1
|
Sadri M, Hirosawa N, Le J, Romero H, Martellucci S, Kwon HJ, Pizzo D, Ohtori S, Gonias SL, Campana WM. Tumor necrosis factor receptor-1 is selectively sequestered into Schwann cell extracellular vesicles where it functions as a TNFα decoy. Glia 2022; 70:256-272. [PMID: 34559433 PMCID: PMC10656730 DOI: 10.1002/glia.24098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
Schwann cells (SCs) are known to produce extracellular vesicles (EV) that participate in cell-cell communication by transferring cargo to target cells, including mRNAs, microRNAs, and biologically active proteins. Herein, we report a novel mechanism whereby SC EVs may regulate PNS physiology, especially in injury, by controlling the activity of TNFα. SCs actively sequester tumor necrosis factor receptor-1 (TNFR1) into EVs at high density, accounting for about 2% of the total protein in SC EVs (~1000 copies TNFR1/EV). Although TNFR2 was robustly expressed by SCs in culture, TNFR2 was excluded from SC EVs. SC EV TNFR1 bound TNFα, decreasing the concentration of free TNFα available to bind to cells and thus served as a TNFα decoy. SC EV TNFR1 significantly inhibited TNFα-induced p38 MAPK phosphorylation in cultured SCs. When TNFR1 was proteolytically removed from SC EVs using tumor necrosis factor-α converting enzyme (TACE) or neutralized with antibody, the ability of TNFα to activate p38 MAPK in the presence of these EVs was restored. As further evidence of its decoy activity, SC EV TNFR1 modified TNFα activities in vitro including: (1) regulation of expression of other cytokines; (2) effects on SC morphology; and (3) effects on SC viability. SC EVs also modified the effects of TNFα on sciatic nerve morphology and neuropathic pain-related behavior in vivo. By sequestering TNFR1 in EVs, SCs may buffer against the potentially toxic effects of TNFα. SC EVs provide a novel mechanism for the spatial and temporal regulation of neuro-inflammation.
Collapse
Affiliation(s)
- Mahrou Sadri
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Naoya Hirosawa
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
- Department of Orthopaedic Surgery and Graduate School in Medicine, Chiba University, Chiba, Japan
| | - Jasmine Le
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
- Veterans Administration San Diego Healthcare System, San Diego, California, USA
| | - Haylie Romero
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
- Program in Neuroscience, University of California, San Diego, La Jolla, California, USA
| | - Stefano Martellucci
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Hyo Jun Kwon
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Donald Pizzo
- Department of Pathology, University of California, San Diego, California, USA
| | - Seiji Ohtori
- Department of Orthopaedic Surgery and Graduate School in Medicine, Chiba University, Chiba, Japan
| | - Steven L. Gonias
- Department of Pathology, University of California, San Diego, California, USA
| | - Wendy M. Campana
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
- Veterans Administration San Diego Healthcare System, San Diego, California, USA
- Program in Neuroscience, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Jiang X, He M, Bai J, Chan CB, Wong AOL. Signal Transduction for TNFα-Induced Type II SOCS Expression and Its Functional Implication in Growth Hormone Resistance in Carp Hepatocytes. Front Endocrinol (Lausanne) 2020; 11:20. [PMID: 32082258 PMCID: PMC7003395 DOI: 10.3389/fendo.2020.00020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/13/2020] [Indexed: 01/15/2023] Open
Abstract
In mammals, local production of tumor necrosis factor α (TNFα) inhibits growth hormone (GH)-induced IGF-I expression at tissue level and contributes to GH resistance caused by sepsis/endotoxemia and inflammation. Although the loss of GH responsiveness can be mediated by a parallel rise in SOCS expression, the signaling mechanisms for TNFα-induced SOCS expression at the hepatic level have not been characterized and the comparative aspects of the phenomenon, especially in lower vertebrates, are still unknown. Recently, type II SOCS, including SOCS1-3 and CISH, have been cloned in grass carp and shown to act as the feedback repressors for GH signaling via JAK2/STAT5 pathway. To shed light on the mechanisms for TNFα-induced GH resistance in fish model, grass carp TNFα was cloned and confirmed to be a single-copy gene expressed in various tissues including the liver. In carp hepatocytes, incubation with the endotoxin LPS induced TNFα expression with parallel rises in SOCS1-3 and CISH mRNA levels. Similar to LPS, TNFα treatment could block GH-induced IGF-I/-II mRNA expression and elevate SOCS1, SOCS3, and CISH transcript levels. However, TNFα was not effective in altering SOCS2 expression. In parallel experiment, LPS blockade of IGF-I/-II signals caused by GH could be partially reverted by TNFα receptor antagonism. At hepatocyte level, TNFα induction also triggered rapid phosphorylation of IκBα, MEK1/2, ERK1/2, MKK3/6, P38MAPK, Akt, JAK2, and STAT1,3,5, and TNFα-induced SOCS1, SOCS3, and CISH mRNA expression could be negated by inhibiting the IKK/NFκB, MAPK, PI3K/Akt, and JAK/STAT cascades. Our findings, as a whole, suggest that local production of TNFα may interfere with IGF-I/-II induction by GH in the carp liver by up-regulation of SOCS1, SOCS3, and CISH via IKK/NFκB, MAPK, PI3K/Akt, and JAK/STAT-dependent mechanisms, which may contribute to GH resistance induced by endotoxin in carp species.
Collapse
|
3
|
Repression of eEF2K transcription by NF-κB tunes translation elongation to inflammation and dsDNA-sensing. Proc Natl Acad Sci U S A 2019; 116:22583-22590. [PMID: 31636182 DOI: 10.1073/pnas.1909143116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gene expression is rapidly remodeled by infection and inflammation in part via transcription factor NF-κB activation and regulated protein synthesis. While protein synthesis is largely controlled by mRNA translation initiation, whether cellular translation elongation factors are responsive to inflammation and infection remains poorly understood. Here, we reveal a surprising mechanism whereby NF-κB restricts phosphorylation of the critical translation elongation factor eEF2, which catalyzes the protein synthesis translocation step. Upon exposure to NF-κB-activating stimuli, including TNFα, human cytomegalovirus infection, or double-stranded DNA, eEF2 phosphorylation on Thr56, which slows elongation to limit protein synthesis, and the overall abundance of eEF2 kinase (eEF2K) are reduced. Significantly, this reflected a p65 NF-κB subunit-dependent reduction in eEF2K pre-mRNA, indicating that NF-κB activation represses eEF2K transcription to decrease eEF2K protein levels. Finally, we demonstrate that reducing eEF2K abundance regulates protein synthesis in response to a bacterial toxin that inactivates eEF2. This establishes that NF-κB activation by diverse physiological effectors controls eEF2 activity via a transcriptional repression mechanism that reduces eEF2K polypeptide abundance to preclude eEF2 phosphorylation, thereby stimulating translation elongation and protein synthesis. Moreover, it illustrates how nuclear transcription regulation shapes translation elongation factor activity and exposes how eEF2 is integrated into innate immune response networks orchestrated by NF-κB.
