1
|
Trujillo-Paez JV, Peng G, Le Thanh Nguyen H, Nakamura M, Umehara Y, Yue H, Ikutama R, Takahashi M, Ikeda S, Ogawa H, Okumura K, Niyonsaba F. Calcitriol modulates epidermal tight junction barrier function in human keratinocytes. J Dermatol Sci 2024; 114:13-23. [PMID: 38448341 DOI: 10.1016/j.jdermsci.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2022] [Revised: 12/07/2023] [Accepted: 02/04/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND The aberrant expression of tight junction (TJ) proteins play an important role in several diseases with impaired skin barriers, including atopic dermatitis, psoriasis, and chronic wounds. The evidence provided thus far suggests an important role of calcitriol in skin homeostasis. However, it is not known whether calcitriol improves the impaired skin barrier. OBJECTIVE To investigate the effect of calcitriol on TJ barrier function in human primary keratinocytes. METHODS Normal human primary keratinocytes were stimulated with calcitriol, and the expression of TJ-related proteins was measured by real-time PCR and Western blotting. Immunofluorescence was used to examine the intercellular distribution of TJ-related proteins. TJ barrier function was assessed by the transepithelial electrical resistance (TER) assay. RESULTS We demonstrated that calcitriol increased the expression levels of TJ-related proteins, including claudin-4, claudin-7, occludin, and zonula occludens (ZO)- 1. Calcitriol enhanced the distribution of TJ-related proteins at cellcell borders and induced the phosphorylation of pathways involved in the regulation of TJ barrier function, such as atypical protein kinase C (aPKC), Ras-related C3 botulinum toxin substrate 1 (Rac1), phosphoinositide 3-kinase (PI3K), and protein kinase B (Akt), as evidenced by the effects of specific inhibitors on the above pathways. Indeed, we confirmed that calcitriol enhanced TER in keratinocyte monolayers. CONCLUSION These findings showed that calcitriol could modify the expression of keratinocyte TJ proteins, contributing to the maintenance of homeostatic barrier function.
Collapse
Affiliation(s)
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masahiro Nakamura
- Department of Otorhinolaryngology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Risa Ikutama
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Miho Takahashi
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan.
| |
Collapse
|
2
|
Nguyen HLT, Peng G, Trujillo-Paez JV, Yue H, Ikutama R, Takahashi M, Umehara Y, Okumura K, Ogawa H, Ikeda S, Niyonsaba F. The Antimicrobial Peptide AMP-IBP5 Suppresses Dermatitis-like Lesions in a Mouse Model of Atopic Dermatitis through the Low-Density Lipoprotein Receptor-Related Protein-1 Receptor. Int J Mol Sci 2023; 24:ijms24065200. [PMID: 36982275 PMCID: PMC10049508 DOI: 10.3390/ijms24065200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
The antimicrobial peptide derived from insulin-like growth factor-binding protein 5 (AMP-IBP5) exhibits antimicrobial activities and immunomodulatory functions in keratinocytes and fibroblasts. However, its role in regulating skin barrier function remains unclear. Here, we investigated the effects of AMP-IBP5 on the skin barrier and its role in the pathogenesis of atopic dermatitis (AD). 2,4-Dinitrochlorobenzene was used to induce AD-like skin inflammation. Transepithelial electrical resistance and permeability assays were used to investigate tight junction (TJ) barrier function in normal human epidermal keratinocytes and mice. AMP-IBP5 increased the expression of TJ-related proteins and their distribution along the intercellular borders. AMP-IBP5 also improved TJ barrier function through activation of the atypical protein kinase C and Rac1 pathways. In AD mice, AMP-IBP5 ameliorated dermatitis-like symptoms restored the expression of TJ-related proteins, suppressed the expression of inflammatory and pruritic cytokines, and improved skin barrier function. Interestingly, the ability of AMP-IBP5 to alleviate inflammation and improve skin barrier function in AD mice was abolished in mice treated with an antagonist of the low-density lipoprotein receptor-related protein-1 (LRP1) receptor. Collectively, these findings indicate that AMP-IBP5 may ameliorate AD-like inflammation and enhance skin barrier function through LRP1, suggesting a possible role for AMP-IBP5 in the treatment of AD.
Collapse
Affiliation(s)
- Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Juan Valentin Trujillo-Paez
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Risa Ikutama
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Miho Takahashi
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Faculty of International Liberal Arts, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
- Correspondence: ; Tel.: +81-3-5802-1591; Fax: +81-3-3813-5512
| |
Collapse
|
3
|
Kaminsky LW, Al-Sadi R, Ma TY. IL-1β and the Intestinal Epithelial Tight Junction Barrier. Front Immunol 2021; 12:767456. [PMID: 34759934 PMCID: PMC8574155 DOI: 10.3389/fimmu.2021.767456] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelial tight junction (TJ) barrier controls the paracellular permeation of contents from the intestinal lumen into the intestinal tissue and systemic circulation. A defective intestinal TJ barrier has been implicated as an important pathogenic factor in inflammatory diseases of the gut including Crohn's disease, ulcerative colitis, necrotizing enterocolitis, and celiac disease. Previous studies have shown that pro-inflammatory cytokines, which are produced during intestinal inflammation, including interleukin-1β (IL-1β), tumor necrosis factor-α, and interferon-γ, have important intestinal TJ barrier-modulating actions. Recent studies have shown that the IL-1β-induced increase in intestinal TJ permeability is an important contributing factor of intestinal inflammation. The IL-1β-induced increase in intestinal TJ permeability is mediated by regulatory signaling pathways and activation of nuclear transcription factor nuclear factor-κB, myosin light chain kinase gene activation, and post-transcriptional occludin gene modulation by microRNA and contributes to the intestinal inflammatory process. In this review, the regulatory role of IL-1β on intestinal TJ barrier, the intracellular mechanisms that mediate the IL-1β modulation of intestinal TJ permeability, and the potential therapeutic targeting of the TJ barrier are discussed.
Collapse
Affiliation(s)
- Lauren W Kaminsky
- Section of Allergy, Asthma, and Immunology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rana Al-Sadi
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Thomas Y Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
4
|
Hering NA, Luettig J, Jebautzke B, Schulzke JD, Rosenthal R. The Punicalagin Metabolites Ellagic Acid and Urolithin A Exert Different Strengthening and Anti-Inflammatory Effects on Tight Junction-Mediated Intestinal Barrier Function In Vitro. Front Pharmacol 2021; 12:610164. [PMID: 33776763 PMCID: PMC7987831 DOI: 10.3389/fphar.2021.610164] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2020] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
Scope: Ellagitannins are polyphenols found in numerous fruits, nuts and seeds. The elagitannin punicalagin and its bioactive metabolites ellagic acid and urolithins are discussed to comprise a high potential for therapeutically or preventive medical application such as in intestinal diseases. The present study characterizes effects of punicalagin, ellagic acid and urolithin A on intestinal barrier function in the absence or presence of the proinflammatory cytokine tumor necrosis factor-α (TNFα). Methods and Results: Transepithelial resistance (TER), fluorescein and ion permeability, tight junction protein expression and signalling pathways were examined in Caco-2 and HT-29/B6 intestinal epithelial cell models. Punicalagin had less or no effects on barrier function in both cell models. Ellagic acid was most effective in ileum-like Caco-2 cells, where it increased TER and reduced fluorescein and sodium permeabilities. This was paralleled by myosin light chain kinase two mediated expression down-regulation of claudin-4, -7 and -15. Urolithin A impeded the TNFα-induced barrier loss by inhibition of claudin-1 and -2 protein expression upregulation and claudin-1 delocalization in HT-29/B6. Conclusion: Ellagic acid and urolithin A affect intestinal barrier function in distinct ways. Ellagic acid acts preventive by strengthening the barrier per se, while urolithin A protects against inflammation-induced barrier dysfunction.
Collapse
Affiliation(s)
- Nina A Hering
- Department of General and Visceral Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germasny
| | - Julia Luettig
- Institute of Clinical Physiology/Nutritional Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Jebautzke
- Institute of Clinical Physiology/Nutritional Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg D Schulzke
- Institute of Clinical Physiology/Nutritional Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rita Rosenthal
- Institute of Clinical Physiology/Nutritional Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Hua Y, Wu J, Fu M, Liu J, Li X, Zhang B, Zhao W, Wan C. Enterohemorrhagic Escherichia coli Effector Protein EspF Interacts With Host Protein ANXA6 and Triggers Myosin Light Chain Kinase (MLCK)-Dependent Tight Junction Dysregulation. Front Cell Dev Biol 2020; 8:613061. [PMID: 33425920 PMCID: PMC7785878 DOI: 10.3389/fcell.2020.613061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2020] [Accepted: 12/02/2020] [Indexed: 01/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important foodborne pathogen that can cause bloody diarrhea and hemolytic uremic syndrome (HUS) in humans. EspF is one of the best-characterized effector proteins secreted from the type three secretion system to hijack host cell functions. However, the crucial pathogen-host interactions and the basis for the intestinal barrier disruption during infections remain elusive. Our previous study screened and verified the interaction between host protein ANXA6 and EspF protein. Here, by fluorescence resonance energy transfer (FRET) and co-immunoprecipitation (CO-IP), we verified that EspF interacts with ANXA6 through its C-terminal domain. Furthermore, we found that both the constitutive expression of EspF or ANXA6 and the co-expression of EspF-ANXA6 could decrease the levels of tight junction (TJ) proteins ZO-1 and occludin, and disrupt the distribution of ZO-1. Moreover, we showed that EspF-ANXA6 activated myosin light chain kinase (MLCK), induced the phosphorylation of myosin light chain (MLC) and PKCα, and down-regulated the expression level of Calmodulin protein. Collectively, this study revealed a novel interaction between the host protein (ANXA6) and EspF. The binding of EspF to ANXA6 may perturb TJs in an MLCK-MLC-dependent manner, and thus may be involved in EHEC pathogenic function.
