1
|
Bannon ST, Decker ST, Erol ME, Fan R, Huang YT, Chung S, Layec G. Mitochondrial free radicals contribute to cigarette smoke condensate-induced impairment of oxidative phosphorylation in the skeletal muscle in situ. Free Radic Biol Med 2024; 224:325-334. [PMID: 39178923 DOI: 10.1016/j.freeradbiomed.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Oxidative stress plays a critical role in cellular dysfunction associated with cigarette smoke exposure and aging. Some chemicals from tobacco smoke have the potential to amplify mitochondrial ROS (mROS) production, which, in turn, may impair mitochondrial respiratory function. Accordingly, the present study tested the hypothesis that a mitochondria-targeted antioxidant (MitoTEMPO, MT) would attenuate the inhibitory effects of cigarette smoke on skeletal muscle respiratory capacity of middle-aged mice. Specifically, mitochondrial oxidative phosphorylation was assessed using high-resolution respirometry in permeabilized fibers from the fast-twitch gastrocnemius muscle of middle-aged C57Bl/6J mice. Before the assessment of respiration, tissues were incubated for 1hr with a control buffer (CON), cigarette smoke condensate (2 % dilution, SMOKE), or MitoTEMPO (10 μM) combined with cigarette smoke condensate (MT + SMOKE). Cigarette smoke condensate (CSC) decreased maximal-ADP stimulated respiration (CON: 60 ± 15 pmolO2.s-1.mg-1 and SMOKE: 33 ± 8 pmolO2.s-1.mg-1; p = 0.0001), and this effect was attenuated by MT (MT + SMOKE: 41 ± 7 pmolO2.s-1.mg-1; p = 0.02 with SMOKE). Complex-I specific respiration was inhibited by CSC, with no significant effect of MT (p = 0.35). Unlike CON, the addition of glutamate (ΔGlutamate) had an additive effect on respiration in fibers exposed to CSC (CON: 0.9 ± 1.1 pmolO2.s-1.mg-1 and SMOKE: 5.4 ± 3.7 pmolO2.s-1.mg-1; p = 0.008) and MT (MT + SMOKE: 8.2 ± 3.8 pmolO2.s-1.mg-1; p ≤ 0.01). Complex-II specific respiration was inhibited by CSC but was partially restored by MT (p = 0.04 with SMOKE). Maximal uncoupled respiration induced by FCCP was inhibited by CSC, with no significant effect of MT. These findings underscore that mROS contributes to cigarette smoke condensate-induced inhibition of mitochondrial respiration in fast-twitch gastrocnemius muscle fibers of middle-aged mice thus providing a potential target for therapeutic treatment of smoke-related diseases. In addition, this study revealed that CSC largely impaired muscle respiratory capacity by decreasing metabolic flux through mitochondrial pyruvate transporter (MPC) and/or the enzymes upstream of α-ketoglutarate in the Krebs cycle.
Collapse
Affiliation(s)
- Sean T Bannon
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | - Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; Diabetes and Metabolism Research Center, University of Utah, UT, USA
| | - Muhammet Enes Erol
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; School of Health and Kinesiology, University of Nebraska Omaha, NE, USA
| | - Rong Fan
- Department of Nutrition, University of Massachusetts Amherst, MA, USA
| | - Yu-Ting Huang
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts Amherst, MA, USA
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; School of Health and Kinesiology, University of Nebraska Omaha, NE, USA.
| |
Collapse
|
2
|
Marcinek DJ, Ferrucci L. Reduced oxidative capacity of skeletal muscle mitochondria is a fundamental consequence of adult ageing. J Physiol 2024. [PMID: 38970753 DOI: 10.1113/jp285040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/03/2024] [Indexed: 07/08/2024] Open
Affiliation(s)
- David J Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Duchowny KA, Marcinek DJ, Mau T, Diaz-Ramierz LG, Lui LY, Toledo FGS, Cawthon PM, Hepple RT, Kramer PA, Newman AB, Kritchevsky SB, Cummings SR, Coen PM, Molina AJA. Childhood adverse life events and skeletal muscle mitochondrial function. SCIENCE ADVANCES 2024; 10:eadj6411. [PMID: 38446898 PMCID: PMC10917337 DOI: 10.1126/sciadv.adj6411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
Social stress experienced in childhood is associated with adverse health later in life. Mitochondrial function has been implicated as a mechanism for how stressful life events "get under the skin" to influence physical well-being. Using data from the Study of Muscle, Mobility, and Aging (n = 879, 59% women), linear models examined whether adverse childhood events (i.e., physical abuse) were associated with two measures of skeletal muscle mitochondrial energetics in older adults: (i) maximal adenosine triphosphate production (ATPmax) and (ii) maximal state 3 respiration (Max OXPHOS). Forty-five percent of the sample reported experiencing one or more adverse childhood events. After adjustment, each additional event was associated with -0.08 SD (95% confidence interval = -0.13, -0.02) lower ATPmax. No association was observed with Max OXPHOS. Adverse childhood events are associated with lower ATP production in later life. Findings indicate that mitochondrial function may be a mechanism for understanding how early social stress influences health in later life.
