1
|
He S, Jiang W, Jiang B, Yu C, Zhao G, Li Y, Qi L, Zhang J, Wang D. Potential Roles of Nr4a3-Mediated Inflammation in Immunological and Neurological Diseases. Mol Neurobiol 2024; 61:5958-5973. [PMID: 38261254 DOI: 10.1007/s12035-024-03945-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
As a protein of the orphan nuclear receptor Nr4a family, Nr4a3 has no identified natural ligands. However, its biological activity can be mediated by inducing conformational changes through interactions with specific certain small molecules and receptors. Nr4a3 is activated as an early stress factor under various pathological conditions and plays a regulatory role in various tissues and cells, participating in processes such as cell differentiation, apoptosis, metabolism, and homeostasis. At present, research on the role of Nr4a3 in the pathophysiology of inflammation is considerably limited, especially with respect to its role in the central nervous system (CNS). In this review, we discuss the role of Nr4a3 in multiple sclerosis, Alzheimer's disease, retinopathy, Parkinson's disease, and other CNS diseases. This review shows that Nr4a3 has considerable potential as a therapeutic target in the treatment of CNS diseases. We provide a theoretical basis for the targeted therapy of CNS diseases and neuroinflammation, among other conditions.
Collapse
Affiliation(s)
- Siqi He
- Department of Pathology, Beihua University, Jilin, Jilin, 132000, China
- The Second Affiliated Hospital, Hengyang Medical School, University of South, Hengyang, 421200, Hunan, China
- Institute of Digestive Diseases, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Weijie Jiang
- The Second Affiliated Hospital, Hengyang Medical School, University of South, Hengyang, 421200, Hunan, China
| | - Baoyi Jiang
- Institute of Digestive Diseases, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Chunyan Yu
- Department of Pathology, Beihua University, Jilin, Jilin, 132000, China
| | - Guifang Zhao
- Institute of Digestive Diseases, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Yifei Li
- Department of Pathology, Beihua University, Jilin, Jilin, 132000, China
| | - Ling Qi
- Institute of Digestive Diseases, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
| | - Jia Zhang
- The Second Affiliated Hospital, Hengyang Medical School, University of South, Hengyang, 421200, Hunan, China.
| | - Dan Wang
- Department of Pathology, Beihua University, Jilin, Jilin, 132000, China.
| |
Collapse
|
2
|
Niu ZX, Wang YT, Sun JF, Nie P, Herdewijn P. Recent advance of clinically approved small-molecule drugs for the treatment of myeloid leukemia. Eur J Med Chem 2023; 261:115827. [PMID: 37757658 DOI: 10.1016/j.ejmech.2023.115827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Myeloid leukemia denotes a hematologic malignancy characterized by aberrant proliferation and impaired differentiation of blood progenitor cells within the bone marrow. Despite the availability of several treatment options, the clinical outlook for individuals afflicted with myeloid leukemia continues to be unfavorable, making it a challenging disease to manage. Over the past, substantial endeavors have been dedicated to the identification of novel targets and the advancement of enhanced therapeutic modalities to ameliorate the management of this disease, resulting in the discovery of many clinically approved small-molecule drugs for myeloid leukemia, including histone deacetylase inhibitors, hypomethylating agents, and tyrosine kinase inhibitors. This comprehensive review succinctly presents an up-to-date assessment of the application and synthetic routes of clinically sanctioned small-molecule drugs employed in the treatment of myeloid leukemia. Additionally, it provides a concise exploration of the pertinent challenges and prospects encompassing drug resistance and toxicity. Overall, this review effectively underscores the considerable promise exhibited by clinically endorsed small-molecule drugs in the therapeutic realm of myeloid leukemia, while concurrently shedding light on the prospective avenues that may shape the future landscape of drug development within this domain.