Collapse
Affiliation(s)
- Ying Hua
- Biosafety Level 3 Laboratory, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China.,Key Laboratory of Tropical Disease Research of Guangdong Province, Guangzhou, China
| | - Jiali Wu
- Biosafety Level 3 Laboratory, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Muqing Fu
- Biosafety Level 3 Laboratory, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinyue Liu
- Biosafety Level 3 Laboratory, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoxia Li
- Biosafety Level 3 Laboratory, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Bao Zhang
- Biosafety Level 3 Laboratory, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China.,Key Laboratory of Tropical Disease Research of Guangdong Province, Guangzhou, China
| | - Wei Zhao
- Biosafety Level 3 Laboratory, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China.,Key Laboratory of Tropical Disease Research of Guangdong Province, Guangzhou, China
| | - Chengsong Wan
- Biosafety Level 3 Laboratory, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China.,Key Laboratory of Tropical Disease Research of Guangdong Province, Guangzhou, China
| |
Collapse
|
6
|
Role of ROCK/NF‑κB/AQP8 signaling in ethanol‑induced intestinal epithelial barrier dysfunction. Mol Med Rep 2020; 22:2253-2262. [PMID: 32705263 PMCID: PMC7411333 DOI: 10.3892/mmr.2020.11318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the signaling pathways and the underlying molecular mechanisms involved in ethanol-induced intestinal epithelial barrier (IEB) dysfunction. Therefore, an in vitro experimental model of IEB was established using an ethanol-treated Caco-2 intestinal epithelial cell monolayer. The results confirmed that Rho-associated kinases (ROCKs), namely ROCK1 and ROCK2, were involved in the underlying pathway of ethanol-induced IEB dysfunction. Ethanol exposure significantly increased the expression of both ROCK isoforms and the activity of nuclear factor κB (NF-κB). Furthermore, ROCK1- and ROCK2-specific small interfering RNAs (siRNAs), and the NF-κB inhibitor ammonium pyrrolidine dithiocarbamate partially inhibited transepithelial electrical resistance in Caco-2 cells in an in vitro IEB model. In addition, ROCK1- and ROCK2-specific siRNAs inhibited the activity of NF-κB, thereby downregulating the expression of aquaporin 8 (AQP8). Taken together, the results of the present study suggested that ROCK1/ROCK2-mediated activation of NF-κB and upregulation of AQP8 expression levels may represent a novel mechanism of ethanol-induced impairment of IEB function.
Collapse
|
7
|
Danielsen EM, Hansen GH. Probing paracellular - versus transcellular tissue barrier permeability using a gut mucosal explant culture system. Tissue Barriers 2019; 7:1601955. [PMID: 30999787 DOI: 10.1080/21688370.2019.1601955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022] Open
Abstract
Intestinal permeation enhancers (PEs), i.e. agents improving oral delivery of therapeutic drugs with poor bioavailability, may typically act by two principally different mechanisms: to increase either transcellular -or paracellular passage across the epithelium. With the aim to define these different modes of action in a small intestinal mucosal explant system, the transcellular-acting PE sodium dodecyl sulfate (SDS) was compared to the paracellular-acting PE ethylenediaminetetraacetic acid (EDTA), using several fluorescent polar - and lipophilic probes. Here, SDS rendered the enterocyte cell membranes leaky for the relatively small polar tracers Lucifer yellow and a 3 kD Texas red-conjugated dextran, but most conspicuously SDS blocked constitutive endocytosis from the brush border. In contrast, the main action of EDTA was to increase paracellular passage across the epithelium of both polar probes, including 10 - and 70 kDa dextrans and lipophilic probes, visualized by distinct stripy lateral staining of enterocytes and/or accumulation in the lamina propria. In addition, EDTA caused a loss of epithelial cell polarity by opening tight junctions for diffusion of domain-specific basolateral/apical cell membrane protein markers into the opposite domains. By transmission electron microscopy, SDS caused the formation of vacuoles and vesicle-like structures at the lateral cell membranes. In contrast, EDTA led to a bulging of the whole enterocyte apex, resulting in a "cobblestone" appearance of the epithelium, probably caused by an extreme contraction of the perijunctional actomyosin ring. We conclude that the mucosal explant system is a convenient model for predicting transcellular/paracellular modes of action of novel prospective PEs.
Collapse
Affiliation(s)
- E Michael Danielsen
- a Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Gert H Hansen
- a Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
8
|
Yang G, Bibi S, Du M, Suzuki T, Zhu MJ. Regulation of the intestinal tight junction by natural polyphenols: A mechanistic perspective. Crit Rev Food Sci Nutr 2018; 57:3830-3839. [PMID: 27008212 DOI: 10.1080/10408398.2016.1152230] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
Impairment of the epithelial barrier function is closely linked to the pathogenesis of various gastrointestinal diseases, food allergies, type I diabetes, and other systematic diseases. Plant-derived polyphenols are natural secondary metabolites and exert various physiological benefits, including anti-inflammatory, anti-oxidative, anti-carcinogenic, and anti-aging effects. Recent studies also show the role of plant polyphenols in regulation of the intestinal barrier and prevention of intestinal inflammatory diseases. Here we summarize the regulatory pathways and mediators linking polyphenols to their beneficial effects on tight junction and gut epithelial barrier functions, and provide useful information about using polyphenols as nutraceuticals for intestinal diseases.
Collapse
Affiliation(s)
- Guan Yang
- a School of Food Science , Washington State University , Pullman , Washington , USA
| | - Shima Bibi
- a School of Food Science , Washington State University , Pullman , Washington , USA
| | - Min Du
- b Department of Animal Science , Washington State University , Pullman , Washington , USA
| | - Takuya Suzuki
- c Department of Biofunctional Science and Technology , Hiroshima University , Higashi-Hiroshima , Japan
| | - Mei-Jun Zhu
- a School of Food Science , Washington State University , Pullman , Washington , USA
| |
Collapse
|
9
|
The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man. Urolithiasis 2016; 45:89-108. [PMID: 27913853 DOI: 10.1007/s00240-016-0952-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022]
Abstract
The intestine exerts a considerable influence over urinary oxalate in two ways, through the absorption of dietary oxalate and by serving as an adaptive extra-renal pathway for elimination of this waste metabolite. Knowledge of the mechanisms responsible for oxalate absorption and secretion by the intestine therefore have significant implications for understanding the etiology of hyperoxaluria, as well as offering potential targets for future treatment strategies for calcium oxalate kidney stone disease. In this review, we present the recent developments and advances in this area over the past 10 years, and put to the test some of the new ideas that have emerged during this time, using human and mouse models. A key focus for our discussion are the membrane-bound anion exchangers, belonging to the SLC26 gene family, some of which have been shown to participate in transcellular oxalate absorption and secretion. This has offered the opportunity to not only examine the roles of these specific transporters, revealing their importance to oxalate homeostasis, but to also probe the relative contributions made by the active transcellular and passive paracellular components of oxalate transport across the intestine. We also discuss some of the various physiological stimuli and signaling pathways which have been suggested to participate in the adaptation and regulation of intestinal oxalate transport. Finally, we offer an update on research into Oxalobacter formigenes, alongside recent investigations of other oxalate-degrading gut bacteria, in both laboratory animals and humans.
Collapse
|
10
|
Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev 2016; 106:277-319. [PMID: 27320643 DOI: 10.1016/j.addr.2016.06.005] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
Intestinal permeation enhancers (PEs) are one of the most widely tested strategies to improve oral delivery of therapeutic peptides. This article assesses the intestinal permeation enhancement action of over 250 PEs that have been tested in intestinal delivery models. In depth analysis of pre-clinical data is presented for PEs as components of proprietary delivery systems that have progressed to clinical trials. Given the importance of co-presentation of sufficiently high concentrations of PE and peptide at the small intestinal epithelium, there is an emphasis on studies where PEs have been formulated with poorly permeable molecules in solid dosage forms and lipoidal dispersions.
Collapse
|
11
|
Zhang ZQ, Wang SB, Wang RG, Zhang W, Wang PL, Su XO. Phosphoproteome Analysis Reveals the Molecular Mechanisms Underlying Deoxynivalenol-Induced Intestinal Toxicity in IPEC-J2 Cells. Toxins (Basel) 2016; 8:toxins8100270. [PMID: 27669298 PMCID: PMC5086631 DOI: 10.3390/toxins8100270] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022] Open
Abstract
Deoxynivalenol (DON) is a widespread trichothecene mycotoxin that commonly contaminates cereal crops and has various toxic effects in animals and humans. DON primarily targets the gastrointestinal tract, the first barrier against ingested food contaminants. In this study, an isobaric tag for relative and absolute quantitation (iTRAQ)-based phosphoproteomic approach was employed to elucidate the molecular mechanisms underlying DON-mediated intestinal toxicity in porcine epithelial cells (IPEC-J2) exposed to 20 μM DON for 60 min. There were 4153 unique phosphopeptides, representing 389 phosphorylation sites, detected in 1821 phosphoproteins. We found that 289 phosphopeptides corresponding to 255 phosphoproteins were differentially phosphorylated in response to DON. Comprehensive Gene Ontology (GO) analysis combined with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment revealed that, in addition to previously well-characterized mitogen-activated protein kinase (MAPK) signaling, DON exposure altered phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and Janus kinase/signal transducer, and activator of transcription (JAK/STAT) pathways. These pathways are involved in a wide range of biological processes, including apoptosis, the intestinal barrier, intestinal inflammation, and the intestinal absorption of glucose. DON-induced changes are likely to contribute to the intestinal dysfunction. Overall, identification of relevant signaling pathways yielded new insights into the molecular mechanisms underlying DON-induced intestinal toxicity, and might help in the development of improved mechanism-based risk assessments in animals and humans.
Collapse
Affiliation(s)
- Zhi-Qi Zhang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Song-Bo Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Rui-Guo Wang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Wei Zhang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Pei-Long Wang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Xiao-Ou Su
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
12
|
Lu CW, Lin TY, Huang SK, Wang SJ. Echinacoside Inhibits Glutamate Release by Suppressing Voltage-Dependent Ca(2+) Entry and Protein Kinase C in Rat Cerebrocortical Nerve Terminals. Int J Mol Sci 2016; 17:ijms17071006. [PMID: 27347934 PMCID: PMC4964382 DOI: 10.3390/ijms17071006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 02/07/2023] Open
Abstract
The glutamatergic system may be involved in the effects of neuroprotectant therapies. Echinacoside, a phenylethanoid glycoside extracted from the medicinal Chinese herb HerbaCistanche, has neuroprotective effects. This study investigated the effects of echinacoside on 4-aminopyridine-evoked glutamate release in rat cerebrocortical nerve terminals (synaptosomes). Echinacoside inhibited Ca2+-dependent, but not Ca2+-independent, 4-aminopyridine-evoked glutamate release in a concentration-dependent manner. Echinacoside also reduced the 4-aminopyridine-evoked increase in cytoplasmic free Ca2+ concentration but did not alter the synaptosomal membrane potential. The inhibitory effect of echinacoside on 4-aminopyridine-evoked glutamate release was prevented by ω-conotoxin MVIIC, a wide-spectrum blocker of Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but was insensitive to the intracellular Ca2+ release-inhibitors dantrolene and 7-chloro-5-(2-chloropheny)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP37157). Furthermore, echinacoside decreased the 4-aminopyridine-induced phosphorylation of protein kinase C, and protein kinase C inhibitors abolished the effect of echinacoside on glutamate release. According to these results, we suggest that the inhibitory effect of echinacoside on evoked glutamate release is associated with reduced voltage-dependent Ca2+ entry and subsequent suppression of protein kinase C activity.