Collapse
Affiliation(s)
- Kate A. Duchowny
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | | | - Theresa Mau
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - L. Grisell Diaz-Ramierz
- Division of Geriatrics, Department of Medicine, UCSF School of Medicine, San Francisco, CA, USA
| | - Li-Yung Lui
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Frederico G. S. Toledo
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peggy M. Cawthon
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Russell T. Hepple
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Philip A. Kramer
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anne B. Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen B. Kritchevsky
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Steven R. Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Paul M. Coen
- AdventHealth, Translational Research Institute, Orlando, FL, USA
| | - Anthony J. A. Molina
- Department of Medicine-Division of Geriatrics, Gerontology, and Palliative Care, University of California San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
4
|
Bartlett MF, Fitzgerald LF, Nagarajan R, Kent JA. Measurements of in vivo skeletal muscle oxidative capacity are lower following sustained isometric compared with dynamic contractions. Appl Physiol Nutr Metab 2024; 49:250-264. [PMID: 37906958 DOI: 10.1139/apnm-2023-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Human skeletal muscle oxidative capacity can be quantified non-invasively using 31-phosphorus magnetic resonance spectroscopy (31P-MRS) to measure the rate constant of phosphocreatine (PCr) recovery (kPCr) following contractions. In the quadricep muscles, several studies have quantified kPCr following 24-30 s of sustained maximal voluntary isometric contraction (MVIC). This approach has the advantage of simplicity but is potentially problematic because sustained MVICs inhibit perfusion, which may limit muscle oxygen availability or increase the intracellular metabolic perturbation, and thus affect kPCr. Alternatively, dynamic contractions allow reperfusion between contractions, which may avoid limitations in oxygen delivery. To determine whether dynamic contraction protocols elicit greater kPCr than sustained MVIC protocols, we used a cross-sectional design to compare quadriceps kPCr in 22 young and 11 older healthy adults following 24 s of maximal voluntary: (1) sustained MVIC and (2) dynamic (MVDC; 120°·s-1, 1 every 2 s) contractions. Muscle kPCr was ∼20% lower following the MVIC protocol compared with the MVDC protocol (p ≤ 0.001), though this was less evident in older adults (p = 0.073). Changes in skeletal muscle pH (p ≤ 0.001) and PME accumulation (p ≤ 0.001) were greater following the sustained MVIC protocol, and pH (p ≤ 0.001) and PME (p ≤ 0.001) recovery were slower. These results demonstrate that (i) a brief, sustained MVIC yields a lower value for skeletal muscle oxidative capacity than an MVDC protocol of similar duration and (ii) this difference may not be consistent across populations (e.g., young vs. old). Thus, the potential effect of contraction protocol on comparisons of kPCr in different study groups requires careful consideration in the future.
Collapse
Affiliation(s)
- Miles F Bartlett
- Department of KinesiologyMuscle Physiology Laboratory, University of Massachusetts Amherst, MA 01003, USA
| | - Liam F Fitzgerald
- Department of KinesiologyMuscle Physiology Laboratory, University of Massachusetts Amherst, MA 01003, USA
| | - Rajakumar Nagarajan
- Human Magnetic Resonance Center, Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst, MA 01003, USA
| | - Jane A Kent
- Department of KinesiologyMuscle Physiology Laboratory, University of Massachusetts Amherst, MA 01003, USA
| |
Collapse
|
5
|
Hayden CMT, Nagarajan R, Smith ZH, Gilmore S, Kent JA. Postcontraction [acetylcarnitine] reflects interindividual variation in skeletal muscle ATP production patterns in vivo. Am J Physiol Regul Integr Comp Physiol 2024; 326:R66-R78. [PMID: 37955131 DOI: 10.1152/ajpregu.00027.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
In addition to its role in substrate selection (carbohydrate vs. fat) for oxidative metabolism in muscle, acetylcarnitine production may be an important modulator of the energetic pathway by which ATP is produced. A combination of noninvasive magnetic resonance spectroscopy measures of cytosolic acetylcarnitine and ATP production pathways was used to investigate the link between [acetylcarnitine] and energy production in vivo. Intracellular metabolites were measured in the vastus lateralis muscle of eight males (mean: 28.4 yr, range: 25-35) during 8 min of incremental, dynamic contractions (0.5 Hz, 2-min stages at 6%, 9%, 12%, and 15% maximal torque) that increased [acetylcarnitine] approximately fivefold from resting levels. ATP production via oxidative phosphorylation, glycolysis, and the creatine kinase reaction was calculated based on phosphorus metabolites and pH. Spearman rank correlations indicated that postcontraction [acetylcarnitine] was positively associated with both absolute (mM) and relative (% total ATP) glycolytic ATP production (rs = 0.95, P = 0.001; rs = 0.93, P = 0.002), and negatively associated with relative (rs = -0.81, P = 0.02) but not absolute (rs = -0.14, P = 0.75) oxidative ATP production. Thus, acetylcarnitine accumulated more when there was a greater reliance on "nonoxidative" glycolysis and a relatively lower contribution from oxidative phosphorylation, reflecting the fate of pyruvate in working skeletal muscle. Furthermore, these data indicate striking interindividual variation in responses to the energy demand of submaximal contractions. Overall, the results of this preliminary study provide novel evidence of the coupling in vivo between ATP production pathways and the carnitine system.NEW & NOTEWORTHY Production of acetylcarnitine from acetyl-CoA and free carnitine may be important for energy pathway regulation in contracting skeletal muscle. Noninvasive magnetic resonance spectroscopy was used to investigate the link between acetylcarnitine and energy production in the vastus lateralis muscle during dynamic contractions (n = 8 individuals). A positive correlation between acetylcarnitine accumulation and "nonoxidative" glycolysis and an inverse relationship with oxidative phosphorylation, provides novel evidence of the coupling between ATP production and the carnitine system in vivo.
Collapse
Affiliation(s)
- Christopher M T Hayden
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Rajakumar Nagarajan
- Human Magnetic Resonance Center, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts, United States
| | - Zoe H Smith
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Samantha Gilmore
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Jane A Kent
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| |
Collapse
|
6
|
Naëgel A, Ratiney H, Karkouri J, Kennouche D, Royer N, Slade JM, Morel J, Croisille P, Viallon M. Alteration of skeletal muscle energy metabolism assessed by phosphorus-31 magnetic resonance spectroscopy in clinical routine, part 1: Advanced quality control pipeline. NMR IN BIOMEDICINE 2023; 36:e5025. [PMID: 37797948 DOI: 10.1002/nbm.5025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 10/07/2023]
Abstract
Implementing a standardized phosphorus-31 magnetic resonance spectroscopy (31 P-MRS) dynamic acquisition protocol to evaluate skeletal muscle energy metabolism and monitor muscle fatigability, while being compatible with various longitudinal clinical studies on diversified patient cohorts, requires a high level of technicality and expertise. Furthermore, processing data to obtain reliable results also demands a great degree of expertise from the operator. In this two-part article, we present an advanced quality control approach for data acquired using a dynamic 31 P-MRS protocol. The aim is to provide decision support to the operator to assist in data processing and obtain reliable results based on objective criteria. We present here, in part 1, an advanced data quality control (QC) approach of a dynamic 31 P-MRS protocol. Part 2 is an impact study that will demonstrate the added value of the QC approach to explore data derived from two clinical populations that experience significant fatigue, patients with coronavirus disease 2019 and multiple sclerosis. In part 1, 31 P-MRS was performed using 3-T clinical MRI in 175 subjects from clinical and healthy control populations conducted in a University Hospital. An advanced data QC score (QCS) was developed using multiple objective criteria. The criteria were based on current recommendations from the literature enriched by new proposals based on clinical experience. The QCS was designed to indicate valid and corrupt data and guide necessary objective data editing to extract as much valid physiological data as possible. Dynamic acquisitions using an MR-compatible ergometer ran over a rest (40 s), exercise (2 min), and a recovery phase (6 min). Using QCS enabled rapid identification of subjects with data anomalies, allowing the user to correct the data series or reject them partially or entirely, as well as identify fully valid datasets. Overall, the use of the QCS resulted in the automatic classification of 45% of the subjects, including 58 participants who had data with no criterion violation and 21 participants with violations that resulted in the rejection of all dynamic data. The remaining datasets were inspected manually with guidance, allowing acceptance of full datasets from an additional 80 participants and recovery phase data from an additional 16 subjects. Overall, more anomalies occurred with patient data (35% of datasets) compared with healthy controls (15% of datasets). In conclusion, the QCS ensures a standardized data rejection procedure and rigorous objective analysis of dynamic 31 P-MRS data obtained from patients. This methodology contributes to efforts made to standardize 31 P-MRS practices that have been underway for a decade, with the goal of making it an empowered tool for clinical research.