Collapse
|
4
|
Brown EL, Foletta VC, Wright CR, Sepulveda PV, Konstantopoulos N, Sanigorski A, Della Gatta P, Cameron-Smith D, Kralli A, Russell AP. PGC-1α and PGC-1β Increase Protein Synthesis via ERRα in C2C12 Myotubes. Front Physiol 2018; 9:1336. [PMID: 30356878 PMCID: PMC6190860 DOI: 10.3389/fphys.2018.01336] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/04/2018] [Indexed: 12/25/2022] Open
Abstract
The transcriptional coactivators peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and PGC-1β are positive regulators of skeletal muscle mass and energy metabolism; however, whether they influence muscle growth and metabolic adaptations via increased protein synthesis is not clear. This study revealed PGC-1α or PGC-1β overexpression in C2C12 myotubes increased protein synthesis and myotube diameter under basal conditions and attenuated the loss in protein synthesis following the treatment with the catabolic agent, dexamethasone. To investigate whether PGC-1α or PGC-1β signal through the Akt/mTOR pathway to increase protein synthesis, treatment with the PI3K and mTOR inhibitors, LY294002 and rapamycin, respectively, was undertaken but found unable to block PGC-1α or PGC-1β’s promotion of protein synthesis. Furthermore, PGC-1α and PGC-1β decreased phosphorylation of Akt and the Akt/mTOR substrate, p70S6K. In contrast to Akt/mTOR inhibition, the suppression of ERRα, a major effector of PGC-1α and PGC-1β activity, attenuated the increase in protein synthesis and myotube diameter in the presence of PGC-1α or PGC-1β overexpression. To characterize further the biological processes occurring, gene set enrichment analysis of genes commonly regulated by both PGC-1α and PGC-1β was performed following a microarray screen. Genes were found enriched in metabolic and mitochondrial oxidative processes, in addition to protein translation and muscle development categories. This suggests concurrent responses involving both increased metabolism and myotube protein synthesis. Finally, based on their known function or unbiased identification through statistical selection, two sets of genes were investigated in a human exercise model of stimulated protein synthesis to characterize further the genes influenced by PGC-1α and PGC-1β during physiological adaptive changes in skeletal muscle.
Collapse
Affiliation(s)
- Erin L Brown
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | - Victoria C Foletta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | - Craig R Wright
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | - Patricio V Sepulveda
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | | | | | - Paul Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | | | - Anastasia Kralli
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| |
Collapse
|
5
|
Sapoznik E, Niu G, Zhou Y, Prim PM, Criswell TL, Soker S. A real-time monitoring platform of myogenesis regulators using double fluorescent labeling. PLoS One 2018; 13:e0192654. [PMID: 29444187 PMCID: PMC5812636 DOI: 10.1371/journal.pone.0192654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/26/2018] [Indexed: 11/18/2022] Open
Abstract
Real-time, quantitative measurement of muscle progenitor cell (myoblast) differentiation is an important tool for skeletal muscle research and identification of drugs that support skeletal muscle regeneration. While most quantitative tools rely on sacrificial approach, we developed a double fluorescent tagging approach, which allows for dynamic monitoring of myoblast differentiation through assessment of fusion index and nuclei count. Fluorescent tagging of both the cell cytoplasm and nucleus enables monitoring of cell fusion and the formation of new myotube fibers, similar to immunostaining results. This labeling approach allowed monitoring the effects of Myf5 overexpression, TNFα, and Wnt agonist on myoblast differentiation. It also enabled testing the effects of surface coating on the fusion levels of scaffold-seeded myoblasts. The double fluorescent labeling of myoblasts is a promising technique to visualize even minor changes in myogenesis of myoblasts in order to support applications such as tissue engineering and drug screening.
Collapse
Affiliation(s)
- Etai Sapoznik
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
| | - Guoguang Niu
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
| | - Yu Zhou
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
| | - Peter M. Prim
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
| | - Tracy L. Criswell
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
6
|
The individual and combined effects of obesity- and ageing-induced systemic inflammation on human skeletal muscle properties. Int J Obes (Lond) 2016; 41:102-111. [PMID: 27569681 PMCID: PMC5220159 DOI: 10.1038/ijo.2016.151] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 07/01/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023]
Abstract
Background/Objectives: The purpose of this study was to determine whether circulating pro-inflammatory cytokines, elevated with increased fat mass and ageing, were associated with muscle properties in young and older people with variable adiposity. Subjects/Methods: Seventy-five young (18–49 yrs) and 67 older (50–80 yrs) healthy, untrained men and women (BMI: 17–49 kg/m2) performed isometric and isokinetic plantar flexor maximum voluntary contractions (MVCs). Volume (Vm), fascicle pennation angle (FPA), and physiological cross-sectional area (PCSA) of the gastrocnemius medialis (GM) muscle were measured using ultrasonography. Voluntary muscle activation (VA) was assessed using electrical stimulation. GM specific force was calculated as GM fascicle force/PCSA. Percentage body fat (BF%), body fat mass (BFM), and lean mass (BLM) were assessed using dual-energy X-ray absorptiometry. Serum concentration of 12 cytokines was measured using multiplex luminometry. Results: Despite greater Vm, FPA, and PCSA (P<0.05), young individuals with BF% ⩾40 exhibited 37% less GM specific force compared to young BF%<40 (P<0.05). Older adults with BF% ⩾40 showed greater isokinetic MVC compared to older BF%<40 (P=0.019) but this was reversed when normalised to body mass (P<0.001). IL-6 correlated inversely with VA in young (r=−0.376; P=0.022) but not older adults (p>0.05), while IL-8 correlated with VA in older but not young adults (r⩾0.378, P⩽0.027). TNF-alpha correlated with MVC, lean mass, GM FPA and maximum force in older adults (r⩾0.458; P⩽0.048). Conclusions: The age- and adiposity-dependent relationships found here provide evidence that circulating pro-inflammatory cytokines may play different roles in muscle remodelling according to the age and adiposity of the individual.
Collapse
|
7
|
Peake JM, Markworth JF, Nosaka K, Raastad T, Wadley GD, Coffey VG. Modulating exercise-induced hormesis: Does less equal more? J Appl Physiol (1985) 2015; 119:172-89. [PMID: 25977451 DOI: 10.1152/japplphysiol.01055.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/07/2015] [Indexed: 12/21/2022] Open
Abstract
Hormesis encompasses the notion that low levels of stress stimulate or upregulate existing cellular and molecular pathways that improve the capacity of cells and organisms to withstand greater stress. This notion underlies much of what we know about how exercise conditions the body and induces long-term adaptations. During exercise, the body is exposed to various forms of stress, including thermal, metabolic, hypoxic, oxidative, and mechanical stress. These stressors activate biochemical messengers, which in turn activate various signaling pathways that regulate gene expression and adaptive responses. Historically, antioxidant supplements, nonsteroidal anti-inflammatory drugs, and cryotherapy have been favored to attenuate or counteract exercise-induced oxidative stress and inflammation. However, reactive oxygen species and inflammatory mediators are key signaling molecules in muscle, and such strategies may mitigate adaptations to exercise. Conversely, withholding dietary carbohydrate and restricting muscle blood flow during exercise may augment adaptations to exercise. In this review article, we combine, integrate, and apply knowledge about the fundamental mechanisms of exercise adaptation. We also critically evaluate the rationale for using interventions that target these mechanisms under the overarching concept of hormesis. There is currently insufficient evidence to establish whether these treatments exert dose-dependent effects on muscle adaptation. However, there appears to be some dissociation between the biochemical/molecular effects and functional/performance outcomes of some of these treatments. Although several of these treatments influence common kinases, transcription factors, and proteins, it remains to be determined if these interventions complement or negate each other, and whether such effects are strong enough to influence adaptations to exercise.
