, Goldspink DF, Burniston JG. Proteomic investigation of changes in human vastus lateralis muscle in response to interval-exercise training. Proteomics 2009; 9:5155-74. [DOI: 10.1002/pmic.200900068] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Marden JH, Fescemyer HW, Saastamoinen M, MacFarland SP, Vera JC, Frilander MJ, Hanski I. Weight and nutrition affect pre-mRNA splicing of a muscle gene associated with performance, energetics and life history. ACTA ACUST UNITED AC 2009; 211:3653-60. [PMID: 19011203 DOI: 10.1242/jeb.023903] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A fundamental feature of gene expression in multicellular organisms is the production of distinct transcripts from single genes by alternative splicing (AS), which amplifies protein and functional diversity. In spite of the likely consequences for organismal biology, little is known about how AS varies among individuals or responds to body condition, environmental variation or extracellular signals in general. Here we show that evolutionarily conserved AS of troponin-t in flight muscle of adult moths responds in a quantitative fashion to experimental manipulation of larval nutrition and adult body weight. Troponin-t (Tnt) isoform composition is known to affect muscle force and power output in other animals, and is shown here to be associated with the thorax mass-specific rate of energy consumption during flight. Loading of adults with external weights for 5 days caused an AS response nearly identical to equal increases in actual body weight. In addition, there were effects of larval feeding history on adult Tnt isoform composition that were independent of body weight, with moths from poorer larval feeding regimes producing isoform profiles associated with reduced muscle performance and energy consumption rate. Thus, Tnt isoform composition in striated muscle is responsive to both weight-sensing and nutrition-sensing mechanisms, with consequent effects on function. In free-living butterflies, Tnt isoform composition was also associated with activity level and very strongly with the rate of egg production. Overall, these results show that AS of a muscle gene responds in a quantitative fashion to whole-organism variables, which apparently serves to coordinate muscle strength and energy expenditure with body condition and life history.
Collapse
Affiliation(s)
- James H Marden
- Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Huang QQ, Feng HZ, Liu J, Du J, Stull LB, Moravec CS, Huang X, Jin JP. Co-expression of skeletal and cardiac troponin T decreases mouse cardiac function. Am J Physiol Cell Physiol 2007; 294:C213-22. [PMID: 17959729 DOI: 10.1152/ajpcell.00146.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In contrast to skeletal muscles that simultaneously express multiple troponin T (TnT) isoforms, normal adult human cardiac muscle contains a single isoform of cardiac TnT. To understand the significance of myocardial TnT homogeneity, we examined the effect of TnT heterogeneity on heart function. Transgenic mouse hearts overexpressing a fast skeletal muscle TnT together with the endogenous cardiac TnT was investigated in vivo and ex vivo as an experimental system of concurrent presence of two classes of TnT in the adult cardiac muscle. This model of myocardial TnT heterogeneity produced pathogenic phenotypes: echocardiograph imaging detected age-progressive reductions of cardiac function; in vivo left ventricular pressure analysis showed decreased myocardial contractility; ex vivo analysis of isolated working heart preparations confirmed an intrinsic decrease of cardiac function in the absence of neurohumoral influence. The transgenic mice also showed chronic myocardial hypertrophy and degeneration. The dominantly negative effects of introducing a fast TnT into the cardiac thin filaments to produce two classes of Ca(2+) regulatory units in the adult myocardium suggest that TnT heterogeneity decreases contractile function by disrupting the synchronized action during ventricular contraction that is normally activated as an electrophysiological syncytium.