Collapse
Affiliation(s)
- Antoine Naëgel
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Siemens Healthcare SAS, Saint-Denis, France
| | - Hélène Ratiney
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Jabrane Karkouri
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Siemens Healthcare SAS, Saint-Denis, France
- Wolfson Brain Imaging Center, University of Cambridge, Cambridge, UK
| | - Djahid Kennouche
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- LIBM - Laboratoire Interuniversitaire de Biologie de la Motricité, Villeurbanne, France
| | - Nicolas Royer
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- LIBM - Laboratoire Interuniversitaire de Biologie de la Motricité, Villeurbanne, France
| | - Jill M Slade
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Jérôme Morel
- Anaesthetics and Intensive Care Department, UJM-Saint-Etienne, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Etienne, France
| | - Pierre Croisille
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Radiology Department, UJM-Saint-Etienne, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Etienne, France
| | - Magalie Viallon
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Radiology Department, UJM-Saint-Etienne, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Etienne, France
| |
Collapse
|
7
|
Wijma AG, Driessens H, Jeneson JAL, Janssen-Heijnen MLG, Willems TP, Klaase JM, Bongers BC. Cardiac and intramuscular adaptations following short-term exercise prehabilitation in unfit patients scheduled to undergo hepatic or pancreatic surgery: study protocol of a multinuclear MRI study. BMJ Open Gastroenterol 2023; 10:e001243. [PMID: 37996121 PMCID: PMC10668156 DOI: 10.1136/bmjgast-2023-001243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
INTRODUCTION Short-term exercise prehabilitation programmes have demonstrated promising results in improving aerobic capacity of unfit patients prior to major abdominal surgery. However, little is known about the cardiac and skeletal muscle adaptations explaining the improvement in aerobic capacity following short-term exercise prehabilitation. METHODS AND ANALYSIS In this single-centre study with a pretest-post-test design, 12 unfit patients with a preoperative oxygen uptake (VO2) at the ventilatory anaerobic threshold ≤13 mL/kg/min and/or VO2 at peak exercise ≤18 mL/kg/min, who are scheduled to undergo hepatopancreatobiliary surgery at the University Medical Center Groningen (UMCG), the Netherlands, will be recruited. As part of standard care, unfit patients are advised to participate in a home-based exercise prehabilitation programme, comprising high-intensity interval training and functional exercises three times per week, combined with nutritional support, during a 4-week period. Pre-intervention and post-intervention, patients will complete a cardiopulmonary exercise test. Next to this, study participants will perform additional in-vivo exercise cardiac magnetic resonance (MR) imaging and phosphorus 31-MR spectroscopy of the quadriceps femoris muscle before and after the intervention to assess the effect on respectively cardiac and skeletal muscle function. ETHICS AND DISSEMINATION This study was approved in May 2023 by the Medical Research Ethics Committee of the UMCG (registration number NL83611.042.23, March 2023) and is registered in the ClinicalTrials.gov register. Results of this study will be submitted for presentation at (inter)national congresses and publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT05772819.
Collapse
Affiliation(s)
- Allard G Wijma
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Heleen Driessens
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jeroen A L Jeneson
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maryska L G Janssen-Heijnen
- Department of Clinical Epidemiology, VieCuri Medical Center, Venlo, The Netherlands
- Department of Epidemiology, School for Oncology and Reproduction (GROW), Maastricht University, Maastricht, The Netherlands
| | - Tineke P Willems
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joost M Klaase
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart C Bongers
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
- Department of Surgery, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Duchowny KA, Mau T, Diaz-Ramierz LG, Lui LY, Marcinek DJ, Toledo FGS, Cawthon PM, Hepple RT, Kramer PA, Newman AB, Kritchevsky SB, Cummings SR, Coen PM, Molina AJA. Childhood adverse life events and skeletal muscle mitochondrial function. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.07.23298177. [PMID: 37986889 PMCID: PMC10659458 DOI: 10.1101/2023.11.07.23298177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Social stress experienced in childhood is associated with adverse health later in life. Mitochondrial function has been implicated as a mechanism for how stressful life events "get under the skin" to influence physical wellbeing. Using data from the Study of Muscle, Mobility and Aging (n=879, 59% women), linear models examined whether adverse childhood events (i.e., physical abuse) were associated with two measures of skeletal muscle mitochondrial energetics in older adults: (1) maximal adenosine triphosphate production (ATP max ) and (2) maximal state 3 respiration (Max OXPHOS). Forty-five percent of the sample reported experiencing 1+ adverse childhood event. After adjustment, each additional event was associated with -0.07 SD (95% CI= - 0.12, -0.01) lower ATP max . No association was observed with Max OXPHOS. Adverse childhood events are associated with lower ATP production in later life. Findings indicate that mitochondrial function may be a mechanism in understanding how early social stress influences health in later life.