Collapse
Affiliation(s)
- Cheng Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan.
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan.
| | - Tzu Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan.
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan.
| | - Shu Kuei Huang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan.
| | - Su Jane Wang
- School of Medicine, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei 24205, Taiwan.
| |
Collapse
|
13
|
Dokladny K, Zuhl MN, Moseley PL. Intestinal epithelial barrier function and tight junction proteins with heat and exercise. J Appl Physiol (1985) 2016; 120:692-701. [PMID: 26359485 PMCID: PMC4868372 DOI: 10.1152/japplphysiol.00536.2015] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2015] [Accepted: 09/08/2015] [Indexed: 12/22/2022] Open
Abstract
A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or "leaky" intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise.
Collapse
Affiliation(s)
- Karol Dokladny
- Department of Internal Medicine, Health Sciences Center, Health Exercise & Sports Science of University of New Mexico, Albuquerque, New Mexico;
| | - Micah N Zuhl
- School of Health Sciences, Central Michigan University, Mount Pleasant, Michigan; and
| | - Pope L Moseley
- Department of Internal Medicine, Health Sciences Center, Health Exercise & Sports Science of University of New Mexico, Albuquerque, New Mexico; The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
14
|
de Vallière C, Vidal S, Clay I, Jurisic G, Tcymbarevich I, Lang S, Ludwig MG, Okoniewski M, Eloranta JJ, Kullak-Ublick GA, Wagner CA, Rogler G, Seuwen K. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment. Am J Physiol Gastrointest Liver Physiol 2015. [PMID: 26206859 DOI: 10.1152/ajpgi.00408.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
The pH-sensing receptor ovarian cancer G protein-coupled receptor 1 (OGR1; GPR68) is expressed in the gut. Inflammatory bowel disease is typically associated with a decrease in local pH, which may lead to altered epithelial barrier function and subsequent gastrointestinal repair involving epithelial cell adhesion and migration. As the mechanisms underlying the response to pH changes are not well understood, we have investigated OGR1-mediated, pH-dependent signaling pathways in intestinal epithelial cells. Caco-2 cells stably overexpressing OGR1 were created and validated as tools to study OGR1 signaling. Barrier function, migration, and proliferation were measured using electric cell-substrate impedance-sensing technology. Localization of the tight junction proteins zonula occludens protein 1 and occludin and the rearrangement of cytoskeletal actin were examined by confocal microscopy. Paracellular permeability and protein and gene expression analysis using DNA microarrays were performed on filter-grown Caco-2 monolayers. We report that an acidic pH shift from pH 7.8 to 6.6 improved barrier function and stimulated reorganization of filamentous actin with prominent basal stress fiber formation. Cell migration and proliferation during in vitro wound healing were inhibited. Gene expression analysis revealed significant upregulation of genes related to cytoskeleton remodeling, cell adhesion, and growth factor signaling. We conclude that acidic extracellular pH can have a signaling function and impact the physiology of intestinal epithelial cells. The deconstruction of OGR1-dependent signaling may aid our understanding of mucosal inflammation mechanisms.
Collapse
Affiliation(s)
- Cheryl de Vallière
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland; Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Solange Vidal
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Ieuan Clay
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Giorgia Jurisic
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Irina Tcymbarevich
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Silvia Lang
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Michal Okoniewski
- Functional Genomics Center, University of Zurich, Zurich, Switzerland
| | - Jyrki J Eloranta
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Klaus Seuwen
- Novartis Institutes for Biomedical Research, Basel, Switzerland;
| |
Collapse
|
15
|
Cheng X, Wan Y, Xu Y, Zhou Q, Wang Y, Zhu H. Melatonin alleviates myosin light chain kinase expression and activity via the mitogen-activated protein kinase pathway during atherosclerosis in rabbits. Mol Med Rep 2014; 11:99-104. [PMID: 25339116 PMCID: PMC4237093 DOI: 10.3892/mmr.2014.2753] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2013] [Accepted: 09/12/2014] [Indexed: 01/14/2023] Open
Abstract
Melatonin (MLT) is an endogenous indole compound with numerous biological activities that has been associated with atherosclerosis (AS). In the present study, rabbits were used as an AS model in order to investigate whether MLT affects endothelial cell permeability, myosin light chain kinase (MLCK) activity and MLCK expression via the mitogen-activated protein kinase (MAPK) pathway. Expression and activity of MLCK were measured using western blot analysis, quantitative polymerase chain reaction, immunohistochemistry and γ-32P-adenosine triphosphate incorporation. Endothelial permeability was detected using rhodamine phalloidin fluorescence staining. The phosphorylation of extracellular regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 in endothelial cells were also analyzed using western blot analysis. Atheromatous plaques were formed in rabbits with a high cholesterol diet; however, following treatment with MLT, the number and areas of atheromatous plaques were significantly reduced. In addition, MLT treatment reversed the increase of MLCK activity and expression that occurred in rabbits with high cholesterol intake. Furthermore, levels of phosphorylated ERK, JNK and p38 decreased following MLT treatment. In conclusion, the results of the present study indicated that AS may be associated with increased MLCK expression and activity, which was reduced following treatment with MLT. The mechanism of action of MLT was thought to proceed via modulating MAPK pathway signal transduction; however, further studies are required in order to fully elucidate the exact regulatory mechanisms involved.
Collapse
Affiliation(s)
- Xiaowen Cheng
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yufeng Wan
- Department of Otolaryngology, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qing Zhou
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan Wang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Huaqing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
16
|
Host Defense (Antimicrobial) Peptide, Human β-Defensin-3, Improves the Function of the Epithelial Tight-Junction Barrier in Human Keratinocytes. J Invest Dermatol 2014; 134:2163-2173. [DOI: 10.1038/jid.2014.143] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2013] [Revised: 02/20/2014] [Accepted: 02/28/2014] [Indexed: 12/22/2022]
|
17
|
Paschoud S, Jond L, Guerrera D, Citi S. PLEKHA7 modulates epithelial tight junction barrier function. Tissue Barriers 2014; 2:e28755. [PMID: 24843844 PMCID: PMC4022608 DOI: 10.4161/tisb.28755] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2014] [Accepted: 03/21/2014] [Indexed: 12/13/2022] Open
Abstract
PLEKHA7 is a recently identified protein of the epithelial zonula adhaerens (ZA), and is part of a protein complex that stabilizes the ZA, by linking it to microtubules. Since the ZA is important in the assembly and disassembly of tight junctions (TJ), we asked whether PLEKHA7 is involved in modulating epithelial TJ barrier function. We generated clonal MDCK cell lines in which one of four different constructs of PLEKHA7 was inducibly expressed. All constructs were localized at junctions, but constructs lacking the C-terminal region were also distributed diffusely in the cytoplasm. Inducible expression of PLEKHA7 constructs did not affect the expression and localization of TJ proteins, the steady-state value of transepithelial resistance (TER), the development of TER during the calcium switch, and the flux of large molecules across confluent monolayers. In contrast, expression of three out of four constructs resulted both in enhanced recruitment of E-cadherin and associated proteins at the apical ZA and at lateral puncta adherentia (PA), a decreased TER at 18 h after assembly at normal calcium, and an attenuation in the fall in TER after extracellular calcium removal. This latter effect was inhibited when cells were treated with nocodazole. Immunoprecipitation analysis showed that PLEKHA7 forms a complex with the cytoplasmic TJ proteins ZO-1 and cingulin, and this association does not depend on the integrity of microtubules. These results suggest that PLEKHA7 modulates the dynamics of assembly and disassembly of the TJ barrier, through E-cadherin protein complex- and microtubule-dependent mechanisms.
Collapse
Affiliation(s)
- Serge Paschoud
- Departments of Cell Biology and Molecular Biology; University of Geneva; Geneva ; Switzerland Institute of Genetics and Genomics of Geneva; University of Geneva; Geneva, Switzerland
| | - Lionel Jond
- Departments of Cell Biology and Molecular Biology; University of Geneva; Geneva ; Switzerland Institute of Genetics and Genomics of Geneva; University of Geneva; Geneva, Switzerland
| | - Diego Guerrera
- Departments of Cell Biology and Molecular Biology; University of Geneva; Geneva ; Switzerland Institute of Genetics and Genomics of Geneva; University of Geneva; Geneva, Switzerland
| | - Sandra Citi
- Departments of Cell Biology and Molecular Biology; University of Geneva; Geneva ; Switzerland Institute of Genetics and Genomics of Geneva; University of Geneva; Geneva, Switzerland
| |
Collapse
|
18
|
Intracellular Ca2+ Release Mediates Cationic but Not Anionic Poly(amidoamine) (PAMAM) Dendrimer-Induced Tight Junction Modulation. Pharm Res 2014; 31:2429-38. [PMID: 24648136 DOI: 10.1007/s11095-014-1338-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2014] [Accepted: 02/08/2014] [Indexed: 11/26/2022]
|
19
|
Saaber D, Wollenhaupt S, Baumann K, Reichl S. Recent progress in tight junction modulation for improving bioavailability. Expert Opin Drug Discov 2014; 9:367-81. [PMID: 24558958 DOI: 10.1517/17460441.2014.892070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Currently, there are many novel drugs that belong to class III or IV of the Biopharmaceutics Classification System, showing low bioavailability. Tight junction (TJ) modulation offers an approach to increase bioavailability of pharmaceutical compounds. Furthermore, some diseases are accompanied by disturbed barrier function or TJ dysregulation and thus represent a second application for TJ modulators. AREAS COVERED This review contains a summary of three different TJ modulators: AT1002, PN159 and labradimil. Within this summary, the authors provide a description of their effects on TJs, their adverse effects and their success in clinical trials. Furthermore, the authors present the current understanding of TJ regulation and highlight opportunities to develop new TJ modulators; they also review the problems that might occur. EXPERT OPINION The development of new mechanism-based (MB) TJ modulators is a very promising field of research. MB approaches are expected to have the best future prospects. Further elucidation of signaling pathways and TJ regulation will be necessary for advancing MB TJ modulator research.
