1
|
Protein kinase C-mediated calcium signaling as the basis for cardiomyocyte plasticity. Arch Biochem Biophys 2021; 701:108817. [PMID: 33626379 DOI: 10.1016/j.abb.2021.108817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023]
Abstract
Protein kinase C is the superfamily of intracellular effector molecules which control crucial cellular functions. Here, we for the first time did the percentage estimation of all known PKC and PKC-related isozymes at the individual cadiomyocyte level. Broad spectrum of PKC transcripts is expressed in the left ventricular myocytes. In addition to the well-known 'heart-specific' PKCα, cardiomyocytes have the high expression levels of PKCN1, PKCδ, PKCD2, PKCε. In general, we detected all PKC isoforms excluding PKCη. In cardiomyocytes PKC activity tonically regulates voltage-gated Ca2+-currents, intracellular Ca2+ level and nitric oxide (NO) production. Imidazoline receptor of the first type (I1R)-mediated induction of the PKC activity positively modulates Ca2+ release through ryanodine receptor (RyR), increasing the Ca2+ leakage in the cytosol. In cardiomyocytes with the Ca2+-overloaded regions of > 9-10 μm size, the local PKC-induced Ca2+ signaling is transformed to global accompanied by spontaneous Ca2+ waves propagation across the entire cell perimeter. Such switching of Ca2+ signaling in cardiac cells can be important for the development of several cardiovascular pathologies and/or myocardial plasticity at the cardiomyocyte level.
Collapse
|
2
|
Marrocco V, Bogomolovas J, Ehler E, Dos Remedios CG, Yu J, Gao C, Lange S. PKC and PKN in heart disease. J Mol Cell Cardiol 2019; 128:212-226. [PMID: 30742812 PMCID: PMC6408329 DOI: 10.1016/j.yjmcc.2019.01.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
The protein kinase C (PKC) and closely related protein kinase N (PKN) families of serine/threonine protein kinases play crucial cellular roles. Both kinases belong to the AGC subfamily of protein kinases that also include the cAMP dependent protein kinase (PKA), protein kinase B (PKB/AKT), protein kinase G (PKG) and the ribosomal protein S6 kinase (S6K). Involvement of PKC family members in heart disease has been well documented over the years, as their activity and levels are mis-regulated in several pathological heart conditions, such as ischemia, diabetic cardiomyopathy, as well as hypertrophic or dilated cardiomyopathy. This review focuses on the regulation of PKCs and PKNs in different pathological heart conditions and on the influences that PKC/PKN activation has on several physiological processes. In addition, we discuss mechanisms by which PKCs and the closely related PKNs are activated and turned-off in hearts, how they regulate cardiac specific downstream targets and pathways, and how their inhibition by small molecules is explored as new therapeutic target to treat cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Valeria Marrocco
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA
| | - Julius Bogomolovas
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | - Jiayu Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Gao
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, USA.
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden.
| |
Collapse
|
3
|
Pimental DR, Sam F. Is Protein Kinase C Inhibition the Tip of the Iceberg in New Therapeutics for Acutely Decompensated Heart Failure? JACC Basic Transl Sci 2017; 2:684-687. [PMID: 30069551 PMCID: PMC6066669 DOI: 10.1016/j.jacbts.2017.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- David R. Pimental
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
- Cardiovascular Section, Boston University School of Medicine, Boston, Massachusetts
- Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
- Cardiovascular Section, Boston University School of Medicine, Boston, Massachusetts
- Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
4
|
Enhancement of contraction and L-type Ca2+ current by murrayafoline-A via protein kinase C in rat ventricular myocytes. Eur J Pharmacol 2016; 784:33-41. [DOI: 10.1016/j.ejphar.2016.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 04/30/2016] [Accepted: 05/04/2016] [Indexed: 11/17/2022]
|
5
|
Agonist activated PKCβII translocation and modulation of cardiac myocyte contractile function. Sci Rep 2013; 3:1971. [PMID: 23756828 PMCID: PMC3679501 DOI: 10.1038/srep01971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/22/2013] [Indexed: 11/26/2022] Open
Abstract
Elevated protein kinase C βII (PKCβII) expression develops during heart failure and yet the role of this isoform in modulating contractile function remains controversial. The present study examines the impact of agonist-induced PKCβII activation on contractile function in adult cardiac myocytes. Diminished contractile function develops in response to low dose phenylephrine (PHE, 100 nM) in controls, while function is preserved in response to PHE in PKCβII-expressing myocytes. PHE also caused PKCβII translocation and a punctate distribution pattern in myocytes expressing this isoform. The preserved contractile function and translocation responses to PHE are blocked by the inhibitor, LY379196 (30 nM) in PKCβII-expressing myocytes. Further analysis showed downstream protein kinase D (PKD) phosphorylation and phosphatase activation are associated with the LY379196-sensitive contractile response. PHE also triggered a complex pattern of end-target phosphorylation in PKCβII-expressing myocytes. These patterns are consistent with bifurcated activation of downstream signaling activity by PKCβII.
Collapse
|
6
|
Sag CM, Wagner S, Maier LS. Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes. Free Radic Biol Med 2013; 63:338-49. [PMID: 23732518 DOI: 10.1016/j.freeradbiomed.2013.05.035] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 12/19/2022]
Abstract
In this review article we give an overview of current knowledge with respect to redox-sensitive alterations in Na(+) and Ca(2+) handling in the heart. In particular, we focus on redox-activated protein kinases including cAMP-dependent protein kinase A (PKA), protein kinase C (PKC), and Ca/calmodulin-dependent protein kinase II (CaMKII), as well as on redox-regulated downstream targets such as Na(+) and Ca(2+) transporters and channels. We highlight the pathological and physiological relevance of reactive oxygen species and some of its sources (such as NADPH oxidases, NOXes) for excitation-contraction coupling (ECC). A short outlook with respect to the clinical relevance of redox-dependent Na(+) and Ca(2+) imbalance will be given.
Collapse
Affiliation(s)
- Can M Sag
- Cardiovascular Division, The James Black Centre, King's College London, UK
| | | | | |
Collapse
|
7
|
Mullins PD, Bondarenko VE. A mathematical model of the mouse ventricular myocyte contraction. PLoS One 2013; 8:e63141. [PMID: 23671664 PMCID: PMC3650013 DOI: 10.1371/journal.pone.0063141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/29/2013] [Indexed: 12/05/2022] Open
Abstract
Mathematical models of cardiac function at the cellular level include three major components, such as electrical activity, Ca2+ dynamics, and cellular shortening. We developed a model for mouse ventricular myocyte contraction which is based on our previously published comprehensive models of action potential and Ca2+ handling mechanisms. The model was verified with extensive experimental data on mouse myocyte contraction at room temperature. In the model, we implemented variable sarcomere length and indirect modulation of the tropomyosin transition rates by Ca2+ and troponin. The resulting model described well steady-state force-calcium relationships, dependence of the contraction force on the sarcomere length, time course of the contraction force and myocyte shortening, frequency dependence of the contraction force and cellular contraction, and experimentally measured derivatives of the myocyte length variation. We emphasized the importance of the inclusion of variable sarcomere length into a model for ventricular myocyte contraction. Differences in contraction force and cell shortening for epicardial and endocardial ventricular myocytes were investigated. Model applicability for the experimental studies and model limitations were discussed.
Collapse
Affiliation(s)
- Paula D. Mullins
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, United States of America
| | - Vladimir E. Bondarenko
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, United States of America
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
SIGNIFICANCE In heart failure (HF), contractile dysfunction and arrhythmias result from disturbed intracellular Ca handling. Activated stress kinases like cAMP-dependent protein kinase A (PKA), protein kinase C (PKC), and Ca/calmodulin-dependent protein kinase II (CaMKII), which are known to influence many Ca-regulatory proteins, are mechanistically involved. RECENT ADVANCES Beside classical activation pathways, it is becoming increasingly evident that reactive oxygen species (ROS) can directly oxidize these kinases, leading to alternative activation. Since HF is associated with increased ROS generation, ROS-activated serine/threonine kinases may play a crucial role in the disturbance of cellular Ca homeostasis. Many of the previously described ROS effects on ion channels and transporters are possibly mediated by these stress kinases. For instance, ROS have been shown to oxidize and activate CaMKII, thereby increasing Na influx through voltage-gated Na channels, which can lead to intracellular Na accumulation and action potential prolongation. Consequently, Ca entry via activated NCX is favored, which together with ROS-induced dysfunction of the sarcoplasmic reticulum can lead to dramatic intracellular Ca accumulation, diminished contractility, and arrhythmias. CRITICAL ISSUES While low amounts of ROS may regulate kinase activity, excessive uncontrolled ROS production may lead to direct redox modification of Ca handling proteins. Therefore, depending on the source and amount of ROS generated, ROS could have very different effects on Ca-handling proteins. FUTURE DIRECTIONS The discrimination between fine-tuned ROS signaling and unspecific ROS damage may be crucial for the understanding of heart failure development and important for the investigation of targeted treatment strategies.