Collapse
|
9
|
Decker ST, Matias AA, Cuadra AE, Bannon ST, Madden JP, Erol ME, Serviente C, Fenelon K, Layec G. Tissue-specific mitochondrial toxicity of cigarette smoke concentrate: consequence to oxidative phosphorylation. Am J Physiol Heart Circ Physiol 2023; 325:H1088-H1098. [PMID: 37712922 PMCID: PMC10907033 DOI: 10.1152/ajpheart.00199.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Cigarette smoke exposure is a well-known risk factor for developing numerous chronic health conditions, including pulmonary disease and cardiometabolic disorders. However, the cellular mechanisms mediating the toxicity of cigarette smoke in extrapulmonary tissues are still poorly understood. Therefore, the purpose of this study was to characterize the acute dose-dependent toxicity of cigarette smoke on mitochondrial metabolism by determining the susceptibility and sensitivity of mitochondrial respiration from murine skeletal (gastrocnemius and soleus) and cardiac muscles, as well as the aorta to cigarette smoke concentrate (CSC). In all tissues, exposure to CSC inhibited tissue-specific respiration capacity, measured by high-resolution respirometry, according to a biphasic pattern. With a break point of 451 ± 235 μg/mL, the aorta was the least susceptible to CSC-induced mitochondrial respiration inhibition compared with the gastrocnemius (151 ± 109 μg/mL; P = 0.008, d = 2.3), soleus (211 ± 107 μg/mL; P = 0.112; d = 1.7), and heart (94 ± 51 μg/mL; P < 0.001; d = 2.6) suggesting an intrinsic resistance of the vascular smooth muscle mitochondria to cigarette smoke toxicity. In contrast, the cardiac muscle was the most susceptible and sensitive to the effects of CSC, demonstrating the greatest decline in tissue-specific respiration with increasing CSC concentration (P < 0.001, except the soleus). However, when normalized to citrate synthase activity to account for differences in mitochondrial content, cardiac fibers' sensitivity to cigarette smoke inhibition was no longer significantly different from both fast-twitch gastrocnemius and slow-twitch soleus muscle fibers, thus suggesting similar mitochondrial phenotypes. Collectively, these findings established the acute dose-dependent toxicity of cigarette smoke on oxidative phosphorylation in permeabilized tissues involved in the development of smoke-related cardiometabolic diseases.NEW & NOTEWORTHY Despite numerous investigations into the mechanisms underlying cigarette smoke-induced mitochondrial dysfunction, no studies have investigated the tissue-specific mitochondrial toxicity to cigarette smoke. We demonstrate that, while aorta is least sensitive and susceptible to cigarette smoke-induced toxicity, the degree of cigarette smoke-induced toxicity in striated muscle depends on the tissue-specific mitochondrial content. We conclude that while the mitochondrial content influences cigarette smoke-induced toxicity in striated muscles, aorta is intrinsically protected against cigarette smoke-induced mitochondrial toxicity.
Collapse
Affiliation(s)
- Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Alexs A Matias
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Adolfo E Cuadra
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Sean T Bannon
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Jack P Madden
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - M Enes Erol
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Corinna Serviente
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
- Institute for Applied Life Science, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Karine Fenelon
- Institute for Applied Life Science, University of Massachusetts Amherst, Amherst, Massachusetts, United States
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
- Institute for Applied Life Science, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| |
Collapse
|
10
|
ATP and NAD + Deficiency in Parkinson's Disease. Nutrients 2023; 15:nu15040943. [PMID: 36839301 PMCID: PMC9961646 DOI: 10.3390/nu15040943] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The goal of this study is to identify a signature of bioenergetic and functional markers in the muscles of individuals with Parkinson's disease (PD). Quantitative physiological properties of in vivo hand muscle (FDI, first dorsal interosseus) and leg muscle (TA, Tibialis Anterior) of older individuals with PD were compared to historical age/gender-matched controls (N = 30). Magnetic resonance spectroscopy and imaging (MRS) were used to assess in vivo mitochondrial and cell energetic dysfunction, including maximum mitochondrial ATP production (ATPmax), NAD concentrations linked to energy/stress pathways, and muscle size. Muscle function was measured via a single muscle fatigue test. TA ATPmax and NAD levels were significantly lower in the PD cohort compared to controls (ATPmax: 0.66 mM/s ± 0.03 vs. 0.76 ± 0.02; NAD: 0.75 mM ± 0.05 vs. 0.91 ± 0.04). Muscle endurance and specific force were also lower in both hand and leg muscles in the PD subjects. Exploratory analyses of mitochondrial markers and individual symptoms suggested that higher ATPmax was associated with a greater sense of motivation and engagement and less REM sleep behavior disorder (RBD). ATPmax was not associated with clinical severity or individual symptom(s), years since diagnosis, or quality of life. Results from this pilot study contribute to a growing body of evidence that PD is not a brain disease, but a systemic metabolic syndrome with disrupted cellular energetics and function in peripheral tissues. The significant impairment of both mitochondrial ATP production and resting metabolite levels in the TA muscles of the PD patients suggests that skeletal muscle mitochondrial function may be an important tool for mechanistic understanding and clinical application in PD patients. This study looked at individuals with mid-stage PD; future research should evaluate whether the observed metabolic perturbations in muscle dysfunction occur in the early stages of the disease and whether they have value as theragnostic biomarkers.
Collapse
|
11
|
Ganguly BB, Kadam NN. Therapeutics for mitochondrial dysfunction-linked diseases in Down syndrome. Mitochondrion 2023; 68:25-43. [PMID: 36371073 DOI: 10.1016/j.mito.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Genome-wide deregulation contributes to mitochondrial dysfunction and impairment in oxidative phosphorylation (OXPHOS) mechanism resulting in oxidative stress, increased production of reactive oxygen species (ROS) and cell death in individuals with Down syndrome (DS). The cells, which require more energy, such as muscles, brain and heart are greatly affected. Impairment in mitochondrial network has a direct link with patho-mechanism at cellular and systemic levels at the backdrop of generalized metabolic perturbations in individuals with DS. Myriads of clinico-phenotypic features, including intellectual disability, early aging and neurodegeneration, and Alzheimer disease (AD)-related dementia are inevitable in DS-population where mitochondrial dysfunctions play the central role. Collectively, the mitochondrial abnormalities and altered energy metabolism perturbs several signaling pathways, particularly related to neurogenesis, which are directly associated with cognitive development and early onset of AD in individuals with DS. Therefore, therapeutic challenges for amelioration of the mitochondrial defects were perceived to improve the quality of life of the DS population. A number of pharmacologically active natural compounds such as polyphenols, antioxidants and flavonoids have shown convincing outcome for reversal of the dysfunctional mitochondrial network and oxidative metabolism, and improvement in intellectual skill in mouse models of DS and humans with DS.
