1
|
Dichtel LE, Cordoba-Chacon J, Kineman RD. Growth Hormone and Insulin-Like Growth Factor 1 Regulation of Nonalcoholic Fatty Liver Disease. J Clin Endocrinol Metab 2022; 107:1812-1824. [PMID: 35172328 PMCID: PMC9202731 DOI: 10.1210/clinem/dgac088] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/19/2022]
Abstract
Patients with obesity have a high prevalence of nonalcoholic fatty liver disease (NAFLD), representing a spectrum of simple steatosis to nonalcoholic steatohepatitis (NASH), without and with fibrosis. Understanding the etiology of NAFLD is clinically relevant since NAFLD is an independent risk factor for diabetes and cardiovascular disease. In addition, NASH predisposes patients to the development of cirrhosis and hepatocellular carcinoma, and NASH cirrhosis represents the fastest growing indication for liver transplantation in the United States. It is appreciated that multiple factors are involved in the development and progression of NAFLD. Growth hormone (GH) and insulin-like growth factor 1 (IGF1) regulate metabolic, immune, and hepatic stellate cell function, and alterations in the production and function of GH is associated with obesity and NAFLD/NASH. Therefore, this review will focus on the potential role of GH and IGF1 in the regulation of hepatic steatosis, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Laura E Dichtel
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jose Cordoba-Chacon
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Rhonda D Kineman
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA
| |
Collapse
|
2
|
Sergeeva KV, Miroshnikov AB, Smolensky AV. Effect of Growth Hormone Administration on the Mass and Strength of Muscles in Healthy Young Adults: A Systematic Review and Meta-Analysis. ACTA ACUST UNITED AC 2019. [DOI: 10.1134/s0362119719030162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Loher H, Jenni S, Bucher J, Krüsi M, Kreis R, Boesch C, Christ E. Impaired repletion of intramyocellular lipids in patients with growth hormone deficiency after a bout of aerobic exercise. Growth Horm IGF Res 2018; 42-43:32-39. [PMID: 30153529 DOI: 10.1016/j.ghir.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/04/2018] [Accepted: 08/12/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Ectopic lipids such as intramyocellular lipids (IMCL) are depleted by exercise and repleted by diet, whereas intrahepatocellular lipids (IHCL) are increased immediately after exercise. So far, it is unclear how ectopic lipids behave 24 h after exercise and whether the lack of growth hormone (GH) significantly affects ectopic lipids 24 h after exercise. METHODS Seven male patients with growth hormone deficiency (GHD) and seven sedentary male control subjects (CS) were included. VO2max was assessed by spiroergometry; visceral and subcutaneous fat by whole body MRI. 1H-MR-spectroscopy was performed in M. vastus intermedius and in the liver before and after 2 h of exercise at 50% VO2max and 24 h thereafter, while diet and physical activity were standardized. RESULTS Sedentary male subjects (7 GHD, 7 CS) were recruited. Age, BMI, waist circumference, visceral and subcutaneous fat mass was not significantly different between GHD and CS. VO2max was significantly lower in GHD vs. CS. IMCL were diminished through aerobic exercise in both groups: (-11.5 ± 21.9% in CS; -8.9% ±19.1% in GHD) and restored after 24 h in CS (-5.5 ± 26.6% compared to baseline) but not in GHD (-17.9 ± 15.3%). IHCL increased immediately after exercise and decreased to baseline within 24 h. CONCLUSION These findings suggest that GHD may affect repletion of IMCL 24 h after aerobic exercise.
