1
|
Mondal A, Nandi S, Singh V, Chakraborty A, Banerjee I, Sen S, Gadad SS, Roy S, Kamat SS, Das C. TCF7l2 Regulates Fatty Acid Chain Elongase HACD3 during Lipid-Induced Stress. Biochemistry 2025; 64:1828-1840. [PMID: 40172138 DOI: 10.1021/acs.biochem.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The transcriptional regulation of metabolic genes is crucial for maintaining metabolic homeostasis under cellular stress conditions. Transcription factor 7-like 2 (TCF7l2 or TCF4) is associated with type 2 diabetes (T2D) and functions as a transcription factor for various gluconeogenic genes. T2D often coexists with metabolic dysfunction-associated steatotic liver disease (MASLD) due to common underlying mechanisms and shared risk factors such as insulin resistance and obesity. This study demonstrates the transcriptional regulation of one of the important fatty acid chain elongases implicated in T2D, HACD3 (encoded by PTPLAD1 gene), under palmitic acid (PA)-induced stress conditions. We observed that TCF7l2 is associated with histone H3K4me3-binder protein TCF19 and is corecruited to the promoter of PTPLAD1. Upon PA treatment, the TCF19-TCF7l2 complex dissociates from the lipid chain elongase gene due to the reduced level of H3K4me3 enrichment, leading to PTPLAD1 activation. Remarkably, gene expression analysis from the PA-injected mice and NAFLD patients indicates an anticorrelation whereby reduced TCF7l2 expression enhances HACD3-mediated chain elongation and triglyceride production, thereby promoting the development of MASLD. Our findings delineate that the epigenetic mechanism of activation of lipid chain elongase genes mediated by TCF7l2 in concert with TCF19 has important implications in metabolic disorders.
Collapse
Affiliation(s)
- Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Indrakshi Banerjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Sabyasachi Sen
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Shrikanth S Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
2
|
Li SY, Zhang N, Zhang H, Wang N, Du YY, Li HN, Huang CS, Li XR. Deciphering the TCF19/miR-199a-5p/SP1/LOXL2 pathway: Implications for breast cancer metastasis and epithelial-mesenchymal transition. Cancer Lett 2024; 597:216995. [PMID: 38851313 DOI: 10.1016/j.canlet.2024.216995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Abstract
Globally, breast cancer (BC) is the predominant malignancy with a significant death rate due to metastasis. The epithelial-mesenchymal transition (EMT) is a fundamental initiator for metastatic progression. Through advanced computational strategies, TCF19 was identified as a critical EMT-associated gene with diagnostic and prognostic significance in BC, based on a novel EMT score. Molecular details and the pro-EMT impact of the TCF19/miR-199a-5p/SP1/LOXL2 axis were explored in BC cell lines through in vitro validations, and the oncogenic and metastatic potential of TCF19 and LOXL2 were investigated using subcutaneous and tail-vein models. Additionally, BC-specific enrichment of TCF19 and LOXL2 was measured using a distribution landscape driven by diverse genomic analysis techniques. Molecular pathways revealed that TCF19-induced LOXL2 amplification facilitated migratory, invasive, and EMT activities of BC cells in vitro, and promoted the growth and metastatic establishment of xenografts in vivo. TCF19 decreases the expression of miR-199a-5p and alters the nuclear dynamics of SP1, modulating SP1's affinity for the LOXL2 promoter, leading to increased LOXL2 expression and more malignant characteristics in BC cells. These findings unveil a novel EMT-inducing pathway, the TCF19/miR-199a-5P/SP1/LOXL2 axis, highlighting the pivotal role of TCF19 and suggesting potential for novel therapeutic approaches for more focused BC interventions.
Collapse
Affiliation(s)
- Shu-Yu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Ning Wang
- Huzhou Central Hospital, Affiliated Hospital of Zhejiang University, Huzhou, PR China
| | - Ya-Ying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Han-Ning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Chen-Shen Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, PR China.
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
3
|
Tian Y, Xin S, Wan Z, Dong H, Liu L, Fan Z, Li T, Peng F, Xiong Y, Han Y. TCF19 promotes cell proliferation and tumor formation in lung cancer by activating the Raf/MEK/ERK signaling pathway. Transl Oncol 2024; 45:101978. [PMID: 38701650 PMCID: PMC11088346 DOI: 10.1016/j.tranon.2024.101978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVE This study aimed to investigate TCF19's role in lung cancer development, specifically its involvement in the RAF/MEK/ERK signaling pathway. METHODS Lung cancer tissue analysis revealed significant TCF19 overexpression. In vitro experiments using A549 and Hop62 cells with TCF19 overexpression demonstrated enhanced cell growth. Transgenic mouse models confirmed TCF19's role in primary tumor development. Transcriptome sequencing identified altered gene expression profiles, linking TCF19 to RAF/MEK/ERK pathway activation. Functional assays elucidated underlying mechanisms, revealing increased phosphorylation of Raf1, MEK1/2, and ERK1/2. Inhibiting RAF1 or ERK through shRaf1 or ERK inhibitor reduced cell cycle-related proteins and inhibited TCF19-overexpressing cell growth. RESULTS TCF19 was identified as an oncogene in lung carcinoma, specifically impacting the RAF/MEK/ERK pathway. Elevated TCF19 levels in lung cancer suggest targeting TCF19 or its associated pathways as a promising strategy for disease management. CONCLUSION This study unveils TCF19's oncogenic role in lung cancer, emphasizing its modulation of the RAF/MEK/ERK pathway and presenting a potential therapeutic target for TCF19-overexpressing lung cancers.
Collapse
Affiliation(s)
- Yahui Tian
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, 30 Fucheng Rd, Beijing 100142, China; School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Shaowei Xin
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, 30 Fucheng Rd, Beijing 100142, China
| | - Zitong Wan
- College of life Science, Northwestern University, Xi'an, China
| | - Honghong Dong
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, 30 Fucheng Rd, Beijing 100142, China
| | - Lu Liu
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhenzhen Fan
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China.
| | - Yanlu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Yong Han
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, 30 Fucheng Rd, Beijing 100142, China.
| |
Collapse
|
4
|
Ruan X, Liu Y, Wu S, Fu G, Tao M, Huang Y, Li D, Wei S, Gao M, Guo S, Ning J, Zheng X. Multidimensional data analysis revealed thyroiditis-associated TCF19 SNP rs2073724 as a highly ranked protective variant in thyroid cancer. Aging (Albany NY) 2024; 16:6488-6509. [PMID: 38579171 PMCID: PMC11042956 DOI: 10.18632/aging.205718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Thyroid cancer represents the most prevalent malignant endocrine tumour, with rising incidence worldwide and high mortality rates among patients exhibiting dedifferentiation and metastasis. Effective biomarkers and therapeutic interventions are warranted in aggressive thyroid malignancies. The transcription factor 19 (TCF19) gene has been implicated in conferring a malignant phenotype in cancers. However, its contribution to thyroid neoplasms remains unclear. RESULTS In this study, we performed genome-wide and phenome-wide association studies to identify a potential causal relationship between TCF19 and thyroid cancer. Our analyses revealed significant associations between TCF19 and various autoimmune diseases and human cancers, including cervical cancer and autoimmune thyroiditis, with a particularly robust signal for the deleterious missense variation rs2073724 that is associated with thyroid function, hypothyroidism, and autoimmunity. Furthermore, functional assays and transcriptional profiling in thyroid cancer cells demonstrated that TCF19 regulates important biological processes, especially inflammatory and immune responses. We demonstrated that TCF19 could promote the progression of thyroid cancer in vitro and in vivo and the C>T variant of rs2073724 disrupted TCF19 protein binding to target gene promoters and their expression, thus reversing the effect of TCF19 protein. CONCLUSIONS Taken together, these findings implicate TCF19 as a promising therapeutic target in aggressive thyroid malignancies and designate rs2073724 as a causal biomarker warranting further investigation in thyroid cancer.
Collapse
Affiliation(s)
- Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yu Liu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Shuping Wu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Department of Head and Neck Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, China
| | - Guiming Fu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Thyroid-Otolaryngology Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610000, Sichuan, China
| | - Mei Tao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yue Huang
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Dapeng Li
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Songfeng Wei
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ming Gao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Department of Thyroid and Breast Surgery, Tianjin Union Medical Center, Tianjin 300121, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junya Ning
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Department of Thyroid and Breast Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
5
|
Ling YH, Chen Y, Leung KN, Chan KM, Liu WK. Cell cycle regulation of the psoriasis associated gene CCHCR1 by transcription factor E2F1. PLoS One 2023; 18:e0294661. [PMID: 38128007 PMCID: PMC10734992 DOI: 10.1371/journal.pone.0294661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
The coiled-coil alpha-helical rod protein 1 (CCHCR1) was first identified as a candidate gene in psoriasis and has lately been found to be associated with a wide range of clinical conditions including COVID-19. CCHCR1 is located within P-bodies and centrosomes, but its exact role in these two subcellular structures and its transcriptional control remain largely unknown. Here, we showed that CCHCR1 shares a bidirectional promoter with its neighboring gene, TCF19. This bidirectional promoter is activated by the G1/S-regulatory transcription factor E2F1, and both genes are co-induced during the G1/S transition of the cell cycle. A luciferase reporter assay suggests that the short intergenic sequence, only 287 bp in length, is sufficient for the G1/S induction of both genes, but the expression of CCHCR1 is further enhanced by the presence of exon 1 from both TCF19 and CCHCR1. This research uncovers the transcriptional regulation of the CCHCR1 gene, offering new perspectives on its function. These findings contribute to the broader understanding of diseases associated with CCHCR1 and may serve as a foundational benchmark for future research in these vital medical fields.