Collapse
Affiliation(s)
- Bani Bandana Ganguly
- MGM New Bombay Hospital and MGM Institute of Health Sciences, Navi Mumbai, India.
| | - Nitin N Kadam
- MGM New Bombay Hospital and MGM Institute of Health Sciences, Navi Mumbai, India
| |
Collapse
|
12
|
Multinuclear MRI in Drug Discovery. Molecules 2022; 27:molecules27196493. [PMID: 36235031 PMCID: PMC9572840 DOI: 10.3390/molecules27196493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The continuous development of magnetic resonance imaging broadens the range of applications to newer areas. Using MRI, we can not only visualize, but also track pharmaceutical substances and labeled cells in both in vivo and in vitro tests. 1H is widely used in the MRI method, which is determined by its high content in the human body. The potential of the MRI method makes it an excellent tool for imaging the morphology of the examined objects, and also enables registration of changes at the level of metabolism. There are several reports in the scientific publications on the use of clinical MRI for in vitro tracking. The use of multinuclear MRI has great potential for scientific research and clinical studies. Tuning MRI scanners to the Larmor frequency of a given nucleus, allows imaging without tissue background. Heavy nuclei are components of both drugs and contrast agents and molecular complexes. The implementation of hyperpolarization techniques allows for better MRI sensitivity. The aim of this review is to present the use of multinuclear MRI for investigations in drug delivery.
Collapse
|
13
|
Influence of NAFLD and bariatric surgery on hepatic and adipose tissue mitochondrial biogenesis and respiration. Nat Commun 2022; 13:2931. [PMID: 35614135 PMCID: PMC9132900 DOI: 10.1038/s41467-022-30629-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Impaired mitochondrial oxidative phosphorylation (OXPHOS) in liver tissue has been hypothesised to contribute to the development of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease (NAFLD). It is unknown whether OXPHOS capacities in human visceral (VAT) and subcutaneous adipose tissue (SAT) associate with NAFLD severity and how hepatic OXPHOS responds to improvement in NAFLD. In biopsies sampled from 62 patients with obesity undergoing bariatric surgery and nine control subjects without obesity we demonstrate that OXPHOS is reduced in VAT and SAT while increased in the liver in patients with obesity when compared with control subjects without obesity, but this was independent of NAFLD severity. In repeat liver biopsy sampling in 21 patients with obesity 12 months after bariatric surgery we found increased hepatic OXPHOS capacity and mitochondrial DNA/nuclear DNA content compared with baseline. In this work we show that obesity has an opposing association with mitochondrial respiration in adipose- and liver tissue with no overall association with NAFLD severity, however, bariatric surgery increases hepatic OXPHOS and mitochondrial biogenesis. Impaired mitochondrial function in liver tissue may contribute to the pathogenesis and disease progression of nonalcoholic fatty liver disease (NAFLD). Here the authors report that patients with obesity have lower mitochondrial capacity in adipose tissues but higher capacity in the liver, without overall associations to NAFLD severity, and that bariatric surgery increases hepatic mitochondrial respiration and mitochondrial biogenesis.
Collapse
|
14
|
Blood biomarkers for assessment of mitochondrial dysfunction: An expert review. Mitochondrion 2021; 62:187-204. [PMID: 34740866 DOI: 10.1016/j.mito.2021.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022]
Abstract
Although mitochondrial dysfunction is the known cause of primary mitochondrial disease, mitochondrial dysfunction is often difficult to measure and prove, especially when biopsies of affected tissue are not available. In order to identify blood biomarkers of mitochondrial dysfunction, we reviewed studies that measured blood biomarkers in genetically, clinically or biochemically confirmed primary mitochondrial disease patients. In this way, we were certain that there was an underlying mitochondrial dysfunction which could validate the biomarker. We found biomarkers of three classes: 1) functional markers measured in blood cells, 2) biochemical markers of serum/plasma and 3) DNA markers. While none of the reviewed single biomarkers may perfectly reveal all underlying mitochondrial dysfunction, combining biomarkers that cover different aspects of mitochondrial impairment probably is a good strategy. This biomarker panel may assist in the diagnosis of primary mitochondrial disease patients. As mitochondrial dysfunction may also play a significant role in the pathophysiology of multifactorial disorders such as Alzheimer's disease and glaucoma, the panel may serve to assess mitochondrial dysfunction in complex multifactorial diseases as well and enable selection of patients who could benefit from therapies targeting mitochondria.
Collapse
|
15
|
Robergs RA. Quantifying H + exchange from muscle cytosolic energy catabolism using metabolite flux and H + coefficients from multiple competitive cation binding: New evidence for consideration in established theories. Physiol Rep 2021; 9:e14728. [PMID: 33904663 PMCID: PMC8077081 DOI: 10.14814/phy2.14728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2020] [Accepted: 01/03/2021] [Indexed: 11/30/2022] Open
Abstract
The purpose of this investigation was to present calculations of fractional H+ exchange (~H+e ) from the chemical reactions of non-mitochondrial energy catabolism. Data of muscle pH and metabolite accumulation were based on published research for intense exercise to contractile failure within ~3 min, from which capacities and time profiles were modeled. Data were obtained from prior research for multiple competitive cation dissociation constants of metabolites and the chemical reactions of non-mitochondrial energy catabolism, and pH dependent calculations of ~H+e from specific chemical reactions. Data revealed that the 3 min of intense exercise incurred a total ATP turnover of 142.5 mmol L-1 , with a total intramuscular ~H+ exchange (-'ve = release) of -187.9 mmol L-1 . Total ~H+ metabolic consumption was 130.6 mmol L-1 , revealing a net total ~H+e (~H+te ) of -57.3 mmol L-1 . Lactate production had a ~H+te of 44.2 mmol L-1 (for a peak accumulation = 45 mmol L-1 ). The net ~H+te for the sum of the CK, AK, and AMPD reactions was 36.33 mmol L-1 . The ~H+te from ATP turnover equaled -47.5 mmol L-1 . The total ~H+ release to lactate ratio was 4.3 (187.9/44). Muscle ~H+ release during intense exercise is up to ~4-fold larger than previously assumed based on the lactic acid construct.