Collapse
Affiliation(s)
- Stefan Wagner
- Abt. Kardiologie und Pneumologie/Herzzentrum, Deutsches Zentrum für Herzkreislaufforschung, Georg-August-Universität, Göttingen, Germany
| | | | | | | |
Collapse
|
9
|
Abstract
Protein kinase C (PKC) has been a tantalizing target for drug discovery ever since it was first identified as the receptor for the tumour promoter phorbol ester in 1982. Although initial therapeutic efforts focused on cancer, additional indications--including diabetic complications, heart failure, myocardial infarction, pain and bipolar disorder--were targeted as researchers developed a better understanding of the roles of eight conventional and novel PKC isozymes in health and disease. Unfortunately, both academic and pharmaceutical efforts have yet to result in the approval of a single new drug that specifically targets PKC. Why does PKC remain an elusive drug target? This Review provides a short account of some of the efforts, challenges and opportunities in developing PKC modulators to address unmet clinical needs.
Collapse
|
10
|
Abstract
Protein kinase C (PKC) isoforms have emerged as important regulators of cardiac contraction, hypertrophy, and signaling pathways that influence ischemic/reperfusion injury. This review focuses on newer concepts regarding PKC isoform-specific activation mechanisms and actions that have implications for the development of PKC-targeted therapeutics.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, Columbia University, New York, New York, USA.
| |
Collapse
|
11
|
Jin W, Brown AT, Murphy AM. Cardiac myofilaments: from proteome to pathophysiology. Proteomics Clin Appl 2012; 2:800-10. [PMID: 21136880 DOI: 10.1002/prca.200780075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review addresses the functional consequences of altered post-translational modifications of cardiac myofilament proteins in cardiac diseases such as heart failure and ischemia. The modifications of thick and thin filament proteins as well as titin are addressed. Understanding the functional consequences of altered protein modifications is an essential step in the development of targeted therapies for common cardiac diseases.
Collapse
Affiliation(s)
- Wenhai Jin
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
12
|
Hwang H, Robinson DA, Stevenson TK, Wu HC, Kampert SE, Pagani FD, Dyke DB, Martin JL, Sadayappan S, Day SM, Westfall MV. PKCβII modulation of myocyte contractile performance. J Mol Cell Cardiol 2012; 53:176-86. [PMID: 22587992 DOI: 10.1016/j.yjmcc.2012.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 05/03/2012] [Accepted: 05/04/2012] [Indexed: 12/26/2022]
Abstract
Significant up-regulation of the protein kinase Cβ(II) (PKCβ(II)) develops during heart failure and yet divergent functional outcomes are reported in animal models. The goal here is to investigate PKCβ(II) modulation of contractile function and gain insights into downstream targets in adult cardiac myocytes. Increased PKCβ(II) protein expression and phosphorylation developed after gene transfer into adult myocytes while expression remained undetectable in controls. The PKCβ(II) was distributed in a peri-nuclear pattern and this expression resulted in diminished rates and amplitude of shortening and re-lengthening compared to controls and myocytes expressing dominant negative PKCβ(II) (PKCβDN). Similar decreases were observed in the Ca(2+) transient and the Ca(2+) decay rate slowed in response to caffeine in PKCβ(II)-expressing myocytes. Parallel phosphorylation studies indicated PKCβ(II) targets phosphatase activity to reduce phospholamban (PLB) phosphorylation at residue Thr17 (pThr17-PLB). The PKCβ inhibitor, LY379196 (LY) restored pThr17-PLB to control levels. In contrast, myofilament protein phosphorylation was enhanced by PKCβ(II) expression, and individually, LY and the phosphatase inhibitor, calyculin A each failed to block this response. Further work showed PKCβ(II) increased Ca(2+)-activated, calmodulin-dependent kinase IIδ (CaMKIIδ) expression and enhanced both CaMKIIδ and protein kinase D (PKD) phosphorylation. Phosphorylation of both signaling targets also was resistant to acute inhibition by LY. These later results provide evidence PKCβ(II) modulates contractile function via intermediate downstream pathway(s) in cardiac myocytes.
Collapse
Affiliation(s)
- Hyosook Hwang
- Dept. of Surgery, Cardiac Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Protein kinase C depresses cardiac myocyte power output and attenuates myofilament responses induced by protein kinase A. J Muscle Res Cell Motil 2012; 33:439-48. [PMID: 22527640 DOI: 10.1007/s10974-012-9294-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/09/2012] [Indexed: 01/13/2023]
Abstract
Following activation by G-protein-coupled receptor agonists, protein kinase C (PKC) modulates cardiac myocyte function by phosphorylation of intracellular targets including myofilament proteins cardiac troponin I (cTnI) and cardiac myosin binding protein C (cMyBP-C). Since PKC phosphorylation has been shown to decrease myofibril ATPase activity, we hypothesized that PKC phosphorylation of cTnI and cMyBP-C will lower myocyte power output and, in addition, attenuate the elevation in power in response to protein kinase A (PKA)-mediated phosphorylation. We compared isometric force and power generating capacity of rat skinned cardiac myocytes before and after treatment with the catalytic subunit of PKC. PKC increased phosphorylation levels of cMyBP-C and cTnI and decreased both maximal Ca(2+) activated force and Ca(2+) sensitivity of force. Moreover, during submaximal Ca(2+) activations PKC decreased power output by 62 %, which arose from both the fall in force and slower loaded shortening velocities since depressed power persisted even when force levels were matched before and after PKC. In addition, PKC blunted the phosphorylation of cTnI by PKA, reduced PKA-induced spontaneous oscillatory contractions, and diminished PKA-mediated elevations in myocyte power. To test whether altered thin filament function plays an essential role in these contractile changes we investigated the effects of chronic cTnI pseudo-phosphorylation on myofilament function using myocyte preparations from transgenic animals in which either only PKA phosphorylation sites (Ser-23/Ser-24) (PP) or both PKA and PKC phosphorylation sites (Ser-23/Ser-24/Ser-43/Ser-45/T-144) (All-P) were replaced with aspartic acid. Cardiac myocytes from All-P transgenic mice exhibited reductions in maximal force, Ca(2+) sensitivity of force, and power. Similarly diminished power generating capacity was observed in hearts from All-P mice as determined by in situ pressure-volume measurements. These results imply that PKC-mediated phosphorylation of cTnI plays a dominant role in depressing contractility, and, thus, increased PKC isozyme activity may contribute to maladaptive behavior exhibited during the progression to heart failure.
Collapse
|
14
|
Zhang H, Ge Y. Comprehensive analysis of protein modifications by top-down mass spectrometry. ACTA ACUST UNITED AC 2012; 4:711. [PMID: 22187450 DOI: 10.1161/circgenetics.110.957829] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mass spectrometry (MS)-based proteomics is playing an increasingly important role in cardiovascular research. Proteomics includes identification and quantification of proteins and the characterization of protein modifications, such as posttranslational modifications and sequence variants. The conventional bottom-up approach, involving proteolytic digestion of proteins into small peptides before MS analysis, is routinely used for protein identification and quantification with high throughput and automation. Nevertheless, it has limitations in the analysis of protein modifications, mainly because of the partial sequence coverage and loss of connections among modifications on disparate portions of a protein. An alternative approach, top-down MS, has emerged as a powerful tool for the analysis of protein modifications. The top-down approach analyzes whole proteins directly, providing a "bird's-eye" view of all existing modifications. Subsequently, each modified protein form can be isolated and fragmented in the mass spectrometer to locate the modification site. The incorporation of the nonergodic dissociation methods, such as electron-capture dissociation (ECD), greatly enhances the top-down capabilities. ECD is especially useful for mapping labile posttranslational modifications that are well preserved during the ECD fragmentation process. Top-down MS with ECD has been successfully applied to cardiovascular research, with the unique advantages in unraveling the molecular complexity, quantifying modified protein forms, complete mapping of modifications with full-sequence coverage, discovering unexpected modifications, identifying and quantifying positional isomers, and determining the order of multiple modifications. Nevertheless, top-down MS still needs to overcome some technical challenges to realize its full potential. Herein, we reviewed the advantages and challenges of the top-down method, with a focus on its application in cardiovascular research.
