1
|
Deivasikamani V, Dhayalan S, Abudushalamu Y, Mughal R, Visnagri A, Cuthbertson K, Scragg JL, Munsey TS, Viswambharan H, Muraki K, Foster R, Sivaprasadarao A, Kearney MT, Beech DJ, Sukumar P. Piezo1 channel activation mimics high glucose as a stimulator of insulin release. Sci Rep 2019; 9:16876. [PMID: 31727906 PMCID: PMC6856185 DOI: 10.1038/s41598-019-51518-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Glucose and hypotonicity induced cell swelling stimulate insulin release from pancreatic β-cells but the mechanisms are poorly understood. Recently, Piezo1 was identified as a mechanically-activated nonselective Ca2+ permeable cationic channel in a range of mammalian cells. As cell swelling induced insulin release could be through stimulation of Ca2+ permeable stretch activated channels, we hypothesised a role for Piezo1 in cell swelling induced insulin release. Two rat β-cell lines (INS-1 and BRIN-BD11) and freshly-isolated mouse pancreatic islets were studied. Intracellular Ca2+ measurements were performed using the fura-2 Ca2+ indicator dye and ionic current was recorded by whole cell patch-clamp. Piezo1 agonist Yoda1, a competitive antagonist of Yoda1 (Dooku1) and an inactive analogue of Yoda1 (2e) were used as chemical probes. Piezo1 mRNA and insulin secretion were measured by RT-PCR and ELISA respectively. Piezo1 mRNA was detected in both β-cell lines and mouse islets. Yoda1 evoked Ca2+ entry was inhibited by Yoda1 antagonist Dooku1 as well as other Piezo1 inhibitors gadolinium and ruthenium red, and not mimicked by 2e. Yoda1, but not 2e, stimulated Dooku1-sensitive insulin release from β-cells and pancreatic islets. Hypotonicity and high glucose increased intracellular Ca2+ and enhanced Yoda1 Ca2+ influx responses. Yoda1 and hypotonicity induced insulin release were significantly inhibited by Piezo1 specific siRNA. Pancreatic islets from mice with haploinsufficiency of Piezo1 released less insulin upon exposure to Yoda1. The data show that Piezo1 channel agonist induces insulin release from β-cell lines and mouse pancreatic islets suggesting a role for Piezo1 in cell swelling induced insulin release. Hence Piezo1 agonists have the potential to be used as enhancers of insulin release.
Collapse
Affiliation(s)
- Vijayalakshmi Deivasikamani
- Leeds Institute for Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Savitha Dhayalan
- Leeds Institute for Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Yilizila Abudushalamu
- Leeds Institute for Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Romana Mughal
- Leeds Institute for Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Asjad Visnagri
- Leeds Institute for Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Kevin Cuthbertson
- School of Chemistry, Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Jason L Scragg
- Leeds Institute for Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Tim S Munsey
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Hema Viswambharan
- Leeds Institute for Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Katsuhiko Muraki
- School of Pharmacy, Aichi-Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya, 464-8650, Japan
| | - Richard Foster
- School of Chemistry, Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Asipu Sivaprasadarao
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Mark T Kearney
- Leeds Institute for Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - David J Beech
- Leeds Institute for Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Piruthivi Sukumar
- Leeds Institute for Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
2
|
Sawatani T, Kaneko YK, Doutsu I, Ogawa A, Ishikawa T. TRPV2 channels mediate insulin secretion induced by cell swelling in mouse pancreatic β-cells. Am J Physiol Cell Physiol 2019; 316:C434-C443. [PMID: 30649920 DOI: 10.1152/ajpcell.00210.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
β-Cell swelling induces membrane depolarization, which has been suggested to be caused at least partly by the activation of cation channels. Here, we show the identification of the cation channels. In isolated mouse pancreatic β-cells, the exposure to 30% hypotonic solution elicited an increase in cytosolic Ca2+ concentration ([Ca2+]c). The [Ca2+]c elevation was partially inhibited by ruthenium red, a blocker of several Ca2+-permeable channels including transient receptor potential vanilloid receptors [transient receptor potential cation channel subfamily V (TRPV)], and by nicardipine, but not by the depletion of intracellular Ca2+ stores with thapsigargin and caffeine. The hypotonic stimulation also increased insulin secretion from isolated mouse islets, which was significantly suppressed by ruthenium red. Expression of TRPV2 and TRPV4 was confirmed in mouse pancreatic islets and the MIN6 β-cell line by RT-PCR, Western blot, and immunohistochemical analyses. However, neither 4α-phorbol 12,13-didecanoate nor GSK1016790A, TRPV4 activators, showed any apparent effect on [Ca2+]c in isolated mouse β-cells or in MIN6 cells. In contrast, probenecid, a TRPV2 activator, induced an increase in [Ca2+]c in MIN6 cells, which was attenuated by ruthenium red. Moreover, the [Ca2+]c elevation induced by 30% hypotonic stimulation was significantly reduced by knockdown of TRPV2 with siRNA and by tranilast, a TRPV2 inhibitor. The knockdown of TRPV2 also decreased insulin secretion induced by the hypotonic stimulation. In addition, glucose-stimulated insulin secretion was also significantly reduced in the TRPV2-knockdown MIN6 cells. These results suggest that osmotic cell swelling activates TRPV2 in mouse β-cells, thereby causing membrane depolarization and subsequent activation of voltage-dependent Ca2+ channels and insulin secretion.