Collapse
Affiliation(s)
- Robert A. Robergs
- School of Exercise and Nutrition SciencesFaculty of HealthQueensland University of TechnologyKelvin GroveQLDAustralia
| |
Collapse
|
16
|
Bartlett MF, Fitzgerald LF, Nagarajan R, Kent JA. Validity and accuracy of calculating oxidative ATP synthesis in vivo during high-intensity skeletal muscle contractions. NMR IN BIOMEDICINE 2020; 33:e4381. [PMID: 32803787 DOI: 10.1002/nbm.4381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Several methods have been developed for using 31 P-MRS to calculate rates of oxidative ATP synthesis (ATPOX ) during muscular contractions based on assumptions that (1) the ATP cost of force generation (ATPCOST ) remains constant or (2) Michaelis-Menten coupling between cytosolic ADP and ATPOX does not change. However, growing evidence suggests that one, or both, of these assumptions are invalid during high-intensity fatigue protocols. Consequently, there is a need to examine the validity and accuracy of traditional ATPOX calculation methods under these conditions. To address this gap, we measured phosphate concentrations and pH in the vastus lateralis muscle of nine young adults during four rest-contraction-recovery trials lasting 24, 60, 120, and 240 s. The initial velocity of phosphocreatine resynthesis (ViPCr ) following each trial served as the criterion measure of ATPOX because this method makes no assumptions of constant ATPCOST or Michaelis-Menten coupling between changes in cytosolic ADP and ATPOX . Subsequently, we calculated ATPOX throughout the 240 s trial using several traditional calculation methods and compared estimations of ATPOX from each method with time-matched measurements of ViPCr . Method 1, which assumes that ATPCOST does not change, was able to model changes in ViPCr over time, but showed poor accuracy for predicting ViPCr across a wide range of ATPOX values. In contrast, Michaelis-Menten methods, which assume that the relationship between changes in cytosolic ADP and ATPOX remains constant, were invalid because they could not model the decline in ViPCr . However, adjusting these Michaelis-Menten methods for observed changes in maximal ATPOX capacity (i.e., Vmax ) permitted modeling of the decline in ViPCr and markedly improved accuracy. The results of these comprehensive analyses demonstrate that valid, accurate measurements of ATPOX can be obtained during high-intensity contractions by adjusting Michaelis-Menten ATPOX calculations for changes in Vmax observed from baseline to post-fatigue.
Collapse
Affiliation(s)
- Miles F Bartlett
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Liam F Fitzgerald
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Rajakumar Nagarajan
- Human Magnetic Resonance Center, Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jane A Kent
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
17
|
Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR, Morales PE, Monsalves-Alvarez M, Cifuentes M, Rothermel BA, Lavandero S. Is Mitochondrial Dysfunction a Common Root of Noncommunicable Chronic Diseases? Endocr Rev 2020; 41:5807952. [PMID: 32179913 PMCID: PMC7255501 DOI: 10.1210/endrev/bnaa005] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022]
Abstract
Mitochondrial damage is implicated as a major contributing factor for a number of noncommunicable chronic diseases such as cardiovascular diseases, cancer, obesity, and insulin resistance/type 2 diabetes. Here, we discuss the role of mitochondria in maintaining cellular and whole-organism homeostasis, the mechanisms that promote mitochondrial dysfunction, and the role of this phenomenon in noncommunicable chronic diseases. We also review the state of the art regarding the preclinical evidence associated with the regulation of mitochondrial function and the development of current mitochondria-targeted therapeutics to treat noncommunicable chronic diseases. Finally, we give an integrated vision of how mitochondrial damage is implicated in these metabolic diseases.
Collapse
Affiliation(s)
- Alexis Diaz-Vegas
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Pablo Sanchez-Aguilera
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Matías Monsalves-Alvarez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
| | - Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Bartlett MF, Fitzgerald LF, Nagarajan R, Hiroi Y, Kent JA. Oxidative ATP synthesis in human quadriceps declines during 4 minutes of maximal contractions. J Physiol 2020; 598:1847-1863. [PMID: 32045011 DOI: 10.1113/jp279339] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS During maximal exercise, skeletal muscle metabolism and oxygen consumption remain elevated despite precipitous declines in power. Presently, it is unclear whether these responses are caused by an increased ATP cost of force generation (ATPCOST ) or mitochondrial uncoupling; a process that reduces the efficiency of oxidative ATP synthesis (ATPOX ). To address this gap, we used 31-phosphorus magnetic resonance spectroscopy to measure changes in ATPCOST and ATPOX in human quadriceps during repeated trials of maximal intensity knee extensions lasting up to 4 min. ATPCOST remained unchanged. In contrast, ATPOX plateaued by ∼2 min and then declined (∼15%) over the final 2 min. The maximal capacity for ATPOX (Vmax ), as well as ADP-specific rates of ATPOX , were also significantly diminished. Collectively, these results suggest that mitochondrial uncoupling, and not increased ATPCOST , is responsible for altering the regulation of skeletal muscle metabolism and oxygen consumption during maximal exercise. ABSTRACT The relationship between skeletal muscle oxygen consumption and power output is augmented during exercise at workloads above the lactate threshold. Potential mechanisms for this response have been hypothesized, including increased ATP cost of force generation (ATPCOST ) and mitochondrial uncoupling, a process that reduces the efficiency of oxidative ATP synthesis (ATPOX ). To test these hypotheses, we used phosphorus magnetic resonance spectroscopy to non-invasively measure changes in phosphate concentrations and pH in the vastus lateralis muscle of nine young adults during repeated trials of maximal, all-out dynamic knee extensions (120°s-1 , 1 every 2 s) lasting 24, 60, 120, and 240 s. ATPOX was measured at each time point from the initial velocity of PCr resynthesis, and ATPCOST was calculated as the sum of ATP synthesized by the creatine and adenylate kinase reactions, non-oxidative glycolysis, ATPOX and net changes in [ATP]. Power output declined in a reproducible manner for all four trials. ATPCOST did not change over time (main effect P = 0.45). ATPOX plateaued from 60 to 120 s and then decreased over the final 120 s (main effect P = 0.001). The maximal capacity for oxidative ATP synthesis (Vmax ), as well as ADP-specific rates of ATPOX , also decreased over time (main effect P = 0.001, both). Collectively, these results demonstrate that prolonged maximal contraction protocols impair oxidative energetics and implicate mitochondrial uncoupling as the mechanism for this response. The causes of mitochondrial uncoupling are presently unknown but may offer a potential explanation for the dissociation between skeletal muscle power output and oxygen consumption during maximal, all-out exercise protocols.