Collapse
Affiliation(s)
- Jonathan M Peake
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Centre of Excellence for Applied Sports Science Research, Queensland Academy of Sport, Brisbane, Australia;
| | | | - Kazunori Nosaka
- School of Exercise and Health Sciences, Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup, Australia
| | | | - Glenn D Wadley
- School of Exercise and Nutrition Sciences, Center for Physical Activity and Nutrition Research, Deakin University, Melbourne, Australia
| | - Vernon G Coffey
- School of Exercise and Nutrition Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; and Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| |
Collapse
|
8
|
Wright CR, Brown EL, Ward AC, Russell AP. G-CSF treatment can attenuate dexamethasone-induced reduction in C2C12 myotube protein synthesis. Cytokine 2015; 73:1-7. [PMID: 25689616 DOI: 10.1016/j.cyto.2015.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/27/2023]
Abstract
Granulocyte-colony stimulating factor (G-CSF) has been demonstrated to enhance skeletal muscle recovery following injury and increases muscle function in the context of neuromuscular disease in rodent models. However, understanding of the underlying mechanisms used by G-CSF to mediate these functions remains poor. G-CSF acts on responsive cells through binding to a specific membrane spanning receptor, G-CSFR. Recently identified, the G-CSFR is expressed in myoblasts, myotubes and mature skeletal muscle tissue. Therefore, elucidating the actions of G-CSF in skeletal muscle represents an important prerequisite to consider G-CSF as a therapeutic agent to treat skeletal muscle. Here we show for the first time that treatment with moderate doses (4 and 40ng/ml) of G-CSF attenuates the effects of dexamethasone in reducing protein synthesis in C2C12 myotubes. However, a higher dose (100ng/ml) of G-CSF exacerbates the dexamethasone-induced reduction in protein synthesis. In contrast, G-CSF had no effect on basal or dexamethasone-induced protein degradation, nor did G-CSF influence the phosphorylation of Akt, STAT3, Erk1/2, Src, Lyn and Erk5 in C2C12 myotubes. In conclusion, physiologically relevant doses of G-CSF may attenuate reduced skeletal muscle protein synthesis during catabolic conditions, thereby improving recovery.
Collapse
Affiliation(s)
- Craig R Wright
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Victoria, Australia
| | - Erin L Brown
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Victoria, Australia
| | - Alister C Ward
- Molecular and Medical Research SRC, School of Medicine, Deakin University, Waurn Ponds, 3216 Victoria, Australia
| | - Aaron P Russell
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Victoria, Australia.
| |
Collapse
|
9
|
The orphan nuclear receptor Nur77 is a determinant of myofiber size and muscle mass in mice. Mol Cell Biol 2015; 35:1125-38. [PMID: 25605333 DOI: 10.1128/mcb.00715-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We previously showed that the orphan nuclear receptor Nur77 (Nr4a1) plays an important role in the regulation of glucose homeostasis and oxidative metabolism in skeletal muscle. Here, we show using both gain- and loss-of-function models that Nur77 is also a regulator of muscle growth in mice. Transgenic expression of Nur77 in skeletal muscle in mice led to increases in myofiber size. Conversely, mice with global or muscle-specific deficiency in Nur77 exhibited reduced muscle mass and myofiber size. In contrast to Nur77 deficiency, deletion of the highly related nuclear receptor NOR1 (Nr4a3) had minimal effect on muscle mass and myofiber size. We further show that Nur77 mediates its effects on muscle size by orchestrating transcriptional programs that favor muscle growth, including the induction of insulin-like growth factor 1 (IGF1), as well as concomitant downregulation of growth-inhibitory genes, including myostatin, Fbxo32 (MAFbx), and Trim63 (MuRF1). Nur77-mediated increase in IGF1 led to activation of the Akt-mTOR-S6K cascade and the inhibition of FoxO3a activity. The dependence of Nur77 on IGF1 was recapitulated in primary myoblasts, establishing this as a cell-autonomous effect. Collectively, our findings identify Nur77 as a novel regulator of myofiber size and a potential transcriptional link between cellular metabolism and muscle growth.
Collapse
|
10
|
Markworth JF, Vella LD, Figueiredo VC, Cameron-Smith D. Ibuprofen treatment blunts early translational signaling responses in human skeletal muscle following resistance exercise. J Appl Physiol (1985) 2014; 117:20-8. [PMID: 24833778 DOI: 10.1152/japplphysiol.01299.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cyclooxygenase-1 and -2 pathway-derived prostaglandins (PGs) have been implicated in adaptive muscle responses to exercise, but the role of PGs in contraction-induced muscle signaling has not been determined. We investigated the effect of inhibition of cyclooxygenase-1 and -2 activities with the nonsteroidal anti-inflammatory drug ibuprofen on human muscle signaling responses to resistance exercise. Subjects orally ingested 1,200 mg ibuprofen (or placebo control) in three 400-mg doses administered ∼30 min before and ∼6 h and ∼12 h following a bout of unaccustomed resistance exercise (80% one repetition maximum). Muscle biopsies were obtained at rest (preexercise), immediately postexercise (0 h), 3 h postexercise, and at 24 h of recovery. In the placebo (PLA) group, phosphorylation of ERK1/2 (Thr202/Tyr204), ribosomal protein S6 kinase (RSK, Ser380), mitogen-activated kinase 1 (Mnk1, Thr197/202), and p70S6 kinase (p70S6K, Thr421/Ser424) increased at both 0 and 3 h postexercise, with delayed elevation of phospho (p)-p70S6K (Thr389) and p-rpS6 (Ser235/S36 and Ser240/244) at 3 h postexercise. Only p-ERK1/2 (Thr202/Tyr204) remained significantly elevated in the 24-h postexercise biopsy. Ibuprofen treatment prevented sustained elevation of MEK-ERK signaling at 3 h (p-ERK1/2, p-RSK, p-Mnk1, p-p70S6K Thr421/Ser424) and 24 h (p-ERK1/2) postexercise, and this was associated with suppressed phosphorylation of ribosomal protein S6 (Ser235/236 and Ser240/244). Early contraction-induced p-Akt (Ser473) and p-p70S6K (Thr389) were not influenced by ibuprofen, but p-p70S6K (Thr389) remained elevated 24 h postexercise only in those receiving ibuprofen treatment. Early muscle signaling responses to resistance exercise are, in part, ibuprofen sensitive, suggesting that PGs are important signaling molecules during early postexercise recovery.
Collapse
Affiliation(s)
- James F Markworth
- School of Exercise and Nutrition Science, Deakin University, Melbourne, Victoria, Australia; and Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Luke D Vella
- School of Exercise and Nutrition Science, Deakin University, Melbourne, Victoria, Australia; and
| | | | | |
Collapse
|
11
|
Basic VT, Jacobsen A, Sirsjö A, Abdel-Halim SM. TNF stimulation induces VHL overexpression and impairs angiogenic potential in skeletal muscle myocytes. Int J Mol Med 2014; 34:228-36. [PMID: 24820910 DOI: 10.3892/ijmm.2014.1776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 03/24/2014] [Indexed: 11/06/2022] Open
Abstract
Decreased skeletal muscle capillarization is considered to significantly contribute to the development of pulmonary cachexia syndrome (PCS) and progressive muscle wasting in several chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). It is unclear to which extent the concurrent presence of systemic inflammation contributes to decreased skeletal muscle capillarization under these conditions. The present study was designed to examine in vitro the effects of the pro-inflammatory cytokine, tumor necrosis factor (TNF), on the regulation of hypoxia-angiogenesis signal transduction and capillarization in skeletal muscles. For this purpose, fully differentiated C2C12 skeletal muscle myocytes were stimulated with TNF and maintained under normoxic or hypoxic conditions. The expression levels of the putative elements of the hypoxia-angiogenesis signaling cascade were examined using qPCR, western blot analysis and immunofluorescence. Under normoxic conditinos, TNF stimulation increased the protein expression of anti-angiogenic von-Hippel Lindau (VHL), prolyl hydroxylase (PHD)2 and ubiquitin conjugating enzyme 2D1 (Ube2D1), as well as the total ubiquitin content in the skeletal muscle myocytes. By contrast, the expression levels of hypoxia-inducible factor 1‑α (HIF1-α) and those of its transcriptional targets, vascular endothelial growth factor (VEGF)A and glucose transporter 1 (Glut1), were markedly reduced. In addition, hypoxia increased the expression of the VHL transcript and further elevated the VHL protein expression levels in C2C12 myocytes following TNF stimulation. Consequently, an impaired angiogenic potential was observed in the TNF-stimulated myocytes during hypoxia. In conclusion, TNF increases VHL expression and disturbs hypoxia-angiogenesis signal transduction in skeletal muscle myocytes. The current findings provide a mechanism linking systemic inflammation and impaired angiogenesis in skeletal muscle. This is particularly relevant to further understanding the mechanisms mediating muscle wasting and cachexia in patients with chronic inflammatory diseases, such as COPD.
