1
|
Gao Y, Guo M, Chen J, Sun Y, Wang M. A ginseng polysaccharide protects intestinal barrier integrity in high-fat diet-fed obese mice. Int J Biol Macromol 2024; 277:133976. [PMID: 39029823 DOI: 10.1016/j.ijbiomac.2024.133976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/14/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
A novel polysaccharide, GPH1, was extracted and isolated from ginseng. Structural analysis of GPH1 revealed a molecular weight of 7.321 × 105 Da and the presence of glucose and galactose components in a 30.2: 1 molar ratio. Results of methylation and NMR analyses indicated the GPH1 backbone consisted of →1)-α-Glc-(3→ and →1)-α-Glc-(6→. The anti-obesity activity of GPH1 was assessed by HFD-induced obesity mouse model. GPH1 was found to significantly reduced body weight, alleviated liver lipid accumulation and inflammatory damage. Meanwhile, GPH1 treatment increased the expression of tight junction proteins, including zonula occludens-1 (ZO-1) and claudin-1, while also regulating the intestinal microbiota of obese mice by promoting proliferation of beneficial bacteria with known anti-obesity effects, including s_Akkermansia muciniphila, s_Lactobacillus intestinalis, s_Lactobacillus reuteri, s_Streptococcus hyointestinalis, and s_Lactococcus garvieae. Our findings demonstrated that GPH1 is a practical natural dietary supplement with potential therapeutic effects on obesity.
Collapse
Affiliation(s)
- Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Mingkun Guo
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jiaqi Chen
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yue Sun
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun 130021, China.
| |
Collapse
|
2
|
Young ME, Latimer MN. Circadian rhythms in cardiac metabolic flexibility. Chronobiol Int 2023; 40:13-26. [PMID: 34162286 PMCID: PMC8695643 DOI: 10.1080/07420528.2021.1939366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022]
Abstract
Numerous aspects of cardiovascular physiology (e.g., heart rate, blood pressure) and pathology (e.g., myocardial infarction and sudden cardiac death) exhibit time-of-day-dependency. In association with day-night differences in energetic demand and substrate availability, the healthy heart displays remarkable metabolic flexibility through temporal partitioning of the metabolic fate of common substrates (glucose, lipid, amino acids). The purpose of this review is to highlight the contribution that circadian clocks provide toward 24-hr fluctuations in cardiac metabolism and to discuss whether attenuation and/or augmentation of these metabolic rhythms through adjustment of nutrient intake timing impacts cardiovascular disease development.
Collapse
Affiliation(s)
- Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Gao Y, Guo M, Zheng P, Liu R, Wang D, Zhao D, Wang M. Effects of sulfated polysaccharides from Laminaria japonica on regularating the gut microbiotan and alleviating intestinal inflammation in obese mice. Food Chem Toxicol 2022; 168:113401. [PMID: 36064122 DOI: 10.1016/j.fct.2022.113401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/19/2022]
Abstract
Due to their known health-enhancing properties, Laminaria japonica polysaccharides (LJP) may alleviate obesity via unknown mechanisms. This study aimed to investigate beneficial LJP effects and mechanism(s) of action using an animal obesity model (ICR mice fed a high-fat diet). First, LJP were confirmed to consist of sulfated polysaccharides via infrared spectroscopy. Next, LJP administration to mice was found to induce weight loss, reduce liver fat accumulation, and support healthy obesity-related blood serum indicator levels. Notably, LJP treatment significantly reduced TC and LDL levels and significantly increased HDL, LPL, UCP-2, and PPAR-α levels. Furthermore, examinations of tissues of LJP-treated mice revealed significantly reduced intestinal tissue inflammation as compared to corresponding results obtained for untreated obese controls. Additionally, LJP treatment relieved colonic shortening and reduced colonic levels of inflammatory factors TNF-α and IL-6. Further exploration of LJP treatment effects on mouse gut microbiota conducted via fecal 16S rRNA gene sequence-based gut microbiome profiling analysis revealed that LJP treatment increased the Bacteroidetes/Firmicutes ratio and increased gut abundances of probiotics Bacteroides acidifaciens, s_Lactobacillus intestinalis, and s_Lactobacillus murinus. In conclusion, these results collectively suggest that LJP use as a food supplement may alleviate obesity and related gut microbiota dysbiosis and intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Mingkun Guo
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Peng Zheng
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Ruoyi Liu
- High School Attached to Northeast Normal University, Changchun, 130021, China
| | - Dandan Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun, 130021, China
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
4
|
Palioura D, Lazou A, Drosatos K. Krüppel-like factor (KLF)5: An emerging foe of cardiovascular health. J Mol Cell Cardiol 2022; 163:56-66. [PMID: 34653523 PMCID: PMC8816822 DOI: 10.1016/j.yjmcc.2021.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 02/03/2023]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors, which regulate various pathways that pertain to development, metabolism and other cellular mechanisms. KLF5 was first cloned in 1993 and by 1999, it was reported as the intestinal-enriched KLF. Beyond findings that have associated KLF5 with normal development and cancer, it has been associated with various types of cardiovascular (CV) complications and regulation of metabolic pathways in the liver, heart, adipose tissue and skeletal muscle. Specifically, increased KLF5 expression has been linked with cardiomyopathy in diabetes, end-stage heart failure, and as well as in vascular atherosclerotic lesions. In this review article, we summarize research findings about transcriptional, post-transcriptional and post-translational regulation of KLF5, as well as the role of KLF5 in the biology of cells and organs that affect cardiovascular health either directly or indirectly. Finally, we propose KLF5 inhibition as an emerging approach for cardiovascular therapeutics.
Collapse
Affiliation(s)
- Dimitra Palioura
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA;,School of Biology, Aristotle University of Thessaloniki, GR, Greece
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, GR, Greece
| | - Konstantinos Drosatos
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Yamamoto T, Sano M. Deranged Myocardial Fatty Acid Metabolism in Heart Failure. Int J Mol Sci 2022; 23:996. [PMID: 35055179 PMCID: PMC8779056 DOI: 10.3390/ijms23020996] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
The heart requires fatty acids to maintain its activity. Various mechanisms regulate myocardial fatty acid metabolism, such as energy production using fatty acids as fuel, for which it is known that coordinated control of fatty acid uptake, β-oxidation, and mitochondrial oxidative phosphorylation steps are important for efficient adenosine triphosphate (ATP) production without unwanted side effects. The fatty acids taken up by cardiomyocytes are not only used as substrates for energy production but also for the synthesis of triglycerides and the replacement reaction of fatty acid chains in cell membrane phospholipids. Alterations in fatty acid metabolism affect the structure and function of the heart. Recently, breakthrough studies have focused on the key transcription factors that regulate fatty acid metabolism in cardiomyocytes and the signaling systems that modify their functions. In this article, we reviewed the latest research on the role of fatty acid metabolism in the pathogenesis of heart failure and provide an outlook on future challenges.