Collapse
Affiliation(s)
- Zhen-Xi Niu
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China; Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin, 133002, China.
| | - Peng Nie
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| | - Piet Herdewijn
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| |
Collapse
|
3
|
Paez HG, Ferrandi PJ, Pitzer CR, Mohamed JS, Alway SE. Loss of NOR-1 represses muscle metabolism through mTORC1-mediated signaling and mitochondrial gene expression in C2C12 myotubes. FASEB J 2023; 37:e23050. [PMID: 37389860 DOI: 10.1096/fj.202202029r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
Gene expression of the NR4A nuclear orphan receptor NOR-1 is reduced in obesity and in human skeletal muscle during disuse. It has been well established that NOR-1 is highly responsive to both aerobic and resistance exercise and NOR-1 overexpression is coincident with a plethora of metabolic benefits. However, it is unclear whether loss of NOR-1 contributes to inappropriate metabolic signaling in skeletal muscle that could lead to insulin resistance. The purpose of this study was to elucidate the impact of NOR-1 deficiency on C2C12 metabolic signaling. Changes in gene expression after siRNA-mediated NOR-1 knockdown in C2C12 myotubes were determined by qPCR and bioinformatic analysis of RNA-Seq data. Our RNA-Seq data identified several metabolic targets regulated by NOR-1 and implicates NOR-1 as a modulator of mTORC1 signaling via Akt-independent mechanisms. Furthermore, pathway analysis revealed NOR-1 knockdown perturbs the insulin resistance and insulin sensitivity pathways. Taken together, these data suggest skeletal muscle NOR-1 deficiency may contribute to altered metabolic signaling that is consistent with metabolic disease. We postulate that strategies that improve NOR-1 may be important to offset the negative impact that inactivity, obesity, and type 2 diabetes have on mitochondria and muscle metabolism.
Collapse
Affiliation(s)
- Hector G Paez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Division of Regenerative and Rehabilitation Sciences, Center for Muscle, Metabolism and Neuropathology, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Peter J Ferrandi
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Division of Regenerative and Rehabilitation Sciences, Center for Muscle, Metabolism and Neuropathology, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Laboratory of Muscle and Nerve, Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Christopher R Pitzer
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Division of Regenerative and Rehabilitation Sciences, Center for Muscle, Metabolism and Neuropathology, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Junaith S Mohamed
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Division of Regenerative and Rehabilitation Sciences, Center for Muscle, Metabolism and Neuropathology, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Laboratory of Muscle and Nerve, Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Stephen E Alway
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Division of Regenerative and Rehabilitation Sciences, Center for Muscle, Metabolism and Neuropathology, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Albiroty K, Al Sabahi A. Severe Recurrent Nocturnal Hypoglycemia During Chemotherapy With 6-mercaptopurine in 2 Children With Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2023; 45:162-163. [PMID: 36706266 DOI: 10.1097/mph.0000000000002609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/04/2022] [Indexed: 01/28/2023]
Abstract
Mercaptopurine (6MP) and methotrexate are the cornerstones of maintenance therapy in pediatric patients with acute lymphoblastic leukemia. However, although bone marrow suppression and liver dysfunction are common side effects of these antimetabolites, 6MP-induced hypoglycemia during the maintenance phase is rare. Guidelines and international protocols are well established for the management of bone marrow suppression and liver dysfunction, but promptly identifying 6MP-induced hypoglycemia is the key to its control. Here we report 2 cases of leukemia that developed hypoglycemia during the maintenance phase. Both patients were boys younger than 6 years of age and both suffered symptomatic morning hypoglycemia induced by 6MP (which was diagnosed after excluding all other possible causes). Successful management included changing the time of 6MP administration from evening to morning. Other management options are also discussed.
Collapse
Affiliation(s)
- Khalil Albiroty
- Department of Pediatric Hematology and Oncology, The Royal Hospital, Muscat, Oman
| | | |
Collapse
|
5
|
Jia H, Vashisth MK, Ge Y, Dai Q, He F, Wang X. Anti-inflammation and anti-aging mechanisms of mercaptopurine in vivo and in vitro. Biochem Biophys Res Commun 2023; 638:103-111. [PMID: 36442232 DOI: 10.1016/j.bbrc.2022.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Skin is the biggest organ of the human body, which easily gets irritated by exposure to the sun. Skin photoaging and acute photodamage are caused by intense UV-B radiation. Therefore, it is imperative to find new compounds to prevent skin damage and aging. Mercaptopurine is an immunologic agent commonly used for treating Acute lymphoblastic leukemia and inflammatory bowel disease. The beneficial effects of mercaptopurine on the skin have not been reported, and its intrinsic mechanism of action is unclear. Therefore, this study was to explore mercaptopurine when exposed to UV-B radiation in HacaT cells and C57BL6 mice aging and damage effects. The model of in vivo UV-B-induced skin damage and skin photoaging was established, and the impact of mercaptopurine on cell and animal skin was studied. The study found that mercaptopurine, on the one hand, inhibits cellular and animal senescence. On the other, it inhibits the expression of mitogen-activated protein kinase (MAPK) and the nuclear factor κB (NF-κB), which are important signaling molecules in the early UV-B reaction signaling pathway. In addition, mercaptopurine downregulates matrix metalloproteinase expression, increases collagen fiber content, and facilitates collagen synthesis. Treatment with mercaptopurine also inhibits the expression of inflammatory factors and reduces inflammatory cell infiltration of the skin. In conclusion, our study elucidates mercaptopurine's anti-photoaging and anti-inflammatory activity in cellular and animal models.