Collapse
Affiliation(s)
- Q-Q Huang
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Biesiadecki BJ, Chong SM, Nosek TM, Jin JP. Troponin T core structure and the regulatory NH2-terminal variable region. Biochemistry 2007; 46:1368-79. [PMID: 17260966 PMCID: PMC1794682 DOI: 10.1021/bi061949m] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conserved central and COOH-terminal regions of troponin T (TnT) interact with troponin C, troponin I, and tropomyosin to regulate striated muscle contraction. Phylogenic data show that the NH2-terminal region has evolved as an addition to the conserved core structure of TnT. This NH2-terminal region does not bind other thin filament proteins, and its sequence is hypervariable between fiber type and developmental isoforms. Previous studies have demonstrated that NH2-terminal modifications alter the COOH-terminal conformation of TnT and thin filament Ca2+-activation, yet the functional core structure of TnT and the mechanism of NH2-terminal modulation are not well understood. To define the TnT core structure and investigate the regulatory role of the NH2-terminal variable region, we investigated two classes of model TnT molecules: (1) NH2-terminal truncated cardiac TnT and (2) chimera proteins consisting of an acidic or basic skeletal muscle TnT NH2-terminus spliced to the cardiac TnT core. Deletion of the TnT hypervariable NH2-terminus preserved binding to troponin I and tropomyosin and sustained cardiac muscle contraction in the heart of transgenic mice. Further deletion of the conserved central region diminished binding to tropomyosin. The reintroduction of differently charged NH2-terminal domains in the chimeric molecules produced long-range conformational changes in the central and COOH-terminal regions to alter troponin I and tropomyosin binding. Similar NH2-terminal charge effects are demonstrated in naturally occurring cardiac TnT isoforms, indicating a physiological significance. These results suggest that the hypervariable NH2-terminal region modulates the conformation and function of the TnT core structure to fine-tune muscle contractility.
Collapse
Affiliation(s)
- Brandon J. Biesiadecki
- From the Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106; and
| | - Stephen M. Chong
- Section of Molecular Cardiology, Evanston Northwestern Healthcare and Northwestern University Fienberg School of Medicine, Evanston, Illinois 60201
| | - Thomas M. Nosek
- From the Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106; and
| | - J.-P. Jin
- From the Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106; and
- Section of Molecular Cardiology, Evanston Northwestern Healthcare and Northwestern University Fienberg School of Medicine, Evanston, Illinois 60201
- *To whom correspondence should be addressed: Tel.: 847-570-1960; Fax: 847-570-1865; e-mail:
| |
Collapse
|
43
|
Yu ZB, Gao F, Feng HZ, Jin JP. Differential regulation of myofilament protein isoforms underlying the contractility changes in skeletal muscle unloading. Am J Physiol Cell Physiol 2006; 292:C1192-203. [PMID: 17108008 PMCID: PMC1820608 DOI: 10.1152/ajpcell.00462.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Weight-bearing skeletal muscles change phenotype in response to unloading. Using the hindlimb suspension rat model, we investigated the regulation of myofilament protein isoforms in correlation to contractility. Four weeks of continuous hindlimb unloading produced progressive atrophy and contractility changes in soleus but not extensor digitorum longus muscle. The unloaded soleus muscle also had decreased fatigue resistance. Along with the decrease of myosin heavy chain isoform I and IIa and increase of IIb and IIx, coordinated regulation of thin filament regulatory protein isoforms were observed: gamma- and beta-tropomyosin decreased and alpha-tropomyosin increased, resulting in an alpha/beta ratio similar to that in normal fast twitch skeletal muscle; troponin I and troponin T (TnT) both showed decrease in the slow isoform and increases in the fast isoform. The TnT isoform switching began after 7 days of unloading and TnI isoform showed detectable changes at 14 days while other protein isoform changes were not significant until 28 days of treatment. Correlating to the early changes in contractility, especially the resistance to fatigue, the early response of TnT isoform regulation may play a unique role in the adaptation of skeletal muscle to unloading. When the fast TnT gene expression was upregulated in the unloaded soleus muscle, alternative RNA splicing switched to produce more high molecular weight acidic isoforms, reflecting a potential compensation for the decrease of slow TnT that is critical to skeletal muscle function. The results demonstrate that differential regulation of TnT isoforms is a sensitive mechanism in muscle adaptation to functional demands.
