1
|
Perspectives on Potential Fatty Acid Modulations of Motility Associated Human Sperm Ion Channels. Int J Mol Sci 2022; 23:ijms23073718. [PMID: 35409078 PMCID: PMC8998313 DOI: 10.3390/ijms23073718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Human spermatozoan ion channels are specifically distributed in the spermatozoan membrane, contribute to sperm motility, and are associated with male reproductive abnormalities. Calcium, potassium, protons, sodium, and chloride are the main ions that are regulated across this membrane, and their intracellular concentrations are crucial for sperm motility. Fatty acids (FAs) affect sperm quality parameters, reproductive pathologies, male fertility, and regulate ion channel functions in other cells. However, to date the literature is insufficient to draw any conclusions regarding the effects of FAs on human spermatozoan ion channels. Here, we aimed to discern the possible effects of FAs on spermatozoan ion channels and direct guidance for future research. After investigating the effects of FAs on characteristics related to human spermatozoan motility, reproductive pathologies, and the modulation of similar ion channels in other cells by FAs, we extrapolated polyunsaturated FAs (PUFAs) to have the highest potency in modulating sperm ion channels to increase sperm motility. Of the PUFAs, the ω-3 unsaturated fatty acids have the greatest effect. We speculate that saturated and monounsaturated FAs will have little to no effect on sperm ion channel activity, though the possible effects could be opposite to those of the PUFAs, considering the differences between FA structure and behavior.
Collapse
|
2
|
Lin Z, Sang T, Yang Y, Wu Y, Dong Y, Ji T, Zhang Y, Wu Y, Gao K, Jiang Y. Efficacy of Anti-seizure Medications, Quinidine, and Ketogenic Diet Therapy for KCNT1-Related Epilepsy and Genotype-Efficacy Correlation Analysis. Front Neurol 2022; 12:834971. [PMID: 35116000 PMCID: PMC8804090 DOI: 10.3389/fneur.2021.834971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
AimTo evaluate the efficacy of anti-seizure medications (ASMs), quinidine, and ketogenic diet therapy (KDT) for KCNT1-related epilepsy and to explore genotype-efficacy correlations.MethodsWe collected the data for KCNT1-related epilepsy cases from our hospital's medical records and the literature. In total, 50 patients received quinidine, 23 received classical KDT, and 15 received ASMs; all ASM data were from our hospital owing to the lack of detailed ASM data in the literature. The efficacy rates (ERs) of the treatments were compared; an ER that reduced the number of seizures by ≥50% was considered positive. Efficacy according to genotype was also assessed.ResultsThe ERs for the 30 patients at our hospital were 40, 26.7, 30, and 44.4% for all treatments, ASMs, quinidine, and KDT, respectively. For all patients (ours and those in previous reports), the overall ERs for quinidine and KDT were 26.0 and 43.5%, respectively (P = 0.135). The ERs for quinidine and KDT in functional domain variant-related epilepsy differed significantly (20.6 vs. 53.8%; P = 0.037).InterpretationKDT may be better at treating KCNT1-related epilepsy than quinidine; ASMs were the least effective. KDT is a viable treatment option for functional domain variant-related epilepsy.
Collapse
Affiliation(s)
- Zehong Lin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Tian Sang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuan Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yan Dong
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Taoyun Ji
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Kai Gao
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
- *Correspondence: Yuwu Jiang
| |
Collapse
|
3
|
Permissive Modulation of Sphingosine-1-Phosphate-Enhanced Intracellular Calcium on BK Ca Channel of Chromaffin Cells. Int J Mol Sci 2021; 22:ijms22042175. [PMID: 33671654 PMCID: PMC7926978 DOI: 10.3390/ijms22042175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), is a signaling sphingolipid which acts as a bioactive lipid mediator. We assessed whether S1P had multiplex effects in regulating the large-conductance Ca2+-activated K+ channel (BKCa) in catecholamine-secreting chromaffin cells. Using multiple patch-clamp modes, Ca2+ imaging, and computational modeling, we evaluated the effects of S1P on the Ca2+-activated K+ currents (IK(Ca)) in bovine adrenal chromaffin cells and in a pheochromocytoma cell line (PC12). In outside-out patches, the open probability of BKCa channel was reduced with a mean-closed time increment, but without a conductance change in response to a low-concentration S1P (1 µM). The intracellular Ca2+ concentration (Cai) was elevated in response to a high-dose (10 µM) but not low-dose of S1P. The single-channel activity of BKCa was also enhanced by S1P (10 µM) in the cell-attached recording of chromaffin cells. In the whole-cell voltage-clamp, a low-dose S1P (1 µM) suppressed IK(Ca), whereas a high-dose S1P (10 µM) produced a biphasic response in the amplitude of IK(Ca), i.e., an initial decrease followed by a sustained increase. The S1P-induced IK(Ca) enhancement was abolished by BAPTA. Current-clamp studies showed that S1P (1 µM) increased the action potential (AP) firing. Simulation data revealed that the decreased BKCa conductance leads to increased AP firings in a modeling chromaffin cell. Over a similar dosage range, S1P (1 µM) inhibited IK(Ca) and the permissive role of S1P on the BKCa activity was also effectively observed in the PC12 cell system. The S1P-mediated IK(Ca) stimulation may result from the elevated Cai, whereas the inhibition of BKCa activity by S1P appears to be direct. By the differentiated tailoring BKCa channel function, S1P can modulate stimulus-secretion coupling in chromaffin cells.
Collapse
|
4
|
Martín P, Moncada M, Castillo K, Orsi F, Ducca G, Fernández-Fernández JM, González C, Milesi V. Arachidonic acid effect on the allosteric gating mechanism of BK (Slo1) channels associated with the β1 subunit. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183550. [PMID: 33417967 DOI: 10.1016/j.bbamem.2021.183550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/04/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022]
Abstract
Arachidonic acid (AA) is a fatty acid involved in the modulation of several ion channels. Previously, we reported that AA activates the high conductance Ca2+- and voltage-dependent K+ channel (BK) in vascular smooth muscle depending on the expression of the auxiliary β1 subunit. Here, using the patch-clamp technique on BK channel co-expressed with β1 subunit in a heterologous cell expression system, we analyzed whether AA modifies the three functional modules involved in the channel gating: the voltage sensor domain (VSD), the pore domain (PD), and the intracellular calcium sensor domain (CSD). We present evidence that AA activates BK channel in a direct way, inducing VSD stabilization on its active configuration observed as a significant left shift in the Q-V curve obtained from gating currents recordings. Moreover, AA facilitates the channel opening transitions when VSD are at rest, and the CSD are unoccupied. Furthermore, the activation was independent of the intracellular Ca2+ concentration and reduced when the BK channel was co-expressed with the Y74A mutant of the β1 subunit. These results allow us to present new insigths in the mechanism by which AA modulates BK channels co-expressed with its auxiliary β1 subunit.
Collapse
Affiliation(s)
- Pedro Martín
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, La Plata, Argentina.
| | - Melisa Moncada
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, La Plata, Argentina.
| | - Karen Castillo
- CINV: Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| | - Federico Orsi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, La Plata, Argentina.
| | - Gerónimo Ducca
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, La Plata, Argentina.
| | - José Manuel Fernández-Fernández
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain.
| | - Carlos González
- CINV: Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| | - Verónica Milesi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, La Plata, Argentina.
| |
Collapse
|
5
|
Hung TY, Huang CW, Wu SN. High ability of zileuton ((±)-1-(1-benzo[b]thien-2-ylethyl)-1-hydroxyurea) to stimulate I K(Ca) but suppress I K(DR) and I K(M) independently of 5-lipoxygenase inhibition. Eur J Pharmacol 2020; 887:173482. [PMID: 32795513 DOI: 10.1016/j.ejphar.2020.173482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022]
Abstract
Zileuton (Zyflo®) is regarded to be an inhibitor of 5-lipoxygenase. Although its effect on Ca2+-activated K+ currents has been reported, its overall ionic effects on neurons are uncertain. In whole-cell current recordings, zileuton increased the amplitude of Ca2+-activated K+ currents with an EC50 of 3.2 μM in pituitary GH3 lactotrophs. Furthermore, zileuton decreased the amplitudes of both delayed-rectifier K+ current (IK(DR)) and M-type K+ current (IK(M)). Conversely, no modification of hyperpolarization-activated cation current (Ih) was demonstrated in its presence of zileuton, although the subsequent addition of cilobradine effectively suppressed the current. In inside-out current recordings, the addition of zileuton to the bath increased the probability of large-conductance Ca2+-activated K+ (BKCa) channels; however, the subsequent addition of GAL-021 effectively reversed the stimulation of channel activity. The kinetic analyses showed an evident shortening in the slow component of mean closed time of BKCa channels in the presence of zileuton, with minimal change in mean open time or that in the fast component of mean closed time. The elevation of BKCa channels caused by zileuton was also observed in hippocampal mHippoE-14 neurons, without any modification of single-channel amplitude. In conclusion, except for its suppression of 5-lipoxygenase, our results indicate that zileuton does not exclusively act on BKCa channels, and its inhibitory effects on IK(DR) and IK(M) may combine to exert strong influence on the functional activities of electrically excitable cells in vivo.