Collapse
Affiliation(s)
- HuiJie Jia
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Manoj Kumar Vashisth
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Department of Human Anatomy, School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Yuchen Ge
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Qianlong Dai
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Fei He
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China.
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China.
| |
Collapse
|
6
|
Galindo CL, Nguyen VT, Hill B, Easterday E, Cleator JH, Sawyer DB. Neuregulin (NRG-1β) Is Pro-Myogenic and Anti-Cachectic in Respiratory Muscles of Post-Myocardial Infarcted Swine. BIOLOGY 2022; 11:682. [PMID: 35625411 PMCID: PMC9137990 DOI: 10.3390/biology11050682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022]
Abstract
Neuregulin-1β (NRG-1β) is a growth and differentiation factor with pleiotropic systemic effects. Because NRG-1β has therapeutic potential for heart failure and has known growth effects in skeletal muscle, we hypothesized that it might affect heart failure-associated cachexia, a severe co-morbidity characterized by a loss of muscle mass. We therefore assessed NRG-1β's effect on intercostal skeletal muscle gene expression in a swine model of heart failure using recombinant glial growth factor 2 (USAN-cimaglermin alfa), a version of NRG-1β that has been tested in humans with systolic heart failure. Animals received one of two intravenous doses (0.67 or 2 mg/kg) of NRG-1β bi-weekly for 4 weeks, beginning one week after infarct. Based on paired-end RNA sequencing, NRG-1β treatment altered the intercostal muscle gene expression of 581 transcripts, including genes required for myofiber growth, maintenance and survival, such as MYH3, MYHC, MYL6B, KY and HES1. Importantly, NRG-1β altered the directionality of at least 85 genes associated with cachexia, including myostatin, which negatively regulates myoblast differentiation by down-regulating MyoD expression. Consistent with this, MyoD was increased in NRG-1β-treated animals. In vitro experiments with myoblast cell lines confirmed that NRG-1β induces ERBB-dependent differentiation. These findings suggest a NRG-1β-mediated anti-atrophic, anti-cachexia effect that may provide additional benefits to this potential therapy in heart failure.
Collapse
Affiliation(s)
- Cristi L. Galindo
- Department of Biology, Ogden College of Science & Engineering, Western Kentucky University, Bowling Green, KY 42101, USA; (V.T.N.); (B.H.); (E.E.)
| | - Van Thuan Nguyen
- Department of Biology, Ogden College of Science & Engineering, Western Kentucky University, Bowling Green, KY 42101, USA; (V.T.N.); (B.H.); (E.E.)
| | - Braxton Hill
- Department of Biology, Ogden College of Science & Engineering, Western Kentucky University, Bowling Green, KY 42101, USA; (V.T.N.); (B.H.); (E.E.)
| | - Ethan Easterday
- Department of Biology, Ogden College of Science & Engineering, Western Kentucky University, Bowling Green, KY 42101, USA; (V.T.N.); (B.H.); (E.E.)
