1
|
Zarzycka W, Kobak KA, King CJ, Peelor FF, Miller BF, Chiao YA. Hyperactive mTORC1/4EBP1 signaling dysregulates proteostasis and accelerates cardiac aging. GeroScience 2024:10.1007/s11357-024-01368-w. [PMID: 39379739 DOI: 10.1007/s11357-024-01368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) has a major impact on aging by regulation of proteostasis. It is well established that mTORC1 signaling is hyperactivated with aging and age-related diseases. Previous studies have shown that partial inhibition of mTOR signaling by rapamycin reverses age-related deteriorations in cardiac function and structure in old mice. However, the downstream signaling pathways involved in this protection against cardiac aging have not been established. mTORC1 phosphorylates 4E-binding protein 1 (4EBP1) to promote the initiation of cap-dependent translation. The objective of this project is to examine the role of the mTORC1/4EBP1 axis in age-related cardiac dysfunction. We used a whole-body 4EBP1 KO mouse model, which mimics a hyperactive mTORC1/4EBP1/eIF4E axis, to investigate the effects of hyperactive mTORC1/4EBP1 axis in cardiac aging. Echocardiographic measurements of middle-aged 4EBP1 KO mice show impaired diastolic function and myocardial performance compared to age-matched WT mice and these parameters are at similar levels as old WT mice, suggesting that 4EBP1 KO mice experience accelerated cardiac aging. Old 4EBP1 KO mice show further decline in systolic and diastolic function compared to middle-aged counterparts and have worse systolic and diastolic function than age-matched WT mice. Gene expression levels of heart failure markers are not different between 4EBP1 KO and WT hearts. However, ribosomal biogenesis and protein ubiquitination are significantly increased in 4EBP1 KO hearts when compared to WT controls, suggesting dysregulated proteostasis in 4EBP1 KO hearts. Together, these results show that a hyperactive mTORC1/4EBP1 axis accelerates cardiac aging, potentially by dysregulating proteostasis.
Collapse
Affiliation(s)
- Weronika Zarzycka
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kamil A Kobak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Catherine J King
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City VA, Oklahoma City, OK, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Holwerda AM, Atherton PJ, Smith K, Wilkinson DJ, Phillips SM, van Loon LJ. Assessing Muscle Protein Synthesis Rates In Vivo in Humans: The Deuterated Water ( 2H 2O) Method. J Nutr 2024:S0022-3166(24)01029-0. [PMID: 39278410 DOI: 10.1016/j.tjnut.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024] Open
Abstract
Skeletal muscle tissue is in a constant state of turnover, with muscle tissue protein synthesis and breakdown rates ranging between 1% and 2% across the day in vivo in humans. Muscle tissue remodeling is largely controlled by the up- and down-regulation of muscle tissue protein synthesis rates. Research studies generally apply stable isotope-labeled amino acids to assess muscle protein synthesis rates in vivo in humans. Following labeled amino acid administration in a laboratory setting, muscle tissue samples are collected over several hours to assess the incorporation rate of these labeled amino acids in muscle tissue protein. To allow quantification of bulk muscle protein synthesis rates over more prolonged periods, the use of deuterated water methodology has regained much interest. Ingestion of daily boluses of deuterium oxide results in 2H enrichment of the body water pool. The available 2H-atoms become incorporated into endogenously synthesized alanine primarily through transamination of pyruvate in the liver. With 2H-alanine widely available to all tissues, it becomes incorporated into de novo synthesized tissue proteins. Assessing the increase in tissue protein-bound 2H-alanine enrichment in muscle biopsy samples over time allows for the calculation of muscle protein synthesis rates over several days or even weeks. As the deuterated water method allows for the assessment of muscle tissue protein synthesis rates under free-living conditions in nonlaboratory settings, there is an increasing interest in its application. This manuscript describes the theoretical background of the deuterated water method and offers a comprehensive tutorial to correctly apply the method to determine bulk muscle protein synthesis rates in vivo in humans.
Collapse
Affiliation(s)
- Andrew M Holwerda
- Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Philip J Atherton
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Kenneth Smith
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Daniel J Wilkinson
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Luc Jc van Loon
- Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Zarzycka W, Kobak KA, King CJ, Peelor FF, Miller BF, Chiao YA. Hyperactive mTORC1/4EBP1 Signaling Dysregulates Proteostasis and Accelerates Cardiac Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594044. [PMID: 38798509 PMCID: PMC11118374 DOI: 10.1101/2024.05.13.594044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) has a major impact on aging by regulation of proteostasis. It is well established that mTORC1 signaling is hyperactivated with aging and age-related diseases. Previous studies have shown that partial inhibition of mTOR signaling by rapamycin reverses the age-related decline in cardiac function and structure in old mice. However, the downstream signaling pathways involved in this protection against cardiac aging have not been established. TORC1 phosphorylates 4E-binding protein 1 (4EBP1) to promote the initiation of cap-dependent translation. The aim of this project is to examine the role of the mTORC1/4EBP1 axis in age-related cardiac dysfunction. We utilized a whole-body 4EBP1 KO mouse model, which mimics a hyperactive 4EBP1/eIF4E axis, to investigate the effects of hyperactive mTORC1/4EBP1 axis in cardiac aging. Echocardiographic measurements revealed that young 4EBP1 KO mice have no difference in cardiac function at baseline compared to WT mice. Interestingly, middle-aged (14-15-month-old) 4EBP1 KO mice show impaired diastolic function and myocardial performance compared to age-matched WT mice and their diastolic function and myocardial performance are at similar levels as 24-month-old WT mice, suggesting that 4EBP1 KO mice experience accelerated cardiac aging. Old 4EBP1 KO mice show further declines in systolic and diastolic function compared to middle-aged 4EBP1 KO mice and have worse systolic and diastolic function than age-matched old WT mice. Gene expression levels of heart failure markers are not different between 4EBP1 KO and WT mice at these advanced ages. However, ribosomal biogenesis and overall protein ubiquitination are significantly increased in 4EBP1 KO mice when compared to WT, which suggests dysregulated proteostasis. Together, these results show that a hyperactive 4EBP1/eIF4E axis accelerates cardiac aging, potentially by dysregulating proteostasis.
Collapse
|
4
|
Kataoka R, Hammert WB, Yamada Y, Song JS, Seffrin A, Kang A, Spitz RW, Wong V, Loenneke JP. The Plateau in Muscle Growth with Resistance Training: An Exploration of Possible Mechanisms. Sports Med 2024; 54:31-48. [PMID: 37787845 DOI: 10.1007/s40279-023-01932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
It is hypothesized that there is likely a finite ability for muscular adaptation. While it is difficult to distinguish between a true plateau following a long-term training period and short-term stalling in muscle growth, a plateau in muscle growth has been attributed to reaching a genetic potential, with limited discussion on what might physiologically contribute to this muscle growth plateau. The present paper explores potential physiological factors that may drive the decline in muscle growth after prolonged resistance training. Overall, with chronic training, the anabolic signaling pathways may become more refractory to loading. While measures of anabolic markers may have some predictive capabilities regarding muscle growth adaptation, they do not always demonstrate a clear connection. Catabolic processes may also constrain the ability to achieve further muscle growth, which is influenced by energy balance. Although speculative, muscle cells may also possess cell scaling mechanisms that sense and regulate their own size, along with molecular brakes that hinder growth rate over time. When considering muscle growth over the lifespan, there comes a point when the anabolic response is attenuated by aging, regardless of whether or not individuals approach their muscle growth potential. Our goal is that the current review opens avenues for future experimental studies to further elucidate potential mechanisms to explain why muscle growth may plateau.