Collapse
Affiliation(s)
- Yick Hin Ling
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Yingying Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kwok Nam Leung
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - King Ming Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - W. K. Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
6
|
Keller MP, Hudkins KL, Shalev A, Bhatnagar S, Kebede MA, Merrins MJ, Davis DB, Alpers CE, Kimple ME, Attie AD. What the BTBR/J mouse has taught us about diabetes and diabetic complications. iScience 2023; 26:107036. [PMID: 37360692 PMCID: PMC10285641 DOI: 10.1016/j.isci.2023.107036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Human and mouse genetics have delivered numerous diabetogenic loci, but it is mainly through the use of animal models that the pathophysiological basis for their contribution to diabetes has been investigated. More than 20 years ago, we serendipidously identified a mouse strain that could serve as a model of obesity-prone type 2 diabetes, the BTBR (Black and Tan Brachyury) mouse (BTBR T+ Itpr3tf/J, 2018) carrying the Lepob mutation. We went on to discover that the BTBR-Lepob mouse is an excellent model of diabetic nephropathy and is now widely used by nephrologists in academia and the pharmaceutical industry. In this review, we describe the motivation for developing this animal model, the many genes identified and the insights about diabetes and diabetes complications derived from >100 studies conducted in this remarkable animal model.
Collapse
Affiliation(s)
- Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kelly L. Hudkins
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Anath Shalev
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Melkam A. Kebede
- School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Charles E. Alpers
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Michelle E. Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Cheng X, Hou J, Wen X, Dong R, Lu Z, Jiang Y, Wu G, Yuan Y. Immunotherapeutic Value of Transcription Factor 19 (TCF19) Associated with Renal Clear Cell Carcinoma: A Comprehensive Analysis of 33 Human Cancer Cases. JOURNAL OF ONCOLOGY 2022; 2022:1488165. [PMID: 36111242 PMCID: PMC9470357 DOI: 10.1155/2022/1488165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022]
Abstract
Background We aimed to study the relationship between transcription factor 19 (TCF19) and cancer immunotherapy in the 33 types of human cancers. Methods The Cancer Genome Atlas database was analyzed to obtain the gene expression data and clinical characteristics for the cases of 33 types of cancers. GSE67501, GSE78220, and IMvigor 210 were included in the immunotherapy cohorts. Relevant data were obtained by analyzing the gene expression database. The prognostic value of TCF19 was determined by analyzing various clinical parameters, such as survival duration, age, the stage of the tumor, and sex of the patients. The single-sample gene set enrichment analysis method was used to determine the activity of TCF19 and the method was also used to assess the differences between the TCF19 transcriptome and protein levels. The correlation between TCF19 and various immune processes and elements such as immunosuppressants, stimulants, and major histocompatibility complexes were analyzed to gain insights into the role of TCF19. The coherent paths associated with the process of TCF19 signal transduction and the influence of TCF19 on immunotherapy biomarkers have also been discussed herein. Finally, three independent immunotherapy methods were used to understand the relationship between TCF19 and immunotherapy response. Results It was observed that TCF19 was not significantly influenced by the age (5/33), sex (3/33), or tumor stage (3/21) of cancer patients. But the results revealed that TCF19 exhibited a potential prognostic value and could predict the survival rate of the patients. In some cases of this study, the activity and expression of TCF19 were taken at the same level (7/33). Conclusion TCF19 is strongly related to immune cell infiltration, immunomodulators, and immunotherapy markers. Our study demonstrated that high expression levels of TCF19 are strongly linked with the immune-related pathways. Nevertheless, it is noteworthy that TCF19 is not significantly associated with immunotherapy response.
Collapse
Affiliation(s)
- Xiaobao Cheng
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Jian Hou
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Xiangyang Wen
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Runan Dong
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Zhenquan Lu
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Yi Jiang
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Guoqing Wu
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Yuan Yuan
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
8
|
Mondal P, Tiwary N, Sengupta A, Dhang S, Roy S, Das C. Epigenetic Reprogramming of the Glucose Metabolic Pathways by the Chromatin Effectors During Cancer. Subcell Biochem 2022; 100:269-336. [PMID: 36301498 DOI: 10.1007/978-3-031-07634-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glucose metabolism plays a vital role in regulating cellular homeostasis as it acts as the central axis for energy metabolism, alteration in which may lead to serious consequences like metabolic disorders to life-threatening diseases like cancer. Malignant cells, on the other hand, help in tumor progression through abrupt cell proliferation by adapting to the changed metabolic milieu. Metabolic intermediates also vary from normal cells to cancerous ones to help the tumor manifestation. However, metabolic reprogramming is an important phenomenon of cells through which they try to maintain the balance between normal and carcinogenic outcomes. In this process, transcription factors and chromatin modifiers play an essential role to modify the chromatin landscape of important genes related directly or indirectly to metabolism. Our chapter surmises the importance of glucose metabolism and the role of metabolic intermediates in the cell. Also, we summarize the influence of histone effectors in reprogramming the cancer cell metabolism. An interesting aspect of this chapter includes the detailed methods to detect the aberrant metabolic flux, which can be instrumental for the therapeutic regimen of cancer.
Collapse
Affiliation(s)
- Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Niharika Tiwary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Amrita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Sinjini Dhang
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Siddhartha Roy
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.
- Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
9
|
Mehravar M, Ghaemimanesh F, Poursani EM. Exon and intron sharing in opposite direction-an undocumented phenomenon in human genome-between Pou5f1 and Tcf19 genes. BMC Genomics 2021; 22:718. [PMID: 34610795 PMCID: PMC8493703 DOI: 10.1186/s12864-021-08039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Overlapping genes share same genomic regions in parallel (sense) or anti-parallel (anti-sense) orientations. These gene pairs seem to occur in all domains of life and are best known from viruses. However, the advantage and biological significance of overlapping genes is still unclear. Expressed sequence tags (ESTs) analysis enabled us to uncover an overlapping gene pair in the human genome. RESULTS By using in silico analysis of previous experimental documentations, we reveal a new form of overlapping genes in the human genome, in which two genes found on opposite strands (Pou5f1 and Tcf19), share two exons and one intron enclosed, at the same positions, between OCT4B3 and TCF19-D splice variants. CONCLUSIONS This new form of overlapping gene expands our previous perception of splicing events and may shed more light on the complexity of gene regulation in higher organisms. Additional such genes might be detected by ESTs analysis also of other organisms.
Collapse
Affiliation(s)
- Majid Mehravar
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Fatemeh Ghaemimanesh
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ensieh M Poursani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Wisinski JA, Reuter A, Peter DC, Schaid MD, Fenske RJ, Kimple ME. Prostaglandin EP3 receptor signaling is required to prevent insulin hypersecretion and metabolic dysfunction in a non-obese mouse model of insulin resistance. Am J Physiol Endocrinol Metab 2021; 321:E479-E489. [PMID: 34229444 PMCID: PMC8560379 DOI: 10.1152/ajpendo.00051.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When homozygous for the LeptinOb mutation (Ob), Black-and-Tan Brachyury (BTBR) mice become morbidly obese and severely insulin resistant, and by 10 wk of age, frankly diabetic. Previous work has shown prostaglandin EP3 receptor (EP3) expression and activity is upregulated in islets from BTBR-Ob mice as compared with lean controls, actively contributing to their β-cell dysfunction. In this work, we aimed to test the impact of β-cell-specific EP3 loss on the BTBR-Ob phenotype by crossing Ptger3 floxed mice with the rat insulin promoter (RIP)-CreHerr driver strain. Instead, germline recombination of the floxed allele in the founder mouse-an event whose prevalence we identified as directly associated with underlying insulin resistance of the background strain-generated a full-body knockout. Full-body EP3 loss provided no diabetes protection to BTBR-Ob mice but, unexpectedly, significantly worsened BTBR-lean insulin resistance and glucose tolerance. This in vivo phenotype was not associated with changes in β-cell fractional area or markers of β-cell replication ex vivo. Instead, EP3-null BTBR-lean islets had essentially uncontrolled insulin hypersecretion. The selective upregulation of constitutively active EP3 splice variants in islets from young, lean BTBR mice as compared with C57BL/6J, where no phenotype of EP3 loss has been observed, provides a potential explanation for the hypersecretion phenotype. In support of this, high islet EP3 expression in Balb/c females versus Balb/c males was fully consistent with their sexually dimorphic metabolic phenotype after loss of EP3-coupled Gαz protein. Taken together, our findings provide a new dimension to the understanding of EP3 as a critical brake on insulin secretion.NEW & NOTEWORTHY Islet prostaglandin EP3 receptor (EP3) signaling is well known as upregulated in the pathophysiological conditions of type 2 diabetes, contributing to β-cell dysfunction. Unexpected findings in mouse models of non-obese insulin sensitivity and resistance provide a new dimension to our understanding of EP3 as a key modulator of insulin secretion. A previously unknown relationship between mouse insulin resistance and the penetrance of rat insulin promoter-driven germline floxed allele recombination is critical to consider when creating β-cell-specific knockouts.