Collapse
Affiliation(s)
- Zhi-Bin Yu
- Section of Molecular Cardiology, Evanston Northwestern Healthcare, Northwestern University Feinberg School of Medicine, Evanston, Illinois 60201, USA and
- Department of Aerospace Physiology, Fourth Military Medical University, Xi’an 710032, China
| | - Fang Gao
- Department of Aerospace Physiology, Fourth Military Medical University, Xi’an 710032, China
| | - Han-Zhong Feng
- Section of Molecular Cardiology, Evanston Northwestern Healthcare, Northwestern University Feinberg School of Medicine, Evanston, Illinois 60201, USA and
- Department of Aerospace Physiology, Fourth Military Medical University, Xi’an 710032, China
| | - J-P Jin
- Section of Molecular Cardiology, Evanston Northwestern Healthcare, Northwestern University Feinberg School of Medicine, Evanston, Illinois 60201, USA and
- Addressed correspondence to: J.-P. Jin, Molecular Cardiology, Evanston Northwestern Healthcare, Evanston, Illinois 60201 Tel: (847)570-1960. Fax: (847)570-1865. E-mail:
| |
Collapse
|
44
|
Marden JH. Quantitative and evolutionary biology of alternative splicing: how changing the mix of alternative transcripts affects phenotypic plasticity and reaction norms. Heredity (Edinb) 2006; 100:111-20. [PMID: 17006532 DOI: 10.1038/sj.hdy.6800904] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Alternative splicing (AS) of pre-messenger RNA is a common phenomenon that creates different transcripts from a single gene, and these alternative transcripts affect phenotypes. The majority of AS research has examined tissue and developmental specificity of expression of particular AS transcripts, how this specificity affects cell function, and how aberrant AS is related to disease. Few studies have examined quantitative between-individual variation in AS within a cell or tissue type, or in relation to phenotypes, but the results are compelling: quantitative variation in AS affects plastic traits such as stress, anxiety, fear, egg production, muscle performance, energetics and plant growth. Genomic analyses of AS are also at a nascent stage, but have revealed a number of significant evolutionary patterns. Growing knowledge of upstream genes and kinases that regulate AS provides the as-yet little explored potential to examine how these genes and pathways respond to environmental and genotype variables. Research in this area can provide glimpses of a labyrinth of genetic architectures that have rarely been considered in evolutionary and organismal biology, or in quantitative genetics. The scarcity of contribution to knowledge about AS from these fields is illustrated by the fact that heritability of quantitative variation in AS has not yet been determined for any gene in any organism. New research tactics that incorporate quantitative analyses of AS will allow organismal and evolutionary biologists to attain a fuller mechanistic understanding of many of the traits they study, and may lead to more rapid discovery of functionally important polymorphisms.
Collapse
Affiliation(s)
- J H Marden
- Department of Biology, 208 Mueller Lab, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
45
|
Weng T, Chen Z, Jin N, Gao L, Liu L. Gene expression profiling identifies regulatory pathways involved in the late stage of rat fetal lung development. Am J Physiol Lung Cell Mol Physiol 2006; 291:L1027-37. [PMID: 16798779 DOI: 10.1152/ajplung.00435.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fetal lung development is a complex biological process that involves temporal and spatial regulations of many genes. To understand the molecular mechanisms of this process, we investigated gene expression profiles of fetal lungs on gestational days 18, 19, 20, and 21, as well as newborn and adult rat lungs. For this analysis, we used an in-house rat DNA microarray containing 6,000 known genes and 4,000 expressed sequence tags (ESTs). Of these, 1,512 genes passed the statistical significance analysis of microarray (SAM) test; an at least twofold change was shown for 583 genes (402 known genes and 181 ESTs) between at least two time points. K-means cluster analysis revealed seven major expression patterns. In one of the clusters, gene expression increased from day 18 to day 20 and then decreased. In this cluster, which contained 10 known genes and 5 ESTs, 8 genes are associated with development. These genes can be integrated