Collapse
Affiliation(s)
- Hannah Loher
- Division of Diabetology, Endocrinology, Clinical Nutrition and Metabolism, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Stefan Jenni
- Division of Diabetology, Endocrinology, Clinical Nutrition and Metabolism, Inselspital, Bern University Hospital, University of Bern, Switzerland; EndoDia Praxis, Biel, Switzerland
| | - Julie Bucher
- Division of Diabetology, Endocrinology, Clinical Nutrition and Metabolism, Inselspital, Bern University Hospital, University of Bern, Switzerland; EndoDia Praxis, Biel, Switzerland
| | - Marion Krüsi
- Division of Diabetology, Endocrinology, Clinical Nutrition and Metabolism, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Roland Kreis
- Department of Biomedical Research & Institute of Interventional, Diagnostic and Pediatric Radiology, University of Bern, Bern, Switzerland
| | - Chris Boesch
- Department of Biomedical Research & Institute of Interventional, Diagnostic and Pediatric Radiology, University of Bern, Bern, Switzerland
| | - Emanuel Christ
- Division of Diabetology, Endocrinology, Clinical Nutrition and Metabolism, Inselspital, Bern University Hospital, University of Bern, Switzerland; Division of Endocrinology, Diabetology and Metabolism, University Hospital of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
The Flexibility of Ectopic Lipids. Int J Mol Sci 2016; 17:ijms17091554. [PMID: 27649157 PMCID: PMC5037826 DOI: 10.3390/ijms17091554] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023] Open
Abstract
In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL), skeletal (intramyocellular lipids; IMCL) or cardiac muscle cells (intracardiomyocellular lipids; ICCL). Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. 1H-magnetic resonance spectroscopy (1H-MRS) is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass), insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term) appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations.
Collapse
|
5
|
Zueger T, Loher H, Egger A, Boesch C, Christ E. Regulation of fuel metabolism during exercise in hypopituitarism with growth hormone-deficiency (GHD). Growth Horm IGF Res 2016; 29:39-44. [PMID: 27084998 DOI: 10.1016/j.ghir.2016.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/07/2016] [Accepted: 03/25/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Growth hormone (GH) has a strong lipolytic action and its secretion is increased during exercise. Data on fuel metabolism and its hormonal regulation during prolonged exercise in patients with growth hormone deficiency (GHD) is scarce. This study aimed at evaluating the hormonal and metabolic response during aerobic exercise in GHD patients. DESIGN Ten patients with confirmed GHD and 10 healthy control individuals (CI) matched for age, sex, BMI, and waist performed a spiroergometric test to determine exercise capacity (VO2max). Throughout a subsequent 120-minute exercise on an ergometer at 50% of individual VO2max free fatty acids (FFA), glucose, GH, cortisol, catecholamines and insulin were measured. Additionally substrate oxidation assessed by indirect calorimetry was determined at begin and end of exercise. RESULTS Exercise capacity was lower in GHD compared to CI (VO2max 35.5±7.4 vs 41.5±5.5ml/min∗kg, p=0.05). GH area under the curve (AUC-GH), peak-GH and peak-FFA were lower in GHD patients during exercise compared to CI (AUC-GH 100±93.2 vs 908.6±623.7ng∗min/ml, p<0.001; peak-GH 1.5±1.53 vs 12.57±9.36ng/ml, p<0.001, peak-FFA 1.01±0.43 vs 1.51±0.56mmol/l, p=0.036, respectively). There were no significant differences for insulin, cortisol, catecholamines and glucose. Fat oxidation at the end of exercise was higher in CI compared to GHD patients (295.7±73.9 vs 187.82±103.8kcal/h, p=0.025). CONCLUSION A reduced availability of FFA during a 2-hour aerobic exercise and a reduced fat oxidation at the end of exercise may contribute to the decreased exercise capacity in GHD patients. Catecholamines and cortisol do not compensate for the lack of the lipolytic action of GH in patients with GHD.
Collapse
Affiliation(s)
- Thomas Zueger
- Division of Endocrinology, Diabetes and Clinical Nutrition, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Hannah Loher
- Division of Endocrinology, Diabetes and Clinical Nutrition, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Andrea Egger
- Department of Internal Medicine, University Hospital of Basel, CH-4056 Basel, Switzerland
| | - Chris Boesch
- Department of Clinical Research & Institute of Interventional, Diagnostic and Pediatric Radiology, University of Bern, Bern, Switzerland
| | - Emanuel Christ
- Division of Endocrinology, Diabetes and Clinical Nutrition, Inselspital, Bern University Hospital and University of Bern, Switzerland.