Collapse
Affiliation(s)
- Jaclyn A Wisinski
- Department of Biology, University of Wisconsin-LaCrosse, La Crosse, Wisconsin
| | - Austin Reuter
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Darby C Peter
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michael D Schaid
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rachel J Fenske
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michelle E Kimple
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
11
|
In Silico Analysis to Explore Lineage-Independent and -Dependent Transcriptional Programs Associated with the Process of Endothelial and Neural Differentiation of Human Induced Pluripotent Stem Cells. J Clin Med 2021; 10:jcm10184161. [PMID: 34575270 PMCID: PMC8471316 DOI: 10.3390/jcm10184161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Despite a major interest in understanding how the endothelial cell phenotype is established, the underlying molecular basis of this process is not yet fully understood. We have previously reported the generation of induced pluripotent stem cells (iPS) from human umbilical vein endothelial cells and differentiation of the resulting HiPS back to endothelial cells (Ec-Diff), as well as neural (Nn-Diff) cell lineage that contained both neurons and astrocytes. Furthermore, the identities of these cell lineages were established by gene array analysis. Here, we explored the same arrays to gain insight into the gene alteration processes that accompany the establishment of endothelial vs. non-endothelial neural cell phenotypes. We compared the expression of genes that code for transcription factors and epigenetic regulators when HiPS is differentiated into these endothelial and non-endothelial lineages. Our in silico analyses have identified cohorts of genes that are similarly up- or downregulated in both lineages, as well as those that exhibit lineage-specific alterations. Based on these results, we propose that genes that are similarly altered in both lineages participate in priming the stem cell for differentiation in a lineage-independent manner, whereas those that are differentially altered in endothelial compared to neural cells participate in a lineage-specific differentiation process. Specific GATA family members and their cofactors and epigenetic regulators (DNMT3B, PRDM14, HELLS) with a major role in regulating DNA methylation were among participants in priming HiPS for lineage-independent differentiation. In addition, we identified distinct cohorts of transcription factors and epigenetic regulators whose alterations correlated specifically with the establishment of endothelial vs. non-endothelial neural lineages.
Collapse
|
12
|
Mondal P, Gadad SS, Adhikari S, Ramos EI, Sen S, Prasad P, Das C. TCF19 and p53 regulate transcription of TIGAR and SCO2 in HCC for mitochondrial energy metabolism and stress adaptation. FASEB J 2021; 35:e21814. [PMID: 34369624 DOI: 10.1096/fj.202002486rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 11/11/2022]
Abstract
Alteration in glucose homeostasis during cancer metabolism is an important phenomenon. Though several important transcription factors have been well studied in the context of the regulation of metabolic gene expression, the role of epigenetic readers in this regard remains still elusive. Epigenetic reader protein transcription factor 19 (TCF19) has been recently identified as a novel glucose and insulin-responsive factor that modulates histone posttranslational modifications to regulate glucose homeostasis in hepatocytes. Here we report that TCF19 interacts with a non-histone, well-known tumor suppressor protein 53 (p53) and co-regulates a wide array of metabolic genes. Among these, the p53-responsive carbohydrate metabolic genes Tp53-induced glycolysis and apoptosis regulator (TIGAR) and Cytochrome C Oxidase assembly protein 2 (SCO2), which are the key regulators of glycolysis and oxidative phosphorylation respectively, are under direct regulation of TCF19. Remarkably, TCF19 can form different transcription activation/repression complexes which show substantial overlap with that of p53, depending on glucose-mediated variant stress situations as obtained from IP/MS studies. Interestingly, we observed that TCF19/p53 complexes either have CBP or HDAC1 to epigenetically program the expression of TIGAR and SCO2 genes depending on short-term high glucose or prolonged high glucose conditions. TCF19 or p53 knockdown significantly altered the cellular lactate production and led to increased extracellular acidification rate. Similarly, OCR and cellular ATP production were reduced and mitochondrial membrane potential was compromised upon depletion of TCF19 or p53. Subsequently, through RNA-Seq analysis from patients with hepatocellular carcinoma, we observed that TCF19/p53-mediated metabolic regulation is fundamental for sustenance of cancer cells. Together the study proposes that TCF19/p53 complexes can regulate metabolic gene expression programs responsible for mitochondrial energy homeostasis and stress adaptation.
Collapse
Affiliation(s)
- Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Department of Life Sciences, Homi Bhaba National Institute, Mumbai, India
| | - Shrikanth S Gadad
- Department of Molecular and Translational Medicine, Center of Emphasis in Cancer, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Department of Life Sciences, Homi Bhaba National Institute, Mumbai, India
| | - Enrique I Ramos
- Department of Molecular and Translational Medicine, Center of Emphasis in Cancer, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Sabyasachi Sen
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Parash Prasad
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Department of Life Sciences, Homi Bhaba National Institute, Mumbai, India
| |
Collapse
|
13
|
Ruggiero D, Nutile T, Nappo S, Tirozzi A, Bellenguez C, Leutenegger AL, Ciullo M. Genetics of PlGF plasma levels highlights a role of its receptors and supports the link between angiogenesis and immunity. Sci Rep 2021; 11:16821. [PMID: 34413389 PMCID: PMC8376970 DOI: 10.1038/s41598-021-96256-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
Placental growth factor (PlGF) is a member of the vascular endothelial growth factor family and is involved in bone marrow-derived cell activation, endothelial stimulation and pathological angiogenesis. High levels of PlGF have been observed in several pathological conditions especially in cancer, cardiovascular, autoimmune and inflammatory diseases. Little is known about the genetics of circulating PlGF levels. Indeed, although the heritability of circulating PlGF levels is around 40%, no studies have assessed the relation between PlGF plasma levels and genetic variants at a genome-wide level. In the current study, PlGF plasma levels were measured in a population-based sample of 2085 adult individuals from three isolated populations of South Italy. A GWAS was performed in a discovery cohort (N = 1600), followed by a de novo replication (N = 468) from the same populations. The meta-analysis of the discovery and replication samples revealed one signal significantly associated with PlGF circulating levels. This signal was mapped to the PlGF co-receptor coding gene NRP1, indicating its important role in modulating the PlGF plasma levels. Two additional signals, at the PlGF receptor coding gene FLT1 and RAPGEF5 gene, were identified at a suggestive level. Pathway and TWAS analyses highlighted genes known to be involved in angiogenesis and immune response, supporting the link between these processes and PlGF regulation. Overall, these data improve our understanding of the genetic variation underlying circulating PlGF levels. This in turn could lead to new preventive and therapeutic strategies for a wide variety of PlGF-related pathologies.
Collapse
Affiliation(s)
- Daniela Ruggiero
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", National Research Council of Italy (CNR), Via Pietro Castellino, 111, 80131, Naples, Italy.
- IRCCS Neuromed, Pozzilli, Isernia, Italy.
| | - Teresa Nutile
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", National Research Council of Italy (CNR), Via Pietro Castellino, 111, 80131, Naples, Italy
| | | | | | - Celine Bellenguez
- CHU Lille, U1167 - Labex DISTALZ - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Inserm, Institut Pasteur de Lille, Univ. Lille, 59000, Lille, France
| | - Anne-Louise Leutenegger
- UMR 946, Genetic Variation and Human Diseases, Inserm, 75010, Paris, France
- UMR946, Université Paris-Diderot, Sorbonne Paris Cité, 75010, Paris, France
| | - Marina Ciullo
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", National Research Council of Italy (CNR), Via Pietro Castellino, 111, 80131, Naples, Italy.
- IRCCS Neuromed, Pozzilli, Isernia, Italy.
| |
Collapse
|
14
|
Yang GH, Fontaine DA, Lodh S, Blumer JT, Roopra A, Davis DB. TCF19 Impacts a Network of Inflammatory and DNA Damage Response Genes in the Pancreatic β-Cell. Metabolites 2021; 11:metabo11080513. [PMID: 34436454 PMCID: PMC8400192 DOI: 10.3390/metabo11080513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Transcription factor 19 (TCF19) is a gene associated with type 1 diabetes (T1DM) and type 2 diabetes (T2DM) in genome-wide association studies. Prior studies have demonstrated that Tcf19 knockdown impairs β-cell proliferation and increases apoptosis. However, little is known about its role in diabetes pathogenesis or the effects of TCF19 gain-of-function. The aim of this study was to examine the impact of TCF19 overexpression in INS-1 β-cells and human islets on proliferation and gene expression. With TCF19 overexpression, there was an increase in nucleotide incorporation without any change in cell cycle gene expression, alluding to an alternate process of nucleotide incorporation. Analysis of RNA-seq of TCF19 overexpressing cells revealed increased expression of several DNA damage response (DDR) genes, as well as a tightly linked set of genes involved in viral responses, immune system processes, and inflammation. This connectivity between DNA damage and inflammatory gene expression has not been well studied in the β-cell and suggests a novel role for TCF19 in regulating these pathways. Future studies determining how TCF19 may modulate these pathways can provide potential targets for improving β-cell survival.