Collapse
Affiliation(s)
- Han Zhang
- Department of Physiology, School of Medicine and Public Health, University of Wisconsin-Madison, USA
| | | |
Collapse
|
15
|
Liu Q, Molkentin JD. Protein kinase Cα as a heart failure therapeutic target. J Mol Cell Cardiol 2011; 51:474-8. [PMID: 20937286 PMCID: PMC3204459 DOI: 10.1016/j.yjmcc.2010.10.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/01/2010] [Accepted: 10/04/2010] [Indexed: 01/13/2023]
Abstract
Heart failure afflicts ~5 million people and causes ~300,000 deaths a year in the United States alone. Heart failure is defined as a deficiency in the ability of the heart to pump sufficient blood in response to systemic demands, which results in fatigue, dyspnea, and/or edema. Identifying new therapeutic targets is a major focus of current research in the field. We and others have identified critical roles for protein kinase C (PKC) family members in programming aspects of heart failure pathogenesis. More specifically, mechanistic data have emerged over the past 6-7 years that directly implicate PKCα, a conventional PKC family member, as a nodal regulator of heart failure propensity. Indeed, deletion of the PKCα gene in mice, or its inhibition in rodents with drugs or a dominant negative mutant and/or inhibitory peptide, has shown dramatic protective effects that antagonize the development of heart failure. This review will weigh all the evidence implicating PKCα as a novel therapeutic target to consider for the treatment of heart failure. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
Affiliation(s)
- Qinghang Liu
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, and the Howard Hughes Medical Institute, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Jeffery D. Molkentin
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, and the Howard Hughes Medical Institute, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| |
Collapse
|
16
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
|
18
|
Ayaz-Guner S, Zhang J, Li L, Walker JW, Ge Y. In vivo phosphorylation site mapping in mouse cardiac troponin I by high resolution top-down electron capture dissociation mass spectrometry: Ser22/23 are the only sites basally phosphorylated. Biochemistry 2009; 48:8161-70. [PMID: 19637843 DOI: 10.1021/bi900739f] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac troponin I (cTnI) is the inhibitory subunit of cardiac troponin, a key myofilament regulatory protein complex located on the thin filaments of the contractile apparatus. cTnI is uniquely specific for the heart and is widely used in clinics as a serum biomarker for cardiac injury. Phosphorylation of cTnI plays a critical role in modulating cardiac function. cTnI is known to be regulated by protein kinase A and protein kinase C at five sites, Ser22/Ser23, Ser42/44, and Thr143, primarily based on results from in vitro phosphorylation assays by the specific kinase(s). However, a comprehensive characterization of phosphorylation of mouse cTnI occurring in vivo has been lacking. Herein, we have employed top-down mass spectrometry (MS) methodology with electron capture dissociation for precise mapping of in vivo phosphorylation sites of cTnI affinity purified from wild-type and transgenic mouse hearts. As demonstrated, top-down MS (analysis of intact proteins) is an extremely valuable technology for global characterization of labile phosphorylation occurring in vivo without a priori knowledge. Our top-down MS data unambiguously identified Ser22/23 as the only two sites basally phosphorylated in wild-type mouse cTnI with full sequence coverage, which was confirmed by the lack of phosphorylation in cTnI-Ala(2) transgenic mice where Ser22/23 in cTnI have been rendered nonphosphorylatable by mutation to alanine.
Collapse
Affiliation(s)
- Serife Ayaz-Guner
- Human Proteomics Program and Department of Physiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
19
|
Liu Q, Chen X, Macdonnell SM, Kranias EG, Lorenz JN, Leitges M, Houser SR, Molkentin JD. Protein kinase C{alpha}, but not PKC{beta} or PKC{gamma}, regulates contractility and heart failure susceptibility: implications for ruboxistaurin as a novel therapeutic approach. Circ Res 2009; 105:194-200. [PMID: 19556521 DOI: 10.1161/circresaha.109.195313] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein kinase (PK)Calpha, PKCbeta, and PKCgamma comprise the conventional PKC isoform subfamily, which is thought to regulate cardiac disease responsiveness. Indeed, mice lacking the gene for PKCalpha show enhanced cardiac contractility and reduced susceptibility to heart failure. Recent data also suggest that inhibition of conventional PKC isoforms with Ro-32-0432 or Ro-31-8220 enhances heart function and antagonizes failure, although the isoform responsible for these effects is unknown. Here, we investigated mice lacking PKCalpha, PKCbeta, and PKCgamma for effects on cardiac contractility and heart failure susceptibility. PKCalpha(-/-) mice, but not PKCbetagamma(-/-) mice, showed increased cardiac contractility, myocyte cellular contractility, Ca(2+) transients, and sarcoplasmic reticulum Ca(2+) load. PKCalpha(-/-) mice were less susceptible to heart failure following long-term pressure-overload stimulation or 4 weeks after myocardial infarction injury, whereas PKCbetagamma(-/-) mice showed more severe failure. Infusion of ruboxistaurin (LY333531), an orally available PKCalpha/beta/gamma inhibitor, increased cardiac contractility in wild-type and PKCbetagamma(-/-) mice, but not in PKCalpha(-/-) mice. More importantly, ruboxistaurin prevented death in wild-type mice throughout 10 weeks of pressure-overload stimulation, reduced ventricular dilation, enhanced ventricular performance, reduced fibrosis, and reduced pulmonary edema comparable to or better than metoprolol treatment. Ruboxistaurin was also administered to PKCbetagamma(-/-) mice subjected to pressure overload, resulting in less death and heart failure, implicating PKCalpha as the primary target of this drug in mitigating heart disease. As an aside, PKCalphabetagamma triple-null mice showed no defect in cardiac hypertrophy following pressure-overload stimulation. In conclusion, PKCalpha functions distinctly from PKCbeta and PKCgamma in regulating cardiac contractility and heart failure, and broad-acting PKC inhibitors such as ruboxistaurin could represent a novel therapeutic approach in treating human heart failure.
Collapse
Affiliation(s)
- Qinghang Liu
- Children's Hospital Medical Center, Division of Molecular Cardiovascular Biology, 3333 Burnet Ave, University of Cincinnati, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Guinto PJ, Haim TE, Dowell-Martino CC, Sibinga N, Tardiff JC. Temporal and mutation-specific alterations in Ca2+ homeostasis differentially determine the progression of cTnT-related cardiomyopathies in murine models. Am J Physiol Heart Circ Physiol 2009; 297:H614-26. [PMID: 19502551 DOI: 10.1152/ajpheart.01143.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Naturally occurring mutations in cardiac troponin T (cTnT) result in a clinical subset of familial hypertrophic cardiomyopathy. To determine the mechanistic links between thin-filament mutations and cardiovascular phenotypes, we have generated and characterized several transgenic mouse models carrying cTnT mutations. We address two central questions regarding the previously observed changes in myocellular mechanics and Ca(2+) homeostasis: 1) are they characteristic of all severe cTnT mutations, and 2) are they primary (early) or secondary (late) components of the myocellular response? Adult left ventricular myocytes were isolated from 2- and 6-mo-old transgenic mice carrying missense mutations at residue 92, flanking the TNT1 NH(2)-terminal tail domain. Results from R92L and R92W myocytes showed mutation-specific alterations in contraction and relaxation indexes at 2 mo with improvements by 6 mo. Alterations in Ca(2+) kinetics remained consistent with mechanical data in which R92L and R92W exhibited severe diastolic impairments at the early time point that improved with increasing age. A normal regulation of Ca(2+) kinetics in the context of an altered baseline cTnI phosphorylation suggested a pathogenic mechanism at the myofilament level taking precedence for R92L. The quantitation of Ca(2+)-handling proteins in R92W mice revealed a synergistic compensatory mechanism involving an increased Ser16 and Thr17 phosphorylation of phospholamban, contributing to the temporal onset of improved cellular mechanics and Ca(2+) homeostasis. Therefore, independent cTnT mutations in the TNT1 domain result in primary mutation-specific effects and a differential temporal onset of altered myocellular mechanics, Ca(2+) kinetics, and Ca(2+) homeostasis, complex mechanisms which may contribute to the clinical variability in cTnT-related familial hypertrophic cardiomyopathy mutations.
Collapse
Affiliation(s)
- Pia J Guinto
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
21
|
Sheehan KA, Ke Y, Wolska BM, Solaro RJ. Expression of active p21-activated kinase-1 induces Ca2+ flux modification with altered regulatory protein phosphorylation in cardiac myocytes. Am J Physiol Cell Physiol 2008; 296:C47-58. [PMID: 18923061 DOI: 10.1152/ajpcell.00012.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
p21-Activated kinase-1 (Pak1) is a serine-threonine kinase that associates with and activates protein phosphatase 2A in adult ventricular myocytes and, thereby, induces increased Ca2+ sensitivity of skinned-fiber tension development mediated by dephosphorylation of myofilament proteins (Ke Y, Wang L, Pyle WG, de Tombe PP, Solaro RJ. Circ Res 94: 194-200, 2004). We test the hypothesis that activation of Pak1 also moderates cardiac contractility through regulation of intracellular Ca2+ fluxes. We found no difference in field-stimulated intracellular Ca2+ concentration ([Ca2+]i) transient amplitude and extent of cell shortening between myocytes expressing constitutively active Pak1 (CA-Pak1) and controls expressing LacZ; however, time to peak shortening was significantly faster and rate of [Ca2+]i decay and time of relengthening were slower. Neither caffeine-releasable sarcoplasmic reticulum (SR) Ca2+ content nor fractional release was different in CA-Pak1 myocytes compared with controls. Isoproterenol application revealed a significantly blunted increase in [Ca2+]i transient amplitude, as well as a slowed rate of [Ca2+]i decay, increased SR Ca2+ content, and increased cell shortening, in CA-Pak1 myocytes. We found no significant change in phospholamban phosphorylation at Ser16 or Thr17 in CA-Pak1 myocytes. Analysis of cardiac troponin I revealed a significant reduction in phosphorylated species that are primarily attributable to Ser(23/24) in CA-Pak1 myocytes. Nonstimulated, spontaneous SR Ca2+ release sparks were significantly smaller in amplitude in CA-Pak1 than LacZ myocytes. Propagation of spontaneous Ca2+ waves resulting from SR Ca2+ overload was significantly slower in CA-Pak1 myocytes. Our data indicate that CA-Pak1 expression has significant effects on ventricular myocyte contractility through altered myofilament Ca2+ sensitivity and modification of the [Ca2+]i transient.