| |
Collapse
|
6
|
Christ ER, Egger A, Allemann S, Buehler T, Kreis R, Boesch C. Effects of aerobic exercise on ectopic lipids in patients with growth hormone deficiency before and after growth hormone replacement therapy. Sci Rep 2016; 6:19310. [PMID: 26792091 PMCID: PMC4726290 DOI: 10.1038/srep19310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/09/2015] [Indexed: 01/21/2023] Open
Abstract
Growth hormone replacement therapy (GHRT) increases exercise capacity and insulin resistance while it decreases fat mass in growth hormone-deficient patients (GHD). Ectopic lipids (intramyocellular (IMCL) and intrahepatocellular lipids (IHCL) are related to insulin resistance. The effect of GHRT on ectopic lipids is unknown. It is hypothesized that exercise-induced utilization of ectopic lipids is significantly decreased in GHD patients and normalized by GHRT. GHD (4 females, 6 males) and age/gender/waist-matched control subjects (CS) were studied. VO2max was assessed on a treadmill and insulin sensitivity determined by a two-step hyperinsulinaemic-euglycaemic clamp. Visceral (VAT) and subcutaneous (SAT) fat were quantified by MR-imaging. IHCL and IMCL were measured before and after a 2 h exercise at 50-60% of VO2max using MR-spectroscopy (∆IMCL, ∆IHCL). Identical investigations were performed after 6 months of GHRT. VO2max was similar in GHD and CS and significantly increased after GHRT; GHRT significantly decreased SAT and VAT. 2 h-exercise resulted in a decrease in IMCL (significant in CS and GHRT) and a significant increase in IHCL in CS and GHD pre and post GHRT. GHRT didn't significantly impact on ∆IMCL and ∆IHCL. We conclude that aerobic exercise affects ectopic lipids in patients and controls. GHRT increases exercise capacity without influencing ectopic lipids.
Collapse
Affiliation(s)
- Emanuel R Christ
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Bern, Inselspital, CH-3010 Bern, Switzerland
| | - Andrea Egger
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Bern, Inselspital, CH-3010 Bern, Switzerland.,Department of Internal Medicine, University Hospital of Basel, CH-4056 Basel, Switzerland
| | - Sabin Allemann
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Bern, Inselspital, CH-3010 Bern, Switzerland
| | - Tania Buehler
- Department of Clinical Research, Division of MR-Spectroscopy and Methodology, University of Bern, Inselspital, CH-3010 Bern, Switzerland
| | - Roland Kreis
- Department of Clinical Research, Division of MR-Spectroscopy and Methodology, University of Bern, Inselspital, CH-3010 Bern, Switzerland
| | - Chris Boesch
- Department of Clinical Research, Division of MR-Spectroscopy and Methodology, University of Bern, Inselspital, CH-3010 Bern, Switzerland
| |
Collapse
|
7
|
Muscle-specific deletion of signal transducer and activator of transcription 5 augments lipid accumulation in skeletal muscle and liver of mice in response to high-fat diet. Eur J Nutr 2015; 56:569-579. [DOI: 10.1007/s00394-015-1101-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
|
8
|
Nindl BC, Pierce JR, Rarick KR, Tuckow AP, Alemany JA, Sharp MA, Kellogg MD, Patton JF. Twenty-hour growth hormone secretory profiles after aerobic and resistance exercise. Med Sci Sports Exerc 2015; 46:1917-27. [PMID: 24576855 DOI: 10.1249/mss.0000000000000315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The pulsatile secretion pattern of growth hormone (GH) is an important parameter of GH action at peripheral tissues, and more information is needed on how exercise impacts GH secretion. This study hypothesized that both aerobic and resistance exercise would exhibit dose-response relationships with respect to exercise duration and 20-h postexercise GH secretion. METHODS Eight healthy men randomly completed five separate conditions: 1) control (no exercise; CON), 2) a moderate-duration (1-h) aerobic exercise session (MA), 3) a long-duration (2-h) aerobic exercise session (LA), 4) a moderate-duration (1-h) resistance exercise session (MR), and 5) a long-duration (2-h) resistance exercise session (LR). Exercise intensity, diet, sleep, and physical activity were strictly controlled during each condition, and blood was sampled postexercise every 20 min for 20 h, and GH secretion parameters were analyzed via cluster and deconvolution analyses. RESULTS Only the 2-h aerobic exercise bout resulted in a significant amplification of GH secretion as evidenced by increases in GH burst peak amplitude (∼100%), basal GH secretion rate (∼127%), total GH basal secretion (∼120%), total pulsatile secretion (∼88%), and total GH secretion (∼89%) over the control (i.e., no exercise) condition. GH secretions for the resistance exercise conditions were not different from control. CONCLUSIONS The fact that the 2-h aerobic exercise condition resulted in higher energy expenditure than the other exercise conditions could offer a partial explanation for the greater GH amplification because of the metabolic effects that GH exerts in stimulating postexercise lipolysis. We conclude that extending the duration of aerobic exercise, but not resistance exercise, from 1- to 2-h significantly amplifies GH secretion during a 20-h period.