Collapse
Affiliation(s)
- Grace H. Yang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
| | - Danielle A. Fontaine
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
| | - Sukanya Lodh
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Joseph T. Blumer
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Dawn Belt Davis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
15
|
Schmiedel BJ, Chandra V, Rocha J, Gonzalez-Colin C, Bhattacharyya S, Madrigal A, Ottensmeier CH, Ay F, Vijayanand P. COVID-19 genetic risk variants are associated with expression of multiple genes in diverse immune cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.01.407429. [PMID: 33299987 PMCID: PMC7724655 DOI: 10.1101/2020.12.01.407429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Common genetic polymorphisms associated with severity of COVID-19 illness can be utilized for discovering molecular pathways and cell types driving disease pathogenesis. Here, we assessed the effects of 679 COVID-19-risk variants on gene expression in a wide-range of immune cell types. Severe COVID-19-risk variants were significantly associated with the expression of 11 protein-coding genes, and overlapped with either target gene promoter or cis -regulatory regions that interact with target promoters in the cell types where their effects are most prominent. For example, we identified that the association between variants in the 3p21.31 risk locus and the expression of CCR2 in classical monocytes is likely mediated through an active cis-regulatory region that interacted with CCR2 promoter specifically in monocytes. The expression of several other genes showed prominent genotype-dependent effects in non-classical monocytes, NK cells, B cells, or specific T cell subtypes, highlighting the potential of COVID-19 genetic risk variants to impact the function of diverse immune cell types and influence severe disease manifestations.
Collapse
Affiliation(s)
- Benjamin J Schmiedel
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Equally contributed to this work
| | - Vivek Chandra
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Equally contributed to this work
| | - Job Rocha
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Equally contributed to this work
| | | | | | | | - Christian H Ottensmeier
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Liverpool Head and Neck Centre, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Joint senior authors
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Liverpool Head and Neck Centre, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
- Joint senior authors
| |
Collapse
|
16
|
Gilligan GM, Panico RL, Di Tada C, Piemonte ED, Brunotto MN. Clinical and Immunohistochemical epithelial profile of non-healing chronic traumatic ulcers. Med Oral Patol Oral Cir Bucal 2020; 25:e706-e713. [PMID: 32683386 PMCID: PMC7473441 DOI: 10.4317/medoral.23729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/04/2020] [Indexed: 01/25/2023] Open
Abstract
Background Chronic wounds were previously related to cancer. Chronic Traumatic Ulcers (CTU) are lesions caused by chronic mechanical irritation (CMI) frequently diagnosed in Oral Medicine. Although these conditions may reflect a benign nature, some authors have proposed its relationship with malignant transformation. Currently, there are scarce investigations that evaluate biomarkers within CTU. The aim of this study was to evaluate cell differentiation and proliferation biomarkers patterns of CTU and OSCC through recognized markers such as cytokeratin 19 and Ki67 and correlate it with clinical features of both groups of patients.
Material and Methods A Cross-sectional study of adult patients (n=79), both sexes, attended at Oral Medicine Department, Facultad de Odontología, Universidad Nacional de Córdoba. The patients were classified into two groups: CTU (n=41), and OSCC (n=38). A subset of specimens were immunolabeled with Ki67 and Ck19.
Results The population consisted of 51.9% male and 48.1% female, with an average of 57.0 ± 13.9. years (OSCC group) and 60.9 ± 14.9 years (CTU group). OSCC group presented higher scores for both biomarkers (Ki67 and Ck19), but only there were differences statistically significant for Ki67 (p=0.032). 25% of non-healing CTU were positive with medium scores of Ck19 and showed an immunohistochemical profile similar to OSCC. The lateral tongue was the most frequent site in both groups.
Conclusions The altered immunohistochemical pattern found in many specimens of CTU was also observed in OSCC. The tongue border presents physiological conditions that could offer a suitable environment for the development of neoplastic events associated with CMI. Further studies are needed to understand the underlying mechanisms that could link oral non-healing ulcers with early malignant changes. Key words:Ck19, Ki67, Oral Cancer, Chronic Traumatic Ulcer, Chronic Mechanical Irritation.
Collapse
Affiliation(s)
- G-M Gilligan
- Oral Medicine Department, Facultad de Odontología Universidad Nacional de Córdoba Haya de la Torre SN. Ciudad Universitaria, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
17
|
Mondal P, Sen S, Klein BJ, Tiwary N, Gadad SS, Kutateladze TG, Roy S, Das C. TCF19 Promotes Cell Proliferation through Binding to the Histone H3K4me3 Mark. Biochemistry 2020; 59:389-399. [PMID: 31746185 PMCID: PMC11540549 DOI: 10.1021/acs.biochem.9b00771] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Transcription factor 19 (TCF19) plays critical roles in type 1 diabetes and the maintenance of pancreatic β cells. Recent studies have also implicated TCF19 in cell proliferation of hepatic carcinoma and non-small cell lung carcinoma; however, the mechanism underlying this regulation remains elusive. At the molecular level, TCF19 contains two modules, the plant homeodomain (PHD) finger and the forkhead-associated (FHA) domain, of unclear function. Here, we show that TCF19 mediates hepatocellular carcinoma HepG2 cell proliferation through its PHD finger that recognizes trimethylated lysine 4 of histone 3 (H3K4me3). W316 of the PHD finger of TCF19 is one of the critical residues eliciting this function. Whole genome microarray analysis and orthogonal cell-based assays identified a large subset of genes involved in cell survival and proliferation that depend on TCF19. Our data suggest that TCF19 acts as a pro-oncogene in hepatocellular carcinoma cells and that its functional PHD finger is critical in cell proliferation.
Collapse
Affiliation(s)
- Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Sabyasachi Sen
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Brianna J. Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Niharika Tiwary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905, United States
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Siddhartha Roy
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| |
Collapse
|
18
|
Zhou ZH, Chen G, Deng C, Tang JM, Xie L, Zhou HY, Ye X, Zhang DK, Shi RQ, Tian D, Qiao GB, Ben XS. TCF19 contributes to cell proliferation of non-small cell lung cancer by inhibiting FOXO1. Cell Biol Int 2019; 43:1416-1424. [PMID: 31141247 DOI: 10.1002/cbin.11189] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/25/2019] [Indexed: 01/24/2023]
Abstract
Transcription factor 19 (TCF19) harbors a forkhead association (FHA) domain, a proline-rich region, a PHD or RING finger region, suggesting that TCF19 possesses a powerful function. However, its expression and function remains unknown in non-small-cell lung cancer (NSCLC). The function cluster analysis was carried out using Metascape website. 3-(4,5-Dimethyl-2-thiazolyl)2,5-diphenyl-2H-tetrazolium bromide (MTT), colony formation, and anchorage-independent growth ability assay were carried out to detect the effect of TCF19 on cell proliferation. Bromodeoxyuridine (Brdu) labeling and flow cytometry assay were used to evaluate the effect of TCF19 on cell-cycle progression. Quantitative polymerase chain reaction and chromatin immunoprecipitation assay were performed to investigate the mechanism by which TCF19 is involved in cell-cycle transition. By analyzing the publicly available dataset, The Cancer Genome Atlas (TCGA), we found that TCF19 is significantly increased in the lung adenocarcinoma (LAC) and squamous cell carcinoma (SCC), two primary histological subtype of NSCLC. Besides, further function cluster analysis exhibited that TCF19 may mainly participate in cell cycle. MTT, colony formation, and anchorage-independent growth ability assay confirmed that overexpression of TCF19 enhances the proliferation of both LAC and SCC cells. Besides, further experiments revealed that TCF19 contributes to cell cycle G1/S transition. Not only that, upregulation of TCF19 can inhibit the expression of p21, p27, and p57, while promote the expression of cyclin D1 by inhibiting FOXO1. Our research offers important evidence that TCF19 can promote cell-cycle progression of NSCLC cells, and TCF19 may served as novel therapeutic targets.