Collapse
Affiliation(s)
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| |
Collapse
|
6
|
Iso T, Kurabayashi M. Cardiac Metabolism and Contractile Function in Mice with Reduced Trans-Endothelial Fatty Acid Transport. Metabolites 2021; 11:metabo11120889. [PMID: 34940647 PMCID: PMC8706312 DOI: 10.3390/metabo11120889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/15/2023] Open
Abstract
The heart is a metabolic omnivore that combusts a considerable amount of energy substrates, mainly long-chain fatty acids (FAs) and others such as glucose, lactate, ketone bodies, and amino acids. There is emerging evidence that muscle-type continuous capillaries comprise the rate-limiting barrier that regulates FA uptake into cardiomyocytes. The transport of FAs across the capillary endothelium is composed of three major steps-the lipolysis of triglyceride on the luminal side of the endothelium, FA uptake by the plasma membrane, and intracellular FA transport by cytosolic proteins. In the heart, impaired trans-endothelial FA (TEFA) transport causes reduced FA uptake, with a compensatory increase in glucose use. In most cases, mice with reduced FA uptake exhibit preserved cardiac function under unstressed conditions. When the workload is increased, however, the total energy supply relative to its demand (estimated with pool size in the tricarboxylic acid (TCA) cycle) is significantly diminished, resulting in contractile dysfunction. The supplementation of alternative fuels, such as medium-chain FAs and ketone bodies, at least partially restores contractile dysfunction, indicating that energy insufficiency due to reduced FA supply is the predominant cause of cardiac dysfunction. Based on recent in vivo findings, this review provides the following information related to TEFA transport: (1) the mechanisms of FA uptake by the heart, including TEFA transport; (2) the molecular mechanisms underlying the induction of genes associated with TEFA transport; (3) in vivo cardiac metabolism and contractile function in mice with reduced TEFA transport under unstressed conditions; and (4) in vivo contractile dysfunction in mice with reduced TEFA transport under diseased conditions, including an increased afterload and streptozotocin-induced diabetes.
Collapse
Affiliation(s)
- Tatsuya Iso
- Department of Medical Technology and Clinical Engineering, Faculty of Medical Technology and Clinical Engineering, Gunma University of Health and Welfare, 191-1 Kawamagari-Machi, Maebashi 371-0823, Gunma, Japan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
- Correspondence:
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| |
Collapse
|
7
|
Shang R, Rodrigues B. Lipoprotein Lipase and Its Delivery of Fatty Acids to the Heart. Biomolecules 2021; 11:biom11071016. [PMID: 34356640 PMCID: PMC8301904 DOI: 10.3390/biom11071016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
Ninety percent of plasma fatty acids (FAs) are contained within lipoprotein-triglyceride, and lipoprotein lipase (LPL) is robustly expressed in the heart. Hence, LPL-mediated lipolysis of lipoproteins is suggested to be a key source of FAs for cardiac use. Lipoprotein clearance by LPL occurs at the apical surface of the endothelial cell lining of the coronary lumen. In the heart, the majority of LPL is produced in cardiomyocytes and subsequently is translocated to the apical luminal surface. Here, vascular LPL hydrolyzes lipoprotein-triglyceride to provide the heart with FAs for ATP generation. This article presents an overview of cardiac LPL, explains how the enzyme works, describes key molecules that regulate its activity and outlines how changes in LPL are brought about by physiological and pathological states such as fasting and diabetes, respectively.
Collapse
|
8
|
Sithara T, Drosatos K. Metabolic Complications in Cardiac Aging. Front Physiol 2021; 12:669497. [PMID: 33995129 PMCID: PMC8116539 DOI: 10.3389/fphys.2021.669497] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Aging is a process that can be accompanied by molecular and cellular alterations that compromise cardiac function. Although other metabolic disorders with increased prevalence in aged populations, such as diabetes mellitus, dyslipidemia, and hypertension, are associated with cardiovascular complications; aging-related cardiomyopathy has some unique features. Healthy hearts oxidize fatty acids, glucose, lactate, ketone bodies, and amino acids for producing energy. Under physiological conditions, cardiac mitochondria use fatty acids and carbohydrate mainly to generate ATP, 70% of which is derived from fatty acid oxidation (FAO). However, relative contribution of nutrients in ATP synthesis is altered in the aging heart with glucose oxidation increasing at the expense of FAO. Cardiac aging is also associated with impairment of mitochondrial abundance and function, resulting in accumulation of reactive oxygen species (ROS) and activation of oxidant signaling that eventually leads to further mitochondrial damage and aggravation of cardiac function. This review summarizes the main components of pathophysiology of cardiac aging, which pertain to cardiac metabolism, mitochondrial function, and systemic metabolic changes that affect cardiac function.
Collapse
Affiliation(s)
- Thomas Sithara
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Konstantinos Drosatos
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Antiobesity Effect of Novel Probiotic Strains in a Mouse Model of High-Fat Diet-Induced Obesity. Probiotics Antimicrob Proteins 2021; 13:1054-1067. [PMID: 33569747 DOI: 10.1007/s12602-021-09752-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 12/11/2022]
Abstract
Obesity is one of the major causes of the development of metabolic diseases, particularly cardiovascular diseases and type-2 diabetes mellitus. Increased lipid accumulation and abnormal adipocyte growth, which is an increase in cell numbers and differentiation, have been documented as major pathological characteristics of obesity. Thus, the inhibition of adipogenic differentiation prevents and suppresses obesity. Recently, specific probiotic strains have been known to regulate lipid metabolism in vitro and/or in vivo. Previously, we demonstrated that Lactobacillus johnsonni 3121 and Lactobacillus rhamnosus 86 could act as novel probiotic strains and reduce cholesterol levels. Moreover, both strains significantly reduced lipid accumulation and inhibited adipocyte differentiation by downregulating the adipogenic transcription factor in 3T3-L1 adipocytes. Therefore, L. johnsonni 3121 and L. rhamnosus 86 were selected for in vivo evaluation of their anti-obesity effects using a high-fat diet-induced obese mouse model. Daily oral administration of L. johnsonni 3121 and L. rhamnosus 86 for 12 weeks significantly improved serum lipid profile and downregulated the expression of genes related to adipogenesis and lipogenesis in epididymal white adipose tissue of high-fat diet fed obese mice (p < 0.05). Fecal analysis also suggested that the two probiotic strains could normalize the altered obesity-related gut microbiota in high-fat diet-fed obese mice. These results collectively demonstrate that oral administration of L. johnsonni 3121 and L. rhamnosus 86 could prevent obesity, thereby improving metabolic health.
Collapse
|
10
|
Murashige D, Jang C, Neinast M, Edwards JJ, Cowan A, Hyman MC, Rabinowitz JD, Frankel DS, Arany Z. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 2020; 370:364-368. [PMID: 33060364 PMCID: PMC7871704 DOI: 10.1126/science.abc8861] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022]
Abstract
The heart consumes circulating nutrients to fuel lifelong contraction, but a comprehensive mapping of human cardiac fuel use is lacking. We used metabolomics on blood from artery, coronary sinus, and femoral vein in 110 patients with or without heart failure to quantify the uptake and release of 277 metabolites, including all major nutrients, by the human heart and leg. The heart primarily consumed fatty acids and, unexpectedly, little glucose; secreted glutamine and other nitrogen-rich amino acids, indicating active protein breakdown, at a rate ~10 times that of the leg; and released intermediates of the tricarboxylic acid cycle, balancing anaplerosis from amino acid breakdown. Both heart and leg consumed ketones, glutamate, and acetate in direct proportionality to circulating levels, indicating that availability is a key driver for consumption of these substrates. The failing heart consumed more ketones and lactate and had higher rates of proteolysis. These data provide a comprehensive and quantitative picture of human cardiac fuel use.