Collapse
Affiliation(s)
- Bradley C Nindl
- 1Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA; and 2Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Galimov A, Hartung A, Trepp R, Mader A, Flück M, Linke A, Blüher M, Christ E, Krützfeldt J. Growth hormone replacement therapy regulates microRNA-29a and targets involved in insulin resistance. J Mol Med (Berl) 2015. [PMID: 26199111 PMCID: PMC4661224 DOI: 10.1007/s00109-015-1322-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract Replacement of growth hormone (GH) in patients suffering from GH deficiency (GHD) offers clinical benefits on body composition, exercise capacity, and skeletal integrity. However, GH replacement therapy (GHRT) is also associated with insulin resistance, but the mechanisms are incompletely understood. We demonstrate that in GH-deficient mice (growth hormone-releasing hormone receptor (Ghrhr)lit/lit), insulin resistance after GHRT involves the upregulation of the extracellular matrix (ECM) and the downregulation of microRNA miR-29a in skeletal muscle. Based on RNA deep sequencing of skeletal muscle from GH-treated Ghrhrlit/lit mice, we identified several upregulated genes as predicted miR-29a targets that are negative regulators of insulin signaling or profibrotic/proinflammatory components of the ECM. Using gain- and loss-of-function studies, five of these genes were confirmed as endogenous targets of miR-29a in human myotubes (PTEN, COL3A1, FSTL1, SERPINH1, SPARC). In addition, in human myotubes, IGF1, but not GH, downregulated miR-29a expression and upregulated COL3A1. These results were confirmed in a group of GH-deficient patients after 4 months of GHRT. Serum IGF1 increased, skeletal muscle miR-29a decreased, and miR-29a targets were upregulated in patients with a reduced insulin response (homeostatic model assessment of insulin resistance (HOMA-IR)) after GHRT. We conclude that miR-29a could contribute to the metabolic response of muscle tissue to GHRT by regulating ECM components and PTEN. miR-29a and its targets might be valuable biomarkers for muscle metabolism following GH replacement. Key messages GHRT most significantly affects the ECM cluster in skeletal muscle from mice. GHRT downregulates miR-29a and upregulates miR-29a targets in skeletal muscle from mice. PTEN, COL3A1, FSTL1, SERPINH1, and SPARC are endogenous miR-29a targets in human myotubes. IGF1 decreases miR-29a levels in human myotubes. miR-29a and its targets are regulated during GHRT in skeletal muscle from humans.