Collapse
Affiliation(s)
- Toshiaki Sawatani
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Japan
| | - Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Japan
| | - Isao Doutsu
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Japan
| | - Ai Ogawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Japan
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Japan
| |
Collapse
|
3
|
Li SYT, Cheng STW, Zhang D, Leung PS. Identification and Functional Implications of Sodium/ Myo-Inositol Cotransporter 1 in Pancreatic β-Cells and Type 2 Diabetes. Diabetes 2017; 66:1258-1271. [PMID: 28202581 DOI: 10.2337/db16-0880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022]
Abstract
Myo-inositol (MI), the precursor of the second messenger phosphoinositide (PI), mediates multiple cellular events. Rat islets exhibit active transport of MI, although the mechanism involved remains elusive. Here, we report, for the first time, the expression of sodium/myo-inositol cotransporter 1 (SMIT1) in rat islets and, specifically, β-cells. Genetic or pharmacological inhibition of SMIT1 impaired glucose-stimulated insulin secretion by INS-1E cells, probably via downregulation of PI signaling. In addition, SMIT1 expression in INS-1E cells and isolated islets was augmented by acute high-glucose exposure and reduced in chronic hyperglycemia conditions. In corroboration, chronic MI treatment improved the disease phenotypes of diabetic rats and islets. On the basis of our results, we postulate that the MI transporter SMIT1 is required to maintain a stable PI pool in β-cells in order that PI remains available despite its rapid turnover.
Collapse
Affiliation(s)
- Stephen Yu Ting Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sam Tsz Wai Cheng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Willenborg M, Belz M, Schumacher K, Paufler A, Hatlapatka K, Rustenbeck I. Ca(2+)-dependent desensitization of insulin secretion by strong potassium depolarization. Am J Physiol Endocrinol Metab 2012; 303:E223-33. [PMID: 22550068 DOI: 10.1152/ajpendo.00010.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Depolarization by a high K(+) concentration is a widely used experimental tool to stimulate insulin secretion. The effects occurring after the initial rise in secretion were investigated here. After the initial peak a fast decline occurred, which was followed by a slowly progressive decrease in secretion when a strong K(+) depolarization was used. At 40 mM KCl, but not at lower concentrations, the decrease continued when the glucose concentration was raised from 5 to 10 mM, suggesting an inhibitory effect of the K(+) depolarization. When tolbutamide was added instead of the glucose concentration being raised, a complete inhibition down to prestimulatory values was observed. Equimolar reduction of the NaCl concentration to preserve isoosmolarity enabled an increase in secretion in response to glucose. Unexpectedly, the same was true when the Na(+)-reduced media were made hyperosmolar by choline chloride or mannitol. The insulinotropic effect of tolbutamide was not rescued by the compensatory reduction of NaCl, suggesting a requirement for activated energy metabolism. These inhibitory effects could not be explained by a lack of depolarizing strength or by a diminished free cytosolic Ca(2+) concentration ([Ca(2+)](i)). Rather, the complexation of extracellular Ca(2+) concomitant with the K(+) depolarization markedly diminished [Ca(2+)](i) and attenuated the inhibitory action of 40 mM KCl. This suggests that a strong but not a moderate depolarization by K(+) induces a [Ca(2+)](i)-dependent, slowly progressive desensitization of the secretory machinery. In contrast, the decline immediately following the initial peak of secretion may result from the inactivation of voltage-dependent Ca(2+) channels.