Collapse
Affiliation(s)
- Zi-Hao Zhou
- Thoracic Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, 510000, China
| | - Gang Chen
- Thoracic Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, 510000, China
| | - Cheng Deng
- Thoracic Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, 510000, China
| | - Ji-Ming Tang
- Thoracic Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, 510000, China
| | - Liang Xie
- Thoracic Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, 510000, China
| | - Hai-Yu Zhou
- Thoracic Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, 510000, China
| | - Xiong Ye
- Thoracic Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, 510000, China
| | - Dong-Kun Zhang
- Thoracic Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, 510000, China
| | - Rui-Qing Shi
- Thoracic Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, 510000, China
| | - Dan Tian
- Thoracic Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, 510000, China
| | - Gui-Bin Qiao
- Thoracic Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, 510000, China
| | - Xiao-Song Ben
- Thoracic Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, 510000, China
| |
Collapse
|
19
|
Went M, Kinnersley B, Sud A, Johnson DC, Weinhold N, Försti A, van Duin M, Orlando G, Mitchell JS, Kuiper R, Walker BA, Gregory WM, Hoffmann P, Jackson GH, Nöthen MM, da Silva Filho MI, Thomsen H, Broyl A, Davies FE, Thorsteinsdottir U, Hansson M, Kaiser M, Sonneveld P, Goldschmidt H, Stefansson K, Hemminki K, Nilsson B, Morgan GJ, Houlston RS. Transcriptome-wide association study of multiple myeloma identifies candidate susceptibility genes. Hum Genomics 2019; 13:37. [PMID: 31429796 PMCID: PMC6700979 DOI: 10.1186/s40246-019-0231-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/12/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND While genome-wide association studies (GWAS) of multiple myeloma (MM) have identified variants at 23 regions influencing risk, the genes underlying these associations are largely unknown. To identify candidate causal genes at these regions and search for novel risk regions, we performed a multi-tissue transcriptome-wide association study (TWAS). RESULTS GWAS data on 7319 MM cases and 234,385 controls was integrated with Genotype-Tissue Expression Project (GTEx) data assayed in 48 tissues (sample sizes, N = 80-491), including lymphocyte cell lines and whole blood, to predict gene expression. We identified 108 genes at 13 independent regions associated with MM risk, all of which were in 1 Mb of known MM GWAS risk variants. Of these, 94 genes, located in eight regions, had not previously been considered as a candidate gene for that locus. CONCLUSIONS Our findings highlight the value of leveraging expression data from multiple tissues to identify candidate genes responsible for GWAS associations which provide insight into MM tumorigenesis. Among the genes identified, a number have plausible roles in MM biology, notably APOBEC3C, APOBEC3H, APOBEC3D, APOBEC3F, APOBEC3G, or have been previously implicated in other malignancies. The genes identified in this TWAS can be explored for follow-up and validation to further understand their role in MM biology.
Collapse
Affiliation(s)
- Molly Went
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - David C Johnson
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Niels Weinhold
- Department of Internal Medicine V, University of Heidelberg, 69117, Heidelberg, Germany
| | - Asta Försti
- German Cancer Research Center, 69120, Heidelberg, Germany
| | - Mark van Duin
- Department of Hematology, Erasmus MC Cancer Institute, 3075, EA, Rotterdam, The Netherlands
| | - Giulia Orlando
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Jonathan S Mitchell
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Rowan Kuiper
- Department of Hematology, Erasmus MC Cancer Institute, 3075, EA, Rotterdam, The Netherlands
| | - Brian A Walker
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Walter M Gregory
- Clinical Trials Research Unit, University of Leeds, Leeds, LS2 9PH, UK
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, D-53127, Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, 4003, Basel, Switzerland
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, D-53127, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, D-53127, Bonn, Germany
| | | | - Hauke Thomsen
- German Cancer Research Center, 69120, Heidelberg, Germany
| | - Annemiek Broyl
- Department of Hematology, Erasmus MC Cancer Institute, 3075, EA, Rotterdam, The Netherlands
| | - Faith E Davies
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | | | - Markus Hansson
- Hematology Clinic, Skåne University Hospital, SE-221 85, Lund, Sweden
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, SE-221 84, Lund, Sweden
| | - Martin Kaiser
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Pieter Sonneveld
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, 69117, Heidelberg, Germany
- Institute of Human Genetics, University of Bonn, D-53127, Bonn, Germany
| | | | - Kari Hemminki
- German Cancer Research Center, 69120, Heidelberg, Germany
| | - Björn Nilsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, SE-221 84, Lund, Sweden
- Broad Institute, 7 Cambridge Center, Cambridge, MA, 02142, USA
| | - Gareth J Morgan
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| |
Collapse
|
20
|
Echevarría-Vargas IM, Reyes-Uribe PI, Guterres AN, Yin X, Kossenkov AV, Liu Q, Zhang G, Krepler C, Cheng C, Wei Z, Somasundaram R, Karakousis G, Xu W, Morrissette JJ, Lu Y, Mills GB, Sullivan RJ, Benchun M, Frederick DT, Boland G, Flaherty KT, Weeraratna AT, Herlyn M, Amaravadi R, Schuchter LM, Burd CE, Aplin AE, Xu X, Villanueva J. Co-targeting BET and MEK as salvage therapy for MAPK and checkpoint inhibitor-resistant melanoma. EMBO Mol Med 2019; 10:emmm.201708446. [PMID: 29650805 PMCID: PMC5938620 DOI: 10.15252/emmm.201708446] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Despite novel therapies for melanoma, drug resistance remains a significant hurdle to achieving optimal responses. NRAS‐mutant melanoma is an archetype of therapeutic challenges in the field, which we used to test drug combinations to avert drug resistance. We show that BET proteins are overexpressed in NRAS‐mutant melanoma and that high levels of the BET family member BRD4 are associated with poor patient survival. Combining BET and MEK inhibitors synergistically curbed the growth of NRAS‐mutant melanoma and prolonged the survival of mice bearing tumors refractory to MAPK inhibitors and immunotherapy. Transcriptomic and proteomic analysis revealed that combining BET and MEK inhibitors mitigates a MAPK and checkpoint inhibitor resistance transcriptional signature, downregulates the transcription factor TCF19, and induces apoptosis. Our studies demonstrate that co‐targeting MEK and BET can offset therapy resistance, offering a salvage strategy for melanomas with no other therapeutic options, and possibly other treatment‐resistant tumor types.
Collapse
Affiliation(s)
| | | | - Adam N Guterres
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Xiangfan Yin
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Andrew V Kossenkov
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Qin Liu
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Gao Zhang
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Clemens Krepler
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Chaoran Cheng
- College of Computing Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| | - Zhi Wei
- College of Computing Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| | | | - Giorgos Karakousis
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Xu
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Jd Morrissette
- Center for Personalized Diagnostics, Hospital of the University of Pennsylvania University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Miao Benchun
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Dennie T Frederick
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Genevieve Boland
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ashani T Weeraratna
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA.,Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA.,Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Ravi Amaravadi
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Lynn M Schuchter
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Christin E Burd
- Departments of Molecular Genetics and Cancer Biology and Genetics, Ohio State University, Columbus, OH, USA
| | - Andrew E Aplin
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessie Villanueva
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA .,Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
21
|
Rossi F, Legnini I, Megiorni F, Colantoni A, Santini T, Morlando M, Di Timoteo G, Dattilo D, Dominici C, Bozzoni I. Circ-ZNF609 regulates G1-S progression in rhabdomyosarcoma. Oncogene 2019; 38:3843-3854. [PMID: 30670781 PMCID: PMC6544520 DOI: 10.1038/s41388-019-0699-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 01/16/2023]
Abstract
Circular RNAs (circRNAs) represent a class of covalently closed RNAs, derived from non-canonical splicing events, which are expressed in all eukaryotes and often conserved among different species. We previously showed that the circRNA originating from the ZNF609 locus (circ-ZNF609) acts as a crucial regulator of human primary myoblast growth: indeed, the downregulation of the circRNA, and not of its linear counterpart, strongly reduced the proliferation rate of in vitro cultured myoblasts. To deepen our knowledge about circ-ZNF609 role in cell cycle regulation, we studied its expression and function in rhabdomyosarcoma (RMS), a pediatric skeletal muscle malignancy. We found that circ-ZNF609 is upregulated in biopsies from the two major RMS subtypes, embryonal (ERMS) and alveolar (ARMS). Moreover, we discovered that in an ERMS-derived cell line circ-ZNF609 knock-down induced a specific block at the G1-S transition, a strong decrease of p-Akt protein level and an alteration of the pRb/Rb ratio. Regarding p-Akt, we were able to show that circ-ZNF609 acts by counteracting p-Akt proteasome-dependent degradation, thus working as a new regulator of cell proliferation-related pathways. As opposed to ERMS-derived cells, the circRNA depletion had no cell cycle effects in ARMS-derived cells. Since in these cells the p53 gene resulted downregulated, with a concomitant upregulation of its cell cycle-related target genes, we suggest that this could account for the lack of circ-ZNF609 effect in ARMS.