| | - John H. Cleator
- Centennial Heart at Skyline, 3443 Dickerson Pike, Suite 430, Nashville, TN 37207, USA;
| | - Douglas B. Sawyer
- Department of Cardiac Services, Maine Medical Center, Scarborough, ME 04074, USA
| |
Collapse
|
7
|
Nuclear Receptors in Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:61-82. [DOI: 10.1007/978-3-031-11836-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Hong WF, Liu MY, Liang L, Zhang Y, Li ZJ, Han K, Du SS, Chen YJ, Ma LH. Molecular Characteristics of T Cell-Mediated Tumor Killing in Hepatocellular Carcinoma. Front Immunol 2022; 13:868480. [PMID: 35572523 PMCID: PMC9100886 DOI: 10.3389/fimmu.2022.868480] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although checkpoint blockade is a promising approach for the treatment of hepatocellular carcinoma (HCC), subsets of patients expected to show a response have not been established. As T cell-mediated tumor killing (TTK) is the fundamental principle of immune checkpoint inhibitor therapy, we established subtypes based on genes related to the sensitivity to TKK and evaluated their prognostic value for HCC immunotherapies. METHODS Genes regulating the sensitivity of tumor cells to T cell-mediated killing (referred to as GSTTKs) showing differential expression in HCC and correlations with prognosis were identified by high-throughput screening assays. Unsupervised clustering was applied to classify patients with HCC into subtypes based on the GSTTKs. The tumor microenvironment, metabolic properties, and genetic variation were compared among the subgroups. A scoring algorithm based on the prognostic GSTTKs, referred to as the TCscore, was developed, and its clinical and predictive value for the response to immunotherapy were evaluated. RESULTS In total, 18 out of 641 GSTTKs simultaneously showed differential expression in HCC and were correlated with prognosis. Based on the 18 GSTTKs, patients were clustered into two subgroups, which reflected distinct TTK patterns in HCC. Tumor-infiltrating immune cells, immune-related gene expression, glycolipid metabolism, somatic mutations, and signaling pathways differed between the two subgroups. The TCscore effectively distinguished between populations with different responses to chemotherapeutics or immunotherapy and overall survival. CONCLUSIONS TTK patterns played a nonnegligible role in formation of TME diversity and metabolic complexity. Evaluating the TTK patterns of individual tumor will contribute to enhancing our cognition of TME characterization, reflects differences in the functionality of T cells in HCC and guiding more effective therapy strategies.
Collapse
Affiliation(s)
- Wei-feng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mou-yuan Liu
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Liang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zong-juan Li
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Keqi Han
- Department of Oncology, Luodian Hospital Affiliated to Shanghai University, Shanghai, China
| | - Shi-suo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Li-heng Ma, ; Yan-jie Chen, ; Shi-suo Du,
| | - Yan-jie Chen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Li-heng Ma, ; Yan-jie Chen, ; Shi-suo Du,
| | - Li-heng Ma
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Li-heng Ma, ; Yan-jie Chen, ; Shi-suo Du,
| |
Collapse
|
9
|
Kneusels J, Kaehler M, Cascorbi I, Wedel T, Neunlist M, Lucius R, Cossais F. Limited Impact of 6-Mercaptopurine on Inflammation-Induced Chemokines Expression Profile in Primary Cultures of Enteric Nervous System. Neurochem Res 2021; 46:1781-1793. [PMID: 33864170 PMCID: PMC8187225 DOI: 10.1007/s11064-021-03324-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 01/09/2023]
Abstract
Increasing evidences indicate that the enteric nervous system (ENS) and enteric glial cells (EGC) play important regulatory roles in intestinal inflammation. Mercaptopurine (6-MP) is a cytostatic compound clinically used for the treatment of inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease. However, potential impacts of 6-MP on ENS response to inflammation have not been evaluated yet. In this study, we aimed to gain deeper insights into the profile of inflammatory mediators expressed by the ENS and on the potential anti-inflammatory impact of 6-MP in this context. Genome-wide expression analyses were performed on ENS primary cultures exposed to lipopolysaccharide (LPS) and 6-MP alone or in combination. Differential expression of main hits was validated by quantitative real-time PCR (qPCR) using a cell line for EGC. ENS cells expressed a broad spectrum of cytokines and chemokines of the C-X-C motif ligand (CXCL) family under inflammatory stress. Induction of Cxcl5 and Cxcl10 by inflammatory stimuli was confirmed in EGC. Inflammation-induced protein secretion of TNF-α and Cxcl5 was partly inhibited by 6-MP in ENS primary cultures but not in EGC. Further work is required to identify the cellular mechanisms involved in this regulation. These findings extend our knowledge of the anti-inflammatory properties of 6-MP related to the ENS and in particular of the EGC-response to inflammatory stimuli.
Collapse
Affiliation(s)
- Jan Kneusels
- Institute of Anatomy, Kiel University, Kiel, Germany.