Collapse
Affiliation(s)
- Danielle Murashige
- Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cholsoon Jang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Michael Neinast
- Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan J Edwards
- Department of Pediatrics, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexis Cowan
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Matthew C Hyman
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - David S Frankel
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zolt Arany
- Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Wolska A, Lo L, Sviridov DO, Pourmousa M, Pryor M, Ghosh SS, Kakkar R, Davidson M, Wilson S, Pastor RW, Goldberg IJ, Basu D, Drake SK, Cougnoux A, Wu MJ, Neher SB, Freeman LA, Tang J, Amar M, Devalaraja M, Remaley AT. A dual apolipoprotein C-II mimetic-apolipoprotein C-III antagonist peptide lowers plasma triglycerides. Sci Transl Med 2020; 12:12/528/eaaw7905. [PMID: 31996466 DOI: 10.1126/scitranslmed.aaw7905] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022]
Abstract
Recent genetic studies have established that hypertriglyceridemia (HTG) is causally related to cardiovascular disease, making it an active area for drug development. We describe a strategy for lowering triglycerides (TGs) with an apolipoprotein C-II (apoC-II) mimetic peptide called D6PV that activates lipoprotein lipase (LPL), the main plasma TG-hydrolyzing enzyme, and antagonizes the TG-raising effect of apoC-III. The design of D6PV was motivated by a combination of all-atom molecular dynamics simulation of apoC-II on the Anton 2 supercomputer, structural prediction programs, and biophysical techniques. Efficacy of D6PV was assessed ex vivo in human HTG plasma and was found to be more potent than full-length apoC-II in activating LPL. D6PV markedly lowered TG by more than 80% within a few hours in both apoC-II-deficient mice and hAPOC3-transgenic (Tg) mice. In hAPOC3-Tg mice, D6PV treatment reduced plasma apoC-III by 80% and apoB by 65%. Furthermore, low-density lipoprotein (LDL) cholesterol did not accumulate but rather was decreased by 10% when hAPOC3-Tg mice lacking the LDL-receptor (hAPOC3-Tg × Ldlr-/- ) were treated with the peptide. D6PV lowered TG by 50% in whole-body inducible Lpl knockout (iLpl-/- ) mice, confirming that it can also act independently of LPL. D6PV displayed good subcutaneous bioavailability of about 80% in nonhuman primates. Because it binds to high-density lipoproteins, which serve as a long-term reservoir, it also has an extended terminal half-life (42 to 50 hours) in nonhuman primates. In summary, D6PV decreases plasma TG by acting as a dual apoC-II mimetic and apoC-III antagonist, thereby demonstrating its potential as a treatment for HTG.
Collapse
Affiliation(s)
- Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Larry Lo
- Corvidia Therapeutics Inc., Waltham, MA 02451, USA
| | - Denis O Sviridov
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohsen Pourmousa
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Milton Pryor
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Rahul Kakkar
- Corvidia Therapeutics Inc., Waltham, MA 02451, USA
| | | | - Sierra Wilson
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Steven K Drake
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Antony Cougnoux
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming Jing Wu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Saskia B Neher
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lita A Freeman
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jingrong Tang
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcelo Amar
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Shang R, Lal N, Puri K, Hussein B, Rodrigues B. Involvement of Heparanase in Endothelial Cell-Cardiomyocyte Crosstalk. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:721-745. [PMID: 32274734 DOI: 10.1007/978-3-030-34521-1_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditionally, the management of diabetes has focused mainly on controlling high blood glucose levels. Unfortunately, despite valiant efforts to normalize this blood glucose, poor medication management predisposes these patients to heart failure. Following diabetes, how the heart utilizes different sources of fuel for energy is key to the development of heart failure. The diabetic heart switches from using both glucose and fats, to predominately using fats as an energy resource for maintaining its activities. This transformation to using fats as an exclusive source of energy is helpful in the initial stages of the disease and is tightly controlled. However, over the progression of diabetes, there is a loss of this controlled supply and use of fats, which ultimately has terrible consequences since the uncontrolled use of fats produces toxic by-products which weaken heart function and cause heart disease. Heparanase is a key player that directs how much fats are provided to the heart and does so in association with several partners like LPL and VEGFs. Together, they regulate the amount of fats supplied, and their subsequent breakdown to provide energy. Following diabetes, there is a disruption in this network resulting in fat oversupply and cell death. Understanding how the heparanase-LPL-VEGFs "ensemble" cooperates, and its dysfunction in the diabetic heart would be useful in restoring metabolic equilibrium and limiting diabetes-related cardiac damage.
Collapse
Affiliation(s)
- Rui Shang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Nathaniel Lal
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Karanjit Puri
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Pol CJ, Pollak NM, Jurczak MJ, Zacharia E, Karagiannides I, Kyriazis ID, Ntziachristos P, Scerbo DA, Brown BR, Aifantis I, Shulman GI, Goldberg IJ, Drosatos K. Cardiac myocyte KLF5 regulates body weight via alteration of cardiac FGF21. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2125-2137. [PMID: 31029826 PMCID: PMC6614009 DOI: 10.1016/j.bbadis.2019.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 01/22/2023]
Abstract
Cardiac metabolism affects systemic energetic balance. Previously, we showed that Krüppel-like factor (KLF)-5 regulates cardiomyocyte PPARα and fatty acid oxidation-related gene expression in diabetes. We surprisingly found that cardiomyocyte-specific KLF5 knockout mice (αMHC-KLF5-/-) have accelerated diet-induced obesity, associated with increased white adipose tissue (WAT). Alterations in cardiac expression of the mediator complex subunit 13 (Med13) modulates obesity. αMHC-KLF5-/- mice had reduced cardiac Med13 expression likely because KLF5 upregulates Med13 expression in cardiomyocytes. We then investigated potential mechanisms that mediate cross-talk between cardiomyocytes and WAT. High fat diet-fed αMHC-KLF5-/- mice had increased levels of cardiac and plasma FGF21, while food intake, activity, plasma leptin, and natriuretic peptides expression were unchanged. Consistent with studies reporting that FGF21 signaling in WAT decreases sumoylation-driven PPARγ inactivation, αMHC-KLF5-/- mice had less SUMO-PPARγ in WAT. Increased diet-induced obesity found in αMHC-KLF5-/- mice was absent in αMHC-[KLF5-/-;FGF21-/-] double knockout mice, as well as in αMHC-FGF21-/- mice that we generated. Thus, cardiomyocyte-derived FGF21 is a component of pro-adipogenic crosstalk between heart and WAT.
Collapse
Affiliation(s)
- Christine J Pol
- Metabolic Biology Laboratory, Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Department of Pharmacology, Philadelphia, USA
| | - Nina M Pollak
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Michael J Jurczak
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Effimia Zacharia
- Metabolic Biology Laboratory, Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Department of Pharmacology, Philadelphia, USA
| | - Iordanes Karagiannides
- Inflammatory Bowel Disease Center and Neuroendocrine Assay Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ioannis D Kyriazis
- Metabolic Biology Laboratory, Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Department of Pharmacology, Philadelphia, USA
| | - Panagiotis Ntziachristos
- Howard Hughes Medical Institute, Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Diego A Scerbo
- Division of Preventive Medicine and Nutrition, Columbia University, New York, NY 10032, USA
| | - Brett R Brown
- Metabolic Biology Laboratory, Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Department of Pharmacology, Philadelphia, USA
| | - Iannis Aifantis
- Howard Hughes Medical Institute, Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Gerald I Shulman
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ira J Goldberg
- Division of Preventive Medicine and Nutrition, Columbia University, New York, NY 10032, USA
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Department of Pharmacology, Philadelphia, USA.
| |
Collapse
|
14
|
Pollak NM, Hoffman M, Goldberg IJ, Drosatos K. Krüppel-like factors: Crippling and un-crippling metabolic pathways. JACC Basic Transl Sci 2018; 3:132-156. [PMID: 29876529 PMCID: PMC5985828 DOI: 10.1016/j.jacbts.2017.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors that regulate various pathways that control metabolism and other cellular mechanisms. Various KLF isoforms have been associated with cellular, organ or systemic metabolism. Altered expression or activation of KLFs has been linked to metabolic abnormalities, such as obesity and diabetes, as well as with heart failure. In this review article we summarize the metabolic functions of KLFs, as well as the networks of different KLF isoforms that jointly regulate metabolism in health and disease.
Collapse
Affiliation(s)
- Nina M. Pollak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Hoffman
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Abstract
For more than half a century, metabolic perturbations have been explored in the failing myocardium, highlighting a reversion to a more fetal-like metabolic profile (characterized by depressed fatty acid oxidation and concomitant increased reliance on use of glucose). More recently, alterations in ketone body and amino acid/protein metabolism have been described during heart failure, as well as mitochondrial dysfunction and perturbed metabolic signaling (e.g., acetylation, O-GlcNAcylation). Although numerous mechanisms are likely involved, the current review provides recent advances regarding the metabolic origins of heart failure, and their potential contribution toward contractile dysfunction of the heart.