Collapse
Affiliation(s)
- Francesca Rossi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Ivano Legnini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | | | - Alessio Colantoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Tiziana Santini
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Mariangela Morlando
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Dario Dattilo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Carlo Dominici
- Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy. .,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
22
|
Yu Y. A novel combination treatment against melanoma with NRAS mutation and therapy resistance. EMBO Mol Med 2018; 10:emmm.201708573. [PMID: 29661909 PMCID: PMC5938621 DOI: 10.15252/emmm.201708573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Dominguez Gutierrez G, Xin Y, Okamoto H, Kim J, Lee AH, Ni M, Adler C, Yancopoulos GD, Murphy AJ, Gromada J. Gene Signature of Proliferating Human Pancreatic α Cells. Endocrinology 2018; 159:3177-3186. [PMID: 30010845 DOI: 10.1210/en.2018-00469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Pancreatic α cells proliferate at a low rate, and little is known about the control of this process. Here we report the characterization of human α cells by large-scale, single-cell RNA sequencing coupled with pseudotime ordering. We identified two large subpopulations and a smaller cluster of proliferating α cells with increased expression of genes involved in cell-cycle regulation. The proliferating α cells were differentiated, had normal levels of GCG expression, and showed no signs of cellular stress. Proliferating α cells were detected in both the G1S and G2M phases of the cell cycle. Human α cells proliferate at a fivefold higher rate than human β cells and express lower levels of the cell-cycle inhibitors CDKN1A and CDKN1C. Collectively, this study provides the gene signatures of human α cells and the genes involved in their cell division. The lower expression of two cell-cycle inhibitors in human α cells could account for their higher rate of proliferation compared with their insulin-producing counterparts.
Collapse
Affiliation(s)
| | - Yurong Xin
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Jinrang Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Ann-Hwee Lee
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Min Ni
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | | | | |
Collapse
|
24
|
Akcay IM, Katrinli S, Ozdil K, Doganay GD, Doganay L. Host genetic factors affecting hepatitis B infection outcomes: Insights from genome-wide association studies. World J Gastroenterol 2018; 24:3347-3360. [PMID: 30122875 PMCID: PMC6092584 DOI: 10.3748/wjg.v24.i30.3347] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/29/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
The clinical outcome of Hepatitis B Virus (HBV) infection depends on the success or failure of the immune responses to HBV, and varies widely among individuals, ranging from asymptomatic self-limited infection, inactive carrier state, chronic hepatitis, cirrhosis, hepatocellular carcinoma, to liver failure. Genome-wide association studies (GWAS) identified key genetic factors influencing the pathogenesis of HBV-related traits. In this review, we discuss GWAS for persistence of HBV infection, antibody response to hepatitis B vaccine, and HBV-related advanced liver diseases. HBV persistence is associated with multiple genes with diverse roles in immune mechanisms. The strongest associations are found within the classical human leukocyte antigen (HLA) genes, highlighting the central role of antigen presentation in the immune response to HBV. Associated variants affect both epitope binding specificities and expression levels of HLA molecules. Several other susceptibility genes regulate the magnitude of adaptive immune responses, determining immunity vs tolerance. HBV persistence and nonresponse to vaccine share the same risk variants, implying overlapping genetic bases. On the other hand, the risk variants for HBV-related advanced liver diseases are largely different, suggesting different host-virus dynamics in acute vs chronic HBV infections. The findings of these GWAS are likely to pave the way for developing more effective preventive and therapeutic interventions by personalizing the management of HBV infection.
Collapse
Affiliation(s)
- Izzet Mehmet Akcay
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Seyma Katrinli
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Kamil Ozdil
- Department of Gastroenterology and Hepatology, Umraniye Teaching and Research Hospital, Istanbul 34764, Turkey
| | - Gizem Dinler Doganay
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Levent Doganay
- Department of Gastroenterology and Hepatology, Umraniye Teaching and Research Hospital, Istanbul 34764, Turkey
| |
Collapse
|
25
|
Sen S, Sanyal S, Srivastava DK, Dasgupta D, Roy S, Das C. Transcription factor 19 interacts with histone 3 lysine 4 trimethylation and controls gluconeogenesis via the nucleosome-remodeling-deacetylase complex. J Biol Chem 2017; 292:20362-20378. [PMID: 29042441 DOI: 10.1074/jbc.m117.786863] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/10/2017] [Indexed: 12/26/2022] Open
Abstract
Transcription factor 19 (TCF19) has been reported as a type 1 diabetes-associated locus involved in maintenance of pancreatic β cells through a fine-tuned regulation of cell proliferation and apoptosis. TCF19 also exhibits genomic association with type 2 diabetes, although the precise molecular mechanism remains unknown. It harbors both a plant homeodomain and a forkhead-associated domain implicated in epigenetic recognition and gene regulation, a phenomenon that has remained unexplored. Here, we show that TCF19 selectively interacts with histone 3 lysine 4 trimethylation through its plant homeodomain finger. Knocking down TCF19 under high-glucose conditions affected many metabolic processes, including gluconeogenesis. We found that TCF19 overexpression represses de novo glucose production in HepG2 cells. The transcriptional repression of key genes, induced by TCF19, coincided with NuRD (nucleosome-remodeling-deacetylase) complex recruitment to the promoters of these genes. TCF19 interacted with CHD4 (chromodomain helicase DNA-binding protein 4), which is a part of the NuRD complex, in a glucose concentration-independent manner. In summary, our results show that TCF19 interacts with an active transcription mark and recruits a co-repressor complex to regulate gluconeogenic gene expression in HepG2 cells. Our study offers critical insights into the molecular mechanisms of transcriptional regulation of gluconeogenesis and into the roles of chromatin readers in metabolic homeostasis.
Collapse
Affiliation(s)
- Sabyasachi Sen
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Sulagna Sanyal
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Dushyant Kumar Srivastava
- the Structural Biology and Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Dipak Dasgupta
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Siddhartha Roy
- the Structural Biology and Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Chandrima Das
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| |
Collapse
|
26
|
Ndiaye FK, Ortalli A, Canouil M, Huyvaert M, Salazar-Cardozo C, Lecoeur C, Verbanck M, Pawlowski V, Boutry R, Durand E, Rabearivelo I, Sand O, Marselli L, Kerr-Conte J, Chandra V, Scharfmann R, Poulain-Godefroy O, Marchetti P, Pattou F, Abderrahmani A, Froguel P, Bonnefond A. Expression and functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes contributing to human insulin secretion. Mol Metab 2017; 6:459-470. [PMID: 28580277 PMCID: PMC5444093 DOI: 10.1016/j.molmet.2017.03.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/17/2017] [Accepted: 03/24/2017] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Genome-wide association studies (GWAS) have identified >100 loci independently contributing to type 2 diabetes (T2D) risk. However, translational implications for precision medicine and for the development of novel treatments have been disappointing, due to poor knowledge of how these loci impact T2D pathophysiology. Here, we aimed to measure the expression of genes located nearby T2D associated signals and to assess their effect on insulin secretion from pancreatic beta cells. METHODS The expression of 104 candidate T2D susceptibility genes was measured in a human multi-tissue panel, through PCR-free expression assay. The effects of the knockdown of beta-cell enriched genes were next investigated on insulin secretion from the human EndoC-βH1 beta-cell line. Finally, we performed RNA-sequencing (RNA-seq) so as to assess the pathways affected by the knockdown of the new genes impacting insulin secretion from EndoC-βH1, and we analyzed the expression of the new genes in mouse models with altered pancreatic beta-cell function. RESULTS We found that the candidate T2D susceptibility genes' expression is significantly enriched in pancreatic beta cells obtained by laser capture microdissection or sorted by flow cytometry and in EndoC-βH1 cells, but not in insulin sensitive tissues. Furthermore, the knockdown of seven T2D-susceptibility genes (CDKN2A, GCK, HNF4A, KCNK16, SLC30A8, TBC1D4, and TCF19) with already known expression and/or function in beta cells changed insulin secretion, supporting our functional approach. We showed first evidence for a role in insulin secretion of four candidate T2D-susceptibility genes (PRC1, SRR, ZFAND3, and ZFAND6) with no previous knowledge of presence and function in beta cells. RNA-seq in EndoC-βH1 cells with decreased expression of PRC1, SRR, ZFAND6, or ZFAND3 identified specific gene networks related to T2D pathophysiology. Finally, a positive correlation between the expression of Ins2 and the expression of Prc1, Srr, Zfand6, and Zfand3 was found in mouse pancreatic islets with altered beta-cell function. CONCLUSIONS This study showed the ability of post-GWAS functional studies to identify new genes and pathways involved in human pancreatic beta-cell function and in T2D pathophysiology.