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Thilo Wedel
- Institute of Anatomy, Kiel University, Kiel, Germany
| | | | - Ralph Lucius
- Institute of Anatomy, Kiel University, Kiel, Germany
| | | |
Collapse
|
10
|
Lee JH, Zhang D, Kwak SE, Shin HE, Song W. Effects of Exercise and a High-Fat, High-Sucrose Restriction Diet on Metabolic Indicators, Nr4a3, and Mitochondria-Associated Protein Expression in the Gastrocnemius Muscles of Mice with Diet-Induced Obesity. J Obes Metab Syndr 2021; 30:44-54. [PMID: 33518534 PMCID: PMC8017331 DOI: 10.7570/jomes20043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/08/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Background Exercise and high fat, high sucrose restriction diets are well known treatments for obesity. The aim of this study was to measure the effects of those lifestyle interventions on molecular transducers of exercise, such as Nr4a3, mitochondria-associated proteins, and muscle function. Methods We conducted 8 weeks of treadmill exercise and sucrose or fat restriction diets in obese mice. The mice were divided into eight groups: the normal diet (CON) group, normal diet with exercise (CONEX) group, high fat, high sucrose diet (HFHS) group, HFHS with exercise (HFHSEX) group, sucrose restriction (SR) group, SR with exercise (SREX) group, high fat, high sucrose restriction (ND) group, and ND with exercise (NDEX) group. Results The 8 weeks of exercise reduced body weight, improved lipid profiles (total cholesterol, triglycerides), and increased hanging time. The combination of exercise and a fat and sucrose restriction diet improved glucose tolerance and increased grip strength. The 8 weeks of intervention did not significantly affect the Nr4a3 protein level. The sucrose and fat restriction diet increased the phosphorylated protein kinase B (pAkt)/Akt ratio, and its level was lower in the HFHS group. Exercise increased the protein expression level of PGC-1α in obese conditions. Moreover, SR led reduced the phosphorylated AMP-activated protein kinase (pAMPK)/AMPK ratio and PGC-1α to the control level. Conclusion The 8 weeks of exercise or a sucrose and fat restriction diet improved metabolic indicators and muscle function. SR reduced pAMPK/AMPK and PGC-1α to the control level. Nr4a3 protein expression was not significantly changed by either exercise or a fat and sucrose restriction diet.
Collapse
Affiliation(s)
- Ji-Heun Lee
- Institute of Sports Science, Department of Physical Education, Seoul National University, Seoul, Korea
| | - Didi Zhang
- Institute of Sports Science, Department of Physical Education, Seoul National University, Seoul, Korea
| | - Seong-Eun Kwak
- Institute of Sports Science, Department of Physical Education, Seoul National University, Seoul, Korea
| | - Hyung-Eun Shin
- Institute of Sports Science, Department of Physical Education, Seoul National University, Seoul, Korea
| | - Wook Song
- Institute of Sports Science, Department of Physical Education, Seoul National University, Seoul, Korea.,Institute on Aging, Seoul National University, Seoul, Korea
| |
Collapse
|
11
|
Fan S, Yin Q, Li D, Ma J, Li L, Chai S, Guo H, Yang Z. Anti-neuroinflammatory effects of Eucommia ulmoides Oliv. In a Parkinson's mouse model through the regulation of p38/JNK-Fosl2 gene expression. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113016. [PMID: 32464317 DOI: 10.1016/j.jep.2020.113016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eucommia ulmoides Oliv., a Chinese medicinal herb called "Duzhong" from the bark of Eucommia ulmoides Oliv., has been shown to possess significant protective effects in Parkinson's disease (PD). However, the molecular mechanism remains unclear. AIM OF THE STUDY In this study, we explored the anti-neuroinflammatory mechanisms of Duzhong on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model to elucidate the traditional medical theories with modern pharmacological methods and to provide a reference for further clarifying its mechanisms of action. MATERIALS AND METHODS The representative components in Duzhong extract were identified by UPLC-Q-TOF/MS. Male C57BL/6J mice were intraperitoneally injected with MPTP to establish an in vivo PD model. The pole, rotarod, and grip strength tests were performed to evaluate the motor coordination ability of the PD mice. HPLC-ECD was used to detect the striatal levels of dopamine (DA), 3,4- dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). The expression of tyrosine hydroxylase (TH) was studied by immunohistochemistry (IHC) and Western blot assays. ELISA and Q-PCR were used examined the levels of proinflammatory cytokines in the serum and midbrain, respectively. Whole-transcriptome analysis of the midbrain was performed to explore the therapeutic effect of Duzhong on PD mice, and Q-PCR was then used to validate the differential gene expression changes in the PD mice treated with Duzhong. RESULTS Ten compounds were identified from Duzhong extract. Duzhong significantly alleviated the behavioral impairments and dopaminergic neuron degeneration of PD mice, and inhibited the expression of proinflammatory cytokines. Whole-transcriptome analysis revealed nine oppositely regulated genes, and the Fosl2 gene was consistent with the trend of observed by RNA-seq. Furthermore, Duzhong downregulated mRNA expression of p38 and JNK, which are key upstream genes of Fosl2. CONCLUSIONS Duzhong has promising therapeutic potential in PD mice, and its molecular mechanism is mediated by downregulating p38/JNK-Fosl2 gene expression to alleviate neuroinflammation.