Collapse
|
16
|
Scerbo D, Son NH, Sirwi A, Zeng L, Sas KM, Cifarelli V, Schoiswohl G, Huggins LA, Gumaste N, Hu Y, Pennathur S, Abumrad NA, Kershaw EE, Hussain MM, Susztak K, Goldberg IJ. Kidney triglyceride accumulation in the fasted mouse is dependent upon serum free fatty acids. J Lipid Res 2017; 58:1132-1142. [PMID: 28404638 DOI: 10.1194/jlr.m074427] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/10/2017] [Indexed: 01/13/2023] Open
Abstract
Lipid accumulation is a pathological feature of every type of kidney injury. Despite this striking histological feature, physiological accumulation of lipids in the kidney is poorly understood. We studied whether the accumulation of lipids in the fasted kidney are derived from lipoproteins or NEFAs. With overnight fasting, kidneys accumulated triglyceride, but had reduced levels of ceramide and glycosphingolipid species. Fasting led to a nearly 5-fold increase in kidney uptake of plasma [14C]oleic acid. Increasing circulating NEFAs using a β adrenergic receptor agonist caused a 15-fold greater accumulation of lipid in the kidney, while mice with reduced NEFAs due to adipose tissue deficiency of adipose triglyceride lipase had reduced triglycerides. Cluster of differentiation (Cd)36 mRNA increased 2-fold, and angiopoietin-like 4 (Angptl4), an LPL inhibitor, increased 10-fold. Fasting-induced kidney lipid accumulation was not affected by inhibition of LPL with poloxamer 407 or by use of mice with induced genetic LPL deletion. Despite the increase in CD36 expression with fasting, genetic loss of CD36 did not alter fatty acid uptake or triglyceride accumulation. Our data demonstrate that fasting-induced triglyceride accumulation in the kidney correlates with the plasma concentrations of NEFAs, but is not due to uptake of lipoprotein lipids and does not involve the fatty acid transporter, CD36.
Collapse
Affiliation(s)
- Diego Scerbo
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY.,Institute of Human Nutrition, Columbia University, New York, NY
| | - Ni-Huiping Son
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY
| | - Alaa Sirwi
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY
| | - Lixia Zeng
- Division of Nephrology, University of Michigan, Ann Arbor, MI
| | - Kelli M Sas
- Division of Nephrology, University of Michigan, Ann Arbor, MI
| | | | - Gabriele Schoiswohl
- Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA.,Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Lesley-Ann Huggins
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY
| | - Namrata Gumaste
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY
| | - Yunying Hu
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY
| | | | - Nada A Abumrad
- Department of Medicine, Washington University, St. Louis, MO
| | - Erin E Kershaw
- Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA
| | - M Mahmood Hussain
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY
| | - Katalin Susztak
- Division of Renal Electrolyte and Hypertension, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY
| |
Collapse
|
17
|
Evans RD, Hauton D. The role of triacylglycerol in cardiac energy provision. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1481-91. [DOI: 10.1016/j.bbalip.2016.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 02/07/2023]
|
18
|
Gordts PLSM, Nock R, Son NH, Ramms B, Lew I, Gonzales JC, Thacker BE, Basu D, Lee RG, Mullick AE, Graham MJ, Goldberg IJ, Crooke RM, Witztum JL, Esko JD. ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors. J Clin Invest 2016; 126:2855-66. [PMID: 27400128 DOI: 10.1172/jci86610] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/12/2016] [Indexed: 02/05/2023] Open
Abstract
Hypertriglyceridemia is an independent risk factor for cardiovascular disease, and plasma triglycerides (TGs) correlate strongly with plasma apolipoprotein C-III (ApoC-III) levels. Antisense oligonucleotides (ASOs) for ApoC-III reduce plasma TGs in primates and mice, but the underlying mechanism of action remains controversial. We determined that a murine-specific ApoC-III-targeting ASO reduces fasting TG levels through a mechanism that is dependent on low-density lipoprotein receptors (LDLRs) and LDLR-related protein 1 (LRP1). ApoC-III ASO treatment lowered plasma TGs in mice lacking lipoprotein lipase (LPL), hepatic heparan sulfate proteoglycan (HSPG) receptors, LDLR, or LRP1 and in animals with combined deletion of the genes encoding HSPG receptors and LDLRs or LRP1. However, the ApoC-III ASO did not lower TG levels in mice lacking both LDLR and LRP1. LDLR and LRP1 were also required for ApoC-III ASO-induced reduction of plasma TGs in mice fed a high-fat diet, in postprandial clearance studies, and when ApoC-III-rich or ApoC-III-depleted lipoproteins were injected into mice. ASO reduction of ApoC-III had no effect on VLDL secretion, heparin-induced TG reduction, or uptake of lipids into heart and skeletal muscle. Our data indicate that ApoC-III inhibits turnover of TG-rich lipoproteins primarily through a hepatic clearance mechanism mediated by the LDLR/LRP1 axis.
Collapse
|
19
|
Shankar K, Singh SK, Kumar D, Varshney S, Gupta A, Rajan S, Srivastava A, Beg M, Srivastava AK, Kanojiya S, Mishra DK, Gaikwad AN. Cucumis melo ssp. Agrestis var. Agrestis Ameliorates High Fat Diet Induced Dyslipidemia in Syrian Golden Hamsters and Inhibits Adipogenesis in 3T3-L1 Adipocytes. Pharmacogn Mag 2016; 11:S501-10. [PMID: 27013786 PMCID: PMC4787080 DOI: 10.4103/0973-1296.172945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background: Cucumis melo ssp. agrestis var. agrestis (CMA) is a wild variety of C. melo. This study aimed to explore anti-dyslipidemic and anti-adipogenic potential of CMA. Materials and Methods: For initial anti-dyslipidemic and antihyperglycemic potential of CMA fruit extract (CMFE), male Syrian golden hamsters were fed a chow or high-fat diet with or without CMFE (100 mg/kg). Further, we did fractionation of this CMFE into two fractions namely; CMA water fraction (CMWF) and CMA hexane fraction (CMHF). Phytochemical screening was done with liquid chromatography-mass spectrometry LC- (MS)/MS and direct analysis in real time-MS to detect active compounds in the fractions. Further, high-fat diet fed dyslipidemic hamsters were treated with CMWF and CMHF at 50 mg/kg for 7 days. Results: Oral administration of CMFE and both fractions (CMWF and CMHF) reduced the total cholesterol, triglycerides, low‐density lipoprotein cholesterol, and very low‐density lipoprotein-cholesterol levels in high fat diet-fed dyslipidemic hamsters. CMHF also modulated expression of genes involved in lipogenesis, lipid metabolism, and reverse cholesterol transport. Standard biochemical diagnostic tests suggested that neither of fractions causes any toxicity to hamster liver or kidneys. CMFE and CMHF also decreased oil-red-O accumulation in 3T3-L1 adipocytes. Conclusion: Based on these results, it is concluded that CMA possesses anti-dyslipidemic and anti-hyperglycemic activity along with the anti-adipogenic activity. SUMMARY The oral administration of Cucumis melo agrestis fruit extract (CMFE) and its fractions (CMWF and CMHF) improved serum lipid profile in HFD fed dyslipidemic hamsters. CMFE, CMWF and CMHF significantly attenuated body weight gain and eWAT hypertrophy. The CMHF decreased lipogenesis in both liver and adipose tissue. CMFE and CMHF also inhibited adipogenesis in 3T3-L1 adipocytes.