Collapse
Affiliation(s)
- Te-Yu Hung
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan.
| |
Collapse
|
6
|
Arachidonic acid: Physiological roles and potential health benefits - A review. J Adv Res 2017; 11:33-41. [PMID: 30034874 PMCID: PMC6052655 DOI: 10.1016/j.jare.2017.11.004] [Citation(s) in RCA: 363] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/17/2022] Open
Abstract
It is time to shift the arachidonic acid (ARA) paradigm from a harm-generating molecule to its status of polyunsaturated fatty acid essential for normal health. ARA is an integral constituent of biological cell membrane, conferring it with fluidity and flexibility, so necessary for the function of all cells, especially in nervous system, skeletal muscle, and immune system. Arachidonic acid is obtained from food or by desaturation and chain elongation of the plant-rich essential fatty acid, linoleic acid. Free ARA modulates the function of ion channels, several receptors and enzymes, via activation as well as inhibition. That explains its fundamental role in the proper function of the brain and muscles and its protective potential against Schistosoma mansoni and S. haematobium infection and tumor initiation, development, and metastasis. Arachidonic acid in cell membranes undergoes reacylation/deacylation cycles, which keep the concentration of free ARA in cells at a very low level and limit ARA availability to oxidation. Metabolites derived from ARA oxidation do not initiate but contribute to inflammation and most importantly lead to the generation of mediators responsible for resolving inflammation and wound healing. Endocannabinoids are oxidation-independent ARA derivatives, critically important for brain reward signaling, motivational processes, emotion, stress responses, pain, and energy balance. Free ARA and metabolites promote and modulate type 2 immune responses, which are critically important in resistance to parasites and allergens insult, directly via action on eosinophils, basophils, and mast cells and indirectly by binding to specific receptors on innate lymphoid cells. In conclusion, the present review advocates the innumerable ARA roles and considerable importance for normal health.
Collapse
|
7
|
Eag1 K + Channel: Endogenous Regulation and Functions in Nervous System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7371010. [PMID: 28367272 PMCID: PMC5358448 DOI: 10.1155/2017/7371010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/27/2016] [Accepted: 01/31/2017] [Indexed: 02/04/2023]
Abstract
Ether-à-go-go1 (Eag1, Kv10.1, KCNH1) K+ channel is a member of the voltage-gated K+ channel family mainly distributed in the central nervous system and cancer cells. Like other types of voltage-gated K+ channels, the EAG1 channels are regulated by a variety of endogenous signals including reactive oxygen species, rendering the EAG1 to be in the redox-regulated ion channel family. The role of EAG1 channels in tumor development and its therapeutic significance have been well established. Meanwhile, the importance of hEAG1 channels in the nervous system is now increasingly appreciated. The present review will focus on the recent progress on the channel regulation by endogenous signals and the potential functions of EAG1 channels in normal neuronal signaling as well as neurological diseases.
Collapse
|
8
|
Elinder F, Liin SI. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels. Front Physiol 2017; 8:43. [PMID: 28220076 PMCID: PMC5292575 DOI: 10.3389/fphys.2017.00043] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/16/2017] [Indexed: 01/29/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (NaV), potassium (KV), calcium (CaV), and proton (HV) channels, as well as calcium-activated potassium (KCa), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1: The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2: The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3: The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4: The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5: The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels.
Collapse
Affiliation(s)
- Fredrik Elinder
- Department of Clinical and Experimental Medicine, Linköping University Linköping, Sweden
| | - Sara I Liin
- Department of Clinical and Experimental Medicine, Linköping University Linköping, Sweden
| |
Collapse
|
9
|
Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F, Gonzalez C, Alvarez O. Molecular Determinants of BK Channel Functional Diversity and Functioning. Physiol Rev 2017; 97:39-87. [DOI: 10.1152/physrev.00001.2016] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Large-conductance Ca2+- and voltage-activated K+ (BK) channels play many physiological roles ranging from the maintenance of smooth muscle tone to hearing and neurosecretion. BK channels are tetramers in which the pore-forming α subunit is coded by a single gene ( Slowpoke, KCNMA1). In this review, we first highlight the physiological importance of this ubiquitous channel, emphasizing the role that BK channels play in different channelopathies. We next discuss the modular nature of BK channel-forming protein, in which the different modules (the voltage sensor and the Ca2+ binding sites) communicate with the pore gates allosterically. In this regard, we review in detail the allosteric models proposed to explain channel activation and how the models are related to channel structure. Considering their extremely large conductance and unique selectivity to K+, we also offer an account of how these two apparently paradoxical characteristics can be understood consistently in unison, and what we have learned about the conduction system and the activation gates using ions, blockers, and toxins. Attention is paid here to the molecular nature of the voltage sensor and the Ca2+ binding sites that are located in a gating ring of known crystal structure and constituted by four COOH termini. Despite the fact that BK channels are coded by a single gene, diversity is obtained by means of alternative splicing and modulatory β and γ subunits. We finish this review by describing how the association of the α subunit with β or with γ subunits can change the BK channel phenotype and pharmacology.
Collapse
Affiliation(s)
- Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Willy Carrasquel-Ursulaez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Romina V. Sepulveda
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Fernando Gonzalez-Nilo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Osvaldo Alvarez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Antollini SS, Barrantes FJ. Fatty Acid Regulation of Voltage- and Ligand-Gated Ion Channel Function. Front Physiol 2016; 7:573. [PMID: 27965583 PMCID: PMC5124694 DOI: 10.3389/fphys.2016.00573] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
Free fatty acids (FFA) are essential components of the cell, where they play a key role in lipid and carbohydrate metabolism, and most particularly in cell membranes, where they are central actors in shaping the physicochemical properties of the lipid bilayer and the cellular adaptation to the environment. FFA are continuously being produced and degraded, and a feedback regulatory function has been attributed to their turnover. The massive increase observed under some pathological conditions, especially in brain, has been interpreted as a protective mechanism possibly operative on ion channels, which in some cases is of stimulatory nature and in other cases inhibitory. Here we discuss the correlation between the structure of FFA and their ability to modulate protein function, evaluating the influence of saturation/unsaturation, number of double bonds, and cis vs. trans isomerism. We further focus on the mechanisms of FFA modulation operating on voltage-gated and ligand-gated ion channel function, contrasting the still conflicting evidence on direct vs. indirect mechanisms of action.
Collapse
Affiliation(s)
- Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (CONICET-UNS)Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del SurBahía Blanca, Argentina
| | | |
Collapse
|
11
|
Plasmonic gold nanoparticles possess the ability to open potassium channels in rat thoracic aorta smooth muscles in a remote control manner. Vascul Pharmacol 2015; 72:190-6. [DOI: 10.1016/j.vph.2015.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/26/2015] [Accepted: 05/30/2015] [Indexed: 11/30/2022]
|
12
|
Yu L, Eaton AF, Yue Q, Bao HF, Ma HP, Cuppoletti J, Eaton DC. Unoprostone activation of BK (KCa1.1) channel splice variants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2859-67. [PMID: 26277265 DOI: 10.1016/j.bbamem.2015.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 07/19/2015] [Accepted: 08/11/2015] [Indexed: 01/14/2023]
Abstract
This investigation was conducted to study the relationship between intracellular Ca(2+) and activation of large conductance Ca(2+)-activated K(+) (BK) currents by unoprostone, the first synthetic docosanoid. We used HEK293 cells stably transfected with two BK channel splice variants, one sensitive to unoprostone and the other insensitive. We examined the effects of unoprostone on channel activity in excised inside-out patches and cell-attached patches. The half-maximal stimulation of the sensitive BK channels by Ca(2+) was shifted from 3.4±0.017 nM to 0.81±.0058 nM in the presence of 10 nM unoprostone. There was no effect on insensitive channels even at unoprostone concentrations as high as 1000 nM. There was no effect of unoprostone on the voltage dependence of the BK channels. Changes in open probability and effects of Ca(2+) and unoprostone were best described by a synergistic binding model. These data would suggest that Ca(2+) and unoprostone were binding to sites close to one another on the channel protein and that unoprostone binding causes the affinity of the calcium binding site to increase. This idea is consistent with three dimensional models of the Ca(2+) binding site and a putative unoprostone binding domain. Our results have important implications for the clinical use of unoprostone to activate BK channels. Channel activation will be limited if intracellular Ca(2+) is not elevated.
Collapse
Affiliation(s)
- Ling Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Amity F Eaton
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine Atlanta, GA 30322, United States
| | - Qiang Yue
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine Atlanta, GA 30322, United States
| | - Hui-Fang Bao
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine Atlanta, GA 30322, United States
| | - He-Ping Ma
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine Atlanta, GA 30322, United States
| | - John Cuppoletti
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Douglas C Eaton
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine Atlanta, GA 30322, United States.
| |
Collapse
|
13
|
Torres YP, Granados ST, Latorre R. Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits. Front Physiol 2014; 5:383. [PMID: 25346693 PMCID: PMC4193333 DOI: 10.3389/fphys.2014.00383] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/16/2014] [Indexed: 01/03/2023] Open
Abstract
Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca(2+) concentration, the large conductance voltage- and Ca(2+)-activated K(+) channel (BK) is unique among the superfamily of K(+) channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K(+) channels) and a large C terminus composed of two regulators of K(+) conductance domains (RCK domains), where the Ca(2+)-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3, and β4) and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca(2+) sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous, and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above.