Collapse
Affiliation(s)
- Fatou K. Ndiaye
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, 59000 Lille, France
| | - Ana Ortalli
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, 59000 Lille, France
| | - Mickaël Canouil
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, 59000 Lille, France
| | - Marlène Huyvaert
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, 59000 Lille, France
| | - Clara Salazar-Cardozo
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, 59000 Lille, France
| | - Cécile Lecoeur
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, 59000 Lille, France
| | - Marie Verbanck
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, 59000 Lille, France
| | - Valérie Pawlowski
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, 59000 Lille, France
| | - Raphaël Boutry
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, 59000 Lille, France
| | - Emmanuelle Durand
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, 59000 Lille, France
| | - Iandry Rabearivelo
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, 59000 Lille, France
| | - Olivier Sand
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, 59000 Lille, France
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Julie Kerr-Conte
- Inserm U1190, EGID, CHU Lille, University of Lille, 59000 Lille, France
| | - Vikash Chandra
- Inserm U1016, Institut Cochin, Faculté de Médecine, Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France
| | - Raphaël Scharfmann
- Inserm U1016, Institut Cochin, Faculté de Médecine, Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France
| | - Odile Poulain-Godefroy
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, 59000 Lille, France
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - François Pattou
- Inserm U1190, EGID, CHU Lille, University of Lille, 59000 Lille, France
| | - Amar Abderrahmani
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, 59000 Lille, France
- Department of Genomics of Common Disease, Imperial College London, W12 0NN London, United Kingdom
| | - Philippe Froguel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, 59000 Lille, France
- Department of Genomics of Common Disease, Imperial College London, W12 0NN London, United Kingdom
| | - Amélie Bonnefond
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, 59000 Lille, France
- Department of Genomics of Common Disease, Imperial College London, W12 0NN London, United Kingdom
| |
Collapse
|
27
|
Macauda A, Calvetti D, Maccari G, Hemminki K, Försti A, Goldschmidt H, Weinhold N, Houlston R, Andersen V, Vogel U, Buda G, Varkonyi J, Sureda A, Martinez Lopez J, Watek M, Butrym A, Sarasquete ME, Dudziński M, Jurczyszyn A, Druzd-Sitek A, Kruszewski M, Subocz E, Petrini M, Iskierka-Jażdżewska E, Raźny M, Szombath G, Marques H, Zawirska D, Chraniuk D, Halka J, Hove Jacobsen SE, Mazur G, García Sanz R, Dumontet C, Moreno V, Stępień A, Beider K, Pelosini M, Manuel Reis R, Krawczyk-Kulis M, Rymko M, Avet-Loiseau H, Lesueur F, Grząśko N, Ostrovsky O, Jamroziak K, Vangsted AJ, Jerez A, Tomczak W, Zaucha JM, Kadar K, Sainz J, Nagler A, Landi S, Gemignani F, Canzian F. Identification of miRSNPs associated with the risk of multiple myeloma. Int J Cancer 2016; 140:526-534. [DOI: 10.1002/ijc.30465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Angelica Macauda
- Department of Biology; University of Pisa; Pisa Italy
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Diego Calvetti
- Department of Biology; University of Pisa; Pisa Italy
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Giuseppe Maccari
- The Pirbright Institute, Pirbright; Woking Surrey GU24 0NF United Kingdom
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Asta Försti
- Division of Molecular Genetic Epidemiology; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Hartmut Goldschmidt
- Department of Internal Medicine V; University of Heidelberg; Heidelberg Germany
| | - Niels Weinhold
- Department of Internal Medicine V; University of Heidelberg; Heidelberg Germany
| | - Richard Houlston
- Division of Genetics and Epidemiology; The Institute of Cancer Research; London United Kingdom
| | - Vibeke Andersen
- Institute of Regional Health Research, and Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark; Odense Denmark
- Research Unit of Molecular Diagnostics and Clinical Research, Laboratory Center, Hospital of Southern Jutland; Aabenraa Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment; Copenhagen DK-2100 Denmark
| | - Gabriele Buda
- UO Hematology, Department of Internal and Experimental Medicine; University of Pisa; Pisa Italy
| | - Judit Varkonyi
- Department of Hematology; Semmelweis University; Budapest Hungary
| | - Anna Sureda
- Department of Hematology; Catalan Institute of Oncology (ICO) and IDIBELL; Barcelona Spain
| | - Joaquin Martinez Lopez
- Department of Hematology; Hospital Universitario 12 de Octubre, Complutense School of Medicine, CNIO; Madrid Spain
| | | | | | | | - Marek Dudziński
- Department of Hematology; Specialist District Hospital; Rzeszow Poland
| | - Artur Jurczyszyn
- Department of Hematology; Cracow University Hospital; Cracow Poland
| | - Agnieszka Druzd-Sitek
- Department of Lymphoid Malignancies Maria Sklodowska-Curie Memorial Institute and Oncology Centre Warsaw; Warsaw Poland
| | | | - Edyta Subocz
- Department of Hematology; Military Institute of Medicine; Warsaw Poland
| | - Mario Petrini
- UO Hematology, Department of Internal and Experimental Medicine; University of Pisa; Pisa Italy
| | | | | | - Gergely Szombath
- Department of Hematology; Semmelweis University; Budapest Hungary
| | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho; Braga Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga Portugal
| | - Daria Zawirska
- Department of Hematology; Cracow University Hospital; Cracow Poland
| | | | - Janusz Halka
- Department of Hematology; Military Institute of Medicine; Warsaw Poland
| | | | - Grzegorz Mazur
- Department of Internal Diseases, Hypertension and Occupational Medicine; Medical University; Wroclaw Poland
| | - Ramón García Sanz
- Department of Hematology; University Hospital of Salamanca; Salamanca Spain
| | - Charles Dumontet
- INSERM UMR 1052/CNRS 5286, Université Claude Bernard Lyon I; Lyon 69622 France
| | - Victor Moreno
- Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), IDIBELL, CIBERESP and Department of Clinical Sciences, Faculty of Medicine; University of Barcelona; Barcelona Spain
| | - Anna Stępień
- Laboratory of Clinical and Transplant Immunology and Genetics; Copernicus Memorial Hospital; Łódź Poland
| | - Katia Beider
- Chaim Sheba Medical Center; Tel-Hashomer Ramat Gan Israel
| | - Matteo Pelosini
- Azienda USL Toscana Nord Ovest; U.O Dipartimento di Ematologia; Livorno, Italy
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho; Braga Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga Portugal
- Barretos Cancer Hospital; Molecular Oncology Research Center; Barretos Brazil
| | - Malgorzata Krawczyk-Kulis
- Department of Hematology and Bone marrow Transplantation; Silesian Medical University; Katowice Poland
| | - Marcin Rymko
- Department of Hematology; Copernicus Hospital; Torun Poland
| | - Hervé Avet-Loiseau
- Laboratoire d'hématologie, Pôle biologie; Institut Universitaire du Cancer de Toulouse-Oncopole 1; Avenue Irène Joliot-Curie, Toulouse 31059 France
| | - Fabienne Lesueur
- Institut Curie; 26 rue d'Ulm Paris F-75005 France
- PSL Research University; Paris F-75005 France
- Inserm, U900; Paris F-75005 France
- Mines Paris Tech; Fontainebleau, Paris F-77305 France
| | - Norbert Grząśko
- Department of Hematology; St. John's Cancer Center; Lublin Poland
| | - Olga Ostrovsky
- Chaim Sheba Medical Center; Tel-Hashomer Ramat Gan Israel
| | - Krzysztof Jamroziak
- Department of Hematology; Institute of Hematology and Transfusion Medicine; Warsaw Poland
| | - Annette J. Vangsted
- Department of Haematology, Rigshospitalet; Copenhagen University; Copenhagen Denmark
| | - Andrés Jerez
- Department of Hematology and Medical Oncology; IMIB, University Hospital Morales Meseguer; Murcia Spain
| | - Waldemar Tomczak
- Department of Hematooncology and Bone Marrow Transplantation; Medical University of Lublin; Lublin Poland
| | | | - Katalin Kadar
- Department of Hematology; Semmelweis University; Budapest Hungary
| | - Juan Sainz
- Centro Pfizer, Universidad de Granada, Junta de Andalucía de Genómica e Investigación Oncológica (GENYO); Granada Spain
| | - Arnon Nagler
- Chaim Sheba Medical Center; Tel-Hashomer Ramat Gan Israel
| | - Stefano Landi
- Department of Biology; University of Pisa; Pisa Italy
| | | | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ); Heidelberg Germany
| |
Collapse
|
28
|
Mathew S, Abdel-Hafiz H, Raza A, Fatima K, Qadri I. Host nucleotide polymorphism in hepatitis B virus-associated hepatocellular carcinoma. World J Hepatol 2016; 8:485-498. [PMID: 27057306 PMCID: PMC4820640 DOI: 10.4254/wjh.v8.i10.485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/04/2015] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is etiologically linked with hepatitis B virus (HBV) and is the leading cause of death amongst 80% of HBV patients. Among HBV affected patients, genetic factors are also involved in modifying the risk factors of HCC. However, the genetic factors that regulate progression to HCC still remain to be determined. In this review, we discuss several single nucleotide polymorphisms (SNPs) which were reportedly associated with increased or reduced risk of HCC occurrence in patients with chronic HBV infection such as cyclooxygenase (COX)-2 expression specifically at COX-2 -1195G/A in Chinese, Turkish and Egyptian populations, tumor necrosis factor α and the three most commonly studied SNPs: PAT-/+, Lys939Gln (A33512C, rs2228001) and Ala499Val (C21151T, rs2228000). In genome-wide association studies, strong associations have also been found at loci 1p36.22, 11q22.3, 6p21 (rs1419881, rs3997872, rs7453920 and rs7768538), 8p12 (rs2275959 and rs37821974) and 22q11.21. The genes implicated in these studies include HLA-DQB2, HLA-DQA1, TCF19, HLA-C, UBE2L3, LTL, FDX1, MICA, UBE4B and PG. The SNPs found to be associated with the above-mentioned genes still require validation in association studies in order to be considered good prognostic candidates for HCC. Screening of these polymorphisms is very beneficial in clinical experiments to stratify the higher or lower risk for HCC and may help in designing effective and efficient HCC surveillance programs for chronic HBV-infected patients if further genetic vulnerabilities are detected.