Collapse
Affiliation(s)
- Shanshan Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, #10 Boyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Qingsheng Yin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, #10 Boyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Dongna Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, #10 Boyanghu Road, Jinghai District, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jing Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, #10 Boyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Lili Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, #10 Boyanghu Road, Jinghai District, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiwei Chai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hong Guo
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, #10 Boyanghu Road, Jinghai District, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Zhen Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, #10 Boyanghu Road, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
12
|
Cho EM, Moon JE, Lee SJ, Ko CW. Severe recurrent nocturnal hypoglycemia during chemotherapy with 6-mercaptopurine in a child with acute lymphoblastic leukemia. Ann Pediatr Endocrinol Metab 2018; 23:226-228. [PMID: 30599485 PMCID: PMC6312912 DOI: 10.6065/apem.2018.23.4.226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/18/2018] [Accepted: 03/18/2018] [Indexed: 11/20/2022] Open
Abstract
Various endocrine dysfunctions occur during chemotherapy, including hypoglycemia. However, reports of hypoglycemia associated with 6-mercaptopurine (6-MP) are rare. Herein, we report an 8-year-old boy with severe symptomatic hypoglycemia likely due to 6-MP during chemotherapy. He had been diagnosed with acute lymphoblastic leukemia 3 years previously and was in the maintenance chemotherapy period. Treatment included oral dexamethasone, methotrexate, and 6-MP, of which only 6-MP was administered daily. Hypoglycemic symptoms appeared mainly at dawn, and his serum glucose dropped to a minimum of 37 mg/dL. Laboratory findings showed nothing specific other than increased serum cortisol, free fatty acids, ketone, alanine aminotransferase, and aspartate aminotransferase. Under the hypothesis of hypoglycemia due to chemotherapy drugs, we changed the time of 6-MP from evening to morning and recommended him to ingest carbohydrate-rich foods before bedtime. Hypoglycemia improved dramatically, and there was no further episode during the remaining maintenance chemotherapy period. To the best of our knowledge, this is the first report of this type of hypoglycemia occurring in an Asian child including Korean.