Collapse
Affiliation(s)
- Yolima P Torres
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá, Colombia
| | - Sara T Granados
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá, Colombia ; Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Ramón Latorre
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
14
|
Bentzen BH, Olesen SP, Rønn LCB, Grunnet M. BK channel activators and their therapeutic perspectives. Front Physiol 2014; 5:389. [PMID: 25346695 PMCID: PMC4191079 DOI: 10.3389/fphys.2014.00389] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/19/2014] [Indexed: 01/05/2023] Open
Abstract
The large conductance calcium- and voltage-activated K+ channel (KCa1.1, BK, MaxiK) is ubiquitously expressed in the body, and holds the ability to integrate changes in intracellular calcium and membrane potential. This makes the BK channel an important negative feedback system linking increases in intracellular calcium to outward hyperpolarizing potassium currents. Consequently, the channel has many important physiological roles including regulation of smooth muscle tone, neurotransmitter release and neuronal excitability. Additionally, cardioprotective roles have been revealed in recent years. After a short introduction to the structure, function and regulation of BK channels, we review the small organic molecules activating BK channels and how these tool compounds have helped delineate the roles of BK channels in health and disease.
Collapse
Affiliation(s)
- Bo H Bentzen
- Department of Biomedical Sciences, Faculty of Health Sciences, Danish Arrhythmia Research Centre, University of Copenhagen Copenhagen, Denmark ; Acesion Pharma Copenhagen, Denmark
| | - Søren-Peter Olesen
- Department of Biomedical Sciences, Faculty of Health Sciences, Danish Arrhythmia Research Centre, University of Copenhagen Copenhagen, Denmark
| | | | - Morten Grunnet
- Acesion Pharma Copenhagen, Denmark ; H. Lundbeck A/S Copenhagen, Denmark
| |
Collapse
|
15
|
Dopico AM, Bukiya AN. Lipid regulation of BK channel function. Front Physiol 2014; 5:312. [PMID: 25202277 PMCID: PMC4141547 DOI: 10.3389/fphys.2014.00312] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/31/2014] [Indexed: 01/11/2023] Open
Abstract
This mini-review focuses on lipid modulation of BK (MaxiK, BKCa) current by a direct interaction between lipid and the BK subunits and/or their immediate lipid environment. Direct lipid-BK protein interactions have been proposed for fatty and epoxyeicosatrienoic acids, phosphoinositides and cholesterol, evidence for such action being less clear for other lipids. BK α (slo1) subunits are sufficient to support current perturbation by fatty and epoxyeicosatrienoic acids, glycerophospholipids and cholesterol, while distinct BK β subunits seem necessary for current modulation by most steroids. Subunit domains or amino acids that participate in lipid action have been identified in a few cases: hslo1 Y318, cerebral artery smooth muscle (cbv1) R334,K335,K336, cbv1 seven cytosolic CRAC domains, slo1 STREX and β1 T169,L172,L173 for docosahexaenoic acid, PIP2, cholesterol, sulfatides, and cholane steroids, respectively. Whether these protein motifs directly bind lipids or rather transmit the energy of lipid binding to other areas and trigger protein conformation change remains unresolved. The impact of direct lipid-BK interaction on physiology is briefly discussed.
Collapse
Affiliation(s)
- Alex M Dopico
- Department of Pharmacology, The University of Tennessee Health Science Center Memphis, TN, USA
| | - Anna N Bukiya
- Department of Pharmacology, The University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|
16
|
Olszewska A, Bednarczyk P, Siemen D, Szewczyk A. Modulation of the mitochondrial large-conductance calcium-regulated potassium channel by polyunsaturated fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1602-10. [PMID: 25046142 DOI: 10.1016/j.bbabio.2014.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 07/03/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) and their metabolites can modulate several biochemical processes in the cell and thus prevent various diseases. PUFAs have a number of cellular targets, including membrane proteins. They can interact with plasma membrane and intracellular potassium channels. The goal of this work was to verify the interaction between PUFAs and the most common and intensively studied mitochondrial large conductance Ca(2+)-regulated potassium channel (mitoBKCa). For this purpose human astrocytoma U87 MG cell lines were investigated using a patch-clamp technique. We analyzed the effects of arachidonic acid (AA); eicosatetraynoic acid (ETYA), which is a non-metabolizable analog of AA; docosahexaenoic acid (DHA); and eicosapentaenoic acid (EPA). The open probability (Po) of the channel did not change significantly after application of 10μM ETYA. Po increased, however, after adding 10μM AA. The application of 30μM DHA or 10μM EPA also increased the Po of the channel. Additionally, the number of open channels in the patch increased in the presence of 30μM EPA. Collectively, our results indicate that PUFAs regulate the BKCa channel from the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Anna Olszewska
- Department of Biochemistry, Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | - Piotr Bednarczyk
- Department of Biochemistry, Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland; Department of Biophysics, Warsaw University of Life Sciences, Warsaw, Poland
| | - Detlef Siemen
- Department of Neurology, Otto-von-Guericke Universität Magdeburg, Germany
| | - Adam Szewczyk
- Department of Biochemistry, Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
17
|
Zhou L, Zhang YJ, Gao LJ, Ye Y, Qi JH, Qi Z. Structure–activity relationship of Baifuzi-cerebrosides on BKCa channel activation. Eur J Med Chem 2014; 75:301-7. [DOI: 10.1016/j.ejmech.2014.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 11/29/2022]
|
18
|
Martín P, Moncada M, Enrique N, Asuaje A, Valdez Capuccino JM, Gonzalez C, Milesi V. Arachidonic acid activation of BKCa (Slo1) channels associated to the β1-subunit in human vascular smooth muscle cells. Pflugers Arch 2013; 466:1779-92. [DOI: 10.1007/s00424-013-1422-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 01/10/2023]
|
19
|
Wu W, Wang Y, Deng XL, Sun HY, Li GR. Cholesterol down-regulates BK channels stably expressed in HEK 293 cells. PLoS One 2013; 8:e79952. [PMID: 24260325 PMCID: PMC3832390 DOI: 10.1371/journal.pone.0079952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 09/28/2013] [Indexed: 12/23/2022] Open
Abstract
Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit.
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yan Wang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hai-Ying Sun
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gui-Rong Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Physiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- * E-mail:
| |
Collapse
|
20
|
Arsenault D, Julien C, Chen CT, Bazinet RP, Calon F. Dietary intake of unsaturated fatty acids modulates physiological properties of entorhinal cortex neurons in mice. J Neurochem 2012; 122:427-43. [PMID: 22551210 DOI: 10.1111/j.1471-4159.2012.07772.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dietary lipids modify brain fatty acid profile, but evidence of their direct effect on neuronal function is sparse. The enthorinal cortex (EC) neurons connecting to the hippocampus play a critical role in learning and memory. Here, we have exposed mice to diets based on canola:soybean oils (40 : 10, g/kg) or safflower : corn oils (25 : 25, g/kg) to investigate the relationship between the lipid profile of brain fatty acids and the intrinsic properties of EC neurons. Consumption of canola : soybean oil-enriched diet led to the increase of the monounsaturated fatty acid oleic acid and to a decrease of arachidonic acid in ethanolamine glycerophospholipids of the white matter. We also found an important rise in docosahexaenoic acid (DHA) within ethanolamine glycerophospholipids and phosphatidylserine of gray matter. The canola:soybean oil treatment led to a shorter duration of action potential (-21%), a reduction in the duration of postsynaptic response (-21%) and increased firing activity (+43%). Data from additional experiments with animals fed DHA alone or DHA with canola oil suggested that dietary monounsaturated fatty acid may have contributed to these effects on EC neuron physiology. Since neuronal function within the enthorhinal-hippocampal loop is critical to learning and memory processes, the present data may provide a functional basis for the beneficial cognitive effects of canola oil-based diets.
Collapse
Affiliation(s)
- Dany Arsenault
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
| | | | | | | | | |
Collapse
|
21
|
Arachidonic acid modulates Na+ currents by non-metabolic and metabolic pathways in rat cerebellar granule cells. Biochem J 2011; 438:203-15. [PMID: 21564022 DOI: 10.1042/bj20110569] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AA (arachidonic acid), which possesses both neurotoxic and neurotrophic activities, has been implicated as a messenger in both physiological and pathophysiological processes. In the present study, we investigated the effects of both extracellular and intracellular application of AA on the activity of Na(V) (voltage-gated Na(+) channels) in rat cerebellar GCs (granule cells). The extracellular application of AA inhibited the resultant I(Na) (Na(V) current), wherein the current-voltage curve shifted to a negative voltage direction. Because this effect could be reproduced by treating the GCs with ETYA (eicosa-5,8,11,14-tetraynoic acid) or a membrane-impermeable analogue of AA, AA-CoA (arachidonoyl coenzyme A), we inferred that AA itself exerted the observed modulatory effects on I(Na). In contrast, intracellular AA significantly augmented the elicited I(Na) peak when the same protocol that was used for extracellular AA was followed. The observed I(Na) increase that was induced by intracellular AA was mimicked by the AA cyclo-oxygenase metabolite PGE(2) (prostaglandin E(2)), but not by ETYA. Furthermore, cyclo-oxygenase inhibitors decreased I(Na) and quenched AA-induced channel activation, indicating that the effect of intracellular AA on Na(V) was possibly mediated through AA metabolites. In addition, the PGE2-induced activation of I(Na) was mimicked by cAMP and quenched by a PKA (protein kinase A) inhibitor, a G(s) inhibitor and EP (E-series of prostaglandin) receptor antagonists. The results of the present study suggest that extracellular AA modulates Na(V) channel activity in rat cerebellar GCs without metabolic conversion, whereas intracellular AA augments the I(Na) by PGE(2)-mediated activation of cAMP/PKA pathways. These observations may explain the dual character of AA in neuronal pathogenesis.