Collapse
Affiliation(s)
- Vladimir T Basic
- Department of Clinical Medicine, Örebro University, Örebro, Sweden
| | - Annette Jacobsen
- Department of Clinical Medicine, Örebro University, Örebro, Sweden
| | - Allan Sirsjö
- Department of Clinical Medicine, Örebro University, Örebro, Sweden
| | - Samy M Abdel-Halim
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Lamon S, Zacharewicz E, Stephens AN, Russell AP. EPO-receptor is present in mouse C2C12 and human primary skeletal muscle cells but EPO does not influence myogenesis. Physiol Rep 2014; 2:e00256. [PMID: 24760510 PMCID: PMC4002236 DOI: 10.1002/phy2.256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The role and regulation of the pleiotropic cytokine erythropoietin (EPO) in skeletal muscle are controversial. EPO exerts its effects by binding its specific receptor (EPO‐R), which activates intracellular signaling and gene transcription in response to internal and external stress signals. EPO is suggested to play a direct role in myogenesis via the EPO‐R, but several studies have questioned the effect of EPO treatment in muscle in vitro and in vivo. The lack of certainty surrounding the use of nonspecific EPO‐R antibodies contributes to the ambiguity of the field. Our study demonstrates that the EPO‐R gene and protein are expressed at each stage of mouse C2C12 and human skeletal muscle cell proliferation and differentiation and validates a specific antibody for the detection of the EPO‐R protein. However, in our experimental conditions, EPO treatment had no effect on mouse C2C12 and human muscle cell proliferation, differentiation, protein synthesis or EPO‐R expression. While an increase in Akt and MAPK phosphorylation was observed, we demonstrate that this effect resulted from the stress caused by changing medium and not from EPO treatment. We therefore suggest that skeletal muscle EPO‐R might be present in a nonfunctional form, or too lowly expressed to play a role in muscle cell function. The EPO‐R is expressed at the gene and protein level in mouse and human myoblasts and myotubes. However, EPO treatment does not seem to activate the EPO‐R and its downstream signaling pathways in skeletal muscle cells, questioning its functionality.
Collapse
Affiliation(s)
- Séverine Lamon
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | | | | | | |
Collapse
|
13
|
Rachalski A, Freyburger M, Mongrain V. Contribution of transcriptional and translational mechanisms to the recovery aspect of sleep regulation. Ann Med 2014; 46:62-72. [PMID: 24428734 DOI: 10.3109/07853890.2013.866439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sleep parallels brain functioning and mental health. Neuronal activity during wakefulness leads to a subsequent increase in sleep intensity as measured using electroencephalographic slow-wave activity (SWA; index of neuronal synchrony in the low-frequency range). Wakefulness, and particularly prolonged wakefulness, also drives important changes in brain gene expression and changes in protein regulation. The role of these two cellular mechanisms in sleep-wake regulation has typically been studied independently, and their exact contribution to SWA remains poorly defined. In this review, we highlight that many transcriptional pathways driven by sleep deprivation are associated to protein regulation. We first describe the relationship between cytokines, clock genes, and markers of sleep need with an emphasis on transcriptional processes. Observations regarding the role of protein metabolism in sleep-wake regulation are then depicted while presenting interconnections between transcriptional and translational responses driven by sleep loss. Lastly, a manner by which this integrated response can feed back on neuronal network activity to determine sleep intensity is proposed. Overall, the literature supports that a complex cross-talk between transcriptional and translational regulation during prolonged wakefulness drives the changes in sleep intensity as a function of the sleep/wake history.
Collapse
Affiliation(s)
- Adeline Rachalski
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal , Montréal, QC , Canada
| | | | | |
Collapse
|
14
|
Kurosaka M, Machida S. Interleukin-6-induced satellite cell proliferation is regulated by induction of the JAK2/STAT3 signalling pathway through cyclin D1 targeting. Cell Prolif 2014; 46:365-73. [PMID: 23869758 DOI: 10.1111/cpr.12045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/02/2013] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To determine whether interleukin-6 (IL-6) stimulates rat muscle satellite cell proliferation in culture, and if so, to clarify the signalling mechanisms. MATERIALS AND METHODS Primary satellite cells were isolated from thirty male F344 rats, 11 weeks of age. IL-6 at concentrations of 0.01, 0.1, 1, 10 or 100 ng/ml was added to culture media. RESULTS IL-6 at 0.01-1 ng/ml induced dose-dependent increase in cell proliferation. After treatment with 1 ng/ml IL-6, cell proliferation increased by 31%, and p-STAT3(+) /MyoD(+) cells increased in number compared to those in control media (P < 0.05). Inhibitors of JAK2 (AG 490) and STAT3 (STAT3 peptide) blocked the increase in BrdUrd(+) cell numbers at 6 h post stimulation with 1 ng/ml IL-6 (P < 0.05). Furthermore, cyclin D1 mRNA expression and cyclin D1(+) /MyoD(+) cell numbers significantly increased in cultures treated with 1 ng/ml IL-6 compared to those in control media (P < 0.05). In contrast, treatment with 10 and 100 ng/ml IL-6 did not stimulate cell proliferation. Treatment with 10 ng/ml IL-6 induced greater SOCS3 mRNA expression than with 1 ng/ml IL-6 and control media. Moreover, co-localization of SOCS3 and myogenin was observed after treatment with 10 ng/ml IL-6. CONCLUSIONS IL-6 induced dose-dependent increase in satellite cell proliferation by activating the JAK2/STAT3/cyclin D1 pathway.
Collapse
Affiliation(s)
- M Kurosaka
- School of Physical Education, Tokai University, Kanagawa, 259-1292, Japan
| | | |
Collapse
|
15
|
Fujiya A, Nagasaki H, Seino Y, Okawa T, Kato J, Fukami A, Himeno T, Uenishi E, Tsunekawa S, Kamiya H, Nakamura J, Oiso Y, Hamada Y. The role of S100B in the interaction between adipocytes and macrophages. Obesity (Silver Spring) 2014; 22:371-9. [PMID: 23804363 DOI: 10.1002/oby.20532] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The S100 calcium binding protein B (S100B) implicated in brain inflammation acts via the receptor of advanced glycation end products (RAGE) and is also secreted from adipocytes. We investigated the role of S100B in the interaction between adipocytes and macrophages using a cell-culture model. DESIGN AND METHODS RAW264.7 macrophages (RAW) were stimulated by recombinant S100B to observe alterations in TNF-α and M1 markers; 3T3-L1 adipocytes (L1) were stimulated by TNF-α to examine S100B secretion. RAW and L1 were then mutually stimulated with conditioned media of each other, or co-cultured. The effects of S100B silencing or a RAGE-neutralizing antibody were also investigated. RESULTS S100B upregulated TNF-α and M1 markers in RAW, and TNF-α augmented S100B secretion from L1. L1 conditioned media stimulated TNF-α secretion from RAW, and RAW conditioned media increased S100B secretion from L1. The co-culture of RAW and L1 increased TNF-α, S100B, and the expression of M1 markers and the MCP-1 receptor CCR2. The silencing of S100B or RAGE neutralization significantly ameliorated TNF-α hypersecretion from RAW that were stimulated with L1 conditioned media. CONCLUSIONS Thus, S100B as an adipokine may play a role in the interaction between adipocytes and macrophages to establish a vicious paracrine loop.