Collapse
Affiliation(s)
- Daniel Saaber
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie , Mendelssohnstr. 1, Braunschweig 38106 , Germany
| | | | | | | |
Collapse
|
20
|
Bakirtzi K, Hoffman JM, Pothoulakis C. Silence Please!: siRNA approaches to tighten the intestinal barrier in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1700-1702. [PMID: 24183845 DOI: 10.1016/j.ajpath.2013.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/26/2013] [Accepted: 10/11/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Kyriaki Bakirtzi
- Division of Digestive Diseases, Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jill M Hoffman
- Division of Digestive Diseases, Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- Division of Digestive Diseases, Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
21
|
TNF-α modulation of intestinal epithelial tight junction barrier is regulated by ERK1/2 activation of Elk-1. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1871-1884. [PMID: 24121020 DOI: 10.1016/j.ajpath.2013.09.001] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/24/2013] [Revised: 08/23/2013] [Accepted: 09/03/2013] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor (TNF-α) is a proinflammatory cytokine that plays a critical role in the pathogenesis of inflammatory bowel disease. TNF-α causes an increase in intestinal permeability; however, the signaling pathways and the molecular mechanisms involved remain unclear. The major purpose of this study was to investigate the role of MAP kinase pathways (ERK1/2 and p38 kinase) and the molecular processes involved. An in vitro intestinal epithelial model system consisting of Caco-2 monolayers and an in vivo mouse model system were used to delineate the cellular and molecular mechanisms involved in TNF-α effects on tight junction barrier. The TNF-α-induced increase in Caco-2 tight junction permeability was mediated by activation of the ERK1/2 signaling pathway, but not the p38 kinase pathway. Activation of the ERK1/2 pathway led to phosphorylation and activation of the ETS domain-containing transcription factor Elk-1. The activated Elk-1 translocated to the nucleus, where it bound to its binding motif on the myosin light chain kinase (MLCK) promoter region, leading to the activation of MLCK promoter activity and gene transcription. In addition, in vivo intestinal perfusion studies also indicated that the TNF-α-induced increase in mouse intestinal permeability requires ERK1/2-dependent activation of Elk-1. These studies provide novel insight into the cellular and molecular processes that regulate the TNF-α-induced increase in intestinal epithelial tight junction permeability.
Collapse
|
22
|
Dipaolo BC, Davidovich N, Kazanietz MG, Margulies SS. Rac1 pathway mediates stretch response in pulmonary alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2013; 305:L141-53. [PMID: 23686855 DOI: 10.1152/ajplung.00298.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Alveolar epithelial cells (AECs) maintain the pulmonary blood-gas barrier integrity with gasketlike intercellular tight junctions (TJ) that are anchored internally to the actin cytoskeleton. We have previously shown that AEC monolayers stretched cyclically and equibiaxially undergo rapid magnitude- and frequency-dependent actin cytoskeletal remodeling to form perijunctional actin rings (PJARs). In this work, we show that even 10 min of stretch induced increases in the phosphorylation of Akt and LIM kinase (LIMK) and decreases in cofilin phosphorylation, suggesting that the Rac1/Akt pathway is involved in these stretch-mediated changes. We confirmed that Rac1 inhibitors wortmannin or EHT-1864 decrease stretch-stimulated Akt and LIMK phosphorylation and that Rac1 agonists PIP3 or PDGF increase phosphorylation of these proteins in unstretched cells. We also confirmed that Rac1 pathway inhibition during stretch modulated stretch-induced changes in occludin content and monolayer permeability, actin remodeling and PJAR formation, and cell death. As further validation, overexpression of Rac GTPase-activating protein β2-chimerin also preserved monolayer barrier properties in stretched monolayers. In summary, our data suggest that constitutive activity of Rac1, which is necessary for stretch-induced activation of the Rac1 downstream proteins, mediates stretch-induced increases in permeability and PJAR formation.
Collapse
Affiliation(s)
- Brian C Dipaolo
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
23
|
Del Vecchio G, Tscheik C, Tenz K, Helms HC, Winkler L, Blasig R, Blasig IE. Sodium Caprate Transiently Opens Claudin-5-Containing Barriers at Tight Junctions of Epithelial and Endothelial Cells. Mol Pharm 2012; 9:2523-33. [DOI: 10.1021/mp3001414] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Affiliation(s)
- G. Del Vecchio
- Leibniz-Institut für
Molekulare Pharmakologie, FMP, 13125 Berlin, Germany
| | - C. Tscheik
- Leibniz-Institut für
Molekulare Pharmakologie, FMP, 13125 Berlin, Germany
| | - K. Tenz
- Leibniz-Institut für
Molekulare Pharmakologie, FMP, 13125 Berlin, Germany
| | - H. C. Helms
- Department of Pharmacy, Faculty
of Medicines and Health, University of Copenhagen, Copenhagen, Denmark
| | - L. Winkler
- Leibniz-Institut für
Molekulare Pharmakologie, FMP, 13125 Berlin, Germany
| | - R. Blasig
- Leibniz-Institut für
Molekulare Pharmakologie, FMP, 13125 Berlin, Germany
| | - I. E. Blasig
- Leibniz-Institut für
Molekulare Pharmakologie, FMP, 13125 Berlin, Germany
| |
Collapse
|
24
|
Al-Sadi R, Guo S, Dokladny K, Smith MA, Ye D, Kaza A, Watterson DM, Ma TY. Mechanism of interleukin-1β induced-increase in mouse intestinal permeability in vivo. J Interferon Cytokine Res 2012; 32:474-84. [PMID: 22817402 DOI: 10.1089/jir.2012.0031] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Interleukin-1β (IL-1β) has been shown to play an essential role in mediating intestinal inflammation of Crohn's disease and other inflammatory conditions of the gut. Previous studies from our laboratory have shown that IL-1β causes an increase in intestinal tight-junction permeability in Caco-2 monolayers in vitro. However, the IL-1β effect on the intestinal epithelial barrier in vivo remains unclear. AIMS the major aims of this study were to examine the effect of IL-1β on mouse intestinal epithelial barrier in vivo and to delineate the mechanisms involved using an in vivo model system consisting of a recycling perfusion of mouse small intestine. Intraperitonial injection of IL-1β at varying doses (0-10 μg) caused a concentration-dependent increase in mouse intestinal permeability to the paracellular marker dextran (10 KD), and the maximal increase in dextran flux occurred at IL-1β dose of 5 μg. IL-1β treatment caused an increase in myosin light-chain kinase (MLCK) mRNA and protein expression in the small intestinal tissue starting at 24 h, which continued up to 72 h. Additionally, IL-1β did not cause an increase in intestinal permeability in MLCK-deficient mice (C57BL/6 MLCK(-/-)). MLCK inhibitor ML-7 (2 mg/kg body weight) also inhibited the IL-1β-induced increase in small intestinal permeability. The IL-1β-induced increase in mouse intestinal permeability was associated with an increase in NF-κB activation. The intestinal tissue-specific silencing of NF-κB p65 inhibited the IL-1β-induced increase in intestinal permeability and increase in MLCK expression. These data show for the first time that IL-1β causes an increase in mouse intestinal permeability in vivo. These data suggested that the mechanism of IL-1β-induced increase in mouse intestinal permeability in vivo involved NF-κB p65-induced activation of the mouse enterocyte MLCK gene.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Di Paola R, Impellizzeri D, Torre A, Mazzon E, Cappellani A, Faggio C, Esposito E, Trischitta F, Cuzzocrea S. Effects of palmitoylethanolamide on intestinal injury and inflammation caused by ischemia-reperfusion in mice. J Leukoc Biol 2012; 91:911-20. [DOI: 10.1189/jlb.0911485] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
|
26
|
Chandhoke SK, Mooseker MS. A role for myosin IXb, a motor-RhoGAP chimera, in epithelial wound healing and tight junction regulation. Mol Biol Cell 2012; 23:2468-80. [PMID: 22573889 PMCID: PMC3386211 DOI: 10.1091/mbc.e11-09-0803] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022] Open
Abstract
Myo9b is a motor–RhoGAP chimera that has been implicated in inflammatory bowel disease. Findings suggest that Myo9b is essential during both collective and individual wound-induced cell migration. It is also important for maintaining tight junction barrier integrity. Polymorphisms in the gene encoding the heavy chain of myosin IXb (Myo9b) have been linked to several forms of inflammatory bowel disease (IBD). Given that Myo9b contains a RhoGTPase-activating protein domain within its tail, it may play key roles in Rho-mediated actin cytoskeletal modifications critical to intestinal barrier function. In wounded monolayers of the intestinal epithelial cell line Caco2BBe (BBe), Myo9b localizes to the extreme leading edge of lamellipodia of migrating cells. BBe cells exhibiting loss of Myo9b expression with RNA interference or Myo9b C-terminal dominant-negative (DN) tail-tip expression lack lamellipodia, fail to migrate into the wound, and form stress fiber–like arrays of actin at the free edges of cells facing the wound. These cells also exhibit disruption of tight junction (TJ) protein localization, including ZO-1, occludin, and claudin-1. Torsional motility and junctional permeability to dextran are greatly increased in cells expressing DN-tail-tip. Of interest, this effect is propagated to neighboring cells. Consistent with a role for Myo9b in regulating levels of active Rho, localization of both RhoGTP and myosin light chain phosphorylation corresponds to Myo9b-knockdown regions of BBe monolayers. These data reveal critical roles for Myo9b during epithelial wound healing and maintenance of TJ integrity—key functions that may be altered in patients with Myo9b-linked IBD.
Collapse
Affiliation(s)
- Surjit K Chandhoke
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
27
|
DiPaolo BC, Margulies SS. Rho kinase signaling pathways during stretch in primary alveolar epithelia. Am J Physiol Lung Cell Mol Physiol 2012; 302:L992-1002. [PMID: 22287611 DOI: 10.1152/ajplung.00175.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022] Open
Abstract
Alveolar epithelial cells (AECs) maintain integrity of the blood-gas barrier with actin-anchored intercellular tight junctions. Stretched type I-like AECs undergo magnitude- and frequency-dependent actin cytoskeletal remodeling into perijunctional actin rings. On the basis of published studies in human pulmonary artery endothelial cells (HPAECs), we hypothesize that RhoA activity, Rho kinase (ROCK) activity, and phosphorylation of myosin light chain II (MLC2) increase in stretched type I-like AECs in a manner that is dependent on stretch magnitude, and that RhoA, ROCK, or MLC2 activity inhibition will attenuate stretch-induced actin remodeling and preserve barrier properties. Primary type I-like AEC monolayers were stretched biaxially to create a change in surface area (ΔSA) of 12%, 25%, or 37% in a cyclic manner at 0.25 Hz for up to 60 min or left unstretched. Type I-like AECs were also treated with Rho pathway inhibitors (ML-7, Y-27632, or blebbistatin) and stained for F-actin or treated with the myosin phosphatase inhibitor calyculin-A and quantified for monolayer permeability. Counter to our hypothesis, ROCK activity and MLC2 phosphorylation decreased in type I-like AECs stretched to 25% and 37% ΔSA and did not change in monolayers stretched to 12% ΔSA. Furthermore, RhoA activity decreased in type I-like AECs stretched to 37% ΔSA. In contrast, MLC2 phosphorylation in HPAECs increased when HPAECs were stretched to 12% ΔSA but then decreased when they were stretched to 37% ΔSA, similar to type I-like AECs. Perijunctional actin rings were observed in unstretched type I-like AECs treated with the Rho pathway inhibitor blebbistatin. Myosin phosphatase inhibition increased MLC2 phosphorylation in stretched type I-like AECs but had no effect on monolayer permeability. In summary, stretch alters RhoA activity, ROCK activity, and MLC2 phosphorylation in a manner dependent on stretch magnitude and cell type.