Collapse
|
29
|
Katayama S, Skoog T, Jouhilahti EM, Siitonen HA, Nuutila K, Tervaniemi MH, Vuola J, Johnsson A, Lönnerberg P, Linnarsson S, Elomaa O, Kankuri E, Kere J. Gene expression analysis of skin grafts and cultured keratinocytes using synthetic RNA normalization reveals insights into differentiation and growth control. BMC Genomics 2015; 16:476. [PMID: 26108968 PMCID: PMC4480911 DOI: 10.1186/s12864-015-1671-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/29/2015] [Indexed: 11/30/2022] Open
Abstract
Background Keratinocytes (KCs) are the most frequent cells in the epidermis, and they are often isolated and cultured in vitro to study the molecular biology of the skin. Cultured primary cells and various immortalized cells have been frequently used as skin models but their comparability to intact skin has been questioned. Moreover, when analyzing KC transcriptomes, fluctuation of polyA+ RNA content during the KCs’ lifecycle has been omitted. Results We performed STRT RNA sequencing on 10 ng samples of total RNA from three different sample types: i) epidermal tissue (split-thickness skin grafts), ii) cultured primary KCs, and iii) HaCaT cell line. We observed significant variation in cellular polyA+ RNA content between tissue and cell culture samples of KCs. The use of synthetic RNAs and SAMstrt in normalization enabled comparison of gene expression levels in the highly heterogenous samples and facilitated discovery of differences between the tissue samples and cultured cells. The transcriptome analysis sensitively revealed genes involved in KC differentiation in skin grafts and cell cycle regulation related genes in cultured KCs and emphasized the fluctuation of transcription factors and non-coding RNAs associated to sample types. Conclusions The epidermal keratinocytes derived from tissue and cell culture samples showed highly different polyA+ RNA contents. The use of SAMstrt and synthetic RNA based normalization allowed the comparison between tissue and cell culture samples and thus proved to be valuable tools for RNA-seq analysis with translational approach. Transciptomics revealed clear difference both between tissue and cell culture samples and between primary KCs and immortalized HaCaT cells. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1671-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institute and Center for Innovative Medicine, Huddinge, Sweden.
| | - Tiina Skoog
- Department of Biosciences and Nutrition, Karolinska Institute and Center for Innovative Medicine, Huddinge, Sweden.
| | - Eeva-Mari Jouhilahti
- Department of Biosciences and Nutrition, Karolinska Institute and Center for Innovative Medicine, Huddinge, Sweden.
| | - H Annika Siitonen
- Folkhälsan Institute of Genetics, Helsinki, Finland. .,Department of Medical Genetics, Haartman Institute and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.
| | - Kristo Nuutila
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Mari H Tervaniemi
- Folkhälsan Institute of Genetics, Helsinki, Finland. .,Department of Medical Genetics, Haartman Institute and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.
| | - Jyrki Vuola
- Helsinki Burn Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland.
| | - Anna Johnsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Peter Lönnerberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Outi Elomaa
- Folkhälsan Institute of Genetics, Helsinki, Finland. .,Department of Medical Genetics, Haartman Institute and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institute and Center for Innovative Medicine, Huddinge, Sweden. .,Department of Medical Genetics, Haartman Institute and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland. .,Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
30
|
Yakoub AM, Shukla D. Autophagy stimulation abrogates herpes simplex virus-1 infection. Sci Rep 2015; 5:9730. [PMID: 25856282 PMCID: PMC4929686 DOI: 10.1038/srep09730] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/18/2015] [Indexed: 01/07/2023] Open
Abstract
Herpes simplex virus-1 (HSV-1) is a double-stranded DNA virus that causes life-long infections. HSV-1 infections may lead to herpetic stromal keratitis that may advance to corneal blindness. HSV-1 infections can also cause fatal conditions, such as herpes encephalitis, or neonatal disease. A major virulence mechanism of HSV-1 is the control of autophagy, an innate immune defense strategy that could otherwise degrade viral particles. Here, to investigate a new mechanism for antiviral therapy, we tested the effect of various autophagy inducers (physiological and pharmacological) on infection. Autophagy stimulation was confirmed to significantly suppress HSV-1 infection in various cell types, without affecting cell viability. This study establishes the importance of autophagy for regulating HSV-1 infection, and provides a proof-of-principle evidence for a novel antiviral mechanism.
Collapse
Affiliation(s)
- Abraam M Yakoub
- 1] Department of Microbiology and Immunology, University of Illinois, Chicago. IL USA, 60612 [2] Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago. IL USA, 60612
| | - Deepak Shukla
- 1] Department of Microbiology and Immunology, University of Illinois, Chicago. IL USA, 60612 [2] Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago. IL USA, 60612
| |
Collapse
|
31
|
Truchan NA, Brar HK, Gallagher SJ, Neuman JC, Kimple ME. A single-islet microplate assay to measure mouse and human islet insulin secretion. Islets 2015; 7:e1076607. [PMID: 26452321 PMCID: PMC4708880 DOI: 10.1080/19382014.2015.1076607] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
One complication to comparing β-cell function among islet preparations, whether from genetically identical or diverse animals or human organ donors, is the number of islets required per assay. Islet numbers can be limiting, meaning that fewer conditions can be tested; other islet measurements must be excluded; or islets must be pooled from multiple animals/donors for each experiment. Furthermore, pooling islets negates the possibility of performing single-islet comparisons. Our aim was to validate a 96-well plate-based single islet insulin secretion assay that would be as robust as previously published methods to quantify glucose-stimulated insulin secretion from mouse and human islets. First, we tested our new assay using mouse islets, showing robust stimulation of insulin secretion 24 or 48 h after islet isolation. Next, we utilized the assay to quantify mouse islet function on an individual islet basis, measurements that would not be possible with the standard pooled islet assay methods. Next, we validated our new assay using human islets obtained from the Integrated Islet Distribution Program (IIDP). Human islets are known to have widely varying insulin secretion capacity, and using our new assay we reveal biologically relevant factors that are significantly correlated with human islet function, whether displayed as maximal insulin secretion response or fold-stimulation of insulin secretion. Overall, our results suggest this new microplate assay will be a useful tool for many laboratories, expert or not in islet techniques, to be able to precisely quantify islet insulin secretion from their models of interest.
Collapse
Affiliation(s)
- Nathan A Truchan
- Department of Medicine; Division of Endocrinology, Diabetes & Metabolism; University of Wisconsin-Madison; Madison, WI USA
- William S Middleton Memorial Veterans Hospital; Madison, WI USA
| | - Harpreet K Brar
- Department of Medicine; Division of Endocrinology, Diabetes & Metabolism; University of Wisconsin-Madison; Madison, WI USA
- William S Middleton Memorial Veterans Hospital; Madison, WI USA
| | - Shannon J Gallagher
- Department of Medicine; Division of Endocrinology, Diabetes & Metabolism; University of Wisconsin-Madison; Madison, WI USA
- William S Middleton Memorial Veterans Hospital; Madison, WI USA
| | - Joshua C Neuman
- Interdisciplinary Graduate Program in Nutritional Sciences; University of Wisconsin-Madison; Madison, WI USA
- William S Middleton Memorial Veterans Hospital; Madison, WI USA
| | - Michelle E Kimple
- Department of Medicine; Division of Endocrinology, Diabetes & Metabolism; University of Wisconsin-Madison; Madison, WI USA
- Interdisciplinary Graduate Program in Nutritional Sciences; University of Wisconsin-Madison; Madison, WI USA
- William S Middleton Memorial Veterans Hospital; Madison, WI USA
- Correspondence to: Michelle E Kimple;
| |
Collapse
|
32
|
Abstract
Because obesity rates have increased dramatically over the past 3 decades, type 2 diabetes has become increasingly prevalent as well. Type 2 diabetes is associated with decreased pancreatic β-cell mass and function, resulting in inadequate insulin production. Conversely, in nondiabetic obesity, an expansion in β-cell mass occurs to provide sufficient insulin and to prevent hyperglycemia. This expansion is at least in part due to β-cell proliferation. This review focuses on the mechanisms regulating obesity-induced β-cell proliferation in humans and mice. Many factors have potential roles in the regulation of obesity-driven β-cell proliferation, including nutrients, insulin, incretins, hepatocyte growth factor, and recently identified liver-derived secreted factors. Much is still unknown about the regulation of β-cell replication, especially in humans. The extracellular signals that activate proliferative pathways in obesity, the relative importance of each of these pathways, and the extent of cross-talk between these pathways are important areas of future study.
Collapse
Affiliation(s)
| | - Mieke Baan
- Division of Endocrinology, Department of Medicine, and,School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI; and
| | - Dawn Belt Davis
- Division of Endocrinology, Department of Medicine, and William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|