Collapse
|
22
|
Retamal MA, Evangelista-Martínez F, León-Paravic CG, Altenberg GA, Reuss L. Biphasic effect of linoleic acid on connexin 46 hemichannels. Pflugers Arch 2011; 461:635-43. [PMID: 21360038 PMCID: PMC3108795 DOI: 10.1007/s00424-011-0936-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 01/05/2023]
Abstract
Connexins form hemichannels at undocked plasma membranes and gap-junction channels (GJCs) at intercellular contacting zones. Under physiological conditions, hemichannels have low open probabilities, but their activation under pathological conditions, such as ischemia, induces and/or accelerates cell death. Connexin 46 (Cx46) is a major connexin of the lens, and mutations of this connexin induce cataracts. Here, we report the effects of linoleic acid (LA) on the electrical properties of Cx46 GJCs and hemichannels expressed in Xenopus laevis oocytes. LA has a biphasic effect, increasing hemichannel current at 0.1 μM and decreasing it at concentrations of 100 μM or higher. The effects of extracellular and microinjected LA conjugated to coenzyme A (LA-CoA) suggest that the current activation site is accessible from the intracellular but not extracellular compartment, whereas the current inhibitory site is either located in a region of the hemichannel pore inaccessible to intracellular LA-CoA, or requires crossing of LA through an organelle membrane. Experiments with other fatty acids demonstrated that the block of hemichannels depends on the presence of a hydrogenated double bond at position 9 and is directly proportional to the number of double bonds. Experiments in paired oocytes expressing Cx46 showed that LA does not affect GJCs. The block by unsaturated fatty acids reported here opens the possibility that increases in the concentration of these lipids in the lens induce cataract formation by blocking Cx46 hemichannels.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Laboratorio de Fisiología, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.
| | | | | | | | | |
Collapse
|
23
|
Xu H, Qi J, Wang G, Deng H, Qi Z. The effect of single cerebroside compounds on activation of BKCa channels. Mol Membr Biol 2010; 28:145-54. [PMID: 21190430 DOI: 10.3109/09687688.2010.538731] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have previously shown that a mixture of cerebrosides obtained from dried tubers of herb Typhonium giganteum Engl. plays a neuroprotective role in the ischemic brain through its effect on activation of BK(Ca) channels. It is very curious to know whether a single pure cerebroside compound could activate the BK(Ca) channel as well. This study explored the possible effects of pure cerebroside compounds, termitomycesphins A and B, on the BK(Ca) channel activation. Both termitomycesphins A and B activated the BK(Ca) channels at micromole concentration without significant difference. Termitomycesphin A increased the single channel open probability of the BK(Ca) channels in a dose-dependent manner without modifying the single channel conductance. Termitomycesphin A activated BK(Ca) channel more efficiently when it was applied to the cytoplasmic face of the membrane, suggesting that binding site for termitomycesphin A is located at the cytoplasmic side. Termitomycesphin A shifted the voltage-dependent activation curve to less positive membrane potentials and the Ca(2+)-dependent activation curve of the channel upwards, suggesting that termitomycesphin A could activate the channels even without intracellular free Ca(2+). Furthermore, STREX-deleted BK(Ca) channels were completely insensitive to termitomycesphin A, indicating that STREX domain is required for the activation of the BK(Ca) channel. These data provide evidence that termitomycesphins are potent in stimulating the activity of the BK(Ca) channels. As BK(Ca) channels are associated with pathology of many diseases, termitomycesphins might be used as therapeutic agents for treating these diseases through its regulatory effect on the BK(Ca) channels.
Collapse
Affiliation(s)
- Huina Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | |
Collapse
|
24
|
Roberts-Crowley ML, Rittenhouse AR. Arachidonic acid inhibition of L-type calcium (CaV1.3b) channels varies with accessory CaVbeta subunits. ACTA ACUST UNITED AC 2010; 133:387-403. [PMID: 19332620 PMCID: PMC2699108 DOI: 10.1085/jgp.200810047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arachidonic acid (AA) inhibits the activity of several different voltage-gated Ca2+ channels by an unknown mechanism at an unknown site. The Ca2+ channel pore-forming subunit (CaVα1) is a candidate for the site of AA inhibition because T-type Ca2+ channels, which do not require accessory subunits for expression, are inhibited by AA. Here, we report the unanticipated role of accessory CaVβ subunits on the inhibition of CaV1.3b L-type (L-) current by AA. Whole cell Ba2+ currents were measured from recombinant channels expressed in human embryonic kidney 293 cells at a test potential of −10 mV from a holding potential of −90 mV. A one-minute exposure to 10 µM AA inhibited currents with β1b, β3, or β4 58, 51, or 44%, respectively, but with β2a only 31%. At a more depolarized holding potential of −60 mV, currents were inhibited to a lesser degree. These data are best explained by a simple model where AA stabilizes CaV1.3b in a deep closed-channel conformation, resulting in current inhibition. Consistent with this hypothesis, inhibition by AA occurred in the absence of test pulses, indicating that channels do not need to open to become inhibited. AA had no effect on the voltage dependence of holding potential–dependent inactivation or on recovery from inactivation regardless of CaVβ subunit. Unexpectedly, kinetic analysis revealed evidence for two populations of L-channels that exhibit willing and reluctant gating previously described for CaV2 channels. AA preferentially inhibited reluctant gating channels, revealing the accelerated kinetics of willing channels. Additionally, we discovered that the palmitoyl groups of β2a interfere with inhibition by AA. Our novel findings that the CaVβ subunit alters kinetic changes and magnitude of inhibition by AA suggest that CaVβ expression may regulate how AA modulates Ca2+-dependent processes that rely on L-channels, such as gene expression, enzyme activation, secretion, and membrane excitability.
Collapse
Affiliation(s)
- Mandy L Roberts-Crowley
- Department of Physiology and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
25
|
Li J, Al-Khalili O, Ramosevac S, Eaton DC, Denson DD. Protein-protein interaction between cPLA2 and splice variants of alpha-subunit of BK channels. Am J Physiol Cell Physiol 2009; 298:C251-62. [PMID: 19940072 DOI: 10.1152/ajpcell.00221.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Altering the splice variant composition of large-conductance Ca(2+)-activated potassium (BK) channels can alter their activity and apparent sensitivity to Ca(2+) and other regulators of activity. We hypothesized that differences in the responsiveness to arachidonic acid of GH3 and GH4 cells was due to a difference in two splice variants, one present in GH3 cells and the other in GH4 cells. The sequences of the two splice variants differ from one another in several ways, but the largest difference is the presence or absence of 27 amino acids in the COOH terminus of the BK alpha-subunit. Open probability of the variant containing the 27 amino acids is significantly increased by arachidonic acid, while the variant lacking the 27 amino acids is insensitive to arachidonic acid. In addition, sensitivity of BK channels to arachidonic acid depends on cytosolic phospholipase A(2) (cPLA(2)). Here we used the Mammalian Matchmaker two-hybrid assay and two BK alpha-subunit constructs with [rSlo(27)] and without [rSlo(0)] the 27-amino acid motif to determine whether cPLA(2) associates with one construct [rSlo(27)] and not the other. We hypothesized that differential association of cPLA(2) might explain the differing responsiveness of the two constructs and GH3 and GH4 cells to arachidonic acid. We found that cPLA(2) is strongly associated with the COOH terminus of rSlo(27) and only very weakly associated with rSlo(0). We also found that arachidonic acid has a lower affinity for rSlo(0) than for rSlo(27). We conclude that the lack of response of BK channels in GH4 cells to arachidonic acid can be explained, in part, by the poor binding of cPLA(2) to the COOH terminus of the rSlo(0) alpha-subunit, which is very similar to the splice variant found in the arachidonic acid-insensitive GH4 cells.
Collapse
Affiliation(s)
- Juan Li
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
26
|
Lundbaek JA, Collingwood SA, Ingólfsson HI, Kapoor R, Andersen OS. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. J R Soc Interface 2009; 7:373-95. [PMID: 19940001 DOI: 10.1098/rsif.2009.0443] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Membrane protein function is regulated by the host lipid bilayer composition. This regulation may depend on specific chemical interactions between proteins and individual molecules in the bilayer, as well as on non-specific interactions between proteins and the bilayer behaving as a physical entity with collective physical properties (e.g. thickness, intrinsic monolayer curvature or elastic moduli). Studies in physico-chemical model systems have demonstrated that changes in bilayer physical properties can regulate membrane protein function by altering the energetic cost of the bilayer deformation associated with a protein conformational change. This type of regulation is well characterized, and its mechanistic elucidation is an interdisciplinary field bordering on physics, chemistry and biology. Changes in lipid composition that alter bilayer physical properties (including cholesterol, polyunsaturated fatty acids, other lipid metabolites and amphiphiles) regulate a wide range of membrane proteins in a seemingly non-specific manner. The commonality of the changes in protein function suggests an underlying physical mechanism, and recent studies show that at least some of the changes are caused by altered bilayer physical properties. This advance is because of the introduction of new tools for studying lipid bilayer regulation of protein function. The present review provides an introduction to the regulation of membrane protein function by the bilayer physical properties. We further describe the use of gramicidin channels as molecular force probes for studying this mechanism, with a unique ability to discriminate between consequences of changes in monolayer curvature and bilayer elastic moduli.