Collapse
Affiliation(s)
- Atsushi Fujiya
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wallace MA, Russell AP. Striated muscle activator of Rho signaling is required for myotube survival but does not influence basal protein synthesis or degradation. Am J Physiol Cell Physiol 2013; 305:C414-26. [PMID: 23720020 DOI: 10.1152/ajpcell.00421.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Skeletal muscle mass is regulated by sensing and transmitting extracellular mechanical stress signals to intracellular signaling pathways controlling protein synthesis and degradation. Striated muscle activator of Rho signaling (STARS) is a muscle-specific actin-binding protein that is sensitive to extracellular stress signals. STARS stimulates actin polymerization and influences serum response factor (SRF) and peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α transcription of genes involved in muscle growth, structure, and contraction. The role of STARS in skeletal muscle cells is not well understood. This study investigated whether STARS influenced C2C12 myotube growth by regulating protein synthesis and degradation. The influence of STARS on Pgc-1α, Srf, and Errα mRNA levels, as well as several of their downstream targets involved in muscle cell growth, contraction, and metabolism, was also investigated. STARS overexpression increased actin polymerization, with no effect on protein synthesis, protein degradation, or Akt phosphorylation. STARS overexpression increased Pgc-1α, Srf, Ckmt2, Cpt-1β, and Mhc1 mRNA. STARS knockdown reduced actin polymerization and increased cell death and dead cell protease activity. It also increased markers of inflammation (Casp1, Il-1β, and Mcp-1), regeneration (Socs3 and Myh8), and fast myosin isoforms (Mhc2a and Mhc2x). We show for the first time in muscle cells that STARS overexpression increases actin polymerization and shifts the muscle cell to a more oxidative phenotype. The suppression of STARS causes cell death and increases markers of necrosis, inflammation, and regeneration. As STARS levels are suppressed in clinical models associated with increased necrosis and inflammation, such as aging and limb immobilization, rescuing STARS maybe a future therapeutic strategy to maintain skeletal muscle function and attenuate contraction-induced muscle damage.
Collapse
Affiliation(s)
- Marita A Wallace
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | | |
Collapse
|
17
|
Motohashi N, Alexander MS, Shimizu-Motohashi Y, Myers JA, Kawahara G, Kunkel LM. Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis. J Cell Sci 2013; 126:2678-91. [PMID: 23606743 DOI: 10.1242/jcs.119966] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle possesses a strong ability to regenerate following injury, a fact that has been largely attributed to satellite cells. Satellite cells are skeletal muscle stem cells located beneath the basal lamina of the myofiber, and are the principal cellular source of growth and regeneration in skeletal muscle. MicroRNAs (miRNAs) play key roles in modulating several cellular processes by targeting multiple mRNAs that comprise a single or multiple signaling pathway. Several miRNAs have been shown to regulate satellite cell activity, such as miRNA-489, which functions to maintain satellite cells in a quiescent state. Although muscle-specific miRNAs have been identified, many of the molecular mechanisms that regulate myogenesis that are regulated by miRNAs still remain unknown. In this study, we have shown that miR-128a is highly expressed in brain and skeletal muscle, and increases during myoblast differentiation. MiR-128a was found to regulate the target genes involved in insulin signaling, which include Insr (insulin receptor), Irs1 (insulin receptor substrate 1) and Pik3r1 (phosphatidylinositol 3-kinases regulatory 1) at both the mRNA and protein level. Overexpression of miR-128a in myoblasts inhibited cell proliferation by targeting IRS1. By contrast, inhibition of miR-128a induced myotube maturation and myofiber hypertrophy in vitro and in vivo. Moreover, our results demonstrate that miR-128a expression levels are negatively controlled by tumor necrosis factor α (TNF-α). TNF-α promoted myoblast proliferation and myotube hypertrophy by facilitating IRS1/Akt signaling via a direct decrease of miR-128a expression in both myoblasts and myotubes. In summary, we demonstrate that miR-128a regulates myoblast proliferation and myotube hypertrophy, and provides a novel mechanism through which IRS1-dependent insulin signaling is regulated in skeletal muscle.
Collapse
Affiliation(s)
- Norio Motohashi
- Program in Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
18
|
Does Branched-Chain Amino Acids Supplementation Modulate Skeletal Muscle Remodeling through Inflammation Modulation? Possible Mechanisms of Action. J Nutr Metab 2012; 2012:136937. [PMID: 22536489 PMCID: PMC3321450 DOI: 10.1155/2012/136937] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 12/01/2011] [Accepted: 01/12/2012] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle protein turnover is modulated by intracellular signaling pathways involved in protein synthesis, degradation, and inflammation. The proinflammatory status of muscle cells, observed in pathological conditions such as cancer, aging, and sepsis, can directly modulate protein translation initiation and muscle proteolysis, contributing to negative protein turnover. In this context, branched-chain amino acids (BCAAs), especially leucine, have been described as a strong nutritional stimulus able to enhance protein translation initiation and attenuate proteolysis. Furthermore, under inflammatory conditions, BCAA can be transaminated to glutamate in order to increase glutamine synthesis, which is a substrate highly consumed by inflammatory cells such as macrophages. The present paper describes the role of inflammation on muscle remodeling and the possible metabolic and cellular effects of BCAA supplementation in the modulation of inflammatory status of skeletal muscle and the consequences on protein synthesis and degradation.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW This review highlights the role of cytokines, in particular tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), in relation to the nature of human in-vivo muscle wasting in disease. RECENT FINDINGS Infusion of human TNF-α and IL-6 in healthy individuals, acutely raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle protein synthesis and breakdown, that is, reduced turnover with a minor increase in net muscle degradation. Very similar observations have been made in models of acute inflammation, induced by high-dose endotoxin injection. However, these changes were suggested not to be attributed to a direct effect of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However, these cytokines can initiate important changes in secondary mediators and/or clinical complications that need correction therapies causing muscle wasting. Moreover, the general view from animal work is that in muscle wasting the rate of muscle protein synthesis is decreased and the rate of breakdown is increased. However, this does not seem applicable for inflammatory diseases or human models of sepsis, in which the enhanced imbalance between these two processes is observed within an enhanced, normal or reduced muscle protein turnover.
Collapse
Affiliation(s)
- Gerrit van Hall
- Clinical Metabolomics Core Facility, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Caron MA, Charette SJ, Maltais F, Debigaré R. Variability of protein level and phosphorylation status caused by biopsy protocol design in human skeletal muscle analyses. BMC Res Notes 2011; 4:488. [PMID: 22075211 PMCID: PMC3225408 DOI: 10.1186/1756-0500-4-488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/10/2011] [Indexed: 11/18/2022] Open
Abstract
Background Bergström needle biopsy is widely used to sample skeletal muscle in order to study cell signaling directly in human tissue. Consequences of the biopsy protocol design on muscle protein quantity and quality remain unclear. The aim of the present study was to assess the impact of different events surrounding biopsy protocol on the stability of the Western blot signal of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), Akt, glycogen synthase kinase-3β (GSK-3β), muscle RING finger protein 1 (MuRF1) and p70 S6 kinase (p70 S6K). Six healthy subjects underwent four biopsies of the vastus lateralis, distributed into two distinct visits spaced by 48 hrs. At visit 1, a basal biopsy in the right leg was performed in the morning (R1) followed by a second in the left leg in the afternoon (AF). At visit 2, a second basal biopsy (R2) was collected from the right leg. Low intensity mobilization (3 × 20 right leg extensions) was performed and a final biopsy (Mob) was collected using the same incision site as R2. Results Akt and p70 S6K phosphorylation levels were increased by 83% when AF biopsy was compared to R1. Mob condition induced important phosphorylation of p70 S6K when compared to R2. Comparison of R1 and R2 biopsies revealed a relative stability of the signal for both total and phosphorylated proteins. Conclusions This study highlights the importance to standardize muscle biopsy protocols in order to minimize the method-induced variation when analyzing Western blot signals.