Collapse
Affiliation(s)
- Brian C DiPaolo
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd St., Philadelphia, PA 19104-6321, USA
| | | |
Collapse
|
28
|
Rodgers LS, Fanning AS. Regulation of epithelial permeability by the actin cytoskeleton. Cytoskeleton (Hoboken) 2011; 68:653-60. [PMID: 22083950 DOI: 10.1002/cm.20547] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 01/06/2023]
Abstract
The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. The epithelial barrier regulates the movement of ions, macromolecules, immune cells, and pathogens, and is thus essential for normal organ function. Disruption in the epithelial barrier has been shown to coincide with alterations of the actin cytoskeleton in several disease states. These disruptions primarily manifest as increased movement through the paracellular space, which is normally regulated by tight junctions (TJ). Despite extensive research demonstrating a direct link between the actin cytoskeleton and epithelial permeability, our understanding of the physiological mechanisms that link permeability and tight junction structure are still limited. In this review, we explore the role of the actin cytoskeleton at TJ and present several areas for future study.
Collapse
Affiliation(s)
- Laurel S Rodgers
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, 27599-7545, USA
| | | |
Collapse
|
29
|
Wroblewski LE, Peek RM. "Targeted disruption of the epithelial-barrier by Helicobacter pylori". Cell Commun Signal 2011; 9:29. [PMID: 22044698 PMCID: PMC3225297 DOI: 10.1186/1478-811x-9-29] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2011] [Accepted: 11/01/2011] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori colonizes the human gastric epithelium and induces chronic gastritis, which can lead to gastric cancer. Through cell-cell contacts the gastric epithelium forms a barrier to protect underlying tissue from pathogenic bacteria; however, H. pylori have evolved numerous strategies to perturb the integrity of the gastric barrier. In this review, we summarize recent research into the mechanisms through which H. pylori disrupts intercellular junctions and disrupts the gastric epithelial barrier.
Collapse
Affiliation(s)
- Lydia E Wroblewski
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
30
|
Mutlu EA, Engen PA, Soberanes S, Urich D, Forsyth CB, Nigdelioglu R, Chiarella SE, Radigan KA, Gonzalez A, Jakate S, Keshavarzian A, Budinger GRS, Mutlu GM. Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice. Part Fibre Toxicol 2011; 8:19. [PMID: 21658250 PMCID: PMC3132719 DOI: 10.1186/1743-8977-8-19] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2011] [Accepted: 06/09/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Exposure to particulate matter (PM) air pollution may be an important environmental factor leading to exacerbations of inflammatory illnesses in the GI tract. PM can gain access to the gastrointestinal (GI) tract via swallowing of air or secretions from the upper airways or mucociliary clearance of inhaled particles. METHODS We measured PM-induced cell death and mitochondrial ROS generation in Caco-2 cells stably expressing oxidant sensitive GFP localized to mitochondria in the absence or presence of an antioxidant. C57BL/6 mice were exposed to a very high dose of urban PM from Washington, DC (200 μg/mouse) or saline via gastric gavage and small bowel and colonic tissue were harvested for histologic evaluation, and RNA isolation up to 48 hours. Permeability to 4 kD dextran was measured at 48 hours. RESULTS PM induced mitochondrial ROS generation and cell death in Caco-2 cells. PM also caused oxidant-dependent NF-κB activation, disruption of tight junctions and increased permeability of Caco-2 monolayers. Mice exposed to PM had increased intestinal permeability compared with PBS treated mice. In the small bowel, colocalization of the tight junction protein, ZO-1 was lower in the PM treated animals. In the small bowel and colon, PM exposed mice had higher levels of IL-6 mRNA and reduced levels of ZO-1 mRNA. Increased apoptosis was observed in the colon of PM exposed mice. CONCLUSIONS Exposure to high doses of urban PM causes oxidant dependent GI epithelial cell death, disruption of tight junction proteins, inflammation and increased permeability in the gut in vitro and in vivo. These PM-induced changes may contribute to exacerbations of inflammatory disorders of the gut.
Collapse
Affiliation(s)
- Ece A Mutlu
- Department of Medicine, Section of Gastroenterology and Nutrition Rush University Medical College, 1725 W Harrison Street, Chicago, IL, 60612 USA
| | - Phillip A Engen
- Department of Medicine, Section of Gastroenterology and Nutrition Rush University Medical College, 1725 W Harrison Street, Chicago, IL, 60612 USA
| | - Saul Soberanes
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E Huron Street, McGaw M300, Chicago, IL, 60611, USA
| | - Daniela Urich
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E Huron Street, McGaw M300, Chicago, IL, 60611, USA
| | - Christopher B Forsyth
- Department of Medicine, Section of Gastroenterology and Nutrition Rush University Medical College, 1725 W Harrison Street, Chicago, IL, 60612 USA
| | - Recep Nigdelioglu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E Huron Street, McGaw M300, Chicago, IL, 60611, USA
| | - Sergio E Chiarella
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E Huron Street, McGaw M300, Chicago, IL, 60611, USA
| | - Kathryn A Radigan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E Huron Street, McGaw M300, Chicago, IL, 60611, USA
| | - Angel Gonzalez
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E Huron Street, McGaw M300, Chicago, IL, 60611, USA
| | - Shriram Jakate
- Department of Pathology, Rush University Medical College, 1725 W Harrison Street, Chicago, IL, 60612 USA
| | - Ali Keshavarzian
- Department of Medicine, Section of Gastroenterology and Nutrition Rush University Medical College, 1725 W Harrison Street, Chicago, IL, 60612 USA
| | - GR Scott Budinger
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E Huron Street, McGaw M300, Chicago, IL, 60611, USA
| | - Gökhan M Mutlu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E Huron Street, McGaw M300, Chicago, IL, 60611, USA
| |
Collapse
|
31
|
Kellett GL. Alternative perspective on intestinal calcium absorption: proposed complementary actions of Ca(v)1.3 and TRPV6. Nutr Rev 2011; 69:347-70. [PMID: 21729089 DOI: 10.1111/j.1753-4887.2011.00395.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022] Open
Abstract
Transcellular models of dietary Ca(2+) absorption by the intestine assign essential roles to TRPV6 and calbindin-D(9K) . However, studies with gene-knockout mice challenge this view. Something fundamental is missing. The L-type channel Ca(v) 1.3 is located in the apical membrane from the duodenum to the ileum. In perfused rat jejunum in vivo and in Caco-2 cells, Ca(v) 1.3 mediates sodium glucose transporter 1 (SGLT1)-dependent and prolactin-induced active, transcellular Ca(2+) absorption, respectively. TRPV6 is activated by hyperpolarization and is vitamin D dependent; in contrast, Ca(v) 1.3 is activated by depolarization and is independent of calbindin-D(9K) and vitamin D. This review considers evidence supporting the idea that Ca(v) 1.3 and TRPV6 have complementary roles in the regulation of intestinal Ca(2+) absorption as depolarization and repolarization of the apical membrane occur during and between digestive periods, respectively, and as chyme moves from one intestinal segment to another and food transit times increase. Reassessment of current arguments for paracellular flow reveals that key phenomena have alternative explanations within the integrated Ca(v) 1.3/TRPV6 view of transcellular Ca(2+) absorption.
Collapse
Affiliation(s)
- George L Kellett
- Department of Biology, University of York, Heslington, United Kingdom.
| |
Collapse
|
32
|
Vermeulen MAR, Jong JD, Vaessen MJ, Leeuwen PAMV, Houdijk APJ. Glutamate reduces experimental intestinal hyperpermeability and facilitates glutamine support of gut integrity. World J Gastroenterol 2011; 17:1569-73. [PMID: 21472123 PMCID: PMC3070128 DOI: 10.3748/wjg.v17.i12.1569] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/09/2010] [Revised: 02/07/2011] [Accepted: 02/14/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess whether glutamate plays a similar role to glutamine in preserving gut wall integrity.
METHODS: The effects of glutamine and glutamate on induced hyperpermeability in intestinal cell lines were studied. Paracellular hyperpermeability was induced in Caco2.BBE and HT-29CL.19A cell lines by adding phorbol-12,13-dibutyrate (PDB) apically, after which the effects of glutamine and glutamate on horseradish peroxidase (HRP) diffusion were studied. An inhibitor of glutamate transport (L-trans-pyrrolidine-2,4-dicarboxylic acid: trans-PDC) and an irreversible blocker (acivicin) of the extracellular glutamine to glutamate converting enzyme, γ-glutamyltransferase, were used.
RESULTS: Apical to basolateral HRP flux increased significantly compared to controls not exposed to PDB (n = 30, P < 0.001). Glutamine application reduced hyperpermeability by 19% and 39% in the respective cell lines. Glutamate application reduced hyperpermeability by 30% and 20%, respectively. Incubation of HT29CL.19A cells with acivicin and subsequent PDB and glutamine addition increased permeability levels. Incubation of Caco2.BBE cells with trans-PDC followed by PDB and glutamate addition also resulted in high permeability levels.
CONCLUSION: Apical glutamate -similar to glutamine- can decrease induced paracellular hyperpermeability. Extracellular conversion of glutamine to glutamate and subsequent uptake of glutamate could be a pivotal step in the mechanism underlying the protective effect of glutamine.
Collapse
|
33
|
Zhu HQ, Zhou Q, Jiang ZK, Gui SY, Wang Y. Association of aorta intima permeability with myosin light chain kinase expression in hypercholesterolemic rabbits. Mol Cell Biochem 2010; 347:209-15. [PMID: 21052790 DOI: 10.1007/s11010-010-0630-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2006] [Accepted: 10/18/2010] [Indexed: 11/30/2022]
Abstract
The development of hypercholesterolemia is a multifactorial process in which elevated plasma cholesterol levels play a central role. This study analyzed the variability of the expression and activity of myosin light chain kinase (MLCK) and endothelial permeability in the artery wall of rabbits after feeding the animals with a normal or a high-cholesterol diet. Hypercholesterolemia was induced by a high-cholesterol diet for 4 weeks. Aortas were removed and analyzed for endothelial permeability and MLCK expression. Samples of the arterial media were analyzed for MLCK activity and expression. A selective MLCK inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML7) were used in hypercholesterolemia rabbit (1 mg/kg body weight). The aortas of high-cholesterol diet rabbits showed an increase in MLCK expression and activity (nearly threefold compare with control) as well as endothelial permeability. ML7 inhibit MLC phosphorylation and MLCK activity (nearly twofold compare with control) and endothelial permeability stimulated by cholesterol. These results indicate for the first time that hypercholesterolemia may be associated with MLCK expression and activity through which endothelial permeability is increased.