Collapse
Affiliation(s)
- Jens A Lundbaek
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | | | |
Collapse
|
27
|
Chen KC, Chang LS. Arachidonic acid-induced apoptosis of human neuroblastoma SK-N-SH cells is mediated through mitochondrial alteration elicited by ROS and Ca2+-evoked activation of p38α MAPK and JNK1. Toxicology 2009; 262:199-206. [DOI: 10.1016/j.tox.2009.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 12/31/2022]
|
28
|
Hou S, Heinemann SH, Hoshi T. Modulation of BKCa channel gating by endogenous signaling molecules. Physiology (Bethesda) 2009; 24:26-35. [PMID: 19196649 DOI: 10.1152/physiol.00032.2008] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Large-conductance Ca(2+)- and voltage-activated K(+) (BK(Ca), MaxiK, or Slo1) channels are expressed in almost every tissue in our body and participate in many critical functions such as neuronal excitability, vascular tone regulation, and neurotransmitter release. The functional versatility of BK(Ca) channels owes in part to the availability of a spectacularly wide array of biological modulators of the channel function. In this review, we focus on modulation of BK(Ca) channels by small endogenous molecules, emphasizing their molecular mechanisms. The mechanistic information available from studies on the small naturally occurring modulators is expected to contribute to our understanding of the physiological and pathophysiological roles of BK(Ca) channels.
Collapse
Affiliation(s)
- Shangwei Hou
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
29
|
Gu H, Fang YJ, He YL, Sun J, Zhu J, Mei YA. Modulation of muscle rNaV1.4 Na+ channel isoform by arachidonic acid and its non-metabolized analog. J Cell Physiol 2009; 219:173-82. [PMID: 19097141 DOI: 10.1002/jcp.21664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Arachidonic acid (AA) and its metabolic products are important second messengers which exert many biological actions, including modulation of various ion channels. However, the blockage of muscle Na(+) channel isoforms by AA has not been examined in detail. Here, we investigated the modulating effects of AA on muscle rNa(V)1.4 isoforms expressed in human embryonic kidney 293 cells. The results revealed that AA has both activation and inhibitory effects on rNa(V)1.4 currents depending on the depolarizing potential: AA increased the rNa(V)1.4 current evoked by a depolarization of -30 or -40 mV, but significantly decreased the rNa(V)1.4 current evoked by a depolarization of membrane potential over -10 mV. At concentrations of 1-500 microM, the inhibitory effect on the rNa(V)1.4 current induced by AA was dose-dependent and reversible. In addition to modulating the amplitude of the rNa(V)1.4 current, AA significantly modulated the steady-state activation and inactivation properties of rNa(V)1.4 channels. Furthermore, treatment with AA resulted in a fairly slow recovery of the rNa(V)1.4 channel from inactivation; however, the inhibitory effect of AA was not changed by repetitive pulses or by changing frequency. The effect of AA on rNa(V)1.4 currents was completely mimicked by ETYA, the non-metabolized analog of AA. Our data demonstrated that AA, but not the metabolic products of AA, can voltage-dependent modulate rNa(V)1.4 currents.
Collapse
Affiliation(s)
- Hua Gu
- School of Life Science and Technology, Tongji University, Shanghai 200092, PR China
| | | | | | | | | | | |
Collapse
|
30
|
Koshida S, Kurata Y, Notsu T, Hirota Y, Kuang TY, Li P, Bahrudin U, Harada S, Miake J, Yamamoto Y, Hoshikawa Y, Igawa O, Higaki K, Soma M, Yoshida A, Ninomiya H, Shiota G, Shirayoshi Y, Hisatome I. Stabilizing effects of eicosapentaenoic acid on Kv1.5 channel protein expressed in mammalian cells. Eur J Pharmacol 2009; 604:93-102. [DOI: 10.1016/j.ejphar.2008.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 11/24/2008] [Accepted: 12/09/2008] [Indexed: 10/21/2022]
|
31
|
Effects of lipids on ENaC activity in cultured mouse cortical collecting duct cells. J Membr Biol 2009; 227:77-85. [PMID: 19122972 DOI: 10.1007/s00232-008-9145-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 11/22/2008] [Indexed: 10/21/2022]
Abstract
Direct effects on epithelial Na+ channels (ENaC) activity by lipids, e.g., arachidonic acid (AA), eicosatetraynoic acid (ETYA), linoleic acid (LA), stearic acid (SA), hydroxyeicosatetraenoic acid (HETE), 11,12-epoxyeicosatrienoic acid (EET), (PGF2), and (PGE2), in cultured mouse cortical collecting duct (M1) cells were clarified by using single-channel recordings in this study. In a cell-attached recording, a bath application of 10 microM AA significantly reduced the ENaC open probability (NPo), whereas 10 microM ETYA or 5 microM LA only induced a slight inhibition. The inside-out recording as a standard protocol was thereafter performed to examine effects of these lipids on ENaC activity. Within 10 min after the formation of the inside-out configuration, the NPo of ENaC in cultured mouse cortical collecting duct (M1) cells remained relatively constant. Application of ETYA or LA or SA exhibited a similar inhibition on the channel NPo when applied to the extracellular side, suggesting that fatty acids could exert a nonspecific inhibition on ENaC activity. 11,12-EET, a metabolite of AA via the cytochrome P450 epoxygenase pathway, significantly inhibited the ENaC NPo, whereas 20-HETE, a metabolite of AA via the hydroxylase pathway, only caused a small inhibition of the ENaC NPo, to a similar degree as that seen with ETYA and LA. However, both PGE2 and PGF2alpha significantly enhanced the ENaC NPo. These results suggest that fatty acids exert a nonspecific effect on ENaC activity due to the interaction between the channel proximity and the lipid. The opposite effects of 11,12-EET and prostaglandin (PG) implicate different mechanisms in regulation of ENaC activity by activation of epoxygenase and cyclooxygenase.
Collapse
|
32
|
Zhang P, Yang C, Delay RJ. Urine stimulation activates BK channels in mouse vomeronasal neurons. J Neurophysiol 2008; 100:1824-34. [PMID: 18701755 DOI: 10.1152/jn.90555.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most odor responses in mouse vomeronasal neurons are mediated by the phospholipase C (PLC) pathway, activation of which elevates diacylglycerol (DAG). Lucas et al. showed that DAG activates transient receptor potential channels, subfamily C, member 2 (TRPC2), resulting in a depolarizing Ca2+ influx. DAG can be subsequently converted to arachidonic acid (AA) by a DAG lipase, the role of which remains largely unknown. In this study, we found that urine stimulation of vomeronasal neurons activated large-conductance Ca2+-activated K+ (BK) channels via AA production. Using isolated neurons, we demonstrated that repetitive applications of AA potentiated a K+ current that required a Ca2+ influx and was sensitive to specific BK blockers. Using immunocytochemistry, we found that BK channels are present in vomeronasal neurons with labeling on the soma and heavy labeling on the dendrite with a BK channel antibody. We examined the role of these BK channels in regulating neuronal firing when the neuron was activated by membrane depolarization or urine. Contrary to a recent report, our data suggest that BK channels contribute to adaptation of urine/odor responses because the inhibition of BK channels during urine stimulation promoted repetitive firing. These data strongly support the hypothesis that AA mediates an inhibitory pathway through BK channels, a possible mechanism for odor adaptation in vomeronasal neurons.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
33
|
Abstract
Arachidonic acid (AA), a polyunsaturated fatty acid with four double bonds, has multiple actions on living cells. Many of these effects are mediated by an action of AA or its metabolites on ion channels. During the last 10 years, new types of ion channels, transient receptor potential (TRP) channels, store-operated calcium entry (SOCE) channels and non-SOCE channels have been studied. This review summarizes our current knowledge about the effects of AA on TRP and non-SOCE channels as well as classical ion channels. It aims to distinguish between effects of AA itself and effects of AA metabolites. Lipid mediators are of clinical interest because some of them (for example, leukotrienes) play a role in various diseases, others (such as prostaglandins) are targets for pharmacological therapeutic intervention.