Collapse
Affiliation(s)
- Katherine A Sheehan
- Department of Physiology and Biophysics, Department of Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612-7342, USA.
| | | | | | | |
Collapse
|
22
|
Edes IF, Tóth A, Csányi G, Lomnicka M, Chłopicki S, Edes I, Papp Z. Late-stage alterations in myofibrillar contractile function in a transgenic mouse model of dilated cardiomyopathy (Tgalphaq*44). J Mol Cell Cardiol 2008; 45:363-72. [PMID: 18674539 DOI: 10.1016/j.yjmcc.2008.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 07/02/2008] [Accepted: 07/02/2008] [Indexed: 11/17/2022]
Abstract
Mechanical and biochemical alterations were investigated in permeabilized cardiomyocytes along with the progression of dilated cardiomyopathy (DCM) in a transgenic mouse line overexpressing the activated Galphaq protein (Tgalphaq*44). The isometric force, its Ca(2+) sensitivity (pCa(50)) and the turnover rate of the actin-myosin cycle (k(tr)) were determined at sarcomere lengths (SLs) of 1.9 mum and 2.3 mum before (at 4 and 10 months of age) and after hemodynamic decompensation (at 14 and 18 months of age) in Tgalphaq*44 cardiomyocytes and in age-matched control cardiomyocytes. The SL-dependence of pCa(50) was not different in Tgalphaq*44 and control hearts. In contrast, a significant increase in pCa(50) was observed in the Tgalphaq*44 cardiomyocytes (DeltapCa(50): 0.10-0.15 vs. the controls) after 10 months of age that could be diminished by exposures to the catalytic subunit of protein kinase A (PKA). Accordingly, a decline in endogenous PKA activity and decreased troponin I phosphorylation were detected after 10 months in the Tgalphaq*44 hearts. Finally, the maximal Ca(2+)-activated force (F(o)) and k(tr) were lower and the passive force (F(passive)) was higher at 18 months in the Tgalphaq*44 cardiomyocytes compared to the control. These mechanical alterations were paralleled by a robust increase in beta-myosin heavy chain expression in the Tgalphaq*44 hearts. In conclusion, our data suggested that an initial decrease of PKA signaling and subsequent changes in myofilament protein expression may contribute to the development of dilated cardiomyopathy in Tgalphaq*44 hearts.
Collapse
Affiliation(s)
- István Ferenc Edes
- Division of Clinical Physiology, Institute of Cardiology University of Debrecen, Medical and Health Science Center, Faculty of Medicine Móricz Zs. krt. 22. H-4032 Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
23
|
Solaro RJ. Multiplex kinase signaling modifies cardiac function at the level of sarcomeric proteins. J Biol Chem 2008; 283:26829-33. [PMID: 18567577 DOI: 10.1074/jbc.r800037200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- R John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois, Chicago, Illinois 60612, USA.
| |
Collapse
|
24
|
Goldspink P, Ruch S, Los T, Buttrick P, García J. Maladaptation of calcium homoeostasis in aging cardiac myocytes. Pflugers Arch 2008; 456:479-87. [PMID: 18172603 DOI: 10.1007/s00424-007-0420-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 12/06/2007] [Indexed: 10/22/2022]
Abstract
With aging, the heart develops myocyte hypertrophy associated with impaired relaxation indices. To define the cellular basis of this adaptation, we examined the physiological changes that arise in calcium handling in the aging heart and contrasted the adaptations that occur following the imposition of a stimulus that alters calcium homeostasis in a young and an old heart. We utilized a cardiac-specific conditional transgenic approach to "switch on" protein kinase (PKC)-beta II expression in mice at different stages of adult life (3 and 12 months) and characterized alterations in ICa and calcium release in wild-type (WT) and PKC-beta II-expressing cells. Amplitude or voltage dependence of ICa were not significantly altered by expression of PKC-beta II at any age. No significant differences in calcium-release properties were seen with age. Upon activation of PKC-beta II, the amplitude of the calcium transient was larger, and the calcium spark frequency was greater in PKC-beta II mice compared to WT at both 3 and 12 months. Spark amplitude increased only in the 12-month PKC-beta II mice. These changes occurred in parallel with an increase in cell size (as determined by capacitance measurements) in the 12-month PKC-beta II mice but not the 3-month PKC-beta II mice. These data suggest that alterations in the calcium-handling machinery of the cardiocyte differ in the context of age and as such may predispose the older heart to the development of a hypertrophic phenotype.
Collapse
Affiliation(s)
- Paul Goldspink
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
25
|
Wu SC, Solaro RJ. Protein kinase C zeta. A novel regulator of both phosphorylation and de-phosphorylation of cardiac sarcomeric proteins. J Biol Chem 2007; 282:30691-8. [PMID: 17724026 PMCID: PMC2597085 DOI: 10.1074/jbc.m703670200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our experiments investigated associations of specific isoforms of protein kinase C (PKC) with individual proteins in the cardiac troponin complex. Troponin I (cTnI) associated with PKCepsilon and zeta and troponin T (cTnT) associated with PKC alpha, delta, and epsilon. Based on its association with cTnI, we hypothesized that PKCzeta is a major regulator of myofilament protein phosphorylation. To test this, we infected adult cardiac myocytes with adenoviral constructs containing DsRed monomer-tagged wild type (WT) and the following constitutively active forms of PKCzeta: the pseudo-substrate region (A119E), 3'-phospho-inositide-dependent kinase-1 (T410E), and auto-phosphorylation (T560E). The A119E and T410E mutants displayed increased localization to the Z-discs compared with WT and T560E. Immunoprecipitations were performed in myocytes expressing PKCzeta using PKC phospho-motif antibodies to determine the phosphorylation of cTnI, cTnT, tropomyosin, myosin-binding protein C, and desmin. We did not find serine (Ser) phosphorylation of cTnI or cTnT. However, we observed a significant decrease in threonine (Thr) phosphorylation of cTnI and cTnT notably by PKCzeta T560E. Ser phosphorylation of tropomyosin was increased by all three active mutants of PKCzeta. Ser/Thr phosphorylation of myosin-binding protein C increased primarily by PKCzeta A119E. Both PKCzeta A119E and T410E mutants increased desmin Ser/Thr phosphorylation. To explain the apparent Thr dephosphorylation of cTnI and cTnT, we hypothesized that PKCzeta exists as a complex with p21-activated kinase-1 (Pak1) and protein phosphatase 2A (PP2A), and this was confirmed by immunoprecipitation Western blot. Our data demonstrate that PKCzeta is a novel regulator of myofilament protein phosphorylation.
Collapse
Affiliation(s)
| | - R. John Solaro
- To whom correspondence should be addressed: Dept. of Physiology and Biophysics (M/C 901), University of Illinois at Chicago College of Medicine, 835 South Wolcott Ave., Chicago, IL 60612-7342, Tel.: 312-996-7620; Fax: 312-996-1414; E-mail:
| |
Collapse
|
26
|
Abstract
Cardiac hypertrophy and heart failure are major causes of morbidity and mortality in Western societies. Many factors have been implicated in cardiac remodeling, including alterations in gene expression in myocytes, cardiomyocytes apoptosis, cytokines and growth factors that influence cardiac dynamics, and deficits in energy metabolism as well as alterations in cardiac extracellular matrix composition. Many therapeutic means have been shown to prevent or reverse cardiac hypertrophy. New concepts for characterizing the pathophysiology of cardiac hypertrophy have been drawn from various aspects, including medical therapy and gene therapy, or use of stem cells for tissue regeneration. In this review, we focus on various types of cardiac hypertrophy, defining the causes of hypertrophy, describing available animal models of hypertrophy, discussing the mechanisms for development of hypertrophy and its transition to heart failure, and presenting the potential use of novel promising therapeutic strategies derived from new advances in basic scientific research.
Collapse
Affiliation(s)
- Sudhiranjan Gupta
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
27
|
Solaro RJ, Arteaga GM. Heart failure, ischemia/reperfusion injury and cardiac troponin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:191-200. [PMID: 17278366 DOI: 10.1007/978-4-431-38453-3_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the forty years since its discovery, there has been a profound transition in thinking with regard to the role of troponin in the control of cardiac function. This transition involved a change in perception oftroponin as a passive molecular switch responding to membrane controlled fluctuations in cytoplasmic Ca2+ to a perception of troponin as a critical element in signaling cascades that actively engage in control of cardiac function. Evidence demonstrating functionally significant developmental and mutant isoform switches and post-translational modifications of cardiac troponin complex proteins, troponin I (cTnI) and troponin T (cTnT) provided convincing evidence for a more complicated role of troponin in control of cardiac function and dynamics. The physiological role of these modifications of troponin is reviewed in this monograph and has also been reviewed elsewhere (Solaro and Rarick, 1998; Gordon et al., 2000; Solaro et al., 2002a; Kobayashi and Solaro, 2005). Our focus here is on studies related to modifications in troponin that appear important in the processes leading from compensated hypertrophy to heart failure. These studies reveal the potentially significant role of post-translational modifications of troponin in these processes. Another focus is on troponin as a target for inotropic agents. Pharmacological manipulation of troponin by small molecules remains an important avenue of approach for the treatment of acute and chronic heart failure (Kass and Solaro, 2006).