Collapse
Affiliation(s)
- Ryo Kataoka
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - William B Hammert
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Jun Seob Song
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Aldo Seffrin
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Anna Kang
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Vickie Wong
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
| |
Collapse
|
5
|
Davids CJ, Roberts LA, Bjørnsen T, Peake JM, Coombes JS, Raastad T. Where Does Blood Flow Restriction Fit in the Toolbox of Athletic Development? A Narrative Review of the Proposed Mechanisms and Potential Applications. Sports Med 2023; 53:2077-2093. [PMID: 37578669 PMCID: PMC10587223 DOI: 10.1007/s40279-023-01900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Blood flow-restricted exercise is currently used as a low-intensity time-efficient approach to reap many of the benefits of typical high-intensity training. Evidence continues to lend support to the notion that even highly trained individuals, such as athletes, still benefit from this mode of training. Both resistance and endurance exercise may be combined with blood flow restriction to provide a spectrum of adaptations in skeletal muscle, spanning from myofibrillar to mitochondrial adjustments. Such diverse adaptations would benefit both muscular strength and endurance qualities concurrently, which are demanded in athletic performance, most notably in team sports. Moreover, recent work indicates that when traditional high-load resistance training is supplemented with low-load, blood flow-restricted exercise, either in the same session or as a separate training block in a periodised programme, a synergistic and complementary effect on training adaptations may occur. Transient reductions in mechanical loading of tissues afforded by low-load, blood flow-restricted exercise may also serve a purpose during de-loading, tapering or rehabilitation of musculoskeletal injury. This narrative review aims to expand on the current scientific and practical understanding of how blood flow restriction methods may be applied by coaches and practitioners to enhance current athletic development models.
Collapse
Affiliation(s)
- Charlie J Davids
- Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia.
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia.
- Sport Performance Innovation and Knowledge Excellence (SPIKE), Queensland Academy of Sport, Brisbane, QLD, Australia.
| | - Llion A Roberts
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
- Sport Performance Innovation and Knowledge Excellence (SPIKE), Queensland Academy of Sport, Brisbane, QLD, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
| | - Thomas Bjørnsen
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
- Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - Jonathan M Peake
- Sport Performance Innovation and Knowledge Excellence (SPIKE), Queensland Academy of Sport, Brisbane, QLD, Australia
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jeff S Coombes
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Truls Raastad
- Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| |
Collapse
|
6
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
7
|
Kim J, Seo S, Kim TY. Metabolic deuterium oxide (D 2O) labeling in quantitative omics studies: A tutorial review. Anal Chim Acta 2023; 1242:340722. [PMID: 36657897 DOI: 10.1016/j.aca.2022.340722] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Mass spectrometry (MS) is an invaluable tool for sensitive detection and characterization of individual biomolecules in omics studies. MS combined with stable isotope labeling enables the accurate and precise determination of quantitative changes occurring in biological samples. Metabolic isotope labeling, wherein isotopes are introduced into biomolecules through biosynthetic metabolism, is one of the main labeling strategies. Among the precursors employed in metabolic isotope labeling, deuterium oxide (D2O) is cost-effective and easy to implement in any biological systems. This tutorial review aims to explain the basic principle of D2O labeling and its applications in omics research. D2O labeling incorporates D into stable C-H bonds in various biomolecules, including nucleotides, proteins, lipids, and carbohydrates. Typically, D2O labeling is performed at low enrichment of 1%-10% D2O, which causes subtle changes in the isotopic distribution of a biomolecule, instead of the complete separation between labeled and unlabeled samples in a mass spectrum. D2O labeling has been employed in various omics studies to determine the metabolic flux, turnover rate, and relative quantification. Moreover, the advantages and challenges of D2O labeling and its future prospects in quantitative omics are discussed. The economy, versatility, and convenience of D2O labeling will be beneficial for the long-term omics studies for higher organisms.
Collapse
Affiliation(s)
- Jonghyun Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Seungwoo Seo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| |
Collapse
|
8
|
Brook MS, Wilkinson DJ, Tarum J, Mitchell KW, Lund JL, Phillips BE, Szewczyk NJ, Kadi F, Greenhaff PL, Smith K, Atherton PJ. Neither myonuclear accretion nor a myonuclear domain size ceiling is a feature of the attenuated hypertrophic potential of aged human skeletal muscle. GeroScience 2022; 45:451-462. [PMID: 36083436 PMCID: PMC9886697 DOI: 10.1007/s11357-022-00651-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/25/2022] [Indexed: 02/03/2023] Open
Abstract
Ageing limits growth capacity of skeletal muscle (e.g. in response to resistance exercise), but the role of satellite cell (SC) function in driving this phenomenon is poorly defined. Younger (Y) (~ 23 years) and older (O) men (~ 69 years) (normal-weight BMI) underwent 6 weeks of unilateral resistance exercise training (RET). Muscle biopsies were taken at baseline and after 3-/6-week training. We determined muscle size by fibre CSA (and type), SC number, myonuclei counts and DNA synthesis (via D2O ingestion). At baseline, there were no significant differences in fibre areas between Y and O. RET increased type I fibre area in Y from baseline at both 3 weeks and 6 weeks (baseline: 4509 ± 534 µm2, 3 weeks; 5497 ± 510 µm2 P < 0.05, 6 weeks; 5402 ± 352 µm2 P < 0.05), whilst O increased from baseline at 6 weeks only (baseline 5120 ± 403 µm2, 3 weeks; 5606 ± 620 µm2, 6 weeks; 6017 ± 482 µm2 P < 0.05). However, type II fibre area increased from baseline in Y at both 3 weeks and 6 weeks (baseline: 4949 ± 459 µm2, 3 weeks; 6145 ± 484 µm2 (P < 0.01), 6 weeks; 5992 ± 491 µm2 (P < 0.01), whilst O showed no change (baseline 5210 ± 410 µm2, 3 weeks; 5356 ± 535 µm2 (P = 0.9), 6 weeks; 5857 ± 478 µm2 (P = 0.1). At baseline, there were no differences in fibre myonuclei number between Y and O. RET increased type I fibre myonuclei number from baseline in both Y and O at 3 weeks and 6 weeks with RET (younger: baseline 2.47 ± 0.16, 3 weeks; 3.19 ± 0.16 (P < 0.001), 6 weeks; 3.70 ± 0.29 (P < 0.0001); older: baseline 2.29 ± 0.09, 3 weeks; 3.01 ± 0.09 (P < 0.001), 6 weeks; 3.65 ± 0.18 (P < 0.0001)). Similarly, type II fibre myonuclei number increased from baseline in both Y and O at 3 weeks and 6 weeks (younger: baseline 2.49 ± 0.14, 3 weeks; 3.31 ± 0.21 (P < 0.001), 6 weeks; 3.86 ± 0.29 (P < 0.0001); older: baseline 2.43 ± 0.12, 3 weeks; 3.37 ± 0.12 (P < 0.001), 6 weeks; 3.81 ± 0.15 (P < 0.0001)). DNA synthesis rates %.d-1 exhibited a main effect of training but no age discrimination. Declines in myonuclei addition do not underlie impaired muscle growth capacity in older humans, supporting ribosomal and proteostasis impairments as we have previously reported.