Collapse
Affiliation(s)
- M Willenborg
- Institute of Pharmacology and Toxicology, University of Braunschweig, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Barfod ET, Moore AL, Van de Graaf BG, Lidofsky SD. Myosin light chain kinase and Src control membrane dynamics in volume recovery from cell swelling. Mol Biol Cell 2011; 22:634-50. [PMID: 21209319 PMCID: PMC3046060 DOI: 10.1091/mbc.e10-06-0514] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
MLCK resolves membrane blebbing induced by osmotic cell swelling. Cell swelling also stimulates the formation of a Src–MLCK complex, which with cortactin and dynamin forms actin-based structures at the base of the cell to facilitate membrane retrieval for volume recovery. The expansion of the plasma membrane, which occurs during osmotic swelling of epithelia, must be retrieved for volume recovery, but the mechanisms are unknown. Here we have identified myosin light chain kinase (MLCK) as a regulator of membrane internalization in response to osmotic swelling in a model liver cell line. On hypotonic exposure, we found that there was time-dependent phosphorylation of the MLCK substrate myosin II regulatory light chain. At the sides of the cell, MLCK and myosin II localized to swelling-induced membrane blebs with actin just before retraction, and MLCK inhibition led to persistent blebbing and attenuated cell volume recovery. At the base of the cell, MLCK also localized to dynamic actin-coated rings and patches upon swelling, which were associated with uptake of the membrane marker FM4-64X, consistent with sites of membrane internalization. Hypotonic exposure evoked increased biochemical association of the cell volume regulator Src with MLCK and with the endocytosis regulators cortactin and dynamin, which colocalized within these structures. Inhibition of either Src or MLCK led to altered patch and ring lifetimes, consistent with the concept that Src and MLCK form a swelling-induced protein complex that regulates volume recovery through membrane turnover and compensatory endocytosis under osmotic stress.
Collapse
Affiliation(s)
- Elisabeth T Barfod
- Department of Pharmacology, University of Vermont, Burlington, VT 05405 Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
6
|
Štrbák V. Cell Swelling-induced Peptide Hormone Secretion. Cell Physiol Biochem 2011; 28:1155-68. [DOI: 10.1159/000335849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2011] [Indexed: 11/19/2022] Open
|
7
|
Lee YH, Peng CA. Effect of hypotonic stress on retroviral transduction. Biochem Biophys Res Commun 2009; 390:1367-71. [DOI: 10.1016/j.bbrc.2009.10.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 10/29/2009] [Indexed: 11/25/2022]
|
8
|
|
9
|
Franco R, Panayiotidis MI, de la Paz LDO. Autocrine signaling involved in cell volume regulation: the role of released transmitters and plasma membrane receptors. J Cell Physiol 2008; 216:14-28. [PMID: 18300263 DOI: 10.1002/jcp.21406] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell volume regulation is a basic homeostatic mechanism transcendental for the normal physiology and function of cells. It is mediated principally by the activation of osmolyte transport pathways that result in net changes in solute concentration that counteract cell volume challenges in its constancy. This process has been described to be regulated by a complex assortment of intracellular signal transduction cascades. Recently, several studies have demonstrated that alterations in cell volume induce the release of a wide variety of transmitters including hormones, ATP and neurotransmitters, which have been proposed to act as extracellular signals that regulate the activation of cell volume regulatory mechanisms. In addition, changes in cell volume have also been reported to activate plasma membrane receptors (including tyrosine kinase receptors, G-protein coupled receptors and integrins) that have been demonstrated to participate in the regulatory process of cell volume. In this review, we summarize recent studies about the role of changes in cell volume in the regulation of transmitter release as well as in the activation of plasma membrane receptors and their further implications in the regulation of the signaling machinery that regulates the activation of osmolyte flux pathways. We propose that the autocrine regulation of Ca2+-dependent and tyrosine phosphorylation-dependent signaling pathways by the activation of plasma membrane receptors and swelling-induced transmitter release is necessary for the activation/regulation of osmolyte efflux pathways and cell volume recovery. Furthermore, we emphasize the importance of studying these extrinsic signals because of their significance in the understanding of the physiology of cell volume regulation and its role in cell biology in vivo, where the constraint of the extracellular space might enhance the autocrine or even paracrine signaling induced by these released transmitters.
Collapse
Affiliation(s)
- Rodrigo Franco
- Laboratory of Cell Biology and Signal Transduction, Biomedical Research Unit, FES-Iztacala, UNAM, Mexico.