Collapse
Affiliation(s)
- R John Solaro
- Department of Physiology and Biophysics (M/C 901), University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | | |
Collapse
|
28
|
Azzawi M, Austin C. The effects of endothelial factor inhibition on the time course of responses of isolated rat coronary arteries to intraluminal flow. J Vasc Res 2007; 44:223-33. [PMID: 17337908 DOI: 10.1159/000100421] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 12/26/2006] [Indexed: 11/19/2022] Open
Abstract
The aims of this study were to investigate, for the first time, the effects of endothelial factor inhibition on both the magnitude and dynamics of the response of isolated small coronary arteries to intraluminal flow. Isolated rat coronary arteries were mounted on a pressure myograph and left to develop myogenic tone. Flow was introduced and maintained until stable diameters were attained. Dilatory responses were observed which were maximal at low flow rates (5-10 microl/min) and thus shear stresses (1-2 dyn/cm(2)). These responses were transient in nature. Transient dilations were also observed upon cessation of flow. All responses (to 5 microl/min) were endothelium dependent and were completely abolished by addition of charybdotoxin (100 nM) and apamin (100-500 nM) suggesting an important role for a hyperpolarizing mechanism most likely involving an endothelium-derived hyperpolarizing factor. However, inhibitors of nitric oxide synthase (L-NNA; 100 microM) or cyclo-oxygenase (indomethacin; 10 microM) also modulated the response causing an increase and decrease in maximum vasodilation, respectively. By examining the time course we showed that both agents also made the response significantly more transient in nature. These results show that inhibition of endothelial factor pathways can influence both the magnitude and dynamics of the response of isolated rat coronary arteries to flow.
Collapse
Affiliation(s)
- May Azzawi
- Smooth Muscle Physiology Group, Division of Cardiovascular and Endocrine Sciences, Core Technology Facility, University of Manchester, Manchester, UK
| | | |
Collapse
|
29
|
Dong F, Taylor MM, Samson WK, Ren J. Intermedin (adrenomedullin-2) enhances cardiac contractile function via a protein kinase C- and protein kinase A-dependent pathway in murine ventricular myocytes. J Appl Physiol (1985) 2006; 101:778-84. [PMID: 16763098 DOI: 10.1152/japplphysiol.01631.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Intermedin (IMD), also called adrenomedullin-2, is a 47-amino acid peptide from the calcitonin gene-related peptide (CGRP)/adrenomedullin family of peptides. Recent studies suggest that IMD may participate in the regulation of cardiovascular function and fluid and electrolyte homeostasis. To evaluate the role of IMD on cardiomyocyte contractile function, electrically paced murine ventricular myocytes were acutely exposed to IMD, and the following indexes were determined: peak shortening (PS), time to PS, time-to-90% relengthening, and maximal velocity of shortening and relengthening. Intracellular Ca2+ was assessed using fura 2-AM fluorescent microscopy. Our results revealed that IMD (10 pM to 10 nM) significantly increased PS and maximal velocity of shortening and relengthening in ventricular myocytes, the maximal effect of which (∼46%) was somewhat comparable to those elicited by CGRP (1 nM) and adrenomedullin (100 nM). Exposure of IMD significantly shortened time-to-90% relengthening without affecting time to PS, similar to CGRP and adrenomedullin. IMD also enhanced intracellular Ca2+ release, with a maximal increase of ∼50%, and facilitated the intracellular Ca2+ decay rate. The IMD-induced effects were abolished by the protein kinase C inhibitor chelerythrine (1 μM), downregulation of protein kinase C using phorbol 12-myristate 13-acetate (1 μM), and the protein kinase A inhibitor H89 (1 μM). Our data suggest that IMD acutely augments cardiomyocyte contractile function through, at least in part, a protein kinase C- and protein kinase A-dependent mechanism.
Collapse
Affiliation(s)
- Feng Dong
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071-3375, USA
| | | | | | | |
Collapse
|
30
|
Pyle WG, La Rotta G, de Tombe PP, Sumandea MP, Solaro RJ. Control of cardiac myofilament activation and PKC-betaII signaling through the actin capping protein, CapZ. J Mol Cell Cardiol 2006; 41:537-43. [PMID: 16870209 DOI: 10.1016/j.yjmcc.2006.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 06/02/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
Actin capping protein (CapZ) anchors the barbed ends of sarcomeric actin to the Z-disc. Myofilaments from transgenic mice (TG-CapZ) expressing a reduced amount of CapZ demonstrate altered function and protein kinase C (PKC) signaling [Pyle WG, Hart MC, Cooper JA, Sumandea MP, de Tombe PP, and Solaro RJ., Circ. Res. 90 (2002) 1299-306]. The aims of the current study were to determine the direct effects of CapZ on myofilament function and on PKC signaling to the myofilaments. Our studies compared mechanical properties of single myocytes from TG-CapZ mouse hearts to wild-type myocytes from which CapZ was extracted using PIP(2). We found that myofilaments from CapZ-deficient transgenic myocardium exhibited increased Ca(2+) sensitivity and maximum isometric tension. The extraction of CapZ from wild-type myofilaments replicated the increase in maximum isometric tension, but had no effect on myofilament Ca(2+) sensitivity. Immunoblot analysis revealed that the extraction of CapZ was associated with a reduction in myofilament-associated PKC-beta(II) and that CapZ-deficient transgenic myofilaments also lacked PKC-beta(II). Treatment of wild-type myofilaments with recombinant PKC-beta(II) reduced myofilament Ca(2+) sensitivity, whereas this effect was attenuated in myofilaments from TG-CapZ mice. Our results indicate that cardiac CapZ directly controls maximum isometric tension generation, and establish CapZ as an important component in anchoring PKC-beta(II) at the myofilaments, and for mediating the effects of PKC-beta(II) on myofilament function.
Collapse
Affiliation(s)
- W Glen Pyle
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | | | | | | | | |
Collapse
|
31
|
Abstract
The vascular endothelium synthesises the vasodilator and anti-aggregatory mediator nitric oxide (NO) from L-arginine. This action is catalysed by the action of NO synthases, of which two forms are present in the endothelium. Endothelial (e)NOS is highly regulated, constitutively active and generates NO in response to shear stress and other physiological stimuli. Inducible (i)NOS is expressed in response to immunological stimuli, is transcriptionally regulated and, once activated, generates large amounts of NO that contribute to pathological conditions. The physiological actions of NO include the regulation of vascular tone and blood pressure, prevention of platelet aggregation and inhibition of vascular smooth muscle proliferation. Many of these actions are a result of the activation by NO of the soluble guanylate cyclase and consequent generation of cyclic guanosine monophosphate (cGMP). An additional target of NO is the cytochrome c oxidase, the terminal enzyme in the electron transport chain, which is inhibited by NO in a manner that is reversible and competitive with oxygen. The consequent reduction of cytochrome c oxidase leads to the release of superoxide anion. This may be an NO-regulated cell signalling system which, under certain circumstances, may lead to the formation of the powerful oxidant species, peroxynitrite, that is associated with a variety of vascular diseases.
Collapse
Affiliation(s)
- S Moncada
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
32
|
Gallardo PA, Cortes A, Bozinovic F. Phenotypic flexibility at the molecular and organismal level allows desert-dwelling rodents to cope with seasonal water availability. Physiol Biochem Zool 2005; 78:145-52. [PMID: 15778934 DOI: 10.1086/425203] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2004] [Indexed: 11/03/2022]
Abstract
We examined the phenotypic flexibility of field urine osmolality (Uosm) in response to seasonal rainfall and the experimental expression of renal aquaporins (AQPs) in the leaf-eared mouse Phyllotis darwini, a South American desert-dwelling rodent, through an integrative study at both the cellular and the organismal level. Field Uosm was higher in summer than in winter. Fall and winter Uosm were not significantly different. During a rainy year, winter Uosm was 2,140 +/- 82.3 mOsm kg(-1); the corresponding value in a dry year was 2,569 +/- 61.3 mOsm kg(-1). During the summer, the mean Uosm in a rainy year was 3,321 +/- 71.5 mOsm kg(-1), and in a dry year it was 3,604 +/- 107.2 mOsm kg(-1). The distribution of AQP-2, AQP-3, and AQP-4 was similar to that described for mouse and rat kidneys and confined to principal cells in cortex and inner medullary collecting-duct cells. AQP-4 immunoreactivity was unaltered by the state of water balance. Relative to water loading, dehydration induced an increase in AQP-2 immunoreactivity and protein abundance. Although more discrete, AQP-3 immunolabeling was also increased by dehydration. We now reveal how the integration of flexible renal mechanisms acting at the cellular and organismal level allow a small desert-dwelling mammal to cope with seasonal and yearly (El Nino) water availability in its semiarid habitat.