into regulatory pathways, including growth factors, plasma membrane receptors, adhesion molecules, intracellular signaling molecules, and transcription factors. Real-time PCR analysis of these 10 genes showed an 88% consistency with the microarray data. The mRNA of LIM homeodomain protein 3a (Lhx3), a transcription factor, was enriched in fetal type II cells. In contrast, pleiotrophin, a growth factor, had a much higher expression in fetal lung tissues than in fetal type II cells. Immunohistochemistry revealed that Lhx3 was localized in fetal lung epithelial cells and pleiotrophin in the mesenchymal cells adjacent to the developing epithelium and blood vessel. Using GenMAPP, we identified four regulatory pathways: transforming growth factor-beta signaling, inflammatory response, cell cycle, and G protein signaling. We also identified two metabolic pathways: glycolysis-gluconeogenesis and proteasome degradation. Our results may provide new insights into the complex regulatory pathways that control fetal lung development.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, 74078, USA
| | | | | | | | | |
Collapse
|
46
|
Gallon CE, Tschirgi ML, Chandra M. Differences in myofilament calcium sensitivity in rat psoas fibers reconstituted with troponin T isoforms containing the alpha- and beta-exons. Arch Biochem Biophys 2006; 456:127-34. [PMID: 16839517 DOI: 10.1016/j.abb.2006.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/19/2006] [Accepted: 06/08/2006] [Indexed: 11/25/2022]
Abstract
The carboxy terminus of fast skeletal muscle troponin T (fsTnT) is highly conserved. However, mutually exclusive splicing of exons 16 and 17 in the fsTnT gene results in the expression of either the alpha- or beta-fsTnT isoform. The alpha-isoform is expressed only in adult fast skeletal muscle, whereas the beta-isoform is expressed in varying quantities throughout muscle development. Reconstitution of detergent-skinned adult rat psoas muscle fibers with rat fast skeletal troponin complexes containing either fsTnT isoform demonstrated that reconstitution with alpha-fsTnT resulted in greater myofilament Ca(2+) sensitivity than reconstitution with beta-fsTnT, without changes to Ca(2+)-activated maximal tension, ATPase activity or tension cost. The observed isoform-specific differences in myofilament Ca(2+) sensitivity may be due to changes in the transition of the thin-filament regulatory unit from the off to the on state, possibly due to altered interactions of the C-terminus of fsTnT with troponins I and/or C.
Collapse
Affiliation(s)
- Clare E Gallon
- Department of Veterinary Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164-6520, USA
| | | | | |
Collapse
|
47
|
Gomes AV, Venkatraman G, Potter JD. The Miscommunicative Cardiac Cell: When Good Proteins Go Bad. Ann N Y Acad Sci 2006; 1047:30-7. [PMID: 16093482 DOI: 10.1196/annals.1341.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Troponin (Tn) is made up of three subunits, troponin T (TnT), troponin I (TnI), and troponin C (TnC). In cardiac muscle, TnI can exist as two isoforms, slow skeletal TnI (ssTnI) or cardiac TnI (cTnI), whereas TnT occurs as multiple isoforms. The predominant form of TnI in fetal cardiac muscle is ssTnI, which is derived from a different gene than cTnI. However, the predominant form of cardiac TnT (cTnT) in fetal muscle is cTnT1, which is derived from the same gene that produces the adult cTnT isoform (cTnT3). Fetal cardiac muscle is more sensitive to Ca(2+) than adult muscle and this may be due in part to the fetal cTnT1 and ssTnI isoforms. cTnT1 and/or ssTnI by themselves cause a significant increase in Ca(2+) sensitivity when compared to cTnT3 and/or cTnI. Mutations in the gene for cTnT can cause hypertrophic cardiomyopathy or dilated cardiomyopathy (DCM). Investigation of DCM mutations in the fetal cTnT1 isoform showed that the cTnT isoform is an important determinant of the effect of the mutation. The TnI isoform also affects the physiological function of the cardiac muscle. The presence of both the fetal TnT isoform, containing a DCM mutation, and ssTnI results in larger changes in Ca(2+) sensitivity than the same DCM mutant in the adult TnT isoform and in the presence of cTnI (when compared to their respective wild-type TnT controls). These recent results suggest that some mutations may have different severities in fetal and adult hearts.