Abbreviation used: CMA: Cucumis melo ssp. agrestis var. agrestis, CMFE: CMA fruit extract, CMWF: CMA water fraction, CMHF: CMA hexane fraction, FAS: Fatty acid synthase, SREBP1c: Sterol regulatory element binding protein 1c, ACC: Acetyl CoA carboxylase, LXR α: Liver X receptor α.
Collapse
Affiliation(s)
- Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sumit K Singh
- Division of Botany, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Ankita Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Muheeb Beg
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | | | - Sanjeev Kanojiya
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Dipak K Mishra
- Division of Botany, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Anil N Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
20
|
Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, Gropler RJ, Holzhuetter HG, Kizer JR, Lewandowski ED, Malloy CR, Neubauer S, Peterson LR, Portman MA, Recchia FA, Van Eyk JE, Wang TJ. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1659-701. [PMID: 27012580 DOI: 10.1161/res.0000000000000097] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart's needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on "Assessing Cardiac Metabolism" seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity.
Collapse
|
21
|
Chiu APL, Wan A, Rodrigues B. Cardiomyocyte-endothelial cell control of lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1434-41. [PMID: 26995461 DOI: 10.1016/j.bbalip.2016.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/17/2023]
Abstract
In people with diabetes, inadequate pharmaceutical management predisposes the patient to heart failure, which is the leading cause of diabetes related death. One instigator for this cardiac dysfunction is change in fuel utilization by the heart. Thus, following diabetes, when cardiac glucose utilization is impaired, the heart undergoes metabolic transformation wherein it switches to using fats as an exclusive source of energy. Although this switching is geared to help the heart initially, in the long term, this has detrimental effects on cardiac function. These include the generation of noxious byproducts, which damage the cardiomyocytes, and ultimately result in increased morbidity and mortality. A key perpetrator that may be responsible for organizing this metabolic disequilibrium is lipoprotein lipase (LPL), the enzyme responsible for providing fat to the hearts. Either exaggeration or reduction in its activity following diabetes could lead to heart dysfunction. Given the disturbing news that diabetes is rampant across the globe, gaining more insight into the mechanism(s) by which cardiac LPL is regulated may assist other researchers in devising new therapeutic strategies to restore metabolic equilibrium, to help prevent or delay heart disease seen during diabetes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Andrea Wan
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brian Rodrigues
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
22
|
Chiu APL, Wan A, Lal N, Zhang D, Wang F, Vlodavsky I, Hussein B, Rodrigues B. Cardiomyocyte VEGF Regulates Endothelial Cell GPIHBP1 to Relocate Lipoprotein Lipase to the Coronary Lumen During Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2016; 36:145-55. [DOI: 10.1161/atvbaha.115.306774] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023]
Abstract
Objective—
Lipoprotein lipase (LPL)–mediated triglyceride hydrolysis is the major source of fatty acid for cardiac energy. LPL, synthesized in cardiomyocytes, is translocated across endothelial cells (EC) by its transporter glycosylphosphatidylinositol-anchored high-density lipoprotein–binding protein 1 (GPIHBP1). Previously, we have reported an augmentation in coronary LPL, which was linked to an increased expression of GPIHBP1 following moderate diabetes mellitus. We examined the potential mechanism by which hyperglycemia amplifies GPIHBP1.
Approach and Results—
Exposure of rat aortic EC to high glucose induced GPIHBP1 expression and amplified LPL shuttling across these cells. This effect coincided with an elevated secretion of heparanase. Incubation of EC with high glucose or latent heparanase resulted in secretion of vascular endothelial growth factor (VEGF). Primary cardiomyocytes, being a rich source of VEGF, when cocultured with EC, restored EC GPIHBP1 that is lost because of cell passaging. Furthermore, recombinant VEGF induced EC GPIHBP1 mRNA and protein expression within 24 hours, an effect that could be prevented by a VEGF neutralizing antibody. This VEGF-induced increase in GPIHBP1 was through Notch signaling that encompassed Delta-like ligand 4 augmentation and nuclear translocation of the Notch intracellular domain. Finally, cardiomyocytes from severely diabetic animals exhibiting attenuation of VEGF were unable to increase EC GPIHBP1 expression and had lower LPL activity at the vascular lumen in perfused hearts.
Conclusion—
EC, as the first responders to hyperglycemia, can release heparanase to liberate myocyte VEGF. This growth factor, by activating EC Notch signaling, is responsible for facilitating GPIHBP1-mediated translocation of LPL across EC and regulating LPL-derived fatty acid delivery to the cardiomyocytes.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Andrea Wan
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Nathaniel Lal
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Dahai Zhang
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Fulong Wang
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Israel Vlodavsky
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Bahira Hussein
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Brian Rodrigues
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| |
Collapse
|
23
|
Abdurrachim D, Luiken JJFP, Nicolay K, Glatz JFC, Prompers JJ, Nabben M. Good and bad consequences of altered fatty acid metabolism in heart failure: evidence from mouse models. Cardiovasc Res 2015; 106:194-205. [PMID: 25765936 DOI: 10.1093/cvr/cvv105] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/18/2015] [Indexed: 12/25/2022] Open
Abstract
The shift in substrate preference away from fatty acid oxidation (FAO) towards increased glucose utilization in heart failure has long been interpreted as an oxygen-sparing mechanism. Inhibition of FAO has therefore evolved as an accepted approach to treat heart failure. However, recent data indicate that increased reliance on glucose might be detrimental rather than beneficial for the failing heart. This review discusses new insights into metabolic adaptations in heart failure. A particular focus lies on data obtained from mouse models with modulations of cardiac FA metabolism at different levels of the FA metabolic pathway and how these differently affect cardiac function. Based on studies in which these mouse models were exposed to ischaemic and non-ischaemic heart failure, we discuss whether and when modulations in FA metabolism are protective against heart failure.
Collapse
Affiliation(s)
- Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands
| | - Joost J F P Luiken
- Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands
| | - Jan F C Glatz
- Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands
| | - Miranda Nabben
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
24
|
Intrinsic and extrinsic regulation of cardiac lipoprotein lipase following diabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:163-71. [PMID: 25463481 DOI: 10.1016/j.bbalip.2014.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
Cardiac lipoprotein lipase (LPL) is a pivotal enzyme controlling heart metabolism by providing the majority of fatty acids required by this organ. From activation in cardiomyocytes to secretion to the vascular lumen, cardiac LPL is regulated by multiple pathways, which are altered during diabetes. Hence, dimerization/activation of LPL is modified following diabetes, a process controlled by lipase maturation factor 1. The role of AMP-activated protein kinase, protein kinase D, and heparan sulfate proteoglycans, intrinsic factors that regulate the intracellular transport of LPL is also shifted, and is discussed. More recent studies have identified several exogenous factors released from endothelial cells (EC) and adipose tissue that are required for proper functioning of LPL. In response to hyperglycemia, both active and latent heparanase are released from EC to facilitate LPL secretion. Diabetes also increased the expression of glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) in EC, which mediates the transport of LPL across EC. Angiopoietin-like protein 4 secreted from the adipose tissue has the potential to reduce coronary LPL activity. Knowledge of these intrinsic and extrinsic factors could be used develop therapeutic targets to normalize LPL function, and maintain cardiac energy homeostasis after diabetes.