Collapse
Affiliation(s)
- Pedro A Gallardo
- Departamento de Ciencias Fisiologicas, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago
| | | | | |
Collapse
|
33
|
Finley NL, Rosevear PR. Introduction of negative charge mimicking protein kinase C phosphorylation of cardiac troponin I. Effects on cardiac troponin C. J Biol Chem 2004; 279:54833-40. [PMID: 15485824 DOI: 10.1074/jbc.m408304200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C phosphorylation of cardiac troponin, the Ca(2+)-sensing switch in muscle contraction, is capable of modulating the response of cardiac muscle to a Ca(2+) ion concentration. The N-domain of cardiac troponin I contains two protein kinase C phosphorylation sites. Although the physiological consequences of phosphorylation at Ser(43)/Ser(45) are known, the molecular mechanisms responsible for these functional changes have yet to be established. In this work, NMR was used to identify conformational and dynamic changes in cardiac troponin C upon binding a phosphomimetic troponin I, having Ser(43)/Ser(45) mutated to Asp. Chemical shift perturbation mapping indicated that residues in helix G were most affected. Smaller chemical shift changes were observed in residues located in the Ca(2+)/Mg(2+)-binding loops. Amide hydrogen/deuterium exchange rates in the C-lobe of troponin C were compared in complexes containing either the wild-type or phosphomimetic N-domain of troponin I. In the presence of a phosphomimetic domain, exchange rates in helix G increased, whereas a decrease in exchange rates for residues mapping to Ca(2+)/Mg(2+)-binding loops III and IV was observed. Increased exchange rates are consistent with destabilization of the Thr(129)-Asp(132) helix capping box previously characterized in helix G. The perturbation of helix G and metal binding loops III and IV suggests that phosphorylation alters metal ion affinity and inter-subunit interactions. Our studies support a novel mechanism for protein kinase C signal transduction, emphasizing the importance of C-lobe Ca(2+)/Mg(2+)-dependent troponin interactions.
Collapse
Affiliation(s)
- Natosha L Finley
- Department of Molecular Genetics, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | |
Collapse
|
34
|
Artis D, Wang ML, Keilbaugh SA, He W, Brenes M, Swain GP, Knight PA, Donaldson DD, Lazar MA, Miller HRP, Schad GA, Scott P, Wu GD. RELMbeta/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc Natl Acad Sci U S A 2004; 101:13596-600. [PMID: 15340149 PMCID: PMC518800 DOI: 10.1073/pnas.0404034101] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Indexed: 01/16/2023] Open
Abstract
Gastrointestinal (GI) nematode infections are an important public health and economic concern. Experimental studies have shown that resistance to infection requires CD4(+) T helper type 2 (Th2) cytokine responses characterized by the production of IL-4 and IL-13. However, despite >30 years of research, it is unclear how the immune system mediates the expulsion of worms from the GI tract. Here, we demonstrate that a recently described intestinal goblet cell-specific protein, RELMbeta/FIZZ2, is induced after exposure to three phylogenetically distinct GI nematode pathogens. Maximal expression of RELMbeta was coincident with the production of Th2 cytokines and host protective immunity, whereas production of the Th1 cytokine, IFN-gamma, inhibited RELMbeta expression and led to chronic infection. Furthermore, whereas induction of RELMbeta was equivalent in nematode-infected wild-type and IL-4-deficient mice, IL-4 receptor-deficient mice showed minimal RELMbeta induction and developed persistent infections, demonstrating a direct role for IL-13 in optimal expression of RELMbeta. Finally, we show that RELMbeta binds to components of the nematode chemosensory apparatus and inhibits chemotaxic function of a parasitic nematode in vitro. Together, these results suggest that intestinal goblet cell-derived RELMbeta may be a novel Th2 cytokine-induced immune-effector molecule in resistance to GI nematode infection.
Collapse
Affiliation(s)
- David Artis
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Goldspink PH, Montgomery DE, Walker LA, Urboniene D, McKinney RD, Geenen DL, Solaro RJ, Buttrick PM. Protein Kinase Cε Overexpression Alters Myofilament Properties and Composition During the Progression of Heart Failure. Circ Res 2004; 95:424-32. [PMID: 15242976 DOI: 10.1161/01.res.0000138299.85648.92] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report characterization of a transgenic mouse that overexpresses constitutively active protein kinase Cε in the heart and slowly develops a dilated cardiomyopathy with failure. The hemodynamic, mechanical, and biochemical properties of these hearts demonstrate a series of temporal events that mark the progression of the disease. In the 3-month transgenic (TG) animals, contractile properties and gene expression measurements are normal, but an increase in myofibrillar Ca
2+
sensitivity and thin filament protein phosphorylation is noted. At 6 months, there is a decrease in the myofibrillar Ca
2+
sensitivity, a significant increase in β-myosin heavy chain mRNA and protein, normal cardiac function, but a blunted response to an inotropic challenge. The transition at 9 months is especially interesting because age-related changes appear to contribute to the decline in function seen in the TG heart. At this point, there is a decline in baseline function and maximum tension produced by the myofibrils, which is coincident with the onset of atrial myosin light chain isoform re-expression in the ventricles. In the 12-month TG mice, there is clear hemodynamic and geometric evidence of failure. Alterations in the composition of the myofibrils persist but the phosphorylation of myosin light chain 2v is dramatically different at this age compared with all others. We interpret these data to implicate the disruption of the myofibrillar proteins and their interactions in the propagation of dilated cardiac disease.
Collapse
Affiliation(s)
- Paul H Goldspink
- Section of Cardiology, University of Illinois at Chicago, 840 S Wood St, M/C 715, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang X, Pluznick JL, Wei P, Padanilam BJ, Sansom SC. TRPC4 forms store-operated Ca2+channels in mouse mesangial cells. Am J Physiol Cell Physiol 2004; 287:C357-64. [PMID: 15044151 DOI: 10.1152/ajpcell.00068.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies were performed to identify the molecular component responsible for store-operated Ca2+entry in murine mesangial cells (MMC). Because the canonical transient receptor potential (TRPC) family of proteins was previously shown to comprise Ca2+-selective and -nonselective cation channels in a variety of cells, we screened TRPC1–TRPC7 with the use of molecular methods and the fura 2 method to determine their participation as components of the mesangial store-operated Ca2+(SOC) channel. Using TRPC-specific primers and RT-PCR, we found that cultured MMC contained mRNA for TRPC1 and TRPC4 but not for TRPC2, TRPC3, TRPC5, TRPC6, and TRPC7. Immunocytochemical staining of MMC revealed predominantly cytoplasmic expression of TRPC1 and plasmalemmal expression of TRPC4. The role of TRPC4 in SOC was determined with TRPC4 antisense and fura 2 ratiometric measurements of intracellular Ca2+concentration ([Ca2+]i). SOC was measured as the increase in [Ca2+]iafter extracellular Ca2+was increased from <10 nM to 1 mM in the continued presence of thapsigargin. We found that TRPC4 antisense, which reduced plasmalemmal expression of TRPC4, inhibited SOC by 83%. Incubation with scrambled TRPC4 oligonucleotides did not affect SOC. Immunohistochemical staining identified expressed TRPC4 in the glomeruli of mouse renal sections. The results of RT-PCR performed to distinguish between TRPC4-α and TRPC4-β were consistent with expression of both isoforms in brain but with only TRPC4-α expression in MMC. These studies show that TRPC4-α may form the homotetrameric SOC in mouse mesangial cells.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Physiology and Biophysics, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | | | |
Collapse
|
37
|
Sumandea MP, Burkart EM, Kobayashi T, De Tombe PP, Solaro RJ. Molecular and integrated biology of thin filament protein phosphorylation in heart muscle. Ann N Y Acad Sci 2004; 1015:39-52. [PMID: 15201148 DOI: 10.1196/annals.1302.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An increasing body of evidence points to posttranslational modifications of the thin filament regulatory proteins, cardiac troponin T (cTnT) and cardiac troponin I (cTnI) by protein kinase C (PKC) phosphorylation as important in both long- and short-term regulation of cardiac function and potentially implicated in the transition between compensated hypertrophy and decompensation. The main sites for PKC-dependent phosphorylation on cTnI are Ser43, Ser45, and Thr144 and on cTnT are Thr197, Ser201, Thr206, and Thr287 (mouse sequence). We analyzed the function of each phosphorylation residue using a phosphorylation mimic approach introducing glutamates (E) at PKC phosphorylation sites and then measuring the isometric tension of fiber bundles exchanged with these mutants. We also directly phosphorylated cTnI and cTnT by PKC, incorporated the phosphorylated troponins in the myofilament lattice, and determined the isometric tension at varying Ca(2+) concentrations. We followed the experimental data with computational analysis prediction of helical content of cTnI and cTnT peptides that undergo phosphorylation. Here we summarize our recent data on the specific functional role of PKC phosphorylation sites of cTnI and cTnT.
Collapse
Affiliation(s)
- Marius P Sumandea
- Department of Physiology and Biophysics, Program in Cardiovascular Sciences, College of Medicine, University of Illinois at Chicago, 60612, USA
| | | | | | | | | |
Collapse
|
38
|
Perrini S, Henriksson J, Zierath JR, Widegren U. Exercise-induced protein kinase C isoform-specific activation in human skeletal muscle. Diabetes 2004; 53:21-4. [PMID: 14693693 DOI: 10.2337/diabetes.53.1.21] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We determined whether protein kinase C (PKC) isoforms are redistributed and phosphorylated in response to acute exercise in skeletal muscle. Muscle biopsies were obtained from six healthy subjects (four women, two men; age 25 +/- 1 years) before, during, and after 60 min of one-leg cycle ergometry at approximately 70% VO(2peak). Exercise for 30 and 60 min was associated with a three- and fourfold increase in PKC-zeta/lambda abundance and a four- and threefold increase in phosphorylation, respectively, in total membranes (P < 0.05) and a decrease in PKC-zeta/lambda phosphorylation in cytosolic fractions. During exercise recovery, PKC-zeta/lambda abundance and phosphorylation remained elevated. PKC-zeta/lambda abundance and phosphorylation were increased in nonexercised muscle upon cessation of exercise, indicating a systemic response may contribute to changes in PKC abundance and phosphorylation. Exercise did not change PKC-delta or -epsilon abundance or phosphorylation in either the cytosolic or total membrane fraction. In conclusion, exercise is associated with an isoform-specific effect on PKC. PKC-zeta/lambda are candidate PKC isoforms that may play a role in the regulation of exercise-related changes in metabolic and gene-regulatory responses.