Electronic supplementary material The online version of this article (doi:10.1007/s00109-015-1322-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Artur Galimov
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University of Zurich and University Hospital, Rämistrasse 100, 8091, Zurich, Switzerland.,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Angelika Hartung
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University of Zurich and University Hospital, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Roman Trepp
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Bern Inselspital, Bern, Switzerland
| | - Alexander Mader
- Division of Trauma Surgery, University Hospital, Zurich, Switzerland
| | - Martin Flück
- Department of Orthopedics, University Hospital Balgrist, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Axel Linke
- Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Emanuel Christ
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Bern Inselspital, Bern, Switzerland
| | - Jan Krützfeldt
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University of Zurich and University Hospital, Rämistrasse 100, 8091, Zurich, Switzerland. .,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Boesen AP, Dideriksen K, Couppé C, Magnusson SP, Schjerling P, Boesen M, Kjaer M, Langberg H. Tendon and skeletal muscle matrix gene expression and functional responses to immobilisation and rehabilitation in young males: effect of growth hormone administration. J Physiol 2013; 591:6039-52. [PMID: 24081158 DOI: 10.1113/jphysiol.2013.261263] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We examined the effect of growth hormone (GH) on connective tissue of tendon and skeletal muscle during immobilisation and re-training in humans. Young men (20-30 years; n = 20) were randomly assigned to daily recombinant human GH (rhGH) (33-50 μg kg(-1) day(-1)) or placebo (Plc), and had one leg immobilised for 2 weeks, followed by 6 weeks of strength training. The cross-sectional area (CSA), maximal muscle strength (maximal voluntary contraction, MVC) and biomechanical properties of the quadriceps muscle and patellar tendon were determined. Muscle and tendon biopsies were analysed for mRNA of collagen (COL1A1/3A1), insulin-like growth factors (IGF-1Ea/Ec), lysyl oxidase (LOX), matrix metalloproteases (MMP-2 and MMP-9), decorin and tenascin-C. Fibril morphology was analysed by transmission electron microscopy (TEM) to detect changes in the fibril diameter distribution. In muscle, CSA and MVC declined with immobilisation and recovered with rehabilitation similarly in both groups. Likewise, both groups showed increased IGF-1Ea/Ec and COL1A1/3A1 expression in muscle during re-training after immobilisation compared with baseline, and the increase was more pronounced when subjects received GH. The tendon CSA did not change during immobilisation, but increased in both groups during 6 weeks of rehabilitation (∼14%). A decline in tendon stiffness after immobilisation was observed only in the Plc group, and an increase during 6 weeks of rehabilitation was observed only in the GH group. IGF-1Ea and COL1A1/3A1 mRNA increased with immobilisation in the GH group only, and LOX mRNA was higher in the GH group than in the Plc group after immobilisation. Both groups showed an increase in MMP-2 with immobilisation, whereas no changes in MMP-9, decorin and tenascin-C were observed. The tendon fibril diameter distribution remained unchanged in both groups. In conclusion, GH stimulates collagen expression in both skeletal muscle and tendon, abolishes the normal inactivity-related decline in tendon stiffness and LOX, and results in increased tendon CSA and stiffness during rehabilitation. GH has a matrix-stabilising effect during periods of inactivity and rehabilitation in humans.
Collapse
Affiliation(s)
- A P Boesen
- A. P. Boesen: Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Egger A, Kreis R, Allemann S, Stettler C, Diem P, Buehler T, Boesch C, Christ ER. The effect of aerobic exercise on intrahepatocellular and intramyocellular lipids in healthy subjects. PLoS One 2013; 8:e70865. [PMID: 23967125 PMCID: PMC3743875 DOI: 10.1371/journal.pone.0070865] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/21/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Intrahepatocellular (IHCL) and intramyocellular (IMCL) lipids are ectopic lipid stores. Aerobic exercise results in IMCL utilization in subjects over a broad range of exercise capacity. IMCL and IHCL have been related to impaired insulin action at the skeletal muscle and hepatic level, respectively. The acute effect of aerobic exercise on IHCL is unknown. Possible regulatory factors include exercise capacity, insulin sensitivity and fat availability subcutaneous and visceral fat mass). AIM To concomitantly investigate the effect of aerobic exercise on IHCL and IMCL in healthy subjects, using Magnetic Resonance spectroscopy. METHODS Normal weight, healthy subjects were included. Visit 1 consisted of a determination of VO2max on a treadmill. Visit 2 comprised the assessment of hepatic and peripheral insulin sensitivity by a two-step hyperinsulinaemic euglycaemic clamp. At Visit 3, subcutaneous and visceral fat mass were assessed by whole body MRI, IHCL and IMCL before and after a 2-hours aerobic exercise (50% of VO(2max)) using ¹H-MR-spectroscopy. RESULTS Eighteen volunteers (12M, 6F) were enrolled in the study (age, 37.6±3.2 years, mean±SEM; VO(2max), 53.4±2.9 mL/kg/min). Two hours aerobic exercise resulted in a significant decrease in IMCL (-22.6±3.3, % from baseline) and increase in IHCL (+34.9±7.6, % from baseline). There was no significant correlation between the exercise-induced changes in IMCL and IHCL and exercise capacity, subcutaneous and visceral fat mass and hepatic or peripheral insulin sensitivity. CONCLUSIONS IMCL and IHCL are flexible ectopic lipid stores that are acutely influenced by physical exercise, albeit in different directions. TRIAL REGISTRATION ClinicalTrial.gov NCT00491582.