Collapse
|
34
|
Lundbaek JA. Lipid bilayer-mediated regulation of ion channel function by amphiphilic drugs. ACTA ACUST UNITED AC 2008; 131:421-9. [PMID: 18411332 PMCID: PMC2346573 DOI: 10.1085/jgp.200709948] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jens A Lundbaek
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
35
|
Modulation of the atrial specific Kv1.5 channel by the n-3 polyunsaturated fatty acid, α-linolenic acid. J Mol Cell Cardiol 2008; 44:323-35. [DOI: 10.1016/j.yjmcc.2007.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 10/24/2007] [Accepted: 11/13/2007] [Indexed: 11/19/2022]
|
36
|
Sun X, Yao H, Zhou D, Gu X, Haddad GG. Modulation of hSlo BK current inactivation by fatty acid esters of CoA. J Neurochem 2007; 104:1394-403. [PMID: 18005338 DOI: 10.1111/j.1471-4159.2007.05083.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipid metabolism influences membrane proteins, including ion channels, in health and disease. Fatty acid esters of CoA are important intermediates in fatty acid metabolism and lipid biosynthesis. In the present study, we examined the effect of acyl-CoAs on hSlo BK currents. Arachidonoyl-CoA (C(20)-CoA) induced beta2-dependent inhibition of hSlo-alpha current when applied intracellularly but not extracellularly. This action was also mimicked by other long-chain acyl-CoAs such as oleoyl-CoA (C(18)-CoA) and palmitoyl-CoA (C(16)-CoA), but not acetyl-CoA (C(2)-CoA, shorter chain), suggesting that the length of acyl chains, rather than CoA headgroups, is critical. When hSlo-alpha inactivation was induced by a free synthetic cationic beta2 NH2-terminus inactivation ball peptide, long-chain acyl-CoAs inhibited hSlo-alpha current and facilitated inactivation. The precursor fatty acids also facilitated the ball peptide-induced inactivation in a chain length-dependent manner, whereas sphingosine (positively charged) slowed this inactivation. When the beta2-induced inactivation was compared with that of the ball peptide, there was a negative shift in the steady state inactivation, slower recovery, and a reduced voltage-dependence of inactivation onset. These data suggest that electrostatic interactions with the cytosolic inactivation domain of beta2 mediate acyl-CoA modulation of BK currents. BK channel inactivation may be a specific target for lipid modulation in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Xiaolu Sun
- Department of Pediatrics (Section of Respiratory Medicine), University of California San Diego, La Jolla, California 92037-0735, USA
| | | | | | | | | |
Collapse
|
37
|
Fang KM, Chang WL, Wang SM, Su MJ, Wu ML. Arachidonic acid induces both Na+ and Ca2+ entry resulting in apoptosis. J Neurochem 2007; 104:1177-89. [PMID: 17986230 DOI: 10.1111/j.1471-4159.2007.05022.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Marked accumulation of arachidonic acid (AA) and intracellular Ca2+ and Na+ overloads are seen during brain ischemia. In this study, we show that, in neurons, AA induces cytosolic Na+ ([Na+](cyt)) and Ca2+ ([Ca2+](cyt)) overload via a non-selective cation conductance (NSCC), resulting in mitochondrial [Na+](m) and [Ca2+](m) overload. Another two types of free fatty acids, including oleic acid and eicosapentaenoic acid, induced a smaller increase in the [Ca2+](i) and [Na+](i). RU360, a selective inhibitor of the mitochondrial Ca2+ uniporter, inhibited the AA-induced [Ca2+](m) and [Na+](m) overload, but not the [Ca2+](cyt) and [Na+](cyt) overload. The [Na+](m) overload was also markedly inhibited by either Ca2+-free medium or CGP3715, a selective inhibitor of the mitochondrial Na+(cyt)-Ca2+(m) exchanger. Moreover, RU360, Ca2+-free medium, Na+-free medium, or cyclosporin A (CsA) largely prevented AA-induced opening of the mitochondrial permeability transition pore, cytochrome c release, and caspase 3-dependent neuronal apoptosis. Importantly, Na+-ionophore/Ca2+-free medium, which induced [Na+](m) overload, but not [Ca2+](m) overload, also caused cyclosporin A-sensitive mitochondrial permeability transition pore opening, resulting in caspase 3-dependent apoptosis, indicating that [Na+](m) overload per se induced apoptosis. Our results therefore suggest that AA-induced [Na+](m) overload, acting via activation of the NSCC, is an important upstream signal in the mitochondrial-mediated apoptotic pathway. The NSCC may therefore act as a potential neuronal death pore which is activated by AA accumulation under pathological conditions.
Collapse
Affiliation(s)
- Kwang-Ming Fang
- Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Hercule HC, Salanova B, Essin K, Honeck H, Falck JR, Sausbier M, Ruth P, Schunck WH, Luft FC, Gollasch M. The vasodilator 17,18-epoxyeicosatetraenoic acid targets the pore-forming BK alpha channel subunit in rodents. Exp Physiol 2007; 92:1067-76. [PMID: 17675416 DOI: 10.1113/expphysiol.2007.038166] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
17,18-Epoxyeicosatetraenoic acid (17,18-EETeTr) stimulates vascular large-conductance K(+) (BK) channels. BK channels are composed of the pore-forming BK alpha and auxiliary BK beta1 subunits that confer an increased sensitivity for changes in membrane potential and calcium to BK channels. Ryanodine-sensitive calcium-release channels (RyR3) in the sarcoplasmic reticulum (SR) control the process. To elucidate the mechanism of BK channel activation, we performed whole-cell and perforated-patch clamp experiments in freshly isolated cerebral and mesenteric artery vascular smooth muscle cells (VSMC) from Sprague-Dawley rats, BK beta1 gene-deficient (-/-), BK alpha (-/-), RyR3 (-/-) and wild-type mice. The 17,18-EETeTr (100 nm) increased tetraethylammonium (1 mm)-sensitive outward K(+) currents in VSMC from wild-type rats and wild-type mice. The effects were not inhibited by the epoxyeicosatrienoic acid (EET) antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (10 mum). BK channel currents were increased 3.5-fold in VSMC from BK beta1 (-/-) mice, whereas a 2.9-fold stimulation was observed in VSMC from RyR3 (-/-) mice (at membrane voltage 60 mV). The effects were similar compared with those observed in cells from wild-type mice. The BK current increase was neither influenced by strong internal calcium buffering (Ca(2)(+), 100 nm), nor by external calcium influx. The 17,18-EETeTr did not induce outward currents in VSMC BK alpha (-/-) cells. We next tested the vasodilator effects of 17,18-EETeTr on isolated arteries of BK alpha-deficient mice. Vasodilatation was largely inhibited in cerebral and mesenteric arteries isolated from BK alpha (-/-) mice compared with that observed in wild-type and BK beta1 (-/-) arteries. We conclude that 17,18-EETeTr represents an endogenous BK channel agonist and vasodilator. Since 17,18-EETeTr is active in small arteries lacking BK beta1, the data further suggest that BK alpha represents the molecular target for the principal action of 17,18-EETeTr. Finally, the action of 17,18-EETeTr is not mediated by changes of the internal global calcium concentration or local SR calcium release events.
Collapse
Affiliation(s)
- Hantz C Hercule
- Nephrology/Hypertension Division, Franz Volhard Clinic, HELIOS Klinikum-Berlin, Campus Buch, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yakovleva OV, Sitdikova GF, Gerasimova EV, Zefirov AL. Fatty acids modulate transmitter release and functioning of potassium channels in motor nerve endings. NEUROCHEM J+ 2007. [DOI: 10.1134/s1819712407020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Sun X, Zhou D, Zhang P, Moczydlowski EG, Haddad GG. β-Subunit–Dependent Modulation ofhSloBK Current by Arachidonic Acid. J Neurophysiol 2007; 97:62-9. [PMID: 17021030 DOI: 10.1152/jn.00700.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this study, we examined the effect of arachidonic acid (AA) on the BK α-subunit with or without β-subunits expressed in Xenopus oocytes. In excised patches, AA potentiated the hSlo-α current and slowed inactivation only when β2/3 subunit was co-expressed. The β2-subunit–dependent modulation by AA persisted in the presence of either superoxide dismutase or inhibitors of AA metabolism such as nordihydroguaiaretic acid and eicosatetraynoic acid, suggesting that AA acts directly rather than through its metabolites. Other cis unsaturated fatty acids (docosahexaenoic and oleic acid) also enhanced hSlo-α + β2 currents and slowed inactivation, whereas saturated fatty acids (palmitic, stearic, and caprylic acid) were without effect. Pretreatment with trypsin to remove the cytosolic inactivation domain largely occluded AA action. Intracellularly applied free synthetic β2-ball peptide induced inactivation of the hSlo-α current, and AA failed to enhance this current and slow the inactivation. These results suggest that AA removes inactivation by interacting, possibly through conformational changes, with β2 to prevent the inactivation ball from reaching its receptor. Our data reveal a novel mechanism of β-subunit–dependent modulation of BK channels by AA. In freshly dissociated mouse neocortical neurons, AA eliminated a transient component of whole cell K+currents. BK channel inactivation may be a specific mechanism by which AA and other unsaturated fatty acids influence neuronal death/survival in neuropathological conditions.
Collapse
Affiliation(s)
- X Sun
- Department of Pediatrics, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92037-0735, USA
| | | | | | | | | |
Collapse
|
41
|
Gavrilova-Ruch O, Schönherr R, Heinemann SH. Activation of hEAG1 potassium channels by arachidonic acid. Pflugers Arch 2006; 453:891-903. [PMID: 17120019 DOI: 10.1007/s00424-006-0173-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 09/20/2006] [Indexed: 11/24/2022]
Abstract
The depolarisation activated human ether à go-go (hEAG) potassium channels are primarily expressed in neuronal tissue but their appearance in various tumour entities is also indicative of an oncogenic role. Because upregulation of hEAG channels may yield to an enhanced cell proliferation, interventions increasing hEAG1 currents may serve similar purposes. We therefore investigated the effects of polyunsaturated fatty acids on hEAG1 channels. Arachidonic acid (AA) lowered their activation threshold, accelerated the activation kinetics and increased the open probability with a half-maximal concentration of about 4 microM. This effect correlated with the number of double bonds (db) in the fatty acids, increasing from oleic acid (1 db), linolenic acid (3 db), AA (4 db) to eicosapentaenoic acid (5 db). Unlike other voltage-gated K(+) channels, hEAG1 channels are not blocked by arachidonic acid. Therefore, in particular at typical resting potentials of tumour cells (-30 mV), AA potently activated hEAG1 channels in a reversible manner. Proliferation and metabolic activity of hEAG1-expressing human melanoma cells increased when cells were exposed to AA concentrations of 5 microM and this effect was suppressed in the presence of the hEAG1 blocker LY97241 suggesting that the proliferative effect of AA is in part mediated by activation of hEAG channels.