Collapse
Affiliation(s)
- Sebastio Perrini
- Department of Surgical Sciences, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
39
|
Pi Y, Zhang D, Kemnitz KR, Wang H, Walker JW. Protein kinase C and A sites on troponin I regulate myofilament Ca2+ sensitivity and ATPase activity in the mouse myocardium. J Physiol 2003; 552:845-57. [PMID: 12923217 PMCID: PMC2343448 DOI: 10.1113/jphysiol.2003.045260] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cardiac troponin I (cTnI) is a phosphoprotein subunit of the troponin-tropomyosin complex that is thought to inhibit cardiac muscle contraction during diastole. To investigate the contributions of cTnI phosphorylation to cardiac regulation, transgenic mice were created with the phosphorylation sites of cTnI mutated to alanine. Activation of protein kinase C (PKC) by perfusion of hearts with phorbol-12-myristate-13-acetate (PMA) or endothelin-1 (ET-1) inhibited the maximum ATPase rate by up to 25 % and increased the Ca2+ sensitivity of ATPase activity and of isometric tension by up to 0.15 pCa units. PKC activation no longer altered cTnI phosphorylation, depressed ATPase rates or enhanced myofilament Ca2+ sensitivity in transgenic mice expressing cTnI that could not be phosphorylated on serines43/45 and threonine144 (PKC sites). Modest changes in myosin regulatory light chain phosphorylation occurred in all mouse lines, but increases in myofilament Ca2+ sensitivity required the presence of phosphorylatable cTnI. For comparison, the beta-adrenergic agonist isoproterenol caused a 38 % increase in maximum ATPase rate and a 0.12 pCa unit decrease in myofilament Ca2+ sensitivity. These beta-adrenergic effects were absent in transgenic mice expressing cTnI that could not be phosphorylated on serines23/24 (protein kinase A, PKA, sites). Overall, the results indicate that PKC and PKA exert opposing effects on actomyosin function by phosphorylating cTnI on distinct sites. A primary role of PKC phosphorylation of cTnI may be to reduce the requirements of the contractile apparatus for both Ca2+ and ATP, thereby promoting efficient ATP utilisation during contraction.
Collapse
Affiliation(s)
- YeQing Pi
- Department of Physiology, University of Wisconsin, Madison, WI 53706 USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Cardiac hypertrophy is the heart's response to a variety of extrinsic and intrinsic stimuli that impose increased biomechanical stress. While hypertrophy can eventually normalize wall tension, it is associated with an unfavorable outcome and threatens affected patients with sudden death or progression to overt heart failure. Accumulating evidence from studies in human patients and animal models suggests that in most instances hypertrophy is not a compensatory response to the change in mechanical load, but rather is a maladaptive process. Accordingly, modulation of myocardial growth without adversely affecting contractile function is increasingly recognized as a potentially auspicious approach in the prevention and treatment of heart failure. In this review, we summarize recent insights into hypertrophic signaling and consider several novel antihypertrophic strategies.
Collapse
Affiliation(s)
- N Frey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA.
| | | |
Collapse
|
41
|
Carson LD, Korzick DH. Dose-dependent effects of acute exercise on PKC levels in rat heart: is PKC the heart's prophylactic? ACTA PHYSIOLOGICA SCANDINAVICA 2003; 178:97-106. [PMID: 12780383 DOI: 10.1046/j.1365-201x.2003.01131.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED Epidemiological studies have demonstrated that chronic exercise is cardioprotective, and recent evidence from our laboratory suggests a key role for protein kinase C (PKC)-dependent pathways, at least in part, as a cellular basis for this response. However, the dose-response relationship linking exercise volume and the time course of isoform-specific PKC activation are poorly understood. AIM The purpose of this investigation was to determine the effects of acute exercise of varying durations on PKC subcellular distribution and phosphorylation in the rat left ventricle. METHODS Adult (5 months) male Fischer-344 more rats were subjected to a single bout (OB) or 7 days (SB) of treadmill running (n = 6/group; 23 m min-1, 20 min), and compared with sedentary controls (SED; n = 8). Hearts were isolated immediately after [early window (EW); n = 3/group] or 24 h after the last exercise bout [late window (LW); n = 3/group] in OB and SD, respectively. Total PKC and subcellular distribution for the alpha, delta, epsilon, betaI, and betaII isoforms, as well as phosphorylated (phospho-) PKC epsilon (pSer729), PKC alpha (pSer657) and PKCdelta (pThr507) levels were assessed by western blotting. Protein kinase C epsilon and PKC alpha mRNA levels were assessed by real time polymerase chain reaction. RESULTS Following OB, PKCbetaI protein levels were reduced, while total phospho-PKC epsilon (pSer729), PKC alpha (pSer657) and PKC delta (pThr507) levels were increased during EW (P < 0.05). Interestingly, total PKC delta (31%) and membrane-associated PKC alpha (24%) levels decreased from EW to LW (P < 0.05). In contrast, SB yielded chronic increases in total PKC epsilon (80.5%) levels and PKC delta (20.0%) levels (P < 0.03), with reversal of effects on phospho-PKC epsilon (Ser729), phospho-PKC alpha (Ser657) and phospho-PKC delta (Thr507) levels observed with OB. Reductions in total phospho-PKC alpha (Ser657) persisted at SB (26.1%; P < 0.02). Interestingly, mRNA levels for PKC epsilon were significantly increased following SB while PKC alpha mRNA levels were reduced, respectively. CONCLUSION These data suggest that divergent patterns of PKC activation occur following OB and SB at both the transcriptional and translational levels. That similar patterns of PKC translocation are observed in experimental models of ischaemic preconditioning and genetic PKC manipulation provide evidence for a dose-dependent cardioprotective phenotype induced by physical activity.
Collapse
Affiliation(s)
- L D Carson
- Department of Kinesiology and The Noll Physiological Research Center, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
42
|
Burkart EM, Sumandea MP, Kobayashi T, Nili M, Martin AF, Homsher E, Solaro RJ. Phosphorylation or glutamic acid substitution at protein kinase C sites on cardiac troponin I differentially depress myofilament tension and shortening velocity. J Biol Chem 2003; 278:11265-72. [PMID: 12551921 DOI: 10.1074/jbc.m210712200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is evidence that multi-site phosphorylation of cardiac troponin I (cTnI) by protein kinase C is important in both long- and short-term regulation of cardiac function. To determine the specific functional effects of these phosphorylation sites (Ser-43, Ser-45, and Thr-144), we measured tension and sliding speed of thin filaments in reconstituted preparations in which endogenous cTnI was replaced with cTnI phosphorylated by protein kinase C-epsilon or mutated to cTnI-S43E/S45E/T144E, cTnI-S43E/S45E, or cTnI-T144E. We used detergent-skinned mouse cardiac fiber bundles to measure changes in Ca(2+)-dependence of force. Compared with controls, fibers reconstituted with phosphorylated cTnI, cTnI-S43E/S45E/T144E, or cTnI-S43E/S45E were desensitized to Ca(2+), and maximum tension was as much as 27% lower, whereas fibers reconstituted with cTnI-T144E showed no change. In the in vitro motility assay actin filaments regulated by troponin complexes containing phosphorylated cTnI or cTnI-S43E/S45E/T144E showed both a decrease in Ca(2+) sensitivity and maximum sliding speed compared with controls, whereas filaments regulated by cTnI-S43E/S45E showed only decreased maximum sliding speed and filaments regulated by cTnI-T144E demonstrated only desensitization to Ca(2+). Our results demonstrate novel site specificity of effects of PKC phosphorylation on cTnI function and emphasize the complexity of modulation of the actin-myosin interaction by specific changes in the thin filament.
Collapse
Affiliation(s)
- Eileen M Burkart
- University of Illinois at Chicago, Department of Physiology and Biophysics, Program in Cardiovascular Sciences, College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Duchesne L, Hubert JF, Verbavatz JM, Thomas D, Pietrantonio PV. Mosquito (Aedes aegypti ) aquaporin, present in tracheolar cells, transports water, not glycerol, and forms orthogonal arrays in Xenopus oocyte membranes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:422-9. [PMID: 12542692 DOI: 10.1046/j.1432-1033.2003.03389.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous results showed that mRNA encoding a putative aquaporin (AQP) (GenBank accession number AF218314) is present in the tracheolar cells associated with female Aedes aegypti Malpighian tubules. In this study, immunohistochemistry detected the protein, AeaAQP, also in tracheolar cells, suggesting its involvement in water movement in the respiratory system. When expressed in Xenopus oocytes, AeaAQP increased the osmotic water permeability from 15 x 10(-6) to 150 x 10(-6) m x s-1, which was inhibited by mercury ions. No permeability to glycerol or other solute was observed. AeaAQP expressed in oocytes was solubilized as a homotetramer in nondenaturing detergent as deduced from velocity centrifugation on density gradients. Phylogenetic analysis of MIP (major intrinsic protein) family sequences shows that AeaAQP clusters with other native orthogonal array forming proteins. Specific orthogonal arrays were detected by freeze-fracture analysis of AeaAQP oocyte membranes. We conclude that, in tracheolar cells of A. aegypti, AeaAQP is probably a highly water-permeable homotetrameric MIP which natively can form 2D crystals.