Collapse
|
25
|
Werfel S, Jungmann A, Lehmann L, Ksienzyk J, Bekeredjian R, Kaya Z, Leuchs B, Nordheim A, Backs J, Engelhardt S, Katus HA, Müller OJ. Rapid and highly efficient inducible cardiac gene knockout in adult mice using AAV-mediated expression of Cre recombinase. Cardiovasc Res 2014; 104:15-23. [PMID: 25082846 DOI: 10.1093/cvr/cvu174] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Inducible gene targeting in mice using the Cre/LoxP system has become a valuable tool to analyse the roles of specific genes in the adult heart. However, the commonly used Myh6-MerCreMer system requires time-consuming breeding schedules and is potentially associated with cardiac side effects, which may result in transient cardiac dysfunction. The aim of our study was to establish a rapid and simple system for cardiac gene inactivation in conditional knockout mice by gene transfer of a Cre recombinase gene using adeno-associated viral vectors of serotype 9 (AAV9). METHODS AND RESULTS AAV9 vectors expressing Cre under the control of a human cardiac troponin T promoter (AAV-TnT-Cre) enabled a highly efficient Cre/LoxP switching in cardiomyocytes 2 weeks after injection into 5- to 6-week-old ROSA26-LacZ reporter mice. Recombination efficiency was at least as high as observed with the Myh6-MerCreMer system. No adverse side effects were detected upon application of AAV-TnT-Cre. As proof of principle, we studied AAV-TnT-Cre in a conditional knockout model (Srf-flex1 mice) to deplete the myocardium of the transcription factor serum response factor (SRF). Four weeks after AAV-TnT-Cre injection, a strong decrease in the cardiac expression of SRF mRNA and protein was observed. Furthermore, mice developed a severe cardiac dysfunction with increased interstitial fibrosis in accordance with the central role of SRF for the expression of contractile and calcium trafficking proteins in the heart. CONCLUSIONS AAV9-mediated expression of Cre is a promising approach for rapid and efficient conditional cardiac gene knockout in adult mice.
Collapse
Affiliation(s)
- Stanislas Werfel
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany Institute for Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Andreas Jungmann
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Lorenz Lehmann
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Jan Ksienzyk
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Raffi Bekeredjian
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Ziya Kaya
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Barbara Leuchs
- Applied Tumorvirology, German Cancer Research Center, Heidelberg, Germany
| | - Alfred Nordheim
- Interfaculty Institute for Cell Biology, Department of Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Johannes Backs
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Stefan Engelhardt
- Institute for Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hugo A Katus
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| |
Collapse
|
26
|
Trent CM, Yu S, Hu Y, Skoller N, Huggins LA, Homma S, Goldberg IJ. Lipoprotein lipase activity is required for cardiac lipid droplet production. J Lipid Res 2014; 55:645-58. [PMID: 24493834 PMCID: PMC3966699 DOI: 10.1194/jlr.m043471] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rodent heart accumulates TGs and lipid droplets during fasting. The sources of heart lipids could be either FFAs liberated from adipose tissue or FAs from lipoprotein-associated TGs via the action of lipoprotein lipase (LpL). Because circulating levels of FFAs increase during fasting, it has been assumed that albumin transported FFAs are the source of lipids within heart lipid droplets. We studied mice with three genetic mutations: peroxisomal proliferator-activated receptor α deficiency, cluster of differentiation 36 (CD36) deficiency, and heart-specific LpL deletion. All three genetically altered groups of mice had defective accumulation of lipid droplet TGs. Moreover, hearts from mice treated with poloxamer 407, an inhibitor of lipoprotein TG lipolysis, also failed to accumulate TGs, despite increased uptake of FFAs. TG storage did not impair maximal cardiac function as measured by stress echocardiography. Thus, LpL hydrolysis of circulating lipoproteins is required for the accumulation of lipids in the heart of fasting mice.
Collapse
Affiliation(s)
- Chad M Trent
- Division of Preventive Medicine and Nutrition, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | | | | | | | | | | | | |
Collapse
|
27
|
Taegtmeyer H, Beauloye C, Harmancey R, Hue L. Insulin resistance protects the heart from fuel overload in dysregulated metabolic states. Am J Physiol Heart Circ Physiol 2013; 305:H1693-7. [PMID: 24097426 DOI: 10.1152/ajpheart.00854.2012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Reversing impaired insulin sensitivity has been suggested as treatment for heart failure. However, recent clinical evidence suggests the opposite. Here we present a line of reasoning in support of the hypothesis that insulin resistance protects the heart from the consequences of fuel overload in the dysregulated metabolic state of obesity and diabetes. We discuss pathways of myocardial fuel toxicity, as well as several layers of defense against fuel overload. Our reassessment of the literature suggests that in the heart, insulin-sensitizing agents result in an elimination of some of the defenses, leading to cytotoxic damage. In contrast, a normalization of fuel supply should either prevent or reverse the process. Taken together, we offer a new perspective on insulin resistance of the heart.
Collapse
Affiliation(s)
- Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, The University of Texas School of Medicine at Houston, Houston, Texas
| | | | | | | |
Collapse
|
28
|
Hall ME, Smith G, Hall JE, Stec DE. Cardiomyocyte-specific deletion of leptin receptors causes lethal heart failure in Cre-recombinase-mediated cardiotoxicity. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1241-50. [PMID: 23115124 DOI: 10.1152/ajpregu.00292.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although disruption of leptin signaling is associated with obesity as well as cardiac lipid accumulation and dysfunction, it has been difficult to separate the direct effects of leptin on the heart from those associated with the effects of leptin on body weight and fat mass. Using Cre-loxP recombinase technology, we developed tamoxifen-inducible, cardiomyocyte-specific leptin receptor-deficient mice to assess the role of leptin in regulating cardiac function. Cre recombinase activation in the heart resulted in transient reduction in left ventricular systolic function which recovered to normal levels by day 10. However, when cardiomyocyte leptin receptors were deleted in the setting of Cre recombinase-induced left ventricular dysfunction, irreversible lethal heart failure was observed in less than 10 days in all mice. Heart failure after leptin receptor deletion was associated with marked decreases of cardiac mitochondrial ATP, phosphorylated mammalian target of rapamycin (mTOR), and AMP-activated kinase (pAMPK). Our results demonstrate that specific deletion of cardiomyocyte leptin receptors, in the presence of increased Cre recombinase expression, causes lethal heart failure associated with decreased cardiac energy production. These observations indicate that leptin plays an important role in regulating cardiac function in the setting of cardiac stress caused by Cre-recombinase expression, likely through actions on cardiomyocyte energy metabolism.
Collapse
Affiliation(s)
- Michael E Hall
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | |
Collapse
|
29
|
Kim MS, Wang Y, Rodrigues B. Lipoprotein lipase mediated fatty acid delivery and its impact in diabetic cardiomyopathy. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:800-8. [PMID: 22024251 DOI: 10.1016/j.bbalip.2011.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 09/15/2011] [Accepted: 10/03/2011] [Indexed: 01/29/2023]
Abstract
Although cardiovascular disease is the leading cause of diabetes-related death, its etiology is still not understood. The immediate change that occurs in the diabetic heart is altered energy metabolism where in the presence of impaired glucose uptake, glycolysis, and pyruvate oxidation, the heart switches to exclusively using fatty acids (FA) for energy supply. It does this by rapidly amplifying its lipoprotein lipase (LPL-a key enzyme, which hydrolyzes circulating lipoprotein-triglyceride to release FA) activity at the coronary lumen. An abnormally high capillary LPL could provide excess fats to the heart, leading to a number of metabolic, morphological, and mechanical changes, and eventually to cardiac disease. Unlike the initial response, chronic severe diabetes "turns off" LPL, this is also detrimental to cardiac function. In this review, we describe a number of post-translational mechanisms that influence LPL vesicle formation, actin cytoskeleton rearrangement, and transfer of LPL from cardiomyocytes to the vascular lumen to hydrolyze lipoprotein-triglyceride following diabetes. Appreciating the mechanism of how the heart regulates its LPL following diabetes should allow the identification of novel targets for therapeutic intervention, to prevent heart failure. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.