Collapse
Affiliation(s)
- Oxana Gavrilova-Ruch
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena, Jena, Germany
| | | | | |
Collapse
|
42
|
Abstract
BACKGROUND AND PURPOSE Sulphatides are sulphated glycosphingolipids expressed on the surface of many cell types, particularly neurones. Changes in sulphatide species or content have been associated with epilepsy and Alzheimer's disease. As the large conductance, calcium sensitive K(+) channel (BK(Ca)) are modulated by membrane lipids, the aim of the study was to explore possible effects of sulphatides on BK(Ca) channels. EXPERIMENTAL APPROACH Using patch-clamp techniques, we studied effects of exogenous sulphatides on BK(Ca) channels expressed in Chinese hamster ovary cells. KEY RESULTS Sulphatides reversibly increased the whole-cell current and the single channel open probability of BK(Ca) channels dose-dependently. The EC(50) value on the channel at +10 mV was 1.6 microM and the Hill coefficient was 2.5. In inside-out patches, sulphatides increased the single channel open probability from both intra- and extra-cellular faces of the membrane, but more effectively with external application. Furthermore, activation of the channels by sulphatides was independent of intracellular Ca(2+) concentration. Sulphatides also shifted the activation curve of the channels to less positive membrane potentials. Mutant BK(Ca) channels lacking a 59 aminoacid region important for amphipath activation (STREX) were less activated by the sulphatides. CONCLUSIONS AND IMPLICATIONS Sulphatides are novel activators of BK(Ca) channels, independent of intracellular Ca(2+) or other signalling molecules but partly dependent on the STREX sequence of the channel protein. As changes of sulphatide content are associated with neuronal dysfunction, as in epilepsy and Alzheimer's disease, our results imply that these effects of sulphatides may play important pathophysiological roles in regulation of BK(Ca) channels.
Collapse
Affiliation(s)
- S Chi
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics Beijing, PR China
| | - Z Qi
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics Beijing, PR China
- Author for correspondence:
| |
Collapse
|
43
|
Søgaard R, Werge TM, Bertelsen C, Lundbye C, Madsen KL, Nielsen CH, Lundbaek JA. GABAAReceptor Function is Regulated by Lipid Bilayer Elasticity†. Biochemistry 2006; 45:13118-29. [PMID: 17059229 DOI: 10.1021/bi060734+] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Docosahexaenoic acid (DHA) and other polyunsaturated fatty acids (PUFAs) promote GABA(A) receptor [(3)H]-muscimol binding, and DHA increases the rate of GABA(A) receptor desensitization. Triton X-100, a structurally unrelated amphiphile, similarly promotes [(3)H]-muscimol binding. The mechanism(s) underlying these effects are poorly understood. DHA and Triton X-100, at concentrations that affect GABA(A) receptor function, increase the elasticity of lipid bilayers measured as decreased bilayer stiffness using gramicidin channels as molecular force transducers. We have previously shown that membrane protein function can be regulated by amphiphile-induced changes in bilayer elasticity and hypothesized that GABA(A) receptors could be similarly regulated. We therefore studied the effects of four structurally unrelated amphiphiles that decrease bilayer stiffness (Triton X-100, octyl-beta-glucoside, capsaicin, and DHA) on GABA(A) receptor function in mammalian cells. All the compounds promoted GABA(A) receptor [(3)H]-muscimol binding by increasing the binding capacity of high-affinity binding without affecting the associated equilibrium binding constant. A semiquantitative analysis found a similar quantitative relation between the effects on bilayer stiffness and [(3)H]-muscimol binding. Membrane cholesterol depletion, which also decreases bilayer stiffness, similarly promoted [(3)H]-muscimol binding. In whole-cell voltage-clamp experiments, Triton X-100, octyl-beta-glucoside, capsaicin, and DHA all reduced the peak amplitude of the GABA-induced currents and increased the rate of receptor desensitization. The effects of the amphiphiles did not correlate with the expected changes in monolayer spontaneous curvature. We conclude that GABA(A) receptor function is regulated by lipid bilayer elasticity. PUFAs may generally regulate membrane protein function by affecting the elasticity of the host lipid bilayer.
Collapse
Affiliation(s)
- Rikke Søgaard
- Research Institute of Biological Psychiatry, Sct. Hans Hospital, Boserupvej 2, DK-4000 Roskilde, Denmark
| | | | | | | | | | | | | |
Collapse
|
44
|
Kim MY, Liang GH, Kim JA, Kim YJ, Oh S, Suh SH. Sphingosine-1-phosphate activates BKCa channels independently of G protein-coupled receptor in human endothelial cells. Am J Physiol Cell Physiol 2005; 290:C1000-8. [PMID: 16267108 DOI: 10.1152/ajpcell.00353.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of sphingosine-1-phosphate (S1P) on large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels was examined in primary cultured human umbilical vein endothelial cells by measuring intracellular Ca(2+) concentration ([Ca(2+)](i)), whole cell membrane currents, and single-channel activity. In nystatin-perforated current-clamped cells, S1P hyperpolarized the membrane and simultaneously increased [Ca(2+)](i). [Ca(2+)](i) and membrane potentials were strongly correlated. In whole cell clamped cells, BK(Ca) currents were activated by increasing [Ca(2+)](i) via cell dialysis with pipette solution, and the activated BK(Ca) currents were further enhanced by S1P. When [Ca(2+)](i) was buffered at 1 microM, the S1P concentration required to evoke half-maximal activation was 403 +/- 13 nM. In inside-out patches, when S1P was included in the bath solution, S1P enhanced BK(Ca) channel activity in a reversible manner and shifted the relationship between Ca(2+) concentration in the bath solution and the mean open probability to the left. In whole cell clamped cells or inside-out patches loaded with guanosine 5'-O-(2-thiodiphosphate) (GDPbetaS; 1 mM) using a patch pipette, GDPbetaS application or pretreatment of cells with pertussis toxin (100 ng/ml) for 15 h did not affect S1P-induced BK(Ca) current and channel activation. These results suggest that S1P enhances BK(Ca) channel activity by increasing Ca(2+) sensitivity. This channel activation hyperpolarizes the membrane and thereby increases Ca(2+) influx through Ca(2+) entry channels. Inasmuch as S1P activates BK(Ca) channels via a mechanism independent of G protein-coupled receptors, S1P may be a component of the intracellular second messenger that is involved in Ca(2+) mobilization in human endothelial cells.
Collapse
Affiliation(s)
- Moon Young Kim
- Department of Physiology, College of Medicine, Ewha Woman's Univ., 911-1 Mok-6-dong, Yang Chun-gu, Seoul, Republic of Korea, 158-710
| | | | | | | | | | | |
Collapse
|
45
|
Zheng HF, Li XL, Jin ZY, Sun JB, Li ZL, Xu WX. Effects of unsaturated fatty acids on calcium-activated potassium current in gastric myocytes of guinea pigs. World J Gastroenterol 2005; 11:672-5. [PMID: 15655819 PMCID: PMC4250736 DOI: 10.3748/wjg.v11.i5.672] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of exogenous unsaturated fatty acids on calcium-activated potassium current [IK(Ca)] in gastric antral circular myocytes of guinea pigs.
METHODS: Gastric myocytes were isolated by collagenase from the antral circular layer of guinea pig stomach. The whole-cell patch clamp technique was used to record IK(Ca) in the isolated single smooth muscle cells with or without different concentrations of arachidonic acid (AA), linoleic acid (LA), and oleic acid (OA).
RESULTS: AA at concentrations of 2,5 and 10 μmol/L markedly increased IK(Ca) in a dose-dependent manner. LA at concentrations of 5, 10 and 20 μmol/L also enhanced IK(Ca) in a dose-dependent manner. The increasing potency of AA, LA, and oleic acid (OA) on IK(Ca) at the same concentration (10 μmol/L) was in the order of AA>LA>OA. AA (10 μmol/L)-induced increase of IK(Ca) was not blocked by H-7 (10 μmol/L), an inhibitor of protein kinase C (PKC), or indomethacin (10 μmol/L), an inhibitor of the cyclooxygenase pathway, and 17-octadecynoic acid (10 μmol/L), an inhibitor of the cytochrome P450 pathway, but weakened by nordihydroguaiaretic acid (10 μmol/L), an inhibitor of the lipoxygenase pathway.
CONCLUSION: Unsaturated fatty acids markedly increase IK(Ca), and the enhancing potencies are related to the number of double bonds in the fatty acid chain. The lipoxygenase pathway of unsaturated fatty acid metabolism is involved in the unsaturated fatty acid-induced increase of IK(Ca) in gastric antral circular myocytes of guinea pigs.