Collapse
Affiliation(s)
- Eun Mi Cho
- Department of Pediatric Endocrinology, Kyungpook National University School of Medicine, Kyungpook National University Children's Hospital, Daegu, Korea
| | - Jung Eun Moon
- Department of Pediatric Endocrinology, Kyungpook National University School of Medicine, Kyungpook National University Children's Hospital, Daegu, Korea
| | - Soo Jung Lee
- Department of Pediatric Endocrinology, Kyungpook National University School of Medicine, Kyungpook National University Children's Hospital, Daegu, Korea
| | - Cheol Woo Ko
- Department of Pediatric Endocrinology, Kyungpook National University School of Medicine, Kyungpook National University Children's Hospital, Daegu, Korea
| |
Collapse
|
13
|
Role of AMPK signalling pathway during compensatory growth in pigs. BMC Genomics 2018; 19:682. [PMID: 30223793 PMCID: PMC6142327 DOI: 10.1186/s12864-018-5071-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/11/2018] [Indexed: 12/25/2022] Open
Abstract
Background The molecular basis of compensatory growth in monogastric animals has not yet been fully explored. Herewith, in this study we aim to determine changes in the pig skeletal muscle transcriptome profile during compensatory growth following a feed restriction period. A RNA-Seq experiment was performed with a total of 24 females belonging to a Duroc commercial line. Half of the animals received either a restricted (RE) or ad libitum (AL) diet during the first fattening period (60–125 d of age). After that, all gilts were fed ad libitum for a further ~30 d until the age of ~155 d, when animals were slaughtered and samples of gluteus medius muscle were harvested to perform RNA-Seq analyses and intramuscular fat content determination. Results During the period following food restriction, RE animals re-fed ad libitum displayed compensatory growth, showed better feed conversion rate and tended to deposit more subcutaneous fat than AL fed animals. Animals were slaughtered in the phase of accelerated growth, when RE animals had not completely compensated the performance of AL group, showing lower live and carcass weights. At intramuscular level, RE gilts showed a higher content of polyunsaturated fatty acids during the compensatory growth phase. The comparison of RE and AL expression profiles allowed the identification of 86 (ǀlog2Fold-Changeǀ > 1, padj < 0.05) differentially expressed (DE) genes. A functional categorization of these DE genes identified AMPK Signaling as the most significantly enriched canonical pathway. This kinase plays a key role in the maintenance of energy homeostasis as well as in the activation of autophagy. Among the DE genes identified as components of AMPK Signaling pathway, five out of six genes were downregulated in RE pigs. Conclusions Animals re-fed after a restriction period exhibited a less oxidative metabolic profile and catabolic processes in muscle than animals fed ad libitum. The downregulation of autophagy observed in the skeletal muscle of pigs undergoing compensatory growth may constitute a mechanism to increase muscle mass thus ensuring an accelerated growth rate. These results reveal that the downregulation of AMPK Signaling plays an important role in compensatory growth in pigs. Electronic supplementary material The online version of this article (10.1186/s12864-018-5071-5) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
6-mercaptopurine promotes energetic failure in proliferating T cells. Oncotarget 2018; 8:43048-43060. [PMID: 28574837 PMCID: PMC5522126 DOI: 10.18632/oncotarget.17889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
The anticancer drug 6-mercaptopurine (6-MP) inhibits de novo purine synthesis and acts as an antiproliferative agent by interfering with protein, DNA and RNA synthesis and promoting apoptosis. Metabolic reprogramming is crucial for tumor progression to foster cancer cells growth and proliferation, and is regulated by mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) as well as the oncogenes Myc and hypoxia inducible factor 1α (HIF-1α). We hypothesized that 6-MP impacts metabolic remodeling through its action on nucleotide synthesis. The aim of our study is to provide a comprehensive characterization of the metabolic changes induced by 6-MP in leukemic T cells. Our results indicate that exposition to 6-MP rapidly reduces intracellular ATP concentration, leading to the activation of AMPK. In turn, mTOR, an AMPK target, was inhibited, and the expression of HIF-1α and Myc was reduced upon 6-MP incubation. As a consequence of these inhibitions, glucose and glutamine fluxes were strongly decreased. Notably, no difference was observed on glucose uptake upon exposition to 6-MP. In conclusion, our findings provide new insights into how 6-MP profoundly impacts cellular energetic metabolism by reducing ATP production and decreasing glycolytic and glutaminolytic fluxes, and how 6-MP modifies human leukemic T cells metabolism with potential antiproliferative effects.
Collapse
|
15
|
Regulation of skeletal muscle mitochondrial function by nuclear receptors: implications for health and disease. Clin Sci (Lond) 2015; 129:589-99. [PMID: 26186742 DOI: 10.1042/cs20150246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Skeletal muscle metabolism is highly dependent on mitochondrial function, with impaired mitochondrial biogenesis associated with the development of metabolic diseases such as insulin resistance and type 2 diabetes. Mitochondria display substantial plasticity in skeletal muscle, and are highly sensitive to levels of physical activity. It is thought that physical activity promotes mitochondrial biogenesis in skeletal muscle through increased expression of genes encoded in both the nuclear and the mitochondrial genome; however, how this process is co-ordinated at the cellular level is poorly understood. Nuclear receptors (NRs) are key signalling proteins capable of integrating environmental factors and mitochondrial function, thereby providing a potential link between exercise and mitochondrial biogenesis. The aim of this review is to highlight the function of NRs in skeletal muscle mitochondrial biogenesis and discuss the therapeutic potential of NRs for the management and treatment of chronic metabolic disease.
Collapse
|