Collapse
Affiliation(s)
- Matthew S. Brook
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK ,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Daniel J. Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| | - Janelle Tarum
- School of Health Sciences, Örebro University, Örebro, Sweden
| | - Kyle W. Mitchell
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| | - Jonathan L. Lund
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| | - Bethan E. Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| | - Nathaniel J. Szewczyk
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| | - Fawzi Kadi
- School of Health Sciences, Örebro University, Örebro, Sweden
| | - Paul L. Greenhaff
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK ,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ken Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| |
Collapse
|
9
|
LIM CHANGHYUN, NUNES EVERSONA, CURRIER BRADS, MCLEOD JONATHANC, THOMAS AARONCQ, PHILLIPS STUARTM. An Evidence-Based Narrative Review of Mechanisms of Resistance Exercise-Induced Human Skeletal Muscle Hypertrophy. Med Sci Sports Exerc 2022; 54:1546-1559. [PMID: 35389932 PMCID: PMC9390238 DOI: 10.1249/mss.0000000000002929] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle plays a critical role in physical function and metabolic health. Muscle is a highly adaptable tissue that responds to resistance exercise (RE; loading) by hypertrophying, or during muscle disuse, RE mitigates muscle loss. Resistance exercise training (RET)-induced skeletal muscle hypertrophy is a product of external (e.g., RE programming, diet, some supplements) and internal variables (e.g., mechanotransduction, ribosomes, gene expression, satellite cells activity). RE is undeniably the most potent nonpharmacological external variable to stimulate the activation/suppression of internal variables linked to muscular hypertrophy or countering disuse-induced muscle loss. Here, we posit that despite considerable research on the impact of external variables on RET and hypertrophy, internal variables (i.e., inherent skeletal muscle biology) are dominant in regulating the extent of hypertrophy in response to external stimuli. Thus, identifying the key internal skeletal muscle-derived variables that mediate the translation of external RE variables will be pivotal to determining the most effective strategies for skeletal muscle hypertrophy in healthy persons. Such work will aid in enhancing function in clinical populations, slowing functional decline, and promoting physical mobility. We provide up-to-date, evidence-based perspectives of the mechanisms regulating RET-induced skeletal muscle hypertrophy.
Collapse
Affiliation(s)
- CHANGHYUN LIM
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - EVERSON A. NUNES
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
- Department of Physiological Science, Federal University of Santa Catarina, Florianópolis, Santa-Catarina, BRAZIL
| | - BRAD S. CURRIER
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - JONATHAN C. MCLEOD
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - AARON C. Q. THOMAS
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - STUART M. PHILLIPS
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| |
Collapse
|
10
|
Wu X, Huang L, Liu W, Zhou Y, Li N. Differences in gene expression between the primary and secondary inferior oblique overaction. Transl Pediatr 2022; 11:676-686. [PMID: 35685078 PMCID: PMC9173879 DOI: 10.21037/tp-22-98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND This study sought to define different adaptive changes in the molecular levels of the overacting inferior oblique muscle in primary and secondary inferior oblique overaction. METHODS The inferior oblique muscles of patients with congenital superior oblique palsy (SOP) and those of patients with congenital esotropia were collected during surgery. RNA-seq technology was performed to detect the differentially expressed genes (DEGs) between the two groups. A comprehensive analysis of the gene expression profiles was then conducted, including the identification of DEGs, a Gene Ontology (GO) analysis, and a gene set enrichment analysis (GSEA). Finally, a protein-protein interaction (PPI) network was constructed with Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Cytoscape software. RESULTS We identified 221 DEGs, of which 104 were significantly upregulated and 117 were downregulated in the SOP group. Additionally, several isoforms of the myosin heavy chain (MyHC) gene were found to be significantly and differentially expressed in the SOP group, including 3 upregulated fast-twitch MyHC isoforms (i.e., MYH1, MYH4, and MYH13) and 1 downregulated slow-twitch MyHC isoform (i.e., MYH3). The GO analysis indicated that the upregulated DEGs were mainly enriched in the muscle system process and muscle contraction. The GSEA analysis revealed that the upregulated pathways of ribosome, proteasome, oxidative phosphorylation, fatty acid metabolism, viral myocarditis, and cardiac muscle contraction were enriched. CONCLUSIONS Our findings provide insights into the different molecular changes of inferior oblique muscle overaction secondary to SOP and suggest the potential pathological mechanisms of inferior oblique overaction (IOOA) in SOP. The results suggest that upregulated fast-twitch MyHC isoforms and downregulated slow-twitch MyHC isoform in SOP may contribute to the increased force of its inferior oblique muscle.
Collapse
Affiliation(s)
- Xiaofei Wu
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lijuan Huang
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wen Liu
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yunyu Zhou
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ningdong Li
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Department of Ophthalmology, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
11
|
Kobak KA, Lawrence MM, Pharaoh G, Borowik AK, Peelor FF, Shipman PD, Griffin TM, Van Remmen H, Miller BF. Determining the contributions of protein synthesis and breakdown to muscle atrophy requires non-steady-state equations. J Cachexia Sarcopenia Muscle 2021; 12:1764-1775. [PMID: 34418329 PMCID: PMC8718081 DOI: 10.1002/jcsm.12772] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/17/2021] [Accepted: 07/10/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Ageing and cachexia cause a loss of muscle mass over time, indicating that protein breakdown exceeds protein synthesis. Deuterium oxide (D2 O) is used for studies of protein turnover because of the advantages of long-term labelling, but these methods introduce considerations that have been largely overlooked when studying conditions of protein gain or loss. The purpose of this study was to demonstrate the importance of accounting for a change in protein mass, a non-steady state, during D2 O labelling studies while also exploring the contribution of protein synthesis and breakdown to denervation-induced muscle atrophy. METHODS Adult (6 months) male C57BL/6 mice (n = 14) were labelled with D2 O for a total of 7 days following unilateral sciatic nerve transection to induce denervation of hindlimb muscles. The contralateral sham limb and nonsurgical mice (n = 5) were used as two different controls to account for potential crossover effects of denervation. We calculated gastrocnemius myofibrillar and collagen protein synthesis and breakdown assuming steady-state or using non-steady-state modelling. We measured RNA synthesis rates to further understand ribosomal turnover during atrophy. RESULTS Gastrocnemius mass was less in denervated muscle (137 ± 9 mg) compared with sham (174 ± 15 mg; P < 0.0001) or nonsurgical control (162 ± 5 mg; P < 0.0001). With steady-state calculations, fractional synthesis and breakdown rates (FSR and FBR) were lower in the denervated muscle (1.49 ± 0.06%/day) compared with sham (1.81 ± 0.09%/day; P < 0.0001) or nonsurgical control (2.27 ± 0.04%/day; P < 0.0001). When adjusting for change in protein mass, FSR was 4.21 ± 0.19%/day in denervated limb, whereas FBR was 4.09 ± 0.22%/day. When considering change in protein mass (ksyn ), myofibrillar synthesis was lower in denervated limb (2.44 ± 0.14 mg/day) compared with sham (3.43 ± 0.22 mg/day; P < 0.0001) and non-surgical control (3.74 ± 0.12 mg/day; P < 0.0001), whereas rate of protein breakdown (kdeg, 1/t) was greater in denervated limb (0.050 ± 0.003) compared with sham (0.019 ± 0.001; P < 0.0001) and nonsurgical control (0.023 ± 0.000; P < 0.0001). Muscle collagen breakdown was completely inhibited during denervation. There was a strong correlation (r = 0.83, P < 0.001) between RNA and myofibrillar protein synthesis in sham but not denervated muscle. CONCLUSIONS We show conflicting results between steady- and non-steady-state calculations on myofibrillar protein synthesis and breakdown during periods of muscle loss. We also found that collagen accumulation was largely from a decrease in collagen breakdown. Comparison between sham and non-surgical control demonstrated a crossover effect of denervation on myofibrillar protein synthesis and ribosomal biogenesis, which impacts study design for unilateral atrophy studies. These considerations are important because not accounting for them can mislead therapeutic attempts to maintain muscle mass.