| | | | | |
Collapse
|
10
|
Amatore C, Arbault S, Bonifas I, Lemaître F, Verchier Y. Vesicular exocytosis under hypotonic conditions shows two distinct populations of dense core vesicles in bovine chromaffin cells. Chemphyschem 2007; 8:578-85. [PMID: 17243189 DOI: 10.1002/cphc.200600607] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several previous reports have discussed the effects of external osmolarity on vesicular exocytotic processes. However, few of these studies considered hypotonic conditions on chromaffin cells. Herein, the exocytosis of catecholamines by chromaffin cells was investigated in a medium of low osmolarity (200 mOsm) by amperometry at carbon fiber microelectrodes. It is observed that the frequency of the exocytotic events is significantly higher under hypotonic conditions than under physiological conditions (315 mOsm). This further confirms that the swelling of the polyelectrolytic matrix (which follows ionic exchanges) contained in dense core vesicles is the energetic driving force of the exocytotic phenomenon, being favored by a lower osmolarity. The mean amount of catecholamines released during secretory events also increases importantly under the hypotonic condition. This may be rationalized by the coexistence of two distinct populations of dense core vesicles with a relative content ratio of 4.7. The larger content population is favored under hypotonic conditions but plays only a side role under isotonic conditions.
Collapse
Affiliation(s)
- Christian Amatore
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS-ENS-UPMC 8640 PASTEUR, 24 rue Lhomond, 75231 Paris cedex 05, France.
| | | | | | | | | |
Collapse
|
11
|
Takii M, Ishikawa T, Tsuda H, Kanatani K, Sunouchi T, Kaneko Y, Nakayama K. Involvement of stretch-activated cation channels in hypotonically induced insulin secretion in rat pancreatic β-cells. Am J Physiol Cell Physiol 2006; 291:C1405-11. [PMID: 16822943 DOI: 10.1152/ajpcell.00519.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In isolated rat pancreatic β-cells, hypotonic stimulation elicited an increase in cytosolic Ca2+ concentration ([Ca2+]c) at 2.8 mM glucose. The hypotonically induced [Ca2+]c elevation was significantly suppressed by nicardipine, a voltage-dependent Ca2+ channel blocker, and by Gd3+, amiloride, 2-aminoethoxydiphenylborate, and ruthenium red, all cation channel blockers. In contrast, the [Ca2+]c elevation was not inhibited by suramin, a P2 purinoceptor antagonist. Whole cell patch-clamp analyses showed that hypotonic stimulation induced membrane depolarization of β-cells and produced outwardly rectifying cation currents; Gd3+ inhibited both responses. Hypotonic stimulation also increased insulin secretion from isolated rat islets, and Gd3+ significantly suppressed this secretion. Together, these results suggest that osmotic cell swelling activates cation channels in rat pancreatic β-cells, thereby causing membrane depolarization and subsequent activation of voltage-dependent Ca2+ channels and thus elevating insulin secretion.
Collapse
Affiliation(s)
- Miki Takii
- Department of Cellular and Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Jakab M, Grundbichler M, Benicky J, Ravasio A, Chwatal S, Schmidt S, Strbak V, Fürst J, Paulmichl M, Ritter M. Glucose induces anion conductance and cytosol-to-membrane transposition of ICln in INS-1E rat insulinoma cells. Cell Physiol Biochem 2006; 18:21-34. [PMID: 16914887 DOI: 10.1159/000095131] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The metabolic coupling of insulin secretion by pancreatic beta cells is mediated by membrane depolarization due to increased glucose-driven ATP production and closure of K(ATP) channels. Alternative pathways may involve the activation of anion channels by cell swelling upon glucose uptake. In INS-1E insulinoma cells superfusion with an isotonic solution containing 20 mM glucose or a 30% hypotonic solution leads to the activation of a chloride conductance with biophysical and pharmacological properties of anion currents activated in many other cell types during regulatory volume decrease (RVD), i.e. outward rectification, inactivation at positive membrane potentials and block by anion channel inhibitors like NPPB, DIDS, 4-hydroxytamoxifen and extracellular ATP. The current is not inhibited by tolbutamide and remains activated for at least 10 min when reducing the extracellular glucose concentration from 20 mM to 5 mM, but inactivates back to control levels when cells are exposed to a 20% hypertonic extracellular solution containing 20 mM glucose. This chloride current can likewise be induced by 20 mM 3-Omethylglucose, which is taken up but not metabolized by the cells, suggesting that cellular sugar uptake is involved in current activation. Fluorescence resonance energy transfer (FRET) experiments show that chloride current activation by 20 mM glucose and glucose-induced cell swelling are accompanied by a significant, transient redistribution of the membrane associated fraction of ICln, a multifunctional 'connector hub' protein involved in cell volume regulation and generation of RVD currents.