Collapse
Affiliation(s)
- Aldrin V Gomes
- Dept. of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine at the University of Miami, 1600 N.W. 10th Avenue, Miami, FL 33136, USA
| | | | | |
Collapse
|
48
|
Chen FC, Ogut O. Decline of contractility during ischemia-reperfusion injury: actin glutathionylation and its effect on allosteric interaction with tropomyosin. Am J Physiol Cell Physiol 2005; 290:C719-27. [PMID: 16251471 DOI: 10.1152/ajpcell.00419.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The severity and duration of ischemia-reperfusion injury is hypothesized to play an important role in the ability of the heart subsequently to recover contractility. Permeabilized trabeculae were prepared from a rat model of ischemia-reperfusion injury to examine the impact on force generation. Compared with the control perfused condition, the maximum force (F(max)) per cross-sectional area and the rate of tension redevelopment of Ca(2+)-activated trabeculae fell by 71% and 44%, respectively, during ischemia despite the availability of a high concentration of ATP. The reduction in F(max) with ischemia was accompanied by a decline in fiber stiffness, implying a drop in the absolute number of attached cross bridges. However, the declines during ischemia were largely recovered after reperfusion, leading to the hypothesis that intrinsic, reversible posttranslational modifications to proteins of the contractile filaments occur during ischemia-reperfusion injury. Examination of thin-filament proteins from ischemic or ischemia-reperfused hearts did not reveal proteolysis of troponin I or T. However, actin was found to be glutathionylated with ischemia. Light-scattering experiments demonstrated that glutathionylated G-actin did not polymerize as efficiently as native G-actin. Although tropomyosin accelerated the time course of native and glutathionylated G-actin polymerization, the polymerization of glutathionylated G-actin still lagged native G-actin at all concentrations of tropomyosin tested. Furthermore, cosedimentation experiments demonstrated that tropomyosin bound glutathionylated F-actin with significantly reduced cooperativity. Therefore, glutathionylated actin may be a novel contributor to the diverse set of posttranslational modifications that define the function of the contractile filaments during ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Frank C Chen
- Cardiovascular Contractility and Signaling Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Guggenheim 9-06, 200 First Ave. SW, Rochester, MN 55905, USA
| | | |
Collapse
|
49
|
Chaudhuri T, Mukherjea M, Sachdev S, Randall JD, Sarkar S. Role of the fetal and alpha/beta exons in the function of fast skeletal troponin T isoforms: correlation with altered Ca2+ regulation associated with development. J Mol Biol 2005; 352:58-71. [PMID: 16081096 DOI: 10.1016/j.jmb.2005.06.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 06/17/2005] [Accepted: 06/29/2005] [Indexed: 12/01/2022]
Abstract
In mammalian fast skeletal muscle, constitutive and alternative splicing from a single troponin T (TnT) gene produce multiple developmentally regulated and tissue specific TnT isoforms. Two exons, alpha (exon 16) and beta (exon 17), located near the 3' end of the gene and coding for two different 14 amino acid residue peptides are spliced in a mutually exclusive manner giving rise to the adult TnTalpha and the fetal TnTbeta isoforms. In addition, an acidic peptide coded by a fetal (f) exon located between exons 8 and 9 near the 5' end of the gene, is specifically present in TnTbeta and absent in the adult isoforms. To define the functional role of the f and alpha/beta exons, we constructed combinations of TnT cDNAs from a single human fetal fast skeletal TnTbeta cDNA clone in order to circumvent the problem of N-terminal sequence heterogeneity present in wild-type TnT isoforms, irrespective of the stage of development. Nucleotide sequences of these constructs, viz. TnTalpha, TnTalpha + f, TnTbeta - f and TnTbeta are identical, except for the presence or absence of the alpha or beta and f exons. Our results, using the recombinant TnT isoforms in different functional in vitro assays, show that the presence of the f peptide in the N-terminal T1 region of TnT, has a strong inhibitory effect on binary interactions between TnT and other thin filament proteins, TnI, TnC and Tm. The presence of the f peptide led to reduced Ca2+-dependent ATPase activity in a reconstituted thin filament, whereas the contribution of the alpha and beta peptides in the biological activity of TnT was primarily modulatory. These results indicate that the f peptide confers an inhibitory effect on the biological function of fast skeletal TnT and this can be correlated with changes in the Ca2+ regulation associated with development in fast skeletal muscle.
Collapse
Affiliation(s)
- Tathagata Chaudhuri
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
50
|
Brotto MA, Biesiadecki BJ, Brotto LS, Nosek TM, Jin JP. Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility. Am J Physiol Cell Physiol 2005; 290:C567-76. [PMID: 16192301 PMCID: PMC1409758 DOI: 10.1152/ajpcell.00422.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.
Collapse
Affiliation(s)
- Marco A Brotto
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|