Collapse
Affiliation(s)
- Kamil A Kobak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Marcus M Lawrence
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT, USA
| | - Gavin Pharaoh
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Patrick D Shipman
- Department of Mathematics, Colorado State University, Fort Collins, CO, USA
| | - Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
12
|
Mesquita PHC, Vann CG, Phillips SM, McKendry J, Young KC, Kavazis AN, Roberts MD. Skeletal Muscle Ribosome and Mitochondrial Biogenesis in Response to Different Exercise Training Modalities. Front Physiol 2021; 12:725866. [PMID: 34646153 PMCID: PMC8504538 DOI: 10.3389/fphys.2021.725866] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle adaptations to resistance and endurance training include increased ribosome and mitochondrial biogenesis, respectively. Such adaptations are believed to contribute to the notable increases in hypertrophy and aerobic capacity observed with each exercise mode. Data from multiple studies suggest the existence of a competition between ribosome and mitochondrial biogenesis, in which the first adaptation is prioritized with resistance training while the latter is prioritized with endurance training. In addition, reports have shown an interference effect when both exercise modes are performed concurrently. This prioritization/interference may be due to the interplay between the 5’ AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1) signaling cascades and/or the high skeletal muscle energy requirements for the synthesis and maintenance of cellular organelles. Negative associations between ribosomal DNA and mitochondrial DNA copy number in human blood cells also provide evidence of potential competition in skeletal muscle. However, several lines of evidence suggest that ribosome and mitochondrial biogenesis can occur simultaneously in response to different types of exercise and that the AMPK-mTORC1 interaction is more complex than initially thought. The purpose of this review is to provide in-depth discussions of these topics. We discuss whether a curious competition between mitochondrial and ribosome biogenesis exists and show the available evidence both in favor and against it. Finally, we provide future research avenues in this area of exercise physiology.
Collapse
Affiliation(s)
| | | | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - James McKendry
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| | | | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| |
Collapse
|
13
|
Lysenko EA, Vinogradova OL, Popov DV. The Mechanisms of Muscle Mass and Strength Increase during Strength Training. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Wilkinson DJ, Brook MS, Smith K. Principles of stable isotope research - with special reference to protein metabolism. CLINICAL NUTRITION OPEN SCIENCE 2021; 36:111-125. [PMID: 33969338 PMCID: PMC8083121 DOI: 10.1016/j.nutos.2021.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022] Open
Abstract
The key to understanding the mechanisms regulating disease stems from the ability to accurately quantify the dynamic nature of the metabolism underlying the physiological and pathological changes occurring as a result of the disease. Stable isotope tracer technologies have been at the forefront of this for almost 80 years now, and through a combination of both intense theoretical and technological development over these decades, it is now possible to utilise stable isotope tracers to investigate the complexities of in vivo human metabolism from a whole body perspective, down to the regulation of sub-nanometer cellular components (i.e organelles, nucleotides and individual proteins). This review therefore aims to highlight; 1) the advances made in these stable isotope tracer approaches - with special reference given to their role in understanding the nutritional regulation of protein metabolism, 2) some considerations required for the appropriate application of these stable isotope techniques to study protein metabolism, 3) and finally how new stable isotopes approaches and instrument/technical developments will help to deliver greater clinical insight in the near future.
Collapse
Key Words
- A-V, Arterial Venous
- AA, Amino Acids
- AP(E), Atom percent (excess)
- FBR, Fractional Breakdown Rate
- FSR, Fractional Synthesis Rate
- GC-MS, Gas Chromatography Mass Spectrometry
- LC-MS, Liquid Chromatography Mass Spectrometry
- MPS, Muscle Protein Synthesis
- Muscle
- Protein turnover
- Ra, Rate of Appearance
- Rd, Rate of Disappearance
- Stable isotope tracers
Collapse
Affiliation(s)
- Daniel J. Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, UK
- Division of Health Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Matthew S. Brook
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, UK
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Ken Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, UK
- Division of Health Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| |
Collapse
|
15
|
Cross KM, Granados JZ, Ten Have GAM, Thaden JJ, Engelen MPKJ, Lightfoot JT, Deutz NEP. Protein fractional synthesis rates within tissues of high- and low-active mice. PLoS One 2020; 15:e0242926. [PMID: 33253250 PMCID: PMC7703944 DOI: 10.1371/journal.pone.0242926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/11/2020] [Indexed: 11/19/2022] Open
Abstract
With the rise in physical inactivity and its related diseases, it is necessary to understand the mechanisms involved in physical activity regulation. Biological factors regulating physical activity are studied to establish a possible target for improving the physical activity level. However, little is known about the role metabolism plays in physical activity regulation. Therefore, we studied protein fractional synthesis rate (FSR) of multiple organ tissues of 12-week-old male mice that were previously established as inherently low-active (n = 15, C3H/HeJ strain) and high-active (n = 15, C57L/J strain). Total body water of each mouse was enriched to 5% deuterium oxide (D2O) via intraperitoneal injection and maintained with D2O enriched drinking water for about 24 h. Blood samples from the jugular vein and tissues (kidney, heart, lung, muscle, fat, jejunum, ileum, liver, brain, skin, and bone) were collected for enrichment analysis of alanine by LC-MS/MS. Protein FSR was calculated as -ln(1-enrichment). Data are mean±SE as fraction/day (unpaired t-test). Kidney protein FSR in the low-active mice was 7.82% higher than in high-active mice (low-active: 0.1863±0.0018, high-active: 0.1754±0.0028, p = 0.0030). No differences were found in any of the other measured organ tissues. However, all tissues resulted in a generally higher protein FSR in the low-activity mice compared to the high-activity mice (e.g. lung LA: 0.0711±0.0015, HA: 0.0643±0.0020, heart LA: 0.0649± 0.0013 HA: 0.0712±0.0073). Our observations suggest that high-active mice in most organ tissues are no more inherently equipped for metabolic adaptation than low-active mice, but there may be a connection between protein metabolism of kidney tissue and physical activity level. In addition, low-active mice have higher organ-specific baseline protein FSR possibly contributing to the inability to achieve higher physical activity levels.