Collapse
Affiliation(s)
- Laurence Duchesne
- UMR CNRS 6026, Interactions Cellulaires et Moléculaires, Université de Rennes I, Rennes, France
| | | | | | | | | |
Collapse
|
44
|
Stull LB, Leppo MK, Marbán E, Janssen PML. Physiological determinants of contractile force generation and calcium handling in mouse myocardium. J Mol Cell Cardiol 2002; 34:1367-76. [PMID: 12392997 DOI: 10.1006/jmcc.2002.2065] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite the fact that the mouse has become a common tool to study cardiac dysfunction, little is known regarding the regulation of murine cardiac contractility. We have investigated the three main mechanisms that regulate cardiac output (frequency-dependent activation, length-dependent activation, and beta-adrenergic stimulation) in ultra-thin right ventricular (RV) trabeculae from the mouse heart at body temperature (37 degrees C). [Ca(2+)](i) was recorded in a subset of trabeculae iontophoretically loaded with fura-2, and rapid cooling contractures were performed to estimate the sarcoplasmic reticulum (SR) calcium load. The force-frequency relationship was positive (2-12Hz); force increased, albeit slightly, while relaxation timing decreased. As expected, in response to beta-adrenergic stimulation, force development increased while contractile duration decreased, and increased muscle length led to increased force generation. Changes in SR calcium load and the calcium transient amplitude paralleled effects on active force generation. Despite several qualitative similarities with other mammalian species, the reserve for augmentation of force via either increased frequency or beta-adrenergic stimulation was considerably smaller in mouse than in other animals. Therefore, changes in preload, as opposed to increased HR or adrenergic tone, appears to be a much more important determinant of cardiac performance in the mouse than in larger mammals.
Collapse
Affiliation(s)
- Linda B Stull
- The Institute of Molecular Cardiobiology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
45
|
|
46
|
Ruse CI, Willard B, Jin JP, Haas T, Kinter M, Bond M. Quantitative dynamics of site-specific protein phosphorylation determined using liquid chromatography electrospray ionization mass spectrometry. Anal Chem 2002; 74:1658-64. [PMID: 12033257 DOI: 10.1021/ac0157122] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed and validated a method that uses liquid chromatography/electrospray ionization-mass spectrometry to quantify site-specific protein phosphorylation. The method uses selected ion monitoring to determine the chromatographic peak areas of specific tryptic peptides from the protein of interest. The extent of phosphorylation is determined from the ratio of the phosphopeptide peak area to the peak area of an unmodified reference peptide that acts as internal standard, correcting for variations in protein amounts and peptide recovery in the digest preparation procedure. As a result, we refer to this protocol as the native reference peptide method. Mole of phosphate at the selected site per mole of protein is obtained from this ratio, using calibration curves of synthetic peptides to determine relative responses. Our method begins with protein separation by SDS-PAGE and is carried out on amounts of peptide produced by an in-gel digestion of single Coomassie blue-stained bands. To illustrate the utility of the method and provide validation, we used cardiac troponin I as analyte and monitored the time course of a protein kinase C betaII reaction. Those analyses appropriately demonstrate the time-dependent increase of phosphorylation at a PKC-preferred site, Ser44 in the peptide 41ISASPR45 and the concomitant consumption of the nonphosphorylated peptide. We believe that this method provides a novel tool to directly measure specific phosphorylation sites in proteins in different physiological states and expect that the method will be adaptable not only to a variety of samples types (i.e., culture cells, tissues, etc.) but to a variety of posttranslation modifications as well.
Collapse
Affiliation(s)
- Cristian I Ruse
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
47
|
Braz JC, Bueno OF, De Windt LJ, Molkentin JD. PKC alpha regulates the hypertrophic growth of cardiomyocytes through extracellular signal-regulated kinase1/2 (ERK1/2). J Cell Biol 2002; 156:905-19. [PMID: 11864993 PMCID: PMC2173307 DOI: 10.1083/jcb.200108062] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Members of the protein kinase C (PKC) isozyme family are important signal transducers in virtually every mammalian cell type. Within the heart, PKC isozymes are thought to participate in a signaling network that programs developmental and pathological cardiomyocyte hypertrophic growth. To investigate the function of PKC signaling in regulating cardiomyocyte growth, adenoviral-mediated gene transfer of wild-type and dominant negative mutants of PKC alpha, beta II, delta, and epsilon (only wild-type zeta) was performed in cultured neonatal rat cardiomyocytes. Overexpression of wild-type PKC alpha, beta II, delta, and epsilon revealed distinct subcellular localizations upon activation suggesting unique functions of each isozyme in cardiomyocytes. Indeed, overexpression of wild-type PKC alpha, but not betaI I, delta, epsilon, or zeta induced hypertrophic growth of cardiomyocytes characterized by increased cell surface area, increased [(3)H]-leucine incorporation, and increased expression of the hypertrophic marker gene atrial natriuretic factor. In contrast, expression of dominant negative PKC alpha, beta II, delta, and epsilon revealed a necessary role for PKC alpha as a mediator of agonist-induced cardiomyocyte hypertrophy, whereas dominant negative PKC epsilon reduced cellular viability. A mechanism whereby PKC alpha might regulate hypertrophy was suggested by the observations that wild-type PKC alpha induced extracellular signal-regulated kinase1/2 (ERK1/2), that dominant negative PKC alpha inhibited PMA-induced ERK1/2 activation, and that dominant negative MEK1 (up-stream of ERK1/2) inhibited wild-type PKC alpha-induced hypertrophic growth. These results implicate PKC alpha as a necessary mediator of cardiomyocyte hypertrophic growth, in part, through a ERK1/2-dependent signaling pathway.
Collapse
Affiliation(s)
- Julian C Braz
- Department of Pediatrics, University of Cincinnati, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
48
|
Modulation of Thin Filament Activity in Long and Short Term Regulation of Cardiac Function. MOLECULAR CONTROL MECHANISMS IN STRIATED MUSCLE CONTRACTION 2002. [DOI: 10.1007/978-94-015-9926-9_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
MacGowan GA, Du C, Koretsky AP. High calcium and dobutamine positive inotropy in the perfused mouse heart: myofilament calcium responsiveness, energetic economy, and effects of protein kinase C inhibition. BMC PHYSIOLOGY 2001; 1:12. [PMID: 11553322 PMCID: PMC55339 DOI: 10.1186/1472-6793-1-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2001] [Accepted: 08/24/2001] [Indexed: 12/05/2022]
Abstract
BACKGROUND In perfused hearts, high calcium-induced inotropy results in less developed pressure relative to myocardial oxygen consumption compared to the beta-adrenergic agonist dobutamine. Calcium handling is an important determinant of myocardial oxygen consumption. Therefore, we hypothesized that this phenomenon was due to reduced myofilament responsiveness to calcium, related to protein kinase C activation. RESULTS Developed pressure was significantly higher with dobutamine compared to high perfusate calcium of 3.5 mM (73 +/- 10 vs 63 +/- 10 mmHg, p < 0.05), though peak systolic intracellular calcium was not significantly different, suggesting reduced myofilament responsiveness to intracellular calcium with high perfusate calcium. The ratio of developed pressure to myocardial oxygen consumption, an index of economy of contraction, was significantly increased with dobutamine compared to high perfusate calcium (1.35 +/- 0.15 vs 1.15 +/- 0.15 mmHg/micromoles/min/g dry wt, p < 0.05), suggesting energetic inefficiency with high perfusate calcium. The specific protein kinase C inhibitor, chelerythrine, significantly attenuated the expected increase in developed pressure when increasing perfusate calcium from 2.5 to 3.5 mM (3.5 mM: 64 +/- 8 vs 3.5 mM + chelerythrine: 55 +/- 5 mmHg, p < 0.05), though had no effects on dobutamine, or lower levels of perfusate calcium (1.5 to 2.5 mM). CONCLUSIONS By measuring intracellular calcium, developed pressures and myocardial oxygen consumption in perfused mouse hearts, these results demonstrate that high perfusate calcium positive inotropy compared to dobutamine results in reduced myofilament responsiveness to intracellular calcium, which is associated with energetic inefficiency and evidence of protein kinase C activation.
Collapse
Affiliation(s)
- Guy A MacGowan
- Cardiovascular Institute, University of Pittsburgh Medical Center, Pittsburgh PA 15213, USA
| | - Congwu Du
- Center for Light Microscope Imaging and Biotechnology, Carnegie Mellon University, Pittsburgh PA 15213, USA
- Dept. of Biological Sciences, Carnegie Mellon University, Pittsburgh PA 15213, USA
| | - Alan P Koretsky
- Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh PA 15213, USA
- Dept. of Biological Sciences, Carnegie Mellon University, Pittsburgh PA 15213, USA
- Laboratory of Functional and Molecular Imaging. The National Institutes of Neurological Disease and Stroke, Bethesda MD 20892, USA
| |
Collapse
|