Collapse
Affiliation(s)
- Hua-Qing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | | | | | | | | |
Collapse
|
34
|
Nighot PK, Blikslager AT. ClC-2 regulates mucosal barrier function associated with structural changes to the villus and epithelial tight junction. Am J Physiol Gastrointest Liver Physiol 2010; 299:G449-56. [PMID: 20489043 DOI: 10.1152/ajpgi.00520.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
We have previously shown an important role of the chloride channel ClC-2 in orchestrating repair of tight junctions in ischemia-injured mucosa. In this study, we examined the role of ClC-2 in regulating barrier function of normal murine intestinal mucosa. Ex vivo, ClC-2-/- ileal mucosa mounted in Ussing chambers had significantly higher transepithelial electrical resistance (TER) and reduced [(3)H]mannitol mucosal-to-serosal flux compared with wild-type (WT) mouse mucosa. We also noted that ileum from ClC-2-/- mice had a significantly reduced in vivo [(3)H]mannitol blood-to-lumen clearance compared with WT animals. By scanning electron microscopy, flat leaflike villi were found to have tapering, rounded apical tips in ClC-2-/- mucosa. By transmission electron microscopy, the apical intercellular tight junctions in ClC-2-/- intestine revealed lateral membranes that were less well defined but closely aligned compared with electron-dense and closely apposed tight junctions in WT mucosa. The width of apical tight junctions was significantly reduced in ClC-2-/- intestine. Such an alteration in tight junction ultrastructure was also noted in the testicular tissue from ClC-2-/- mice. The ClC-2-/- intestinal mucosa had reduced expression of phospho-myosin light chain (MLC), and inhibition of myosin light chain kinase (MLCK) in WT mucosa partially increased TER toward the TER in ClC-2-/- intestine. Contrary to our prior work on the reparative role of ClC-2 in injured mucosa, this study indicates that ClC-2 reduces barrier function in normal mucosa. The mechanisms underlying these differing roles are not entirely clear, although ultrastructural morphology of tight junctions and MLCK appear to be important to the function of ClC-2 in normal mucosa.
Collapse
Affiliation(s)
- Prashant K Nighot
- Dept. of Clinical Sciences, North Carolina State Univ., Raleigh, 27606, USA
| | | |
Collapse
|
35
|
Shivanna M, Jalimarada SS, Srinivas SP. Lovastatin inhibits the thrombin-induced loss of barrier integrity in bovine corneal endothelium. J Ocul Pharmacol Ther 2010; 26:1-10. [PMID: 20148651 DOI: 10.1089/jop.2009.0025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Increased actomyosin contraction of the dense band of actin cytoskeleton at the apical junctional complex (perijunctional actomyosin ring, PAMR) breaks down the barrier integrity of corneal endothelium. This study has investigated the efficacy of statins, which inhibit activation of RhoA, in opposing the thrombin-induced loss of barrier integrity of monolayers of cultured bovine corneal endothelium. METHODS Myosin light chain (MLC) phosphorylation, a biochemical measure of actomyosin contraction, was assayed by urea-glycerol gel electrophoresis, followed by western blot analysis. The locus of MLC phosphorylation and changes in the organization of the PAMR were visualized by immunostaining. Phosphorylation of MYPT1, a regulatory subunit of myosin light-chain phosphatase (MLCP), was assessed by Western blot analysis to determine down-regulation of RhoA. The barrier integrity was assessed in terms of trans-endothelial electrical resistance (TER), and further confirmed by determining permeability to FITC dextran (10 kDa) and distribution of ZO-1, a marker of tight junctional assembly. RESULTS Lovastatin, a prototype of lipophilic statins, induced MLC dephosphorylation under basal conditions. It opposed increase in phosphorylation of MLC and MYPT1 in response to thrombin and nocodazole, agents known to activate RhoA in the endothelium. Pretreatment with the statin opposed the thrombin- and nocodazole-induced disruption of the PAMR and the thrombin-induced decline in TER. Lovastatin also opposed the thrombin- and nocodazole-induced increase in permeability to FITC dextran and redistribution of ZO-1. However, upon supplementation with GGPP (geranylgeranyl pyrophosphate), lovastatin failed to oppose the effects of thrombin and nocodazole on the PAMR, ppMLC, and ZO-1 distribution. CONCLUSIONS Lovastatin attenuates RhoA activation in the corneal endothelium presumably by reducing its isoprenylation. This underlies the suppression of the thrombin-induced loss in barrier integrity of the corneal endothelium.
Collapse
Affiliation(s)
- Mahesh Shivanna
- School of Optometry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
36
|
DiPaolo BC, Lenormand G, Fredberg JJ, Margulies SS. Stretch magnitude and frequency-dependent actin cytoskeleton remodeling in alveolar epithelia. Am J Physiol Cell Physiol 2010; 299:C345-53. [PMID: 20519449 DOI: 10.1152/ajpcell.00379.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Abstract
Alveolar epithelial cells (AEC) maintain integrity of the blood-gas barrier with gasket-like intercellular tight junctions (TJ) that are anchored internally to the actin cytoskeleton. We hypothesize that stretch rapidly reorganizes actin (<10 min) into a perijunctional actin ring (PJAR) in a manner that is dependent on magnitude and frequency of the stretch, accompanied by spontaneous movement of actin-anchored receptors at the plasma membrane. Primary AEC monolayers were stretched biaxially to create a change in surface area (DeltaSA) of 12%, 25%, or 37% in a cyclic manner at 0.25 Hz for up to 60 min, or held tonic at 25% DeltaSA for up to 60 min, or left unstretched. By 10 min of stretch PJARs were evident in 25% and 37% DeltaSA at 0.25 Hz, but not for 12% DeltaSA at 0.25 Hz, or at tonic 25% DeltaSA, or with no stretch. Treatment with 1 muM jasplakinolide abolished stretch-induced PJAR formation, however. As a rough index of remodeling rate, we measured spontaneous motions of 5-mum microbeads bound to actin focal adhesion complexes on the apical membrane surfaces; within 1 min of exposure to DeltaSA of 25% and 37%, these motions increased substantially, increased with increasing stretch frequency, and were consistent with our mechanistic hypothesis. With a tonic stretch, however, the spontaneous motion of microbeads attenuated back to unstretched levels, whereas PJAR remained unchanged. Stretch did not increase spontaneous microbead motion in human alveolar epithelial adenocarcinoma A549 monolayers, confirming that this actin remodeling response to stretch was a cell-type specific response. In summary, stretch of primary rat AEC monolayers forms PJARs and rapidly reorganized actin binding sites at the plasma membrane in a manner dependent on stretch magnitude and frequency.
Collapse
Affiliation(s)
- Brian C DiPaolo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania19104-6321, USA
| | | | | | | |
Collapse
|
37
|
Agle KA, Vongsa RA, Dwinell MB. Calcium mobilization triggered by the chemokine CXCL12 regulates migration in wounded intestinal epithelial monolayers. J Biol Chem 2010; 285:16066-75. [PMID: 20348095 PMCID: PMC2871475 DOI: 10.1074/jbc.m109.061416] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2009] [Revised: 03/26/2010] [Indexed: 12/26/2022] Open
Abstract
Restitution of intestinal epithelial barrier damage involves the coordinated remodeling of focal adhesions in actively migrating enterocytes. Defining the extracellular mediators and the intracellular signaling pathways regulating those dynamic processes is a key step in developing restitution-targeted therapies. Previously we have determined that activation of the chemokine receptor CXCR4 by the cognate ligand CXCL12 enhances intestinal epithelial restitution through reorganization of the actin cytoskeleton. The aim of these studies was to investigate the role of calcium effectors in CXCL12-mediated restitution. CXCL12 stimulated release of intracellular calcium in a dose-dependent manner. Inhibition of intracellular calcium flux impaired CXCL12-mediated migration of IEC-6 and CaCo2 cells. Pharmacological blockade and specific shRNA depletion of the phospholipase-C (PLCbeta3) isoform attenuated CXCL12-enhanced migration, linking receptor activation with intracellular calcium flux. Immunoblot analyses demonstrated CXCL12 activated the calcium-regulated focal adhesion protein proline-rich tyrosine kinase-2 (Pyk2) and the effector proteins paxillin and p130(Cas). Interruption of Pyk2 signaling potently blocked CXCL12-induced wound closure. CXCL12-stimulated epithelial cell migration was enhanced on laminin and abrogated by intracellular calcium chelation. These results suggest CXCL12 regulates restitution through calcium-activated Pyk2 localized to active focal adhesions. Calcium signaling pathways may therefore provide a novel avenue for enhancing barrier repair.
Collapse
Affiliation(s)
- Kimberle A. Agle
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Rebecca A. Vongsa
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Michael B. Dwinell
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
38
|
Rodríguez-Lagunas MJ, Martín-Venegas R, Moreno JJ, Ferrer R. PGE2 promotes Ca2+-mediated epithelial barrier disruption through EP1 and EP4 receptors in Caco-2 cell monolayers. Am J Physiol Cell Physiol 2010; 299:C324-34. [PMID: 20484658 DOI: 10.1152/ajpcell.00397.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
We recently demonstrated that PGE(2) induces the disruption of the intestinal epithelial barrier function. In the present study, our objectives were to study the role of PGE(2) receptors (EP(1)-EP(4)) and the signaling pathways involved in this event. Paracellular permeability (PP) was assessed in differentiated Caco-2 cell cultures from d-mannitol fluxes and transepithelial electrical resistance (TER) in the presence of different PGE(2) receptor agonists (carbacyclin, sulprostone, butaprost, ONO-AE1-259, ONO-AE-248, GR63799, and ONO-AE1-329) and antagonists (ONO-8711, SC-19220, AH-6809, ONO-AE3-240, ONO-AE3-208, and AH-23848). The results indicate that EP(1) and EP(4) but not EP(2) and EP(3) might be involved in PP regulation. These effects were mediated through PLC-inositol trisphosphate (IP(3))-Ca(2+) and cAMP-PKA signaling pathways, respectively. We also observed an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) strengthened by cAMP formation indicating a cross talk interaction of these two pathways. Moreover, the participation of a conventional PKC isoform was shown. The results also indicate that the increase in PP may be correlated with the redistribution of occludin, zona occludens 1 (ZO-1), and the perijunctional actin ring together with an increase in myosin light chain kinase activity. Although the disruption of epithelial barrier function observed in inflammatory bowel disease (IBD) patients has been traditionally attributed to cytokines, the present study focused on the role of PGE(2) in PP regulation, as mucosal levels of this eicosanoid are also increased in these inflammatory processes.