Collapse
Affiliation(s)
- Min Suk Kim
- Molecular and Cellular Pharmacology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
30
|
Wang Y, Puthanveetil P, Wang F, Kim MS, Abrahani A, Rodrigues B. Severity of diabetes governs vascular lipoprotein lipase by affecting enzyme dimerization and disassembly. Diabetes 2011; 60:2041-50. [PMID: 21646389 PMCID: PMC3142087 DOI: 10.2337/db11-0042] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE In diabetes, when glucose consumption is restricted, the heart adapts to use fatty acid (FA) exclusively. The majority of FA provided to the heart comes from the breakdown of circulating triglyceride (TG), a process catalyzed by lipoprotein lipase (LPL) located at the vascular lumen. The objective of the current study was to determine the mechanisms behind LPL processing and breakdown after moderate and severe diabetes. RESEARCH DESIGN AND METHODS To induce acute hyperglycemia, diazoxide, a selective, ATP-sensitive K(+) channel opener was used. For chronic diabetes, streptozotocin, a β-cell-specific toxin was administered at doses of 55 or 100 mg/kg to generate moderate and severe diabetes, respectively. Cardiac LPL processing into active dimers and breakdown at the vascular lumen was investigated. RESULTS After acute hyperglycemia and moderate diabetes, more LPL is processed into an active dimeric form, which involves the endoplasmic reticulum chaperone calnexin. Severe diabetes results in increased conversion of LPL into inactive monomers at the vascular lumen, a process mediated by FA-induced expression of angiopoietin-like protein 4 (Angptl-4). CONCLUSIONS In acute hyperglycemia and moderate diabetes, exaggerated LPL processing to dimeric, catalytically active enzyme increases coronary LPL, delivering more FA to the heart when glucose utilization is compromised. In severe chronic diabetes, to avoid lipid oversupply, FA-induced expression of Angptl-4 leads to conversion of LPL to inactive monomers at the coronary lumen to impede TG hydrolysis. Results from this study advance our understanding of how diabetes changes coronary LPL, which could contribute to cardiovascular complications seen with this disease.
Collapse
|
31
|
Drager LF, Li J, Shin MK, Reinke C, Aggarwal NR, Jun JC, Bevans-Fonti S, Sztalryd C, O'Byrne SM, Kroupa O, Olivecrona G, Blaner WS, Polotsky VY. Intermittent hypoxia inhibits clearance of triglyceride-rich lipoproteins and inactivates adipose lipoprotein lipase in a mouse model of sleep apnoea. Eur Heart J 2011; 33:783-90. [PMID: 21478490 DOI: 10.1093/eurheartj/ehr097] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AIMS Delayed lipoprotein clearance is associated with atherosclerosis. This study examined whether chronic intermittent hypoxia (CIH), a hallmark of obstructive sleep apnoea (OSA), can lead to hyperlipidaemia by inhibiting clearance of triglyceride rich lipoproteins (TRLP). METHODS AND RESULTS Male C57BL/6J mice on high-cholesterol diet were exposed to 4 weeks of CIH or chronic intermittent air (control). FIO(2) was decreased to 6.5% once per minute during the 12 h light phase in the CIH group. After the exposure, we measured fasting lipid profile. TRLP clearance was assessed by oral gavage of retinyl palmitate followed by serum retinyl esters (REs) measurements at 0, 1, 2, 4, 10, and 24 h. Activity of lipoprotein lipase (LpL), a key enzyme of lipoprotein clearance, and levels of angiopoietin-like protein 4 (Angptl4), a potent inhibitor of the LpL activity, were determined in the epididymal fat pads, skeletal muscles, and heart. Chronic intermittent hypoxia induced significant increases in levels of total cholesterol and triglycerides, which occurred in TRLP and LDL fractions (P< 0.05 for each comparison). Compared with control mice, animals exposed to CIH showed increases in REs throughout first 10 h after oral gavage of retinyl palmitate (P< 0.05), indicating that CIH inhibited TRLP clearance. CIH induced a >5-fold decrease in LpL activity (P< 0.01) and an 80% increase in Angptl4 mRNA and protein levels in the epididymal fat, but not in the skeletal muscle or heart. CONCLUSIONS CIH decreases TRLP clearance and inhibits LpL activity in adipose tissue, which may contribute to atherogenesis observed in OSA.
Collapse
Affiliation(s)
- Luciano F Drager
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bharadwaj KG, Hiyama Y, Hu Y, Huggins LA, Ramakrishnan R, Abumrad NA, Shulman GI, Blaner WS, Goldberg IJ. Chylomicron- and VLDL-derived lipids enter the heart through different pathways: in vivo evidence for receptor- and non-receptor-mediated fatty acid uptake. J Biol Chem 2010; 285:37976-86. [PMID: 20852327 DOI: 10.1074/jbc.m110.174458] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipids circulate in the blood in association with plasma lipoproteins and enter the tissues either after hydrolysis or as non-hydrolyzable lipid esters. We studied cardiac lipids, lipoprotein lipid uptake, and gene expression in heart-specific lipoprotein lipase (LpL) knock-out (hLpL0), CD36 knock-out (Cd36(-/-)), and double knock-out (hLpL0/Cd36(-/-)-DKO) mice. Loss of either LpL or CD36 led to a significant reduction in heart total fatty acyl-CoA (control, 99.5 ± 3.8; hLpL0, 36.2 ± 3.5; Cd36(-/-), 57.7 ± 5.5 nmol/g, p < 0.05) and an additive effect was observed in the DKO (20.2 ± 1.4 nmol/g, p < 0.05). Myocardial VLDL-triglyceride (TG) uptake was reduced in the hLpL0 (31 ± 6%) and Cd36(-/-) (47 ± 4%) mice with an additive reduction in the DKO (64 ± 5%) compared with control. However, LpL but not CD36 deficiency decreased VLDL-cholesteryl ester uptake. Endogenously labeled mouse chylomicrons were produced by tamoxifen treatment of β-actin-MerCreMer/LpL(flox/flox) mice. Induced loss of LpL increased TG levels >10-fold and reduced HDL by >50%. After injection of these labeled chylomicrons in the different mice, chylomicron TG uptake was reduced by ∼70% and retinyl ester by ∼50% in hLpL0 hearts. Loss of CD36 did not alter either chylomicron TG or retinyl ester uptake. LpL loss did not affect uptake of remnant lipoproteins from ApoE knock-out mice. Our data are consistent with two pathways for fatty acid uptake; a CD36 process for VLDL-derived fatty acid and a non-CD36 process for chylomicron-derived fatty acid uptake. In addition, our data show that lipolysis is involved in uptake of core lipids from TG-rich lipoproteins.