Collapse
Affiliation(s)
- Kristina M. Cross
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
- * E-mail:
| | - Jorge Z. Granados
- Biology of Physical Activity Laboratory, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| | - Gabriella A. M. Ten Have
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| | - John J. Thaden
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| | - Marielle P. K. J. Engelen
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| | - J. Timothy Lightfoot
- Biology of Physical Activity Laboratory, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| | - Nicolaas E. P. Deutz
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
16
|
Kim IY, Park S, Kim Y, Chang Y, Choi CS, Suh SH, Wolfe RR. In Vivo and In Vitro Quantification of Glucose Kinetics: From Bedside to Bench. Endocrinol Metab (Seoul) 2020; 35:733-749. [PMID: 33397035 PMCID: PMC7803595 DOI: 10.3803/enm.2020.406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Like other substrates, plasma glucose is in a dynamic state of constant turnover (i.e., rates of glucose appearance [Ra glucose] into and disappearance [Rd glucose] from the plasma) while staying within a narrow range of normal concentrations, a physiological priority. Persistent imbalance of glucose turnover leads to elevations (i.e., hyperglycemia, Ra>Rd) or falls (i.e., hypoglycemia, Ra
Collapse
Affiliation(s)
- Il-Young Kim
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Seoul,
Korea
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Seoul,
Korea
| | - Sanghee Park
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Seoul,
Korea
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Seoul,
Korea
| | - Yeongmin Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon, Seoul,
Korea
| | - Yewon Chang
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon, Seoul,
Korea
| | - Cheol Soo Choi
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Seoul,
Korea
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Seoul,
Korea
| | - Sang-Hoon Suh
- Department of Physical Education, Yonsei University, Seoul,
Korea
| | - Robert R. Wolfe
- Department of Geriatrics, the Center for Translational Research in Aging & Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR,
USA
| |
Collapse
|
17
|
Kim IY, Park S, Jang J, Wolfe RR. Quantifications of Lipid Kinetics In Vivo Using Stable Isotope Tracer Methodology. J Lipid Atheroscler 2020; 9:110-123. [PMID: 32821725 PMCID: PMC7379070 DOI: 10.12997/jla.2020.9.1.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/29/2019] [Indexed: 12/16/2022] Open
Abstract
Like other bodily materials, lipids such as plasma triacylglycerol, cholesterols, and free fatty acids are in a dynamic state of constant turnover (i.e., synthesis, breakdown, oxidation, and/or conversion to other compounds) as essential processes for achieving dynamic homeostasis in the body. However, dysregulation of lipid turnover can lead to clinical conditions such as obesity, fatty liver disease, and dyslipidemia. Assessment of “snap-shot” information on lipid metabolism (e.g., tissue contents of lipids, abundance of mRNA and protein and/or signaling molecules) are often used in clinical and research settings, and can help to understand one's health and disease status. However, such “snapshots” do not provide critical information on dynamic nature of lipid metabolism, and therefore may miss “true” origin of the dysregulation implicated in related diseases. In this regard, stable isotope tracer methodology can provide the in vivo kinetic information of lipid metabolism. Combining with “static” information, knowledge of lipid kinetics can enable the acquisition of in depth understanding of lipid metabolism in relation to various health and disease status. This in turn facilitates the development of effective therapeutic approaches (e.g., exercise, nutrition, and/or drugs). In this review we will discuss 1) the importance of obtaining kinetic information for a better understanding of lipid metabolism, 2) basic principles of stable isotope tracer methodologies that enable exploration of “lipid kinetics” in vivo, and 3) quantification of some aspects of lipid kinetics in vivo with numerical examples.
Collapse
Affiliation(s)
- Il-Young Kim
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon, Korea
| | - Sanghee Park
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon, Korea
| | - Jiwoong Jang
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon, Korea
| | - Robert R Wolfe
- Department of Geriatrics, Center for Translational Research in Aging & Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
18
|
Vissing K, Groennebaek T, Wernbom M, Aagaard P, Raastad T. Myocellular Adaptations to Low-Load Blood Flow Restricted Resistance Training. Exerc Sport Sci Rev 2020; 48:180-187. [DOI: 10.1249/jes.0000000000000231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Lawrence MM, Van Pelt DW, Confides AL, Hunt ER, Hettinger ZR, Laurin JL, Reid JJ, Peelor FF, Butterfield TA, Dupont-Versteegden EE, Miller BF. Massage as a mechanotherapy promotes skeletal muscle protein and ribosomal turnover but does not mitigate muscle atrophy during disuse in adult rats. Acta Physiol (Oxf) 2020; 229:e13460. [PMID: 32125770 PMCID: PMC7293583 DOI: 10.1111/apha.13460] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
AIM Interventions that decrease atrophy during disuse are desperately needed to maintain muscle mass. We recently found that massage as a mechanotherapy can improve muscle regrowth following disuse atrophy. Therefore, we aimed to determine if massage has similar anabolic effects when applied during normal weight bearing conditions (WB) or during atrophy induced by hindlimb suspension (HS) in adult rats. METHODS Adult (10 months) male Fischer344-Brown Norway rats underwent either hindlimb suspension (HS, n = 8) or normal WB (WB, n = 8) for 7 days. Massage was applied using cyclic compressive loading (CCL) in WB (WBM, n = 9) or HS rats (HSM, n = 9) and included four 30-minute bouts of CCL applied to gastrocnemius muscle every other day. RESULTS Massage had no effect on any anabolic parameter measured under WB conditions (WBM). In contrast, massage during HS (HSM) stimulated protein turnover, but did not mitigate muscle atrophy. Atrophy from HS was caused by both lowered protein synthesis and higher degradation. HS and HSM had lowered total RNA compared with WB and this was the result of significantly higher ribosome degradation in HS that was attenuated in HSM, without differences in ribosomal biogenesis. Also, massage increased protein turnover in the non-massaged contralateral limb during HS. Finally, we determined that total RNA degradation primarily dictates loss of muscle ribosomal content during disuse atrophy. CONCLUSION We conclude that massage is an effective mechanotherapy to impact protein turnover during muscle disuse in both the massaged and non-massaged contralateral muscle, but it does not attenuate the loss of muscle mass.
Collapse
Affiliation(s)
- Marcus M. Lawrence
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Douglas W. Van Pelt
- Department of Physical Therapy, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Amy L. Confides
- Department of Physical Therapy, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Emily R. Hunt
- Department of Physical Therapy, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Zachary R. Hettinger
- Department of Physical Therapy, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Jaime L. Laurin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Justin J. Reid
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Frederick F. Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Timothy A. Butterfield
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY 40536, USA
| | - Esther E. Dupont-Versteegden
- Department of Physical Therapy, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Benjamin F. Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
20
|
Miller BF, Reid JJ, Price JC, Lin HJL, Atherton PJ, Smith K. CORP: The use of deuterated water for the measurement of protein synthesis. J Appl Physiol (1985) 2020; 128:1163-1176. [PMID: 32213116 DOI: 10.1152/japplphysiol.00855.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The use of deuterium oxide (D2O) has greatly expanded the scope of what is possible for the measurement of protein synthesis. The greatest asset of D2O labeling is that it facilitates the measurement of synthesis rates over prolonged periods of time from single proteins through integrated tissue-based measurements. Because the ease of administration, the method is amenable for use in a variety of models and conditions. Although the method adheres to the same rules as other isotope methods, the flexibility can create conditions that are not the same as other approaches and thus requires careful execution to maintain validity and reliability. For this CORP article, we provide a history that gave rise to the method and discuss the advantages and disadvantages of the method, the critical assumptions, guidelines, and best practices based on instrumentation, models, and experimental design. The goal of this CORP article is to propagate additional use of D2O in a manner that produces reliable and valid data.