Collapse
Affiliation(s)
- Andrea Egger
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Roland Kreis
- Department of Clinical Research, Magnetic Resonance Spectroscopy and Methodology, University of Bern, Bern, Switzerland
| | - Sabin Allemann
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Christoph Stettler
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Peter Diem
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Tania Buehler
- Department of Clinical Research, Magnetic Resonance Spectroscopy and Methodology, University of Bern, Bern, Switzerland
| | - Chris Boesch
- Department of Clinical Research, Magnetic Resonance Spectroscopy and Methodology, University of Bern, Bern, Switzerland
| | - Emanuel R. Christ
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Bern, Inselspital, Bern, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Sato T, Katabami T, Furukawa K, Narimatsu H, Hashimoto T, Nakajima Y, Ohta A, Sasaoka T, Tanaka Y. Intracellular lipid content of liver and skeletal muscle in patients with adult growth hormone deficiency without diabetes mellitus. Obes Res Clin Pract 2012; 6:e263-346. [DOI: 10.1016/j.orcp.2011.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/24/2011] [Accepted: 09/01/2011] [Indexed: 01/07/2023]
|
13
|
Oosterhof R, Ith M, Trepp R, Christ E, Flück M. Regulation of whole body energy homeostasis with growth hormone replacement therapy and endurance exercise. Physiol Genomics 2011; 43:739-48. [PMID: 21447747 DOI: 10.1152/physiolgenomics.00034.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that network analysis is useful to expose coordination between whole body and myocellular levels of energy metabolism and can identify entities that underlie skeletal muscle's contribution to growth hormone-stimulated lipid handling and metabolic fitness. We assessed 112 metabolic parameters characterizing metabolic rate and substrate handling in tibialis anterior muscle and vascular compartment at rest, after a meal and exercise with growth hormone replacement therapy (GH-RT) of hypopituitary patients (n = 11). The topology of linear relationships (| r | ≥ 0.7, P ≤ 0.01) and mutual dependencies exposed the organization of metabolic relationships in three entities reflecting basal and exercise-induced metabolic rate, triglyceride handling, and substrate utilization in the pre- and postprandial state, respectively. GH-RT improved aerobic performance (+5%), lean-to-fat mass (+19%), and muscle area of tibialis anterior (+2%) but did not alter its mitochondrial and capillary content. Concomitantly, connectivity was established between myocellular parameters of mitochondrial lipid metabolism and meal-induced triglyceride handling in serum. This was mediated via the recruitment of transcripts of muscle lipid mobilization (LIPE, FABP3, and FABP4) and fatty acid-sensitive transcription factors (PPARA, PPARG) to the metabolic network. The interdependence of gene regulatory elements of muscle lipid metabolism reflected the norm in healthy subjects (n = 12) and distinguished the regulation of the mitochondrial respiration factor COX1 by GH and endurance exercise. Our observations validate the use of network analysis for systems medicine and highlight the notion that an improved stochiometry between muscle and whole body lipid metabolism, rather than alterations of single bottlenecks, contributes to GH-driven elevations in metabolic fitness.
Collapse
Affiliation(s)
- Robert Oosterhof
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Vijayakumar A, Yakar S, LeRoith D. The intricate role of growth hormone in metabolism. Front Endocrinol (Lausanne) 2011; 2:32. [PMID: 22654802 PMCID: PMC3356038 DOI: 10.3389/fendo.2011.00032] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/30/2011] [Indexed: 11/18/2022] Open
Abstract
Growth hormone (GH), a master regulator of somatic growth, also regulates carbohydrate and lipid metabolism via complex interactions with insulin and insulin-like growth factor-1 (IGF-1). Data from human and rodent studies reveal the importance of GH in insulin synthesis and secretion, lipid metabolism and body fat remodeling. In this review, we will summarize the tissue-specific metabolic effects of GH, with emphasis on recent targets identified to mediate these effects. Furthermore, we will discuss what role GH plays in obesity and present possible mechanisms by which this may occur.