Collapse
Affiliation(s)
- Miles F Bartlett
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, 01003.,Department of Kinesiology, University of Texas, Arlington, Texas, 76019
| | - Liam F Fitzgerald
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, 01003
| | - Rajakumar Nagarajan
- Human Magnetic Resonance Center, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, Massachusetts, 01003
| | - Yeun Hiroi
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, 01003
| | - Jane A Kent
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, 01003
| |
Collapse
|
19
|
Layec G, Blain GM, Rossman MJ, Park SY, Hart CR, Trinity JD, Gifford JR, Sidhu SK, Weavil JC, Hureau TJ, Amann M, Richardson RS. Acute High-Intensity Exercise Impairs Skeletal Muscle Respiratory Capacity. Med Sci Sports Exerc 2019; 50:2409-2417. [PMID: 30102675 DOI: 10.1249/mss.0000000000001735] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE The effect of an acute bout of exercise, especially high-intensity exercise, on the function of mitochondrial respiratory complexes is not well understood, with potential implications for both the healthy population and patients undergoing exercise-based rehabilitation. Therefore, this study sought to comprehensively examine respiratory flux through the different complexes of the electron transport chain in skeletal muscle mitochondria before and immediately after high-intensity aerobic exercise. METHODS Muscle biopsies of the vastus lateralis were obtained at baseline and immediately after a 5-km time trial performed on a cycle ergometer. Mitochondrial respiratory flux through the complexes of the electron transport chain was measured in permeabilized skeletal muscle fibers by high-resolution respirometry. RESULTS Complex I + II state 3 (state 3CI + CII) respiration, a measure of oxidative phosphorylation capacity, was diminished immediately after the exercise (pre, 27 ± 3 ρm·mg·s; post, 17 ± 2 ρm·mg·s; P < 0.05). This decreased oxidative phosphorylation capacity was predominantly the consequence of attenuated complex II-driven state 3 (state 3CII) respiration (pre, 17 ± 1 ρm·mg·s; post, 9 ± 2 ρm·mg·s; P < 0.05). Although complex I-driven state 3 (3CI) respiration was also lower (pre, 20 ± 2 ρm·mg·s; post, 14 ± 4 ρm·mg·s), this did not reach statistical significance (P = 0.27). In contrast, citrate synthase activity, proton leak (state 2 respiration), and complex IV capacity were not significantly altered immediately after the exercise. CONCLUSIONS These findings reveal that acute high-intensity aerobic exercise significantly inhibits skeletal muscle state 3CII and oxidative phosphorylation capacity. This, likely transient, mitochondrial defect might amplify the exercise-induced development of fatigue and play an important role in initiating exercise-induced mitochondrial adaptations.
Collapse
Affiliation(s)
- Gwenael Layec
- Department of Medicine, University of Utah, Salt Lake City, UT.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT
| | | | - Matthew J Rossman
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Song Y Park
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Corey R Hart
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Joel D Trinity
- Department of Medicine, University of Utah, Salt Lake City, UT.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT
| | - Jayson R Gifford
- Department of Medicine, University of Utah, Salt Lake City, UT.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT
| | - Simranjit K Sidhu
- Department of Medicine, University of Utah, Salt Lake City, UT.,Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, AUSTRALIA
| | - Joshua C Weavil
- Department of Medicine, University of Utah, Salt Lake City, UT
| | - Thomas J Hureau
- Department of Medicine, University of Utah, Salt Lake City, UT.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT.,Mitochondria, Oxidative Stress and Muscular Protection Laboratory, EA 3072, University of Strasbourg, Strasbourg, FRANCE
| | - Markus Amann
- Department of Medicine, University of Utah, Salt Lake City, UT.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT
| | - Russell S Richardson
- Department of Medicine, University of Utah, Salt Lake City, UT.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT
| |
Collapse
|
20
|
Sundberg CW, Prost RW, Fitts RH, Hunter SK. Bioenergetic basis for the increased fatigability with ageing. J Physiol 2019; 597:4943-4957. [PMID: 31018011 DOI: 10.1113/jp277803] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/18/2019] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS The mechanisms for the age-related increase in fatigability during dynamic exercise remain elusive. We tested whether age-related impairments in muscle oxidative capacity would result in a greater accumulation of fatigue causing metabolites, inorganic phosphate (Pi ), hydrogen (H+ ) and diprotonated phosphate (H2 PO4 - ), in the muscle of old compared to young adults during a dynamic knee extension exercise. The age-related increase in fatigability (reduction in mechanical power) of the knee extensors was closely associated with a greater accumulation of metabolites within the working muscle but could not be explained by age-related differences in muscle oxidative capacity. These data suggest that the increased fatigability in old adults during dynamic exercise is primarily determined by age-related impairments in skeletal muscle bioenergetics that result in a greater accumulation of metabolites. ABSTRACT The present study aimed to determine whether the increased fatigability in old adults during dynamic exercise is associated with age-related differences in skeletal muscle bioenergetics. Phosphorus nuclear magnetic resonance spectroscopy was used to quantify concentrations of high-energy phosphates and pH in the knee extensors of seven young (22.7 ± 1.2 years; six women) and eight old adults (76.4 ± 6.0 years; seven women). Muscle oxidative capacity was measured from the phosphocreatine (PCr) recovery kinetics following a 24 s maximal voluntary isometric contraction. The fatiguing exercise consisted of 120 maximal velocity contractions (one contraction per 2 s) against a load equivalent to 20% of the maximal voluntary isometric contraction. The PCr recovery kinetics did not differ between young and old adults (0.023 ± 0.007 s-1 vs. 0.019 ± 0.004 s-1 , respectively). Fatigability (reductions in mechanical power) of the knee extensors was ∼1.8-fold greater with age and was accompanied by a greater decrease in pH (young = 6.73 ± 0.09, old = 6.61 ± 0.04) and increases in concentrations of inorganic phosphate, [Pi ], (young = 22.7 ± 4.8 mm, old = 32.3 ± 3.6 mm) and diprotonated phosphate, [H2 PO4 - ], (young = 11.7 ± 3.6 mm, old = 18.6 ± 2.1 mm) at the end of the exercise in old compared to young adults. The age-related increase in power loss during the fatiguing exercise was strongly associated with intracellular pH (r = -0.837), [Pi ] (r = 0.917) and [H2 PO4 - ] (r = 0.930) at the end of the exercise. These data suggest that the age-related increase in fatigability during dynamic exercise has a bioenergetic basis and is explained by an increased accumulation of metabolites within the muscle.