Collapse
Affiliation(s)
- Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Justin J Reid
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Hsien-Jung L Lin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Philip J Atherton
- MRC-ARUK Center for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Kenneth Smith
- MRC-ARUK Center for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, United Kingdom
| |
Collapse
|
21
|
Joanisse S, Lim C, McKendry J, Mcleod JC, Stokes T, Phillips SM. Recent advances in understanding resistance exercise training-induced skeletal muscle hypertrophy in humans. F1000Res 2020; 9. [PMID: 32148775 PMCID: PMC7043134 DOI: 10.12688/f1000research.21588.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle plays a pivotal role in the maintenance of physical and metabolic health and, critically, mobility. Accordingly, strategies focused on increasing the quality and quantity of skeletal muscle are relevant, and resistance exercise is foundational to the process of functional hypertrophy. Much of our current understanding of skeletal muscle hypertrophy can be attributed to the development and utilization of stable isotopically labeled tracers. We know that resistance exercise and sufficient protein intake act synergistically and provide the most effective stimuli to enhance skeletal muscle mass; however, the molecular intricacies that underpin the tremendous response variability to resistance exercise-induced hypertrophy are complex. The purpose of this review is to discuss recent studies with the aim of shedding light on key regulatory mechanisms that dictate hypertrophic gains in skeletal muscle mass. We also aim to provide a brief up-to-date summary of the recent advances in our understanding of skeletal muscle hypertrophy in response to resistance training in humans.
Collapse
Affiliation(s)
- Sophie Joanisse
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Changhyun Lim
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Jonathan C Mcleod
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
22
|
Groennebaek T, Sieljacks P, Nielsen R, Pryds K, Jespersen NR, Wang J, Carlsen CR, Schmidt MR, de Paoli FV, Miller BF, Vissing K, Bøtker HE. Effect of Blood Flow Restricted Resistance Exercise and Remote Ischemic Conditioning on Functional Capacity and Myocellular Adaptations in Patients With Heart Failure. Circ Heart Fail 2019; 12:e006427. [PMID: 31830830 DOI: 10.1161/circheartfailure.119.006427] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Patients with congestive heart failure (CHF) have impaired functional capacity and inferior quality of life. The clinical manifestations are associated with structural and functional impairments in skeletal muscle, emphasizing a need for feasible rehabilitation strategies beyond optimal anticongestive medical treatment. We investigated whether low-load blood flow restricted resistance exercise (BFRRE) or remote ischemic conditioning (RIC) could improve functional capacity and quality of life in patients with CHF and stimulate skeletal muscle myofibrillar and mitochondrial adaptations. METHODS We randomized 36 patients with CHF to BFRRE, RIC, or nontreatment control. BFRRE and RIC were performed 3× per week for 6 weeks. Before and after intervention, muscle biopsies, tests of functional capacity, and quality of life assessments were performed. Deuterium oxide was administered throughout the intervention to measure cumulative RNA and subfraction protein synthesis. Changes in muscle fiber morphology and mitochondrial respiratory function were also assessed. RESULTS BFRRE improved 6-minute walk test by 39.0 m (CI, 7.0-71.1, P=0.019) compared with control. BFRRE increased maximum isometric strength by 29.7 Nm (CI, 10.8-48.6, P=0.003) compared with control. BFRRE improved quality of life by 5.4 points (CI, -0.04 to 10.9; P=0.052) compared with control. BFRRE increased mitochondrial function by 19.1 pmol/s per milligram (CI, 7.3-30.8; P=0.002) compared with control. RIC did not produce similar changes. CONCLUSIONS Our results demonstrate that BFRRE, but not RIC, improves functional capacity, quality of life, and muscle mitochondrial function. Our findings have clinical implications for rehabilitation of patients with CHF and provide new insights on the myopathy accompanying CHF. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifier: NCT03380663.
Collapse
Affiliation(s)
- Thomas Groennebaek
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark (T.G., P.S., J.W., C.R.C., K.V.)
| | - Peter Sieljacks
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark (T.G., P.S., J.W., C.R.C., K.V.)
| | - Roni Nielsen
- Department of Cardiology (R.N., K.P., N.R.J., M.R.S., H.E.B.), Aarhus University Hospital, Denmark
| | - Kasper Pryds
- Department of Cardiology (R.N., K.P., N.R.J., M.R.S., H.E.B.), Aarhus University Hospital, Denmark
| | - Nichlas R Jespersen
- Department of Cardiology (R.N., K.P., N.R.J., M.R.S., H.E.B.), Aarhus University Hospital, Denmark
| | - Jakob Wang
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark (T.G., P.S., J.W., C.R.C., K.V.)
| | - Caroline R Carlsen
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark (T.G., P.S., J.W., C.R.C., K.V.)
| | - Michael R Schmidt
- Department of Cardiology (R.N., K.P., N.R.J., M.R.S., H.E.B.), Aarhus University Hospital, Denmark
| | - Frank V de Paoli
- Department of Biomedicine (F.V.d.P.), Aarhus University Hospital, Denmark.,Department of Cardiothoracic and Vascular Surgery (F.V.d.P.), Aarhus University Hospital, Denmark
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City (B.F.M.)
| | - Kristian Vissing
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark (T.G., P.S., J.W., C.R.C., K.V.)
| | - Hans Erik Bøtker
- Department of Cardiology (R.N., K.P., N.R.J., M.R.S., H.E.B.), Aarhus University Hospital, Denmark
| |
Collapse
|
23
|
Miller BF, Baehr LM, Musci RV, Reid JJ, Peelor FF, Hamilton KL, Bodine SC. Muscle-specific changes in protein synthesis with aging and reloading after disuse atrophy. J Cachexia Sarcopenia Muscle 2019; 10:1195-1209. [PMID: 31313502 PMCID: PMC6903438 DOI: 10.1002/jcsm.12470] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/09/2019] [Accepted: 06/12/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Successful strategies to halt or reverse sarcopenia require a basic understanding of the factors that cause muscle loss with age. Acute periods of muscle loss in older individuals have an incomplete recovery of muscle mass and strength, thus accelerating sarcopenic progression. The purpose of the current study was to further understand the mechanisms underlying the failure of old animals to completely recover muscle mass and function after a period of hindlimb unloading. METHODS Hindlimb unloading was used to induce muscle atrophy in Fischer 344-Brown Norway (F344BN F1) rats at 24, 28, and 30 months of age. Rats were hindlimb unloaded for 14 days and then reloaded at 24 months (Reloaded 24), 28 months (Reloaded 28), and 24 and 28 months (Reloaded 24/28) of age. Isometric torque was determined at 24 months of age (24 months), at 28 months of age (28 months), immediately after 14 days of reloading, and at 30 months of age (30 months). During control or reloaded conditions, rats were labelled with deuterium oxide (D2 O) to determine rates of muscle protein synthesis and RNA synthesis. RESULTS After 14 days of reloading, in vivo isometric torque returned to baseline in Reloaded 24, but not Reloaded 28 and Reloaded 24/28. Despite the failure of Reloaded 28 and Reloaded 24/28 to regain peak force, all groups were equally depressed in peak force generation at 30 months. Increased age did not decrease muscle protein synthesis rates, and in fact, increased resting rates of protein synthesis were measured in the myofibrillar fraction (Fractional synthesis rate (FSR): %/day) of the plantaris (24 months: 2.53 ± 0.17; 30 months: 3.29 ± 0.17), and in the myofibrillar (24 months: 2.29 ± 0.07; 30 months: 3.34 ± 0.11), collagen (24 months: 1.11 ± 0.07; 30 months: 1.55 ± 0.14), and mitochondrial (24 months: 2.38 ± 0.16; 30 months: 3.20 ± 0.10) fractions of the tibialis anterior (TA). All muscles increased myofibrillar protein synthesis (%/day) in Reloaded 24 (soleus: 3.36 ± 0.11, 5.23 ± 0.19; plantaris: 2.53 ± 0.17, 3.66 ± 0.07; TA: 2.29 ± 0.14, 3.15 ± 0.12); however, in Reloaded 28, only the soleus had myofibrillar protein synthesis rates (%/day) >28 months (28 months: 3.80 ± 0.10; Reloaded 28: 4.86 ± 0.19). Across the muscles, rates of protein synthesis were correlated with RNA synthesis (all muscles combined, R2 = 0.807, P < 0.0001). CONCLUSIONS These data add to the growing body of literature that indicate that changes with age, including following disuse atrophy, differ by muscle. In addition, our findings lead to additional questions of the underlying mechanisms by which some muscles are maintained with age while others are not.