Collapse
Affiliation(s)
- Kalyani G Bharadwaj
- Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Lipoprotein lipase (LPL) is a multifunctional enzyme produced by many tissues, including adipose tissue, cardiac and skeletal muscle, islets, and macrophages. LPL is the rate-limiting enzyme for the hydrolysis of the triglyceride (TG) core of circulating TG-rich lipoproteins, chylomicrons, and very low-density lipoproteins (VLDL). LPL-catalyzed reaction products, fatty acids, and monoacylglycerol are in part taken up by the tissues locally and processed differentially; e.g., they are stored as neutral lipids in adipose tissue, oxidized, or stored in skeletal and cardiac muscle or as cholesteryl ester and TG in macrophages. LPL is regulated at transcriptional, posttranscriptional, and posttranslational levels in a tissue-specific manner. Nutrient states and hormonal levels all have divergent effects on the regulation of LPL, and a variety of proteins that interact with LPL to regulate its tissue-specific activity have also been identified. To examine this divergent regulation further, transgenic and knockout murine models of tissue-specific LPL expression have been developed. Mice with overexpression of LPL in skeletal muscle accumulate TG in muscle, develop insulin resistance, are protected from excessive weight gain, and increase their metabolic rate in the cold. Mice with LPL deletion in skeletal muscle have reduced TG accumulation and increased insulin action on glucose transport in muscle. Ultimately, this leads to increased lipid partitioning to other tissues, insulin resistance, and obesity. Mice with LPL deletion in the heart develop hypertriglyceridemia and cardiac dysfunction. The fact that the heart depends increasingly on glucose implies that free fatty acids are not a sufficient fuel for optimal cardiac function. Overall, LPL is a fascinating enzyme that contributes in a pronounced way to normal lipoprotein metabolism, tissue-specific substrate delivery and utilization, and the many aspects of obesity and other metabolic disorders that relate to energy balance, insulin action, and body weight regulation.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | |
Collapse
|
34
|
Noh HL, Hu Y, Park TS, DiCioccio T, Nichols AJ, Okajima K, Homma S, Goldberg IJ. Regulation of plasma fructose and mortality in mice by the aldose reductase inhibitor lidorestat. J Pharmacol Exp Ther 2008; 328:496-503. [PMID: 18974362 DOI: 10.1124/jpet.108.136283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aldose reductase (AR), an enzyme widely believed to be involved in the aberrant metabolism of glucose and development of diabetic complications, is expressed at low levels in the mouse. We studied whether expression of human AR (hAR), its inhibition with lidorestat, which is an AR inhibitor (ARI), and the presence of streptozotocin (STZ)-induced diabetes altered plasma fructose, mortality, and/or vascular lesions in low-density lipoprotein (LDL) receptor-deficient [Ldlr(-/-)] mice. Mice were made diabetic at 12 weeks of age with low-dose STZ treatment. Four weeks later, the diabetic animals (glucose > 20 mM) were blindly assigned to a 0.15% cholesterol diet with or without ARI. After 4 and 6 weeks, there were no significant differences in body weights or plasma cholesterol, triglyceride, and glucose levels between the groups. Diabetic Ldlr(-/-) mice receiving ARI had plasma fructose levels of 5.2 +/- 2.3 microg/ml; placebo-treated mice had plasma fructose levels of 12.08 +/- 7.4 microg/ml, p < 0.01, despite the induction of fructose-metabolizing enzymes, fructose kinase and adolase B. After 6 weeks, hAR/Ldlr(-/-) mice on the placebo-containing diet had greater mortality (31%, n = 9/26 versus 6%, n = 1/21, p < 0.05). The mortality rate in the ARI-treated group was similar to that in non-hAR-expressing mice. Therefore, diabetic hAR-expressing mice had increased fructose and greater mortality that was corrected by inclusion of lidorestat, an ARI, in the diet. If similar effects are found in humans, such treatment could improve clinical outcome in diabetic patients.
Collapse
Affiliation(s)
- Hye-Lim Noh
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res 2008; 50:3-21. [PMID: 18952573 DOI: 10.1194/jlr.r800031-jlr200] [Citation(s) in RCA: 405] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Fatty acids (FAs) are essential components of all lipid classes and pivotal substrates for energy production in all vertebrates. Additionally, they act directly or indirectly as signaling molecules and, when bonded to amino acid side chains of peptides, anchor proteins in biological membranes. In vertebrates, FAs are predominantly stored in the form of triacylglycerol (TG) within lipid droplets of white adipose tissue. Lipid droplet-associated TGs are also found in most nonadipose tissues, including liver, cardiac muscle, and skeletal muscle. The mobilization of FAs from all fat depots depends on the activity of TG hydrolases. Currently, three enzymes are known to hydrolyze TG, the well-studied hormone-sensitive lipase (HSL) and monoglyceride lipase (MGL), discovered more than 40 years ago, as well as the relatively recently identified adipose triglyceride lipase (ATGL). The phenotype of HSL- and ATGL-deficient mice, as well as the disease pattern of patients with defective ATGL activity (due to mutation in ATGL or in the enzyme's activator, CGI-58), suggest that the consecutive action of ATGL, HSL, and MGL is responsible for the complete hydrolysis of a TG molecule. The complex regulation of these enzymes by numerous, partially uncharacterized effectors creates the "lipolysome," a complex metabolic network that contributes to the control of lipid and energy homeostasis. This review focuses on the structure, function, and regulation of lipolytic enzymes with a special emphasis on ATGL.
Collapse
Affiliation(s)
- Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Austria.
| | | | | | | | | |
Collapse
|
36
|
Mechanism of reduced myocardial glucose utilization during acute hypertriglyceridemia in rats. Mol Imaging Biol 2008; 11:6-14. [PMID: 18769973 DOI: 10.1007/s11307-008-0171-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 05/21/2008] [Accepted: 05/23/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE The purpose of the research is to study the effect of acute inhibition of intravascular lipolysis on myocardial substrate selection during hypertriglyceridemia using in vivo radiotracer analysis and positron emission tomography. PROCEDURES We induced acute hypertriglyceridemia in vivo using an intravenous infusion of Intralipid 20% (IL) without and with acute inhibition of fatty acid delivery from circulating triglycerides with injection of Triton WR-1339 (TRI) during a euglycemic-hyperinsulinemic clamp in Wistar rats. We determined the effect of TRI on myocardial uptake of circulating triglycerides and free fatty acids using intravenous injection of [(3)H]-triolein and [(14)C]-bromopalmitate, respectively. Myocardial blood flow, oxidative metabolism, and metabolic rate of glucose (MMRG) were determined using micro-positron emission tomography (microPET) with [(13)N]-ammonia, [(11)C]-acetate, and 2-deoxy-2-[F-18]fluoro-D: -glucose (FDG). RESULTS TRI reduced myocardial incorporation of [(3)H]-triolein but not [(14)C]-bromopalmitate showing that it selectively reduces myocardial fatty acid delivery from circulating triglycerides but not from free fatty acids. IL reduced myocardial blood flow and MMRG by 37% and 56%, respectively, but did not affect myocardial oxidative metabolism. TRI did not abolish the effect of IL on myocardial blood flow and MMRG. CONCLUSIONS Hypertriglyceridemia acutely reduces myocardial blood flow and MMRG in rats, but this effect is not explained by increased myocardial fatty acid delivery through intravascular triglyceride lipolysis.
Collapse
|
37
|
Evans R, Niu Y. Hypolipidaemic effects of high-dose insulin therapy. Br J Anaesth 2008; 100:429-33. [DOI: 10.1093/bja/aen027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
38
|
Lee J, Goldberg IJ. Lipoprotein lipase-derived fatty acids: Physiology and dysfunction. Curr Hypertens Rep 2008; 9:462-6. [DOI: 10.1007/s11906-007-0085-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Noh HL, Yamashita H, Goldberg IJ. Cardiac Metabolism and Mechanics are Altered by Genetic Loss of Lipoprotein Triglyceride Lipolysis. Cardiovasc Drugs Ther 2006; 20:441-4. [PMID: 17139480 DOI: 10.1007/s10557-006-0633-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Most circulating fatty acids are contained in lipoprotein triglycerides. For the heart to acquire these lipids, they must be broken down into free fatty acids via the enzyme lipoprotein lipase (LpL). Although it has long been known that hearts primarily use esterified fatty acids as fuel, different sources of fatty acids were thought to be interchangeable. MATERIALS AND METHODS By creating mice with neonatal and acute LpL deletion we showed that lipoprotein-derived fatty acids could not be replaced by albumin-associated free fatty acids. Loss of cardiac LpL forces the heart to increase its uptake of glucose, reduce fatty acid oxidation, and eventually leads to cardiac dysfunction. In contrast, cardiomyocyte specific overexpression of an anchored form of LpL leads to excess lipid uptake, induction of fatty acid oxidation genes, and dilated cardiomyopathy. CONCLUSION Increasing lipid secretion from the heart or redirecting lipids to adipose tissue can alleviate this lipotoxic situation.
Collapse
Affiliation(s)
- Hye-Lim Noh
- Division of Preventive Medicine and Nutrition, Columbia University College of Physicians & Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|