Collapse
Affiliation(s)
- Marc-André Caron
- Centre de recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada.
| | | | | | | |
Collapse
|
21
|
Zhu X, Liu Q, Wang M, Liang M, Yang X, Xu X, Zou H, Qiu J. Activation of Sirt1 by resveratrol inhibits TNF-α induced inflammation in fibroblasts. PLoS One 2011; 6:e27081. [PMID: 22069489 PMCID: PMC3206084 DOI: 10.1371/journal.pone.0027081] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/09/2011] [Indexed: 12/16/2022] Open
Abstract
Inflammation is one of main mechanisms of autoimmune disorders and a common feature of most diseases. Appropriate suppression of inflammation is a key resolution to treat the diseases. Sirtuin1 (Sirt1) has been shown to play a role in regulation of inflammation. Resveratrol, a potent Sirt1 activator, has anti-inflammation property. However, the detailed mechanism is not fully understood. In this study, we investigated the anti-inflammation role of Sirt1 in NIH/3T3 fibroblast cell line. Upregulation of matrix metalloproteinases 9 (MMP-9), interleukin-1beta (IL-1β), IL-6 and inducible nitric oxide synthase (iNOS) were induced by tumor necrosis factor alpha (TNF-α) in 3T3 cells and resveratrol suppressed overexpression of these pro-inflammatory molecules in a dose-dependent manner. Knockdown of Sirt1 by RNA interference caused 3T3 cells susceptible to TNF-α stimulation and diminished anti-inflammatory effect of resveratrol. We also explored potential anti-inflammatory mechanisms of resveratrol. Resveratrol reduced NF-κB subunit RelA/p65 acetylation, which is notably Sirt1 dependent. Resveratrol also attenuated phosphorylation of mammalian target of rapamycin (mTOR) and S6 ribosomal protein (S6RP) while ameliorating inflammation. Our data demonstrate that resveratrol inhibits TNF-α-induced inflammation via Sirt1. It suggests that Sirt1 is an efficient target for regulation of inflammation. This study provides insight on treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Xiaoxia Zhu
- Division of Rheumatology, Shanghai Medical College, Fudan University, Huashan Hospital, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Shanghai Medical College, Fudan University, Huashan Hospital, Shanghai, China
| | - Qiong Liu
- Institute of Rheumatology, Immunology and Allergy, Shanghai Medical College, Fudan University, Huashan Hospital, Shanghai, China
- Department of Human Anatomy, Histology and Embryology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Meimei Wang
- Division of Rheumatology, Dongnan University, Zhongda Hospital, Nanjing, China
| | - Minrui Liang
- Division of Rheumatology, Shanghai Medical College, Fudan University, Huashan Hospital, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Shanghai Medical College, Fudan University, Huashan Hospital, Shanghai, China
| | - Xue Yang
- Division of Rheumatology, Shanghai Medical College, Fudan University, Huashan Hospital, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Shanghai Medical College, Fudan University, Huashan Hospital, Shanghai, China
| | - Xue Xu
- Division of Rheumatology, Shanghai Medical College, Fudan University, Huashan Hospital, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Shanghai Medical College, Fudan University, Huashan Hospital, Shanghai, China
| | - Hejian Zou
- Division of Rheumatology, Shanghai Medical College, Fudan University, Huashan Hospital, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Shanghai Medical College, Fudan University, Huashan Hospital, Shanghai, China
- * E-mail: (JQ); (HZ)
| | - Jianhua Qiu
- Department of Neurology and Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * E-mail: (JQ); (HZ)
| |
Collapse
|
22
|
Takata F, Dohgu S, Matsumoto J, Takahashi H, Machida T, Wakigawa T, Harada E, Miyaji H, Koga M, Nishioku T, Yamauchi A, Kataoka Y. Brain pericytes among cells constituting the blood-brain barrier are highly sensitive to tumor necrosis factor-α, releasing matrix metalloproteinase-9 and migrating in vitro. J Neuroinflammation 2011; 8:106. [PMID: 21867555 PMCID: PMC3182916 DOI: 10.1186/1742-2094-8-106] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/26/2011] [Indexed: 01/28/2023] Open
Abstract
Background Increased matrix metalloproteinase (MMP)-9 in the plasma and brain is associated with blood-brain barrier (BBB) disruption through proteolytic activity in neuroinflammatory diseases. MMP-9 is present in the brain microvasculature and its vicinity, where brain microvascular endothelial cells (BMECs), pericytes and astrocytes constitute the BBB. Little is known about the cellular source and role of MMP-9 at the BBB. Here, we examined the ability of pericytes to release MMP-9 and migrate in response to inflammatory mediators in comparison with BMECs and astrocytes, using primary cultures isolated from rat brains. Methods The culture supernatants were collected from primary cultures of rat brain endothelial cells, pericytes, or astrocytes. MMP-9 activities and levels in the supernatants were measured by gelatin zymography and western blot, respectively. The involvement of signaling molecules including mitogen-activated protein kinases (MAPKs) and phosphoinositide-3-kinase (PI3K)/Akt in the mediation of tumor necrosis factor (TNF)-α-induced MMP-9 release was examined using specific inhibitors. The functional activity of MMP-9 was evaluated by a cell migration assay. Results Zymographic and western blot analyses demonstrated that TNF-α stimulated pericytes to release MMP-9, and this release was much higher than from BMECs or astrocytes. Other inflammatory mediators [interleukin (IL)-1β, interferon-γ, IL-6 and lipopolysaccharide] failed to induce MMP-9 release from pericytes. TNF-α-induced MMP-9 release from pericytes was found to be mediated by MAPKs and PI3K. Scratch wound healing assay showed that in contrast to BMECs and astrocytes the extent of pericyte migration was significantly increased by TNF-α. This pericyte migration was inhibited by anti-MMP-9 antibody. Conclusion These findings suggest that pericytes are most sensitive to TNF-α in terms of MMP-9 release, and are the major source of MMP-9 at the BBB. This pericyte-derived MMP-9 initiated cellular migration of pericytes, which might be involved in pericyte loss in the damaged BBB.
Collapse
Affiliation(s)
- Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Braun S, Bitton-Worms K, LeRoith D. The link between the metabolic syndrome and cancer. Int J Biol Sci 2011; 7:1003-15. [PMID: 21912508 PMCID: PMC3164150 DOI: 10.7150/ijbs.7.1003] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 07/24/2011] [Indexed: 01/08/2023] Open
Abstract
Since the incidence of the metabolic syndrome is on the rise in the western world, its coherence to cancer is becoming more apparent. In this review we discuss the different potential factors involved in the increase of cancer in the metabolic syndrome including obesity, dyslipidemia and Type 2 Diabetes Mellitus (T2DM) as well as inflammation and hypoxia. We especially focus on the insulin and IGF systems with their intracellular signaling cascades mediated by different receptor subtypes, and suggest that they may play major roles in this process. Understanding the mechanisms involved will be helpful in developing potential therapeutics.