Collapse
Affiliation(s)
- Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Leslie M Baehr
- Department of Internal Medicine, Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Robert V Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Justin J Reid
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Sue C Bodine
- Department of Internal Medicine, Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
24
|
Figueiredo VC. Revisiting the roles of protein synthesis during skeletal muscle hypertrophy induced by exercise. Am J Physiol Regul Integr Comp Physiol 2019; 317:R709-R718. [PMID: 31508978 DOI: 10.1152/ajpregu.00162.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein synthesis is deemed the underpinning mechanism enhancing protein balance required for skeletal muscle hypertrophy in response to resistance exercise. The current model of skeletal muscle hypertrophy induced by resistance training states that the acute increase in the rates of protein synthesis after each bout of resistance exercise is the basis for muscle growth. Within this paradigm, each resistance exercise session would add a specific amount of muscle mass; therefore, muscle hypertrophy could be defined as the result of intermittent and short-lived increases in muscle protein synthesis rates following each resistance exercise session. Although a substantial amount of data has accumulated in the last decades regarding the acute changes in protein synthesis (or translational efficiency) following resistance exercise, considerable gaps on the mechanism of muscle growth still exist. Ribosome biogenesis and translational capacity have emerged as important mediators of skeletal muscle hypertrophy. Recent advances in the field have demonstrated that skeletal muscle hypertrophy is associated with markers of translational capacity and long-term changes in protein synthesis under resting conditions. This review will discuss the caveats of the current model of skeletal muscle hypertrophy induced by resistance training while proposing a working model that takes into consideration the novel data generated by independent laboratories utilizing different methodologies. It is argued, herein, that the role of protein synthesis in the current model of muscle hypertrophy warrants revisiting.
Collapse
Affiliation(s)
- Vandré Casagrande Figueiredo
- College of Health Sciences, Department of Rehabilitation Sciences, the Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
25
|
Brook MS, Wilkinson DJ, Smith K, Atherton PJ. It's not just about protein turnover: the role of ribosomal biogenesis and satellite cells in the regulation of skeletal muscle hypertrophy. Eur J Sport Sci 2019; 19:952-963. [PMID: 30741116 DOI: 10.1080/17461391.2019.1569726] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle has indispensable roles in regulating whole body health (e.g. glycemic control, energy consumption) and, in being central in locomotion, is crucial in maintaining quality-of-life. Therefore, understanding the regulation of muscle mass is of significant importance. Resistance exercise training (RET) combined with supportive nutrition is an effective strategy to achieve muscle hypertrophy by driving chronic elevations in muscle protein synthesis (MPS). The regulation of muscle protein synthesis is a coordinated process, in requiring ribosomes to translate mRNA and sufficient myonuclei density to provide the platform for ribosome and mRNA transcription; as such MPS is determined by both translational efficiency (ribosome activity) and translational capacity (ribosome number). Moreover, as the muscle protein pool expands during hypertrophy, translation capacity (i.e. ribosomes and myonuclei content) could theoretically become rate-limiting such that an inability to expand these pools through ribosomal biogenesis and satellite cell (SC) mediated myonuclear addition could limit growth potential. Simple measures of RNA (ribosome content) and DNA (SC/Myonuclei number) concentrations reveal that these pools do increase with hypertrophy; yet whether these adaptations are a pre-requisite or a limiting factor for hypertrophy is unresolved and highly debated. This is primarily due to methodological limitations and many assumptions being made on static measures or correlative associations. However recent advances within the field using stable isotope tracers shows promise in resolving these questions in muscle adaptation.
Collapse
Affiliation(s)
- Matthew Stewart Brook
- a MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham , Derby , UK
- b National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), Clinical, Metabolic and Molecular Physiology, University of Nottingham , Derby , UK
| | - Daniel James Wilkinson
- a MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham , Derby , UK
- b National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), Clinical, Metabolic and Molecular Physiology, University of Nottingham , Derby , UK
| | - Ken Smith
- a MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham , Derby , UK
- b National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), Clinical, Metabolic and Molecular Physiology, University of Nottingham , Derby , UK
| | - Philip James Atherton
- a MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham , Derby , UK
- b National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), Clinical, Metabolic and Molecular Physiology, University of Nottingham , Derby , UK
| |
Collapse
|
26
|
von Walden F. Ribosome biogenesis in skeletal muscle: coordination of transcription and translation. J Appl Physiol (1985) 2019; 127:591-598. [PMID: 31219775 DOI: 10.1152/japplphysiol.00963.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle mass responds in a remarkable manner to alterations in loading and use. It has long been clear that skeletal muscle hypertrophy can be prevented by inhibiting RNA synthesis. Since 80% of the cell's total RNA has been estimated to be rRNA, this finding indicates that de novo production of rRNA via transcription of the corresponding genes is important for such hypertrophy to occur. Transcription of rDNA by RNA Pol I is the rate-limiting step in ribosome biogenesis, indicating in turn that this biogenesis strongly influences the hypertrophic response. The present minireview focuses on 1) a brief description of the key steps in ribosome biogenesis and the relationship of this process to skeletal muscle mass and 2) the coordination of ribosome biogenesis and protein synthesis for growth or atrophy, as exemplified by the intracellular AMPK and mTOR pathways.
Collapse
Affiliation(s)
- Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
27
|
Sieljacks P, Wang J, Groennebaek T, Rindom E, Jakobsgaard JE, Herskind J, Gravholt A, Møller AB, Musci RV, de Paoli FV, Hamilton KL, Miller BF, Vissing K. Six Weeks of Low-Load Blood Flow Restricted and High-Load Resistance Exercise Training Produce Similar Increases in Cumulative Myofibrillar Protein Synthesis and Ribosomal Biogenesis in Healthy Males. Front Physiol 2019; 10:649. [PMID: 31191347 PMCID: PMC6548815 DOI: 10.3389/fphys.2019.00649] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/08/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose: High-load resistance exercise contributes to maintenance of muscle mass, muscle protein quality, and contractile function by stimulation of muscle protein synthesis (MPS), hypertrophy, and strength gains. However, high loading may not be feasible in several clinical populations. Low-load blood flow restricted resistance exercise (BFRRE) may provide an alternative approach. However, the long-term protein synthetic response to BFRRE is unknown and the myocellular adaptations to prolonged BFRRE are not well described. Methods: To investigate this, 34 healthy young subjects were randomized to 6 weeks of low-load BFRRE, HLRE, or non-exercise control (CON). Deuterium oxide (D2O) was orally administered throughout the intervention period. Muscle biopsies from m. vastus lateralis were collected before and after the 6-week intervention period to assess long-term myofibrillar MPS and RNA synthesis as well as muscle fiber-type-specific cross-sectional area (CSA), satellite cell content, and myonuclei content. Muscle biopsies were also collected in the immediate hours following single-bout exercise to assess signaling for muscle protein degradation. Isometric and dynamic quadriceps muscle strength was evaluated before and after the intervention. Results: Myofibrillar MPS was higher in BFRRE (1.34%/day, p < 0.01) and HLRE (1.12%/day, p < 0.05) compared to CON (0.96%/day) with no significant differences between exercise groups. Muscle RNA synthesis was higher in BFRRE (0.65%/day, p < 0.001) and HLRE (0.55%/day, p < 0.01) compared to CON (0.38%/day) and both training groups increased RNA content, indicating ribosomal biogenesis in response to exercise. BFRRE and HLRE both activated muscle degradation signaling. Muscle strength increased 6-10% in BFRRE (p < 0.05) and 13-23% in HLRE (p < 0.01). Dynamic muscle strength increased to a greater extent in HLRE (p < 0.05). No changes in type I and type II muscle fiber-type-specific CSA, satellite cell content, or myonuclei content were observed. Conclusions: These results demonstrate that BFRRE increases long-term muscle protein turnover, ribosomal biogenesis, and muscle strength to a similar degree as HLRE. These findings emphasize the potential application of low-load BFRRE to stimulate muscle protein turnover and increase muscle function in clinical populations where high loading is untenable.