Collapse
Affiliation(s)
- Hai-Feng Zheng
- Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | | | | | | | | | | |
Collapse
|
46
|
Denson DD, Li J, Wang X, Eaton DC. Activation of BK channels in GH3 cells by a c-PLA2-dependent G-protein signaling pathway. J Neurophysiol 2005; 93:3146-56. [PMID: 15647401 DOI: 10.1152/jn.00865.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BK-channels in GH3 cells are activated by arachidonic acid produced by c-PLA2. beta-adrenergic agonists also activate BK channels and were presumed to do so via production of cAMP. We, however, show for the first time in GH3 cells that a beta-adrenergic agonist activates a pertussis-toxin-sensitive G protein that activates c-PLA2. The arachidonic acid produced by c-PLA2 then activates BK channels. We examined BK channels in cell-attached patches and in excised patches from untreated GH3 cells and from GH3 cells exposed to c-PLA2 antisense oligonucleotides. For the cell-attached patch experiments, physiologic pipette and bath solutions were used. For the excised patches, 150 mM KCl was used in both the pipette and bath solutions, and the cytosolic surface contained 1 microM free Ca2+ (buffered with 5 mM K2EGTA). Treatment of GH3 cells with the G protein activator, fluoroaluminate, (AlF4-) produced an increase in the Po of BK channels of 177 +/- 41% (mean +/- SD) in cell-attached patches. Because G proteins are membrane associated, we also added an activator of G proteins, 100 microM GTP-gamma-S, to the cytosolic surface of excised patches. This treatment leads to an increase in Po of 50 +/- 9%. Similar treatment of excised patches with GDP-beta-S had no effect on Po. Isoproterenol (1 microM), an activator of beta-adrenergic receptors and, consequently, some G proteins, increased BK channel activity 229 +/- 37% in cell-attached patches from cultured GH3 cells. Western blot analysis showed that GH3 cells have beta-adrenergic receptor protein and that isoproterenol acts through these receptors because the beta-adrenergic receptor antagonist, propanolol, blocks the action of isoproterenol. To test whether G protein activation of BK channels involves c-PLA2, we studied the effects of GTP-gamma-S on excised patches and isoproterenol on cell attached patches from GH3 cells previously treated with c-PLA2 antisense oligonucleotides or pharmacological inhibitors of c-PLA2. Neither isoproterenol nor GTP-gamma-S had any effect on Po in these patches. Similarly, neither isoproterenol nor GTP-gamma-S had any effect on Po in cultured GH3 cells pretreated with pertussis toxin. Isoproterenol also significantly increased the rate of arachidonic production in GH3 cells. These results show that some receptor-linked, pertussis-toxin-sensitive G protein in GH3 cells can activate c-PLA2 to increase the amount of arachidonic acid present and ultimately increase BK-channel activity.
Collapse
Affiliation(s)
- D D Denson
- Dept. of Anesthesiology, Emory University School of Medicine, 3B-South Emory University Hospital, 1364 Clifton Rd., Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
47
|
Mies F, Shlyonsky V, Goolaerts A, Sariban-Sohraby S. Modulation of epithelial Na+ channel activity by long-chain n-3 fatty acids. Am J Physiol Renal Physiol 2004; 287:F850-5. [PMID: 15198929 DOI: 10.1152/ajprenal.00078.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The epithelial sodium channel is found in apical membranes of a variety of native epithelial tissues, where it regulates sodium and fluid balance. In vivo, a number of hormones and other endogenous factors, including polyunsaturated fatty acids (PUFAs), regulate these channels. We tested the effects of essential n-3 and n-6 PUFAs on amiloride-sensitive sodium transport in A6 epithelial cells. Eicosapentaenoic acid [EPA; C20:5(n-3)] transiently stimulated amiloride-sensitive open-circuit current (I(Na)) from 4.0 +/- 0.3 to 7.7 +/- 0.3 microA/cm2 within 30 min (P < 0.001). No activation was seen in the presence of 10 microM amiloride. In cell-attached but not in cell-excised patches, EPA acutely increased the open probability of sodium channels from 0.45 +/- 0.08 to 0.63 +/- 0.10 (P = 0.02, paired t-test). n-6 PUFAs, including linoleic acid (C18:2), eicosatetraynoic acid (C20:4), and docosapentanoic acid (C22:5) had no effect, whereas n-3 docosahexanoic acid (C22:6) activated amiloride-sensitive I(Na) in a manner similar to EPA. Activation of I(Na) by EPA was prevented by H-89, a PKA inhibitor. Similarly, PKA activity was stimulated by EPA. Nonspecific stimulation of phosphodiesterase activity by CoCl2 completely prevented the effect of EPA on sodium transport. We conclude that n-3 PUFAs activate epithelial sodium channels downstream of cAMP in a cAMP-dependent pathway also involving PKA.
Collapse
Affiliation(s)
- Frédérique Mies
- Physiology Department, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | | | | |
Collapse
|
48
|
Doroshenko N, Doroshenko P. Ca2+ influx is not involved in acute cytotoxicity of arachidonic acid. Biochem Pharmacol 2004; 67:903-9. [PMID: 15104243 DOI: 10.1016/j.bcp.2003.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Arachidonic acid (AA; 20:4, n-6) has been implicated in cell damage in the brain under ischemia-reperfusion and other pathological conditions. In our experiments, PC12 cells exposed to >10 microM AA died within 1-2 hr, as assessed by the LDH release assay. Since AA is known to induce Ca2+/cation-permeable conductance in the plasma membrane, we investigated whether Ca2+ influx plays a role in this acute cell death. We found that extracellular Ca2+ was not required for the toxic effect of AA. In fact, the removal of extracellular Ca2+ dramatically accelerated its development: the half-time of the toxic effect of 40 microM AA decreased from 70.1 +/- 0.3 min in the presence of 5 mM Ca2+ to 7.4 +/- 0.3 min in the Ca-free solution. The extent of cell killing depended only weakly on AA concentration and ion composition, remaining within the 70-95% range. The AA-induced acute death was not affected by inhibitors of AA metabolism (nordihydroguaiaretic acid, indomethacin, proadifen), whereas some antioxidants tested (deferoxamine and ellagic acid), but not all (melatonin), partially suppressed it. Also, it was not affected by changes in the extracellular ionic strength or mimicked by an acetylenic analog of AA 5,8,11,14-eicosatetraynoic acid. We conclude that lethal injuries sustained by cells during short exposures to AA were caused by the fatty acid itself and were not mediated by the AA-induced influx of Ca2+/cations. Moreover, direct physical effects of AA on the plasma membrane (changes in membrane fluidity or detergent-like action) were also excluded.
Collapse
Affiliation(s)
- Nina Doroshenko
- Ottawa Health Research Institute, Ottawa, Ont., Canada K1Y 4E9
| | | |
Collapse
|
49
|
Clarke AL, Petrou S, Walsh JV, Singer JJ. Site of action of fatty acids and other charged lipids on BKCa channels from arterial smooth muscle cells. Am J Physiol Cell Physiol 2003; 284:C607-19. [PMID: 12409285 DOI: 10.1152/ajpcell.00364.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acids and other negatively charged single-chain lipids increase large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel activity, whereas sphingosine and other positively charged single-chain lipids suppress activity. Because these molecules are effective on both inside-out and outside-out patches and because they can flip across the bilayer, the location of their site of action is unclear. To identify the site of action of charged lipids on this channel, we used two compounds that are unlikely to flip across the lipid bilayer. Palmitoyl coenzyme A (PCoA) was used to identify the site of action of negatively charged lipids, and a positively charged myristoylated pentapeptide (myr-KPRPK) was used to investigate the site of action of positively charged lipids. The effect of these compounds on channel activity was studied in excised patches using patch-clamp techniques. In "normal" ionic strength solutions and in experiments where high-ionic strength solutions were used to shield membrane surface charge, PCoA increased channel activity only when applied to outside-out patches, suggesting that the site of action of negatively charged lipids is located on the outer surface of the membrane. A decrease in activity, similar to that of other positively charged lipids, was observed only when myr-KPRPK was applied to outside-out patches, suggesting that positively charged lipids suppress activity by also acting on the outer membrane surface. Some channel blockade effects of myr-KPRPK and KPRPK are also described. The sidedness of action suggests that modulation of channel activity by single-chain lipids can occur by their interaction with the channel protein.
Collapse
MESH Headings
- Amines/pharmacology
- Anions/metabolism
- Anions/pharmacology
- Arteries/drug effects
- Arteries/metabolism
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cells, Cultured
- Dose-Response Relationship, Drug
- Fatty Acids/metabolism
- Fatty Acids/pharmacology
- Lipid Metabolism
- Lipids/pharmacology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Palmitoyl Coenzyme A/metabolism
- Palmitoyl Coenzyme A/pharmacology
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- Potassium Channels, Calcium-Activated/drug effects
- Potassium Channels, Calcium-Activated/metabolism
- Quaternary Ammonium Compounds/pharmacology
- Trimethyl Ammonium Compounds
Collapse
Affiliation(s)
- Alison L Clarke
- Department of Physiology, University of Massachusetts Medical School, Worcester 01655, USA.
| | | | | | | |
Collapse
|
50
|
Clarke AL, Petrou S, Walsh JV, Singer JJ. Modulation of BK(Ca) channel activity by fatty acids: structural requirements and mechanism of action. Am J Physiol Cell Physiol 2002; 283:C1441-53. [PMID: 12372805 DOI: 10.1152/ajpcell.00035.2002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the mechanism of fatty acid modulation of rabbit pulmonary artery large-conductance Ca2+ -activated K+ (BK(Ca)) channel activity, we studied effects of fatty acids and other lipids on channel activity in excised patches with patch-clamp techniques. The structural features of the fatty acid required to increase BK(Ca) channel activity (or average number of open channels, NP(o)) were identified to be the negatively charged head group and a sufficiently long (C > 8) carbon chain. Positively charged lipids like sphingosine, which have a sufficiently long alkyl chain (C >or= 8), produced a decrease in NP(o). Neutral and short-chain lipids did not alter NP(o). Screening of membrane surface charge with high-ionic-strength bathing solutions (330 mM K+ or 130 mM K+, 300 mM Na+) did not alter the modulation of the BK(Ca) channel NP(o) by fatty acids and other charged lipids, indicating that channel modulation is unlikely to be due to an alteration of the membrane electric field or the attraction of local counterions to the channel. Fatty acids and other negatively charged lipids were able to modulate BK(Ca) channel activity in bathing solutions containing 0 mM Ca2+, 20 mM EGTA, suggesting that calcium is not required for this modulation. Together, these results indicate that modulation of BK(Ca) channels by fatty acids and other charged lipids most likely occurs by their direct interaction with the channel protein itself or with some other channel-associated component.
Collapse
Affiliation(s)
- Alison L Clarke
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | | | |
Collapse
|