Collapse
Affiliation(s)
- Christopher W Sundberg
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA.,Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Robert W Prost
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert H Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
21
|
Hart CR, Layec G, Trinity JD, Le Fur Y, Gifford JR, Clifton HL, Richardson RS. Oxygen availability and skeletal muscle oxidative capacity in patients with peripheral artery disease: implications from in vivo and in vitro assessments. Am J Physiol Heart Circ Physiol 2018; 315:H897-H909. [PMID: 29932772 DOI: 10.1152/ajpheart.00641.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Evidence suggests that the peak skeletal muscle mitochondrial ATP synthesis rate ( Vmax) in patients with peripheral artery disease (PAD) may be attenuated due to disease-related impairments in O2 supply. However, in vitro assessments suggest intrinsic deficits in mitochondrial respiration despite ample O2 availability. To address this conundrum, Doppler ultrasound, near-infrared spectroscopy, phosphorus magnetic resonance spectroscopy, and high-resolution respirometry were combined to assess convective O2 delivery, tissue oxygenation, Vmax, and skeletal muscle mitochondrial capacity (complex I + II, state 3 respiration), respectively, in the gastrocnemius muscle of 10 patients with early stage PAD and 11 physical activity-matched healthy control (HC) subjects. All participants were studied in free-flow control conditions (FF) and with reactive hyperemia (RH) induced by a period of brief ischemia during the last 30 s of submaximal plantar flexion exercise. Patients with PAD repeated the FF and RH trials under hyperoxic conditions (FF + 100% O2 and RH + 100% O2). Compared with HC subjects, patients with PAD exhibited attenuated O2 delivery at the same absolute work rate and attenuated tissue reoxygenation and Vmax after relative intensity-matched exercise. Compared with the FF condition, only RH + 100% O2 significantly increased convective O2 delivery (~44%), tissue reoxygenation (~54%), and Vmax (~60%) in patients with PAD ( P < 0.05), such that Vmax was now not different from HC subjects. Furthermore, there was no evidence of an intrinsic mitochondrial deficit in PAD, as assessed in vitro with adequate O2. Thus, in combination, this comprehensive in vivo and in vitro investigation implicates O2 supply as the predominant factor limiting mitochondrial oxidative capacity in early stage PAD. NEW & NOTEWORTHY Currently, there is little accord as to the role of O2 availability and mitochondrial function in the skeletal muscle dysfunction associated with peripheral artery disease. This is the first study to comprehensively use both in vivo and in vitro approaches to document that the skeletal muscle dysfunction associated with early stage peripheral artery disease is predominantly a consequence of limited O2 supply and not the impact of an intrinsic mitochondrial defect in this pathology.
Collapse
Affiliation(s)
- Corey R Hart
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center , Salt Lake City, Utah.,Department of Exercise and Sport Science, University of Utah , Salt Lake City, Utah
| | - Gwenael Layec
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center , Salt Lake City, Utah.,Department of Medicine, Division of Geriatrics, University of Utah , Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center , Salt Lake City, Utah.,Department of Medicine, Division of Geriatrics, University of Utah , Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah
| | - Yann Le Fur
- Centre de Résonance Magnétique Biologique et Médicale Unité Mixte de Recherché 7339, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille , France
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center , Salt Lake City, Utah
| | - Heather L Clifton
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center , Salt Lake City, Utah.,Department of Medicine, Division of Geriatrics, University of Utah , Salt Lake City, Utah
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center , Salt Lake City, Utah.,Department of Medicine, Division of Geriatrics, University of Utah , Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah
| |
Collapse
|
22
|
Zhang S, Chen M, Gao L, Liu Y. Investigating Muscle Function After Stroke Rehabilitation with 31P-MRS: A Preliminary Study. Med Sci Monit 2018; 24:2841-2848. [PMID: 29730667 PMCID: PMC5958628 DOI: 10.12659/msm.907372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND New evidence reveals significant metabolic changes in skeletal muscle after stroke. However, it is unknown if 31P magnetic resonance spectroscopy (31P-MRS) can evaluate these metabolic changes. Our objective here was to investigate: (a) if muscle energy metabolism changes in the affected side; (b) if muscle energy metabolism changes after rehabilitation; and (c) if energy metabolism measured by 31P-MRS can reflect changes in the Modified Modified Ashworth Scale (MMAS) and Fugl-Meyer assessment-lower extremity (FMA-LE) scores after rehabilitation. MATERIAL AND METHODS We enrolled 13 patients with stroke symptoms and hemiplegia. Lower-limb motor status on the affected side was evaluated by FMA-LE and MMAS. The 31P-MRS measures included phosphocreatine (PCr), inorganic phosphate (Pi), PCr/Pi, and pH. We statistically compared these measures in the affected and unaffected lower leg muscles before rehabilitation and after rehabilitation on the affected side. Spearman correlational analyses was performed to determine correlations between change in energy metabolism and change in FMA-LE score and MMAS score after rehabilitation. RESULTS PCr and PCr/Pi were significantly lower in the affected muscle compared to the unaffected muscle; however, there were no significant differences in Pi or pH. After rehabilitation, PCr, Pi, PCr/Pi, and pH did not significantly change. However, FMA-LE and MMAS score improved significantly after rehabilitation. Changes in energy metabolism measured by 31P-MRS had no correlation with FMA-LE change after rehabilitation. However, changes in PCr and PCr/Pi were correlated with change in MMAS score after rehabilitation. CONCLUSIONS 31P-MRS can evaluate changes in muscle energy metabolism in patients with stroke. PCr measured by 31P-MRS can reflect changes in MMAS after rehabilitation.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
- Graduate School, Peking Union Medical College, Beijing, P.R. China
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
- Graduate School, Peking Union Medical College, Beijing, P.R. China
| | - Lei Gao
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
- Department of Rehabilitation, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Ying Liu
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
- Graduate School, Peking University Health Science Center, Peking University, Beijing, P.R. China
| |
Collapse
|