Collapse
Affiliation(s)
- Sandra Braun
- Diabetes and Metabolism Clinical Research Center of Excellence, Legacy Heritage Clinical Research Institute at Rambam (LHCRIR), Haifa, Israel
| | | | | |
Collapse
|
24
|
Tarabees R, Hill D, Rauch C, Barrow PA, Loughna PT. Endotoxin transiently inhibits protein synthesis through Akt and MAPK mediating pathways in C2C12 myotubes. Am J Physiol Cell Physiol 2011; 301:C895-902. [PMID: 21775707 DOI: 10.1152/ajpcell.00387.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, the effect of lipopolysaccharide (LPS) on protein synthesis (PS) and intracellular signaling factors that regulate it have been investigated in C2C12 murine-derived myotubes. In particular, the role of Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinases (MAPKs) [p38 and extracelluar regulated protein kinase (ERK1/2)] have been examined. The direct effect of LPS on PS was measured at 3 and 18 h. LPS significantly decreased PS at 3 h but not at the 18-h time point. This effect was preceded by decreased Akt phosphorylation at 5 and 30 min after LPS administration. The mTOR phosphorylation exhibited a long time dose-dependent increase at all the time points. Similarly, the activity-related phosphorylation of p38 and ERK1/2 significantly increased in a time- and dose-dependent manner at all the time points. Polymyxin B abolished the LPS-induced decrease in PS rate. The phosphatidylinositol 3-kinase inhibitor LY-0294002 in combination with LPS significantly decreased the rate of PS by 81% and alone by 66%, respectively, for the 3- and 18-h time points, whereas p38 and ERK inhibitors in combination with LPS significantly decreased the rate PS rate at the 18-h time point by 41% and 59%, respectively, compared with control cells. In conclusion, LPS alone transiently decreased the rate of PS by 50% at 3 h; this effect is most likely mediated via the Toll-like receptor 4 (TLR4)-Akt/mTOR pathway, and both p38 and ERK when inhibited in the presence of LPS at 3 h have a similar effect in preventing the LPS-induced reduction in PS.
Collapse
Affiliation(s)
- R Tarabees
- School of Veterinary Medicine and Science, Sutton Bonington Campus, Univ. of Nottingham, Loughborough, UK
| | | | | | | | | |
Collapse
|
25
|
Xiang X, Zhao J, Xu G, Li Y, Zhang W. mTOR and the differentiation of mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 2011; 43:501-10. [PMID: 21642276 DOI: 10.1093/abbs/gmr041] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The mammalian target of rapamycin (mTOR), an evolutionarily conserved serine-threonine protein kinase, belongs to the phosphoinositide 3-kinase (PI3K)-related kinase family, which contains a lipid kinase-like domain within their C-terminal region. Recent studies have revealed that mTOR as a critical intracellular molecule can sense the extracellular energy status and regulate the cell growth and proliferation in a variety of cells and tissues. This review summarizes our current understanding about the effects of mTOR on cell differentiation and tissue development, with an emphasis on the lineage determination of mesenchymal stem cells. mTOR can promote adipogenesis in white adipocytes, brown adipocytes, and muscle satellite cells, while rapamycin inhibits the adipogenic function of mTOR. mTOR signaling may function to affect osteoblast proliferation and differentiation, however, rapamycin has been reported to either inhibit or promote osteogenesis. Although the precise mechanism remains unclear, mTOR is indispensable for myogenesis. Depending on the cell type, rapamycin has been reported to inhibit, promote, or have no effect on myogenesis.
Collapse
Affiliation(s)
- Xinxin Xiang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
26
|
Markworth JF, Cameron-Smith D. Prostaglandin F2α stimulates PI3K/ERK/mTOR signaling and skeletal myotube hypertrophy. Am J Physiol Cell Physiol 2010; 300:C671-82. [PMID: 21191105 DOI: 10.1152/ajpcell.00549.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cyclooxygenase (COX) enzymes mediate the synthesis of proinflammatory prostaglandin (PG) species from cellular arachidonic acid. COX/PGs have been implicated in skeletal muscle growth/regeneration; however, the mechanisms by which PGs influence skeletal muscle adaptation are poorly understood. The present study aimed to investigate PGF(2α) signaling and its role in skeletal myotube hypertrophy. PGF(2α) or the FP receptor agonist fluprostenol increased C2C12 myotube diameter. This effect was abolished by the FP receptor antagonist AL8810 and mammalian target of rapamycin (mTOR) inhibition. PGF(2α) stimulated time- and dose-dependent increases in the phosphorylation of extracellular receptor kinase (ERK)1/2 (Thr202/Tyr204), p70S6 kinase (p70S6K) (Thr389 and Thr421/Ser424), and eukaryotic initiation factor 4G (eIF4G) (Ser1108) without influencing Akt (Ser473). Pretreatment with the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 and the ERK inhibitor PD98059 blocked F prostanoid receptor signaling responses, whereas rapamycin blocked heightened p70S6K/eIF4G phosphorylation without influencing ERK1/2 phosphorylation. These data suggest that activation of the F prostanoid receptor is coupled to C2C12 myotube growth and intracellular signaling via a PI3K/ERK/mTOR-dependent pathway.
Collapse
Affiliation(s)
- James F Markworth
- School of Exercise and Nutrition Sciences, Deakin Univ., 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | | |
Collapse
|
27
|
Peake J, Della Gatta P, Cameron-Smith D. Aging and its effects on inflammation in skeletal muscle at rest and following exercise-induced muscle injury. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1485-95. [PMID: 20393160 DOI: 10.1152/ajpregu.00467.2009] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The world's elderly population is expanding rapidly, and we are now faced with the significant challenge of maintaining or improving physical activity, independence, and quality of life in the elderly. Counteracting the progressive loss of muscle mass that occurs in the elderly, known as sarcopenia, represents a major hurdle in achieving these goals. Indirect evidence for a role of inflammation in sarcopenia is that markers of systemic inflammation correlate with the loss of muscle mass and strength in the elderly. More direct evidence is that compared with skeletal muscle of young people, the number of macrophages is lower, the gene expression of several cytokines is higher, and stress signaling proteins are activated in skeletal muscle of elderly people at rest. Sarcopenia may also result from inadequate repair and chronic maladaptation following muscle injury in the elderly. Macrophage infiltration and the gene expression of certain cytokines are reduced in skeletal muscle of elderly people compared with young people following exercise-induced muscle injury. Further research is required to identify the cause(s) of inflammation in skeletal muscle of elderly people. Additional work is also needed to expand our understanding of the cells, proteins, and transcription factors that regulate inflammation in the skeletal muscle of elderly people at rest and after exercise. This knowledge is critical for devising strategies to restrict sarcopenia, and improve the health of today's elderly population.
Collapse
Affiliation(s)
- Jonathan Peake
- The University of Queensland, School of Human Movement Studies, Brisbane, Australia.
| | | | | |
Collapse
|
28
|
Minamitani C, Tokuda H, Adachi S, Matsushima-Nishiwaki R, Yamauchi J, Kato K, Natsume H, Mizutani J, Kozawa O, Otsuka T. p70 S6 kinase limits tumor necrosis factor-alpha-induced interleukin-6 synthesis in osteoblast-like cells. Mol Cell Endocrinol 2010; 315:195-200. [PMID: 19879324 DOI: 10.1016/j.mce.2009.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/07/2009] [Accepted: 10/16/2009] [Indexed: 12/14/2022]
Abstract
Our previous study demonstrated that tumor necrosis factor-alpha (TNF-alpha) stimulates the synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, via p44/p42 mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase/Akt in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether p70 S6 kinase is involved in TNF-alpha-stimulated IL-6 synthesis in MC3T3-E1 cells. TNF-alpha time dependently induced the phosphorylation of p70 S6 kinase. Rapamycin, an inhibitor of p70 S6 kinase, which attenuated the phosphorylation of p70 S6 kinase induced by TNF-alpha, significantly amplified the TNF-alpha-stimulated IL-6 synthesis. TNF-alpha-induced phosphorylations of both p44/p42 MAP kinase and Akt were markedly enhanced by rapamycin. The amplification by rapamycin of TNF-alpha-induced IL-6 synthesis was reduced by PD98059, a specific inhibitor of MEK1/2, or Akt inhibitor. Rapamycin enhanced the IL-6 synthesis and the phosphorylation of Akt induced by TNF-alpha also in human osteoblasts. Taken together, these results strongly suggest that p70 S6 kinase limits the TNF-alpha-stimulated IL-6 synthesis at a point upstream from p44/p42 MAP kinase and Akt in osteoblast-like cells.