Collapse
Affiliation(s)
- M José Rodríguez-Lagunas
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
39
|
Wu CC, Lu YZ, Wu LL, Yu LC. Role of myosin light chain kinase in intestinal epithelial barrier defects in a rat model of bowel obstruction. BMC Gastroenterol 2010; 10:39. [PMID: 20403206 PMCID: PMC2868795 DOI: 10.1186/1471-230x-10-39] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/23/2009] [Accepted: 04/20/2010] [Indexed: 12/12/2022] Open
Abstract
Background Bowel obstruction is a common cause of abdominal emergency, since the patients are at increased risk of septicemia resulting in high mortality rate. While the compartmentalized changes in enteric microfloral population and augmentation of bacterial translocation (BT) have already been reported using experimental obstruction models, alterations in epithelial permeability of the obstructed guts has not been studied in detail. Myosin light chain kinase (MLCK) is actively involved in the contraction of epithelial perijunctional actinomyosin ring and thereby increases paracellular permeability. In the current study we attempt to investigate the role of MLCK in epithelial barrier defects using a rat model of simple mechanical obstruction. Methods Wistar rats received intraperitoneal injection of ML-7 (a MLCK inhibitor) or vehicle at 24, 12 and 1 hrs before and 12 hrs after intestinal obstruction (IO). The distal small intestine was obstructed with a single ligature placed 10 cm proximal to the ileocecal junction in IO rats for 24 hrs. Sham-operated rats served as controls. Results Mucosal injury, such as villous blunting and increased crypt/villus ratio, was observed in the distal small intestine of IO rats. Despite massive enterocyte shedding, intestinal villi were covered with a contiguous epithelial layer without cell apoptosis. Increased transmural macromolecular flux was noticed in the distal small intestine and the proximal colon after IO. The bacterial colony forming units in the spleen and liver of IO rats were significantly higher than those of sham controls. Addition of ML-7 ameliorated the IO-triggered epithelial MLC phosphorylation, mucosal injury and macromolecular flux, but not the level of BT. Conclusions The results suggest that IO-induced premature enterocytic sloughing and enhanced paracellular antigenic flux were mediated by epithelial MLCK activation. In addition, enteric bacteria may undergo transcytotic routes other than paracellular paths to cross the epithelium.
Collapse
Affiliation(s)
- Chi-Chin Wu
- National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | |
Collapse
|
40
|
Terry S, Nie M, Matter K, Balda MS. Rho signaling and tight junction functions. Physiology (Bethesda) 2010; 25:16-26. [PMID: 20134025 DOI: 10.1152/physiol.00034.2009] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Tight junctions are heteromeric protein complexes that act as signaling centers by mediating the bidirectional transmission of information between the environment and the cell interior to control paracellular permeability and differentiation. Insight into tight junction-associated signaling mechanisms is of fundamental importance for our understanding of the physiology of epithelia and endothelia in health and disease.
Collapse
Affiliation(s)
- Steve Terry
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
41
|
Bishop BL, Lodolce JP, Kolodziej LE, Boone DL, Tang WJ. The role of anthrolysin O in gut epithelial barrier disruption during Bacillus anthracis infection. Biochem Biophys Res Commun 2010; 394:254-9. [PMID: 20188700 DOI: 10.1016/j.bbrc.2010.02.091] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2010] [Accepted: 02/15/2010] [Indexed: 01/13/2023]
Abstract
Gastrointestinal (GI) anthrax, caused by the bacterial infection of Bacillus anthracis, posts a significant bioterrorism threat by its relatively high mortality rate in humans. Different from inhalational anthrax by the route of infection, accumulating evidence indicates the bypass of vegetative bacteria across GI epithelium is required to initiate GI anthrax. Previously, we reported that purified anthrolysin O (ALO), instead of tripartite anthrax edema and lethal toxins, is capable of disrupting gut epithelial tight junctions and barrier function in cultured cells. Here, we show that ALO can disrupt intestinal tissue barrier function in an ex vivo mouse model. To explore the effects of ALO in a cell culture model of B. anthracis infection, we showed that anthrax bacteria can effectively reduce the monolayer integrity of human Caco-2 brush-border expressor (C2BBE) cells based on the reduced transepithelial resistance and the increased leakage of fluorescent dye. This disruption is likely caused by tight junction dysfunction observed by the reorganization of the tight junction protein occludin. Consequently, we observe significant passage of vegetative anthrax bacteria across C2BBE cells. This barrier disruption and bacterial crossover requires ALO since ALO-deficient B. anthracis strains fail to induce monolayer dysfunction and allow the passage of anthrax bacteria. Together these findings point to a pivotal role for ALO within the establishment of GI anthrax infection and the initial bypass of the epithelial barrier.
Collapse
Affiliation(s)
- Brian L Bishop
- Ben May Department for Cancer Research, University of Chicago, 929 E., 57th St., Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
42
|
Conlin VS, Wu X, Nguyen C, Dai C, Vallance BA, Buchan AMJ, Boyer L, Jacobson K. Vasoactive intestinal peptide ameliorates intestinal barrier disruption associated with Citrobacter rodentium-induced colitis. Am J Physiol Gastrointest Liver Physiol 2009; 297:G735-50. [PMID: 19661153 DOI: 10.1152/ajpgi.90551.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
Attaching and effacing bacterial pathogens attach to the apical surface of epithelial cells and disrupt epithelial barrier function, increasing permeability and allowing luminal contents access to the underlying milieu. Previous in vitro studies demonstrated that the neuropeptide vasoactive intestinal peptide (VIP) regulates epithelial paracellular permeability, and the high concentrations and close proximity of VIP-containing nerve fibers to intestinal epithelial cells would support such a function in vivo. The aim of this study was to examine whether VIP treatment modulated Citrobacter rodentium-induced disruption of intestinal barrier integrity and to identify potential mechanisms of action. Administration of VIP had no effect on bacterial attachment although histopathological scoring demonstrated a VIP-induced amelioration of colitis-induced epithelial damage compared with controls. VIP treatment prevented the infection-induced increase in mannitol flux a measure of paracellular permeability, resulting in levels similar to control mice, and immunohistochemical studies demonstrated that VIP prevented the translocation of tight junction proteins: zonula occludens-1, occludin, and claudin-3. Enteropathogenic Escherichia coli (EPEC) infection of Caco-2 monolayers confirmed a protective role for VIP on epithelial barrier function. VIP prevented EPEC-induced increase in long myosin light chain kinase (MLCK) expression and myosin light chain phosphorylation (p-MLC). Furthermore, MLCK inhibition significantly attenuated bacterial-induced epithelial damage both in vivo and in vitro. In conclusion, our results indicate that VIP protects the colonic epithelial barrier by minimizing bacterial-induced redistribution of tight junction proteins in part through actions on MLCK and MLC phosphorylation.
Collapse
Affiliation(s)
- V S Conlin
- Division of Gastroenterology, Child and Family Research Institute, BC Children's Hospital, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Transmembrane proteins known as claudins play a critical role in tight junctions by regulating paracellular barrier permeability. The control of claudin assembly into tight junctions requires a complex interplay between several classes of claudins, other transmembrane proteins and scaffold proteins. Claudins are also subject to regulation by post-translational modifications including phosphorylation and palmitoylation. Several human diseases have been linked to claudin mutations, underscoring the physiologic function of these proteins. Roles for claudins in regulating cell phenotype and growth control also are beginning to emerge, suggesting a multifaceted role for claudins in regulation of cells beyond serving as a simple structural element of tight junctions.
Collapse
Affiliation(s)
- Mary K Findley
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
44
|
Ivanov AI, Samarin SN, Bachar M, Parkos CA, Nusrat A. Protein kinase C activation disrupts epithelial apical junctions via ROCK-II dependent stimulation of actomyosin contractility. BMC Cell Biol 2009; 10:36. [PMID: 19422706 PMCID: PMC2685374 DOI: 10.1186/1471-2121-10-36] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2008] [Accepted: 05/07/2009] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Disruption of epithelial cell-cell adhesions represents an early and important stage in tumor metastasis. This process can be modeled in vitro by exposing cells to chemical tumor promoters, phorbol esters and octylindolactam-V (OI-V), known to activate protein kinase C (PKC). However, molecular events mediating PKC-dependent disruption of epithelial cell-cell contact remain poorly understood. In the present study we investigate mechanisms by which PKC activation induces disassembly of tight junctions (TJs) and adherens junctions (AJs) in a model pancreatic epithelium. RESULTS Exposure of HPAF-II human pancreatic adenocarcinoma cell monolayers to either OI-V or 12-O-tetradecanoylphorbol-13-acetate caused rapid disruption and internalization of AJs and TJs. Activity of classical PKC isoenzymes was responsible for the loss of cell-cell contacts which was accompanied by cell rounding, phosphorylation and relocalization of the F-actin motor nonmuscle myosin (NM) II. The OI-V-induced disruption of AJs and TJs was prevented by either pharmacological inhibition of NM II with blebbistatin or by siRNA-mediated downregulation of NM IIA. Furthermore, AJ/TJ disassembly was attenuated by inhibition of Rho-associated kinase (ROCK) II, but was insensitive to blockage of MLCK, calmodulin, ERK1/2, caspases and RhoA GTPase. CONCLUSION Our data suggest that stimulation of PKC disrupts epithelial apical junctions via ROCK-II dependent activation of NM II, which increases contractility of perijunctional actin filaments. This mechanism is likely to be important for cancer cell dissociation and tumor metastasis.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Department of Medicine, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
45
|
Petrosyan M, Guner YS, Williams M, Grishin A, Ford HR. Current concepts regarding the pathogenesis of necrotizing enterocolitis. Pediatr Surg Int 2009; 25:309-18. [PMID: 19301015 DOI: 10.1007/s00383-009-2344-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 02/11/2009] [Indexed: 02/07/2023]
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease that predominantly affects premature neonates. The mortality associated with NEC has not changed appreciably over the past several decades. The underlying etiology of NEC remains elusive, although bacterial colonization of the gut, formula feeding, and perinatal stress have been implicated as putative risk factors. The disease is characterized by massive epithelial destruction, which results in gut barrier failure. The exact molecular and cellular mechanisms involved in this complex disease are poorly understood. Recent studies have provided significant insight into our understanding of the pathogenesis of NEC. Endogenous mediators such as prostanoids, cyclooxygenases, and nitric oxide may play a role in the development of gut barrier failure. Understanding the structural architecture of the gut barrier and the cellular mechanisms that are responsible for gut epithelial damage could lead to the development of novel diagnostic, prophylactic and therapeutic strategies in NEC.