Collapse
Affiliation(s)
- Archana Vijayakumar
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA
| | - Shoshana Yakar
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA
- *Correspondence: Derek LeRoith, Division of Endocrinology, Diabetes and Bone Disease, Mount Sinai School of Medicine, One Gustav Levy Place, Box 1055, New York, NY 10029-6574, USA. e-mail:
| |
Collapse
|
15
|
Velloso CP, Harridge SDR. Insulin-like growth factor-I E peptides: implications for aging skeletal muscle. Scand J Med Sci Sports 2010; 20:20-7. [PMID: 19883387 DOI: 10.1111/j.1600-0838.2009.00997.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In skeletal muscle there is good evidence to suggest that locally produced insulin-like growth factor-1 (IGF-I), rather than circulating IGF-I, is important in regard to muscle mass maintenance, repair and hypertrophy. This "mature" IGF-I comprises exons 3 and 4 of the IGF-I gene, but during processing the full length gene (which contains six exons) is subject to a process of alternative splicing. As a result smaller peptides (E peptides) are believed to be cleaved from the mature IGF-I peptide during processing of the prohormone and the likelihood is that they have different biological roles. In human skeletal muscle three transcripts encoding for these splice variants (IGF-IEa, IGF-IEb and IGF-IEc, also known as MGF) can be identified. When studied at the mRNA level these three transcripts are known to be upregulated in the muscles of elderly people following high resistance exercise, albeit with different time courses. However, compared with mature IGF-I relatively little is known about the mechanism of action of the different E peptides.
Collapse
Affiliation(s)
- Cristina P Velloso
- Division of Applied Biomedical Research, King's College London, London, UK
| | | |
Collapse
|
16
|
Abstract
Endurance athletes demonstrate an exceptional resistance to fatigue when exercising at high intensity. Much research has been devoted to the contribution of aerobic capacity for the economy of endurance performance. Important aspects of the fine-tuning of metabolic processes and power output in the endurance athlete have been overlooked. This review addresses how training paradigms exploit bioenergetic pathways in recruited muscle groups to promote the endurance phenotype. A special focus is laid on the genome-mediated mechanisms that underlie the conditioning of fatigue resistance and aerobic performance by training macrocycles and complements. The available data on work-induced muscle plasticity implies that different biologic strategies are exploited in athletic and untrained populations to boost endurance capacity. Olympic champions are probably endowed with a unique constitution that renders the conditioning of endurance capacity for competition particularly efficient.
Collapse
Affiliation(s)
- Martin Flueck
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, UK.
| | | |
Collapse
|
17
|
Vijayakumar A, Novosyadlyy R, Wu Y, Yakar S, LeRoith D. Biological effects of growth hormone on carbohydrate and lipid metabolism. Growth Horm IGF Res 2010; 20:1-7. [PMID: 19800274 PMCID: PMC2815161 DOI: 10.1016/j.ghir.2009.09.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 09/01/2009] [Accepted: 09/04/2009] [Indexed: 01/05/2023]
Abstract
This review will summarize the metabolic effects of growth hormone (GH) on the adipose tissue, liver, and skeletal muscle with focus on lipid and carbohydrate metabolism. The metabolic effects of GH predominantly involve the stimulation of lipolysis in the adipose tissue resulting in an increased flux of free fatty acids (FFAs) into the circulation. In the muscle and liver, GH stimulates triglyceride (TG) uptake, by enhancing lipoprotein lipase (LPL) expression, and its subsequent storage. The effects of GH on carbohydrate metabolism are more complicated and may be mediated indirectly via the antagonism of insulin action. Furthermore, GH has a net anabolic effect on protein metabolism although the molecular mechanisms of its actions are not completely understood. The major questions that still remain to be answered are (i) What are the molecular mechanisms by which GH regulates substrate metabolism? (ii) Does GH affect substrate metabolism directly or indirectly via IGF-1 or antagonism of insulin action?