Collapse
Affiliation(s)
- Chiho Minamitani
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hirai H, Romanova L, Kellner S, Verma M, Rayner S, Asakura A, Kikyo N. Post-mitotic role of nucleostemin as a promoter of skeletal muscle cell differentiation. Biochem Biophys Res Commun 2009; 391:299-304. [PMID: 19914205 DOI: 10.1016/j.bbrc.2009.11.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 11/09/2009] [Indexed: 01/18/2023]
Abstract
Nucleostemin (NS) is a nucleolar protein abundantly expressed in a variety of proliferating cells and undifferentiated cells. Its known functions include cell cycle regulation and the control of pre-rRNA processing. It also has been proposed that NS has an additional role in undifferentiated cells due to its downregulation during stem cell differentiation and its upregulation during tissue regeneration. Here, however, we demonstrate that skeletal muscle cell differentiation has a unique expression profile of NS in that it is continuously expressed during differentiation. NS was expressed at similar levels in non-proliferating muscle stem cells (satellite cells), rapidly proliferating precursor cells (myoblasts) and post-mitotic terminally differentiated cells (myotubes and myofibers). The sustained expression of NS during terminal differentiation is necessary to support increased protein synthesis during this process. Downregulation of NS inhibited differentiation of myoblasts to myotubes, accompanied by striking downregulation of key myogenic transcription factors, such as myogenin and MyoD. In contrast, upregulation of NS inhibited proliferation and promoted muscle differentiation in a p53-dependent manner. Our findings provide evidence that NS has an unexpected role in post-mitotic terminal differentiation. Importantly, these findings also indicate that, contrary to suggestions in the literature, the expression of NS cannot always be used as a reliable indicator for undifferentiated cells or proliferating cells.
Collapse
Affiliation(s)
- Hiroyuki Hirai
- Stem Cell Institute, University of Minnesota, Room 2-216, MTRF, 2001 6th St SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Treatment with TNF-alpha and IFN-gamma alters the activation of SER/THR protein kinases and the metabolic response to IGF-I in mouse c2c12 myogenic cells. Cell Mol Biol Lett 2009; 15:13-31. [PMID: 19685010 PMCID: PMC6275934 DOI: 10.2478/s11658-009-0033-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 08/06/2009] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The aim of this study was to compare the effects of TNF-alpha, IL-1beta and IFN-gamma on the activation of protein kinase B (PKB), p70(S6k), mitogen-activated protein kinase (MAPK) and p90( rsk ), and on IGF-I-stimulated glucose uptake and protein synthesis in mouse C2C12 myotubes. 100 nmol/l IGF-I stimulated glucose uptake in C2C12 myotubes by 198.1% and 10 ng/ml TNF-alpha abolished this effect. Glucose uptake in cells differentiated in the presence of 10 ng/ml IFN-gamma increased by 167.2% but did not undergo significant further modification upon the addition of IGF-I. IGF-I increased the rate of protein synthesis by 249.8%. Neither TNF-alpha nor IFN-gamma influenced basal protein synthesis, but both cytokines prevented the IGF-I effect. 10 ng/ml IL-1beta did not modify either the basal or IGF-I-dependent glucose uptake and protein synthesis. With the exception of TNF-alpha causing an 18% decrease in the level of PKB protein, the cellular levels of PKB, p70(S6k), p42(MAPK), p44(MAPK) and p90( rsk ) were not affected by the cytokines. IGF-I caused the phosphorylation of PKB (an approximate 8-fold increase above the basal value after 40 min of IGF-I treatment), p42(MAPK) (a 2.81-fold increase after 50 min), and the activation of p70(S6k) and p90( rsk ), manifesting as gel mobility retardation. In cells differentiated in the presence of TNF-alpha or IFN-gamma, this IGF-I-mediated PKB and p70(S6k) phosphorylation was significantly diminished, and the increase in p42(MAPK) and p90( rsk ) phosphorylation was prevented. The basal p42(MAPK) phosphorylation in C2C12 cells treated with IFN-gamma was high and comparable with the activation of this kinase by IGF-I. Pretreatment of myogenic cells with IL-1beta did not modify the IGF-I-stimulated phosphorylation of PKB, p70(S6k), p42(MAPK) and p90( rsk ). IN CONCLUSION i) TNF-alpha and IFN-gamma, but not IL-1beta, if present in the extracellular environment during C2C12 myoblast differentiation, prevent the stimulatory action of IGF-I on protein synthesis. ii) TNF-alpha- and IFN-gamma-induced IGF-I resistance of protein synthesis could be associated with the decreased phosphorylation of PKB and p70(S6k). iii) The activation of glucose uptake in C2C12 myogenic cells treated with IFN-gamma is PKB independent. iv) The similar effects of TNF-alpha and IFN-gamma on the signalling and action of IGF-I on protein synthesis in myogenic cells could suggest the involvement of both of these cytokines in protein loss in skeletal muscle.
Collapse
|
31
|
Petersen AM, Plomgaard P, Fischer CP, Ibfelt T, Pedersen BK, van Hall G. Acute moderate elevation of TNF-alpha does not affect systemic and skeletal muscle protein turnover in healthy humans. J Clin Endocrinol Metab 2009; 94:294-9. [PMID: 18854397 DOI: 10.1210/jc.2008-1110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT Skeletal muscle wasting has been associated with elevations in circulating inflammatory cytokines, in particular TNF-alpha. OBJECTIVE In this study, we investigated whether TNF-alpha affects human systemic and skeletal muscle protein turnover via a 4-h recombinant human (rh) TNF-alpha infusion. We hypothesize that TNF-alpha increases human muscle protein breakdown and/or inhibits synthesis. SUBJECTS AND METHODS Using a randomized, controlled, crossover design, postabsorptive healthy young males (n = 8) were studied 2 h under basal conditions followed by a 4-h infusion of either rhTNF-alpha (700 ng . m(-2) . h(-1)) or 20% human albumin (control), which was the vehicle of rhTNF-alpha. Systemic and skeletal muscle protein turnover was estimated by a combination of tracer dilution methodology (primed continuous infusion of l-[ring-(2)H(5)]phenylalanine and l-[(15)N-leucine], with prime of l-[ring-(2)H(4)]tyrosine) and femoral arterial-venous differences over the leg and muscle biopsies. RESULTS Plasma TNF-alpha concentration rapidly increased from basal levels of approximately 0.7 to 17 pg . ml(-1) with rhTNF-alpha infusion. Whole body protein synthesis, breakdown, and net degradation were similar after the basal and infusion period of the control and rhTNF-alpha trials. Skeletal muscle, musculus vastus lateralis, protein fractional synthetic rate was not different over 4 h of control or rhTNF-alpha (rate of incorporation of (15)N-leucine). Muscle protein turnover determined with the phenylalanine three-compartment model showed similar muscle synthesis, breakdown, and net muscle degradation after 2-h basal and after 4-h control or rhTNF-alpha infusion. CONCLUSION This study is the first to show in humans that TNF-alpha does not affect systemic and skeletal muscle protein turnover, when acutely elevated for 4 h to moderate levels not causing adverse effects.
Collapse
Affiliation(s)
- Anne Marie Petersen
- The Centre of Inflammation and Metabolism, Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|