Collapse
Affiliation(s)
- Mikael Petrosyan
- Childrens Hospital Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Blvd, Mailstop #72, Los Angeles, CA 90027, USA
| | | | | | | | | |
Collapse
|
46
|
Babbin BA, Sasaki M, Gerner-Schmidt KW, Nusrat A, Klapproth JMA. The bacterial virulence factor lymphostatin compromises intestinal epithelial barrier function by modulating rho GTPases. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1347-57. [PMID: 19286565 DOI: 10.2353/ajpath.2009.080640] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Abstract
Lymphocyte inhibitory factor A (lifA) in Citrobacter rodentium encodes the large toxin lymphostatin, which contains two enzymatic motifs associated with bacterial pathogenesis, a glucosyltransferase and a protease. Our aim was to determine the effects of each lymphostatin motif on intestinal epithelial-barrier function. In-frame mutations of C. rodentium lifA glucosyltransferase (CrGlM21) and protease (CrPrM5) were generated by homologous recombination. Infection of both model intestinal epithelial monolayers and mice with C. rodentium wild type resulted in compromised epithelial barrier function and mislocalization of key intercellular junction proteins in the tight junction and adherens junction. In contrast, CrGlM21 was impaired in its ability to reduce barrier function and influenced the tight junction proteins ZO-1 and occludin. CrPrM5 demonstrated decreased effects on the adherens junction proteins beta-catenin and E-cadherin. Analysis of the mechanisms revealed that C. rodentium wild type differentially influenced Rho GTPase activation, suppressed Cdc42 activation, and induced Rho GTPase activation. CrGlM21 lost its suppressive effects on Cdc42 activation, whereas CrPrM5 was unable to activate Rho signaling. Rescue experiments using constitutively active Cdc42 or C3 exotoxin to inhibit Rho GTPase supported a role of Rho GTPases in the epithelial barrier compromise induced by C. rodentium. Taken together, our results suggest that lymphostatin is a bacterial virulence factor that contributes to the disruption of intestinal epithelial-barrier function via the modulation of Rho GTPase activities.
Collapse
Affiliation(s)
- Brian A Babbin
- Department of Pathology and Laboratory Medicine, Division of Digestive Diseases, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
47
|
Vongsa RA, Zimmerman NP, Dwinell MB. CCR6 regulation of the actin cytoskeleton orchestrates human beta defensin-2- and CCL20-mediated restitution of colonic epithelial cells. J Biol Chem 2009; 284:10034-45. [PMID: 19233848 DOI: 10.1074/jbc.m805289200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023] Open
Abstract
Intestinal inflammation is exacerbated by defects in the epithelial barrier and subsequent infiltration of microbes and toxins into the underlying mucosa. Production of chemokines and antimicrobial peptides by an intact epithelium provide the first line of defense against invading organisms. In addition to its antimicrobial actions, human beta defensin-2 (HBD2) may also stimulate the migration of dendritic cells through binding the chemokine receptor CCR6. As human colonic epithelium expresses CCR6, we investigated the potential of HBD2 to stimulate intestinal epithelial migration. Using polarized human intestinal Caco2 and T84 cells and non-transformed IEC6 cells, HBD2 was equipotent to CCL20 in stimulating migration. Neutralizing antibodies confirmed HBD2 and CCL20 engagement to CCR6 were sufficient to induce epithelial cell migration. Consistent with restitution, motogenic concentrations of HBD2 and CCL20 did not induce proliferation. Stimulation with those CCR6 ligands leads to calcium mobilization and elevated active RhoA, phosphorylated myosin light chain, and F-actin accumulation. HBD2 and CCL20 were unable to stimulate migration in the presence of either Rho-kinase or phosphoinositide 3-kinase inhibitors or an intracellular calcium chelator. Together, these data indicate that the canonical wound healing regulatory pathway, along with calcium mobilization, regulates CCR6-directed epithelial cell migration. These findings expand the mechanistic role for chemokines and HBD2 in mucosal inflammation to include immunocyte trafficking and killing of microbes with the concomitant activation of restitutive migration and barrier repair.
Collapse
Affiliation(s)
- Rebecca A Vongsa
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
48
|
Chin AC, Lee WY, Nusrat A, Vergnolle N, Parkos CA. Neutrophil-mediated activation of epithelial protease-activated receptors-1 and -2 regulates barrier function and transepithelial migration. THE JOURNAL OF IMMUNOLOGY 2008; 181:5702-10. [PMID: 18832729 DOI: 10.4049/jimmunol.181.8.5702] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Abstract
Neutrophil (PMN) infiltration and associated release of serine proteases contribute to epithelial injury during active phases of mucosal disorders such as inflammatory bowel disease. Previous studies have demonstrated that PMN contact with basolateral surfaces of intestinal epithelial cells in the presence of a chemoattractant results in disruption of barrier function even without transmigration. Similarly, serine protease-mediated activation of epithelial protease-activated receptors (PARs) has been shown to increase permeability. In this study, we assessed whether transmigrating PMNs can regulate barrier function through epithelial PAR activation. Transepithelial resistance (TER) decreased significantly after PMN contact with basolateral surfaces of T84 monolayers or after incubation with PMN elastase and proteinase-3, but not cathepsin G. Inhibition of PMN serine proteases, but not selective inhibition of elastase or cathepsin G, prevented the fall in TER induced by PMN contact and blocked PMN transepithelial migration. Basolateral, but not apical, PAR-1 and -2 activation with selective agonists also decreased TER. PAR-1 and -2 were localized intracellularly and in close proximity to lateral surfaces beneath tight junctions, and expression was increased in colonic mucosa from individuals with Crohn's disease. Combined, but not individual, transfection with small interfering RNAs targeted against epithelial PAR-1 and -2, prevented the fall in TER induced by PMN contact. Furthermore, basolateral PAR-1 and -2 activation induced phosphorylation of myosin L chain kinase and regulatory myosin L chain. Lastly, epithelial PAR-1 and -2 knockdown decreased the rate of PMN transepithelial migration. These results suggest that protease-mediated epithelial PAR-1 and -2 activation, by migrating PMNs, induces signaling events that increase epithelial permeability thereby facilitates PMN transepithelial migration.
Collapse
Affiliation(s)
- Alex C Chin
- Epithelial Pathobiology Unit and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
49
|
Nighot PK, Moeser AJ, Ryan KA, Ghashghaei T, Blikslager AT. ClC-2 is required for rapid restoration of epithelial tight junctions in ischemic-injured murine jejunum. Exp Cell Res 2008; 315:110-8. [PMID: 18976652 DOI: 10.1016/j.yexcr.2008.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2008] [Revised: 10/02/2008] [Accepted: 10/03/2008] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS Involvement of the epithelial chloride channel ClC-2 has been implicated in barrier recovery following ischemic injury, possibly via a mechanism involving ClC-2 localization to the tight junction. The present study investigated mechanisms of intestinal barrier repair following ischemic injury in ClC-2(-/-) mice. METHODS Wild type, ClC-2 heterozygous and ClC-2(-/-) murine jejunal mucosa was subjected to complete ischemia, after which recovery of barrier function was monitored by measuring in vivo blood-to-lumen clearance of (3)H-mannitol. Tissues were examined by light and electron microscopy. The role of ClC-2 in re-assembly of the tight junction during barrier recovery was studied by immunoblotting, immunolocalization and immunoprecipitation. RESULTS Following ischemic injury, ClC-2(-/-) mice had impaired barrier recovery compared to wild type mice, defined by increases in epithelial paracellular permeability independent of epithelial restitution. The recovering ClC-2(-/-) mucosa also had evidence of ultrastructural paracellular defects. The tight junction proteins occludin and claudin-1 shifted significantly to the detergent soluble membrane fraction during post-ischemic recovery in ClC-2(-/-) mice whereas wild type mice had a greater proportion of junctional proteins in the detergent insoluble fraction. Occludin was co-immunoprecipitated with ClC-2 in uninjured wild type mucosa, and the association between occludin and ClC-2 was re-established during ischemic recovery. Based on immunofluorescence studies, re-localization of occludin from diffuse sub-apical areas to apical tight junctions was impaired in ClC-2(-/-) mice. CONCLUSIONS These data demonstrate a pivotal role of ClC-2 in recovery of the intestinal epithelium barrier by anchoring assembly of tight junctions following ischemic injury.
Collapse
Affiliation(s)
- Prashant K Nighot
- Department of Clinical Science, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street Raleigh, NC 27606, USA
| | | | | | | | | |
Collapse
|
50
|
Moeser AJ, Nighot PK, Ryan KA, Simpson JE, Clarke LL, Blikslager AT. Mice lacking the Na+/H+ exchanger 2 have impaired recovery of intestinal barrier function. Am J Physiol Gastrointest Liver Physiol 2008; 295:G791-7. [PMID: 18719001 PMCID: PMC4838133 DOI: 10.1152/ajpgi.00538.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
Ischemic injury induces breakdown of the intestinal barrier. Recent studies in porcine postischemic tissues indicate that inhibition of NHE2 results in enhanced recovery of barrier function in vitro via a process involving interepithelial tight junctions. To further study this process, recovery of barrier function was assessed in wild-type (NHE2(+/+)) and NHE2(-/-) mice in vivo and wild-type mice in vitro. Mice were subjected to complete mesenteric ischemia in vivo, after which barrier function was measured by blood-to-lumen mannitol clearance over a 3-h recovery period or measurement of transepithelial electrical resistance (TER) in Ussing chambers immediately following ischemia. Tissues were assessed for expression of select junctional proteins. Compared with NHE2(+/+) mice, NHE2(-/-) mice had greater intestinal permeability during the postischemic recovery process. In contrast to prior porcine studies, pharmacological inhibition of NHE2 in postischemic tissues from wild-type mice also resulted in significant reductions in TER. Mucosa from NHE2(-/-) mice displayed a shift of occludin and claudin-1 expression to the Triton-X-soluble membrane fractions and showed disruption of occludin and claudin-1 localization patterns following injury. This was qualitatively and quantitatively recovered in NHE2(+/+) mice compared with NHE2(-/-) mice by the end of the 3-h recovery period. Serine phosphorylation of occludin and claudin-1 was downregulated in NHE2(-/-) postischemia compared with wild-type mice. These data indicate an important role for NHE2 in recovery of barrier function in mice via a mechanism involving tight junctions.
Collapse
|