Collapse
Affiliation(s)
- Peter Sieljacks
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Jakob Wang
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Thomas Groennebaek
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Emil Rindom
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Jon Herskind
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Anders Gravholt
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Andreas B. Møller
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Robert V. Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
| | | | - Karyn L. Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
| | - Benjamin F. Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Kristian Vissing
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
28
|
Millward DJ, Smith K. The application of stable-isotope tracers to study human musculoskeletal protein turnover: a tale of bag filling and bag enlargement. J Physiol 2019; 597:1235-1249. [PMID: 30097998 PMCID: PMC6395420 DOI: 10.1113/jp275430] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/09/2018] [Indexed: 01/15/2023] Open
Abstract
The nutritional regulation of protein and amino acid balance in human skeletal muscle carried out by the authors with Mike Rennie is reviewed in the context of a simple physiological model for the regulation of the maintenance and growth of skeletal muscle, the "Bag Theory". Beginning in London in the late 1970s the work has involved the use of stable isotopes to probe muscle protein synthesis and breakdown with two basic experimental models, primed-dose continuous tracer infusions combined with muscle biopsies and arterio-venous (A-V) studies across a limb, most often the leg, allowing both protein synthesis and breakdown as well as net balance to be measured. In this way, over a 30 year period, the way in which amino acids and insulin mediate the anabolic effect of a meal has been elaborated in great detail confirming the original concepts of bag filling within the muscle endomysial "bag", which is limited by the "bag" size unless bag enlargement occurs requiring new collagen synthesis. Finally we briefly review some new developments involving 2 H2 O labelling of muscle proteins.
Collapse
Affiliation(s)
- D. Joe Millward
- Department of Nutritional SciencesSchool of Biosciences and MedicineFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing ResearchNational Institute for Health Research Nottingham Biomedical Research CentreUniversity of NottinghamDerbyUK
| | - Ken Smith
- Department of Nutritional SciencesSchool of Biosciences and MedicineFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing ResearchNational Institute for Health Research Nottingham Biomedical Research CentreUniversity of NottinghamDerbyUK
| |
Collapse
|
29
|
Wilkinson D, Piasecki M, Atherton P. The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res Rev 2018; 47:123-132. [PMID: 30048806 PMCID: PMC6202460 DOI: 10.1016/j.arr.2018.07.005] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/20/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022]
Abstract
Loss of muscle mass with age is due to atrophy and loss of individual muscle fibres. Anabolic resistance is fundamental in age-related fibre atrophy. Fibre loss is associated with denervation and remodelling of motor units. The plasticity of both factors should be considered in future research.
Age-related loss of skeletal muscle mass and function, sarcopenia, is associated with physical frailty and increased risk of morbidity (chronic diseases), in addition to all-cause mortality. The loss of muscle mass occurs incipiently from middle-age (∼1%/year), and in severe instances can lead to a loss of ∼50% by the 8–9th decade of life. This review will focus on muscle deterioration with ageing and highlight the two underpinning mechanisms regulating declines in muscle mass and function: muscle fibre atrophy and muscle fibre loss (hypoplasia) – and their measurement. The mechanisms of muscle fibre atrophy in humans relate to imbalances in muscle protein synthesis (MPS) and breakdown (MPB); however, since there is limited evidence for basal alterations in muscle protein turnover, it would appear that “anabolic resistance” to fundamental environmental cues regulating diurnal muscle homeostasis (namely physical activity and nutrition), underlie age-related catabolic perturbations in muscle proteostasis. While the ‘upstream’ drivers of the desensitization of aged muscle to anabolic stimuli are poorly defined, they most likely relate to impaired efficiency of the conversion of nutritional/exercise stimuli into signalling impacting mRNA translation and proteolysis. Additionally, loss of muscle fibres has been shown in cadaveric studies using anatomical fibre counts, and from iEMG studies demonstrating motor unit loss, albeit with few molecular investigations of this in humans. We suggest that defining countermeasures against sarcopenia requires improved understandings of the co-ordinated regulation of muscle fibre atrophy and fibre loss, which are likely to be inextricably linked.
Collapse
|
30
|
Roberts MD, Haun CT, Mobley CB, Mumford PW, Romero MA, Roberson PA, Vann CG, McCarthy JJ. Physiological Differences Between Low Versus High Skeletal Muscle Hypertrophic Responders to Resistance Exercise Training: Current Perspectives and Future Research Directions. Front Physiol 2018; 9:834. [PMID: 30022953 PMCID: PMC6039846 DOI: 10.3389/fphys.2018.00834] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022] Open
Abstract
Numerous reports suggest there are low and high skeletal muscle hypertrophic responders following weeks to months of structured resistance exercise training (referred to as low and high responders herein). Specifically, divergent alterations in muscle fiber cross sectional area (fCSA), vastus lateralis thickness, and whole body lean tissue mass have been shown to occur in high versus low responders. Differential responses in ribosome biogenesis and subsequent protein synthetic rates during training seemingly explain some of this individual variation in humans, and mechanistic in vitro and rodent studies provide further evidence that ribosome biogenesis is critical for muscle hypertrophy. High responders may experience a greater increase in satellite cell proliferation during training versus low responders. This phenomenon could serve to maintain an adequate myonuclear domain size or assist in extracellular remodeling to support myofiber growth. High responders may also express a muscle microRNA profile during training that enhances insulin-like growth factor-1 (IGF-1) mRNA expression, although more studies are needed to better validate this mechanism. Higher intramuscular androgen receptor protein content has been reported in high versus low responders following training, and this mechanism may enhance the hypertrophic effects of testosterone during training. While high responders likely possess “good genetics,” such evidence has been confined to single gene candidates which typically share marginal variance with hypertrophic outcomes following training (e.g., different myostatin and IGF-1 alleles). Limited evidence also suggests pre-training muscle fiber type composition and self-reported dietary habits (e.g., calorie and protein intake) do not differ between high versus low responders. Only a handful of studies have examined muscle biomarkers that are differentially expressed between low versus high responders. Thus, other molecular and physiological variables which could potentially affect the skeletal muscle hypertrophic response to resistance exercise training are also discussed including rDNA copy number, extracellular matrix and connective tissue properties, the inflammatory response to training, and mitochondrial as well as vascular characteristics.
Collapse
Affiliation(s)
| | - Cody T Haun
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Petey W Mumford
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Matthew A Romero
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Paul A Roberson
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - John J McCarthy
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|