Collapse
Affiliation(s)
- Martin Jakab
- Institute of Physiology and Pathophysiology, Paracelsus Private Medical University, Salzburg
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lemoine JL, Farley R, Huang L. Mechanism of efficient transfection of the nasal airway epithelium by hypotonic shock. Gene Ther 2006; 12:1275-82. [PMID: 15889135 DOI: 10.1038/sj.gt.3302548] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The main barrier to gene transfer in the airway epithelium is the low rate of apical endocytosis limiting naked DNA uptake. Deionized water is known to stimulate the exocytosis of numerous intracellular vesicles during hypotonic cell swelling, in order to expand plasma membrane and prevent cell lysis. This is followed by the phase of regulatory volume decrease (RVD), during which the excess plasma membrane is retrieved by intensive endocytosis. Here we show that the more hypotonic the DNA solution, the higher the transfection of the nasal tissue. P2 receptors are known to be involved in RVD and we demonstrate that some P2 agonists and a P2 antagonist impair transfection in a time-dependent manner. Our study strongly suggests that the nasal airway epithelial cells take up plasmid DNA in deionized water during RVD, within approximately half an hour. Our simple gene delivery system may constitute a promising method for respiratory tract gene therapy.
Collapse
Affiliation(s)
- J L Lemoine
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
14
|
Bacová Z, Benický J, Lukyanetz EE, Lukyanetz IA, Strbák V. Different Signaling Pathways Involved in Glucose- and Cell Swelling-Induced Insulin Secretion by Rat Pancreatic Islets in Vitro. Cell Physiol Biochem 2005; 16:59-68. [PMID: 16121034 DOI: 10.1159/000087732] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The objective was to compare signal transduction pathways exploited by glucose and cell swelling in stimulating insulin secretion. METHODS Isolated rat (Wistar) pancreatic islets were stimulated in vitro by 20 mmol/l glucose or 30% hypotonic medium (202 mOsm/kg) in various experimental conditions. RESULTS Glucose did not stimulate insulin release in calcium free medium. Cell swelling-induced insulin release in calcium free medium, even in the presence of the membrane permeable calcium chelator BAPTA/AM (10 micromol/l). Protein kinase C (PKC) inhibitor bisindolylmaleimide VIII (1 micromol/l) abolished the stimulation of insulin secretion by glucose but did not affect the swelling-induced insulin release. PKC activator phorbol 12-13-dibutyrate (1 micromol/l) stimulated insulin secretion in medium containing Ca2+ and did not potentiate insulin secretion stimulated by hypotonic extracellular fluid. Dilution of the medium (10-30%) had an additive effect on the glucose-induced insulin secretion. Noradrenaline (1 micromol/l) abolished glucose-induced insulin secretion but did not inhibit hypotonic stimulation either in presence or absence of Ca2+. CONCLUSION Glucose- and swelling-induce insulin secretion through separate signal transduction pathways. Hyposmotic stimulation is independent from both the extracellular and intracellular Ca2+, does not involve PKC activation, and could not be inhibited by noradrenaline. These data indicate a novel signaling pathway for stimulation of insulin secretion exploited by cell swelling.
Collapse
Affiliation(s)
- Zuzana Bacová
- Institute of Experimental Endocrinology, Centre of Excellence acknowledged by European Commission, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
15
|
Cell Volume-Induced Hormone Secretion: Signal Transduction and Specificity. NEUROPHYSIOLOGY+ 2005. [DOI: 10.1007/s11062-005-0059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Strbák V, Benicky J, Greer SE, Bacova Z, Najvirtova M, Greer MA. Cell swelling-induced peptide hormone secretion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 559:325-330. [PMID: 18727251 DOI: 10.1007/0-387-23752-6_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cell volume changes induced in various ways (anisosmotic environment, hormones, oxidative stress, substrate uptake) are an integral part of a signal transduction network regulating cell function. Cell swelling has received increasing attention as a stimulus for a variety of intracellular phenomena. One of the most remarkable effects of cell swelling is its powerful effect in inducing exocytosis of material in intracellular secretory vesicles. Secretion of essentially all so-packaged hormones including those from hypothalamus (thyrotropin-releasing hormone, TRH; gonadotropin-releasing hormone, GnRH), pituitary (LH, FSH, ACTH, MSH, TSH, prolactin, beta endorphin), pancreas (insulin, somatostatin, glucagon), heart (atrial natriuretic hormone) and kidney (renin) are stimulated in a concentration-related manner by medium hyposmolarity or isosmolar medium containing permeant molecules such as ethanol or urea (reviewed in Ref. 21). Cell swelling-induced exocytosis is not restricted to endocrine cells and hormones; medium hyposmolarity also induces secretion of exocrine pancreatic enzymes and myeloperoxidase from human polymorphonuclear leukocytes.
Collapse
Affiliation(s)
- Vladimir Strbák
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava 83306, Slovakia.
| | | | | | | | | | | |
Collapse
|