Collapse
Affiliation(s)
- Archana Vijayakumar
- Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
18
|
Surya S, Horowitz JF, Goldenberg N, Sakharova A, Harber M, Cornford AS, Symons K, Barkan AL. The pattern of growth hormone delivery to peripheral tissues determines insulin-like growth factor-1 and lipolytic responses in obese subjects. J Clin Endocrinol Metab 2009; 94:2828-34. [PMID: 19470622 PMCID: PMC2730877 DOI: 10.1210/jc.2009-0638] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT It is unclear whether the pattern of GH delivery to peripheral tissues has important effects. OBJECTIVE The aim of the study was to compare the effects of pulsatile vs. continuous administration of GH upon metabolic and IGF-I parameters in obese subjects. SETTING The study was conducted at the General Clinical Research Center at the University of Michigan Medical Center. PARTICIPANTS Four men and five women with abdominal obesity (body mass index, 33 +/- 3 kg/m(2); body fat, 40 +/- 3%) participated in the study. INTERVENTION GH (0.5 mg/m(2) . d) was given iv for 3 d as: 1) continuous infusion (C); and 2) pulsatile boluses (P) (15% of the dose at 0700, 1300, and 1800 h and 55% at 2400 h). These trials were preceded by a basal period (B) when subjects received normal saline. MAIN OUTCOME MEASURES Rate of lipolysis and hepatic glucose production were evaluated using stable isotope tracer techniques. The composite index of insulin sensitivity (Matsuda index) was assessed using oral glucose tolerance test. RESULTS The increase in plasma IGF-I concentrations was greater (P < 0.05) with continuous GH infusion (211 +/- 31, 423 +/- 38, and 309 +/- 34 microg/liter for B, C, and P, respectively). Muscle IGF-I mRNA was significantly increased (P < 0.05) only after the continuous GH infusion (1.2 +/- 0.4, 4.4 +/- 1.3, and 2.3 +/- 0.6 arbitrary units, for B, C, and P, respectively). Only pulsatile GH augmented the rate of lipolysis (4.1 +/- 0.3, 4.8 +/- 0.7, and 7.1 +/- 1.1 mumol/kg . min for B, C, and P, respectively). GH had no effect on hepatic glucose production, but both modes of GH administration were equally effective in impairing insulin sensitivity. CONCLUSION These findings indicate that, in obese subjects, discrete components of GH secretory pattern may differentially affect IGF-I generation and lipolytic responses.
Collapse
Affiliation(s)
- Sowmya Surya
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, 3920 Taubman Center, Ann Arbor, MI 48109-5354, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Guebre-Egziabher F, Juillard L, Boirie Y, Laville M, Beaufrère B, Fouque D. Short-term administration of a combination of recombinant growth hormone and insulin-like growth factor-I induces anabolism in maintenance hemodialysis. J Clin Endocrinol Metab 2009; 94:2299-305. [PMID: 19401377 DOI: 10.1210/jc.2008-2262] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
CONTEXT Resistance to GH and IGF-I is a significant complication of severe chronic kidney disease, which contributes to muscle wasting. Pharmacological doses of recombinant human (rh) GH or rhIGF-I have been proposed to treat this catabolic condition. OBJECTIVE This study was undertaken to examine the potential additive anabolic effects of rhGH + rhIGF-I compared with rhIGF-I. DESIGN We studied eight well-nourished hemodialysis patients in a random crossover design and compared the metabolic effects of a 3-d administration of moderate dose of rhIGF-I (40 microg/kg per 12h) with an association of rhIGF-I + rhGH (50 microg/kg/d). Leucine kinetics, plasma amino acids (AAs), serum insulin, and IGF binding proteins (IGFBP)-1 and -3 were measured. RESULTS The net protein balance was not affected by rhIGF-I alone, whereas serum insulin and IGFBP-3 decreased (P < 0.05) and IGFBP-1 increased (P < 0.01). With the combination rhGH + rhIGF-I, an increase of IGFBP-3 (P < 0.01) and insulin (P < 0.01) as well as a decrease of IGFBP-1 (P < 0.01) occurred. Plasma essential AAs (P = 0.01) as well as the essential to nonessential AA ratio (P < 0.001) decreased. Whole-body protein net balance increased significantly (P < 0.05) with a 22% decrease in leucine oxidation and a 15% increase in nonoxidative leucine disposal. CONCLUSIONS In dialysis patients, rhIGF-I administration at a moderate dose has no protein metabolic effect, but the association with a moderate dose of rhGH is followed by a significant anabolic response.
Collapse
|
20
|
|