1
|
Jiwan NC, Appell CR, Sterling R, Shen CL, Luk HY. The Effect of Geranylgeraniol and Ginger on Satellite Cells Myogenic State in Type 2 Diabetic Rats. Curr Issues Mol Biol 2024; 46:12299-12310. [PMID: 39590324 PMCID: PMC11592527 DOI: 10.3390/cimb46110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes (T2D) is associated with increased inflammation and reactive oxygen species (ROS) in muscles, leading to basal satellite cell (SC) myogenic impairment (i.e., reduction in SC pool), which is critical for maintaining skeletal muscle mass. T2D may contribute to muscle atrophy, possibly due to reductions in the SC pool. Geranylgeraniol (GGOH) and ginger can reduce inflammation and enhance SC myogenesis in damaged muscles, thereby alleviating muscle atrophy; however, their effect on basal SC myogenic state and muscle mass in T2D rats is limited. Rats consumed a control diet (CON), high-fat diet with 35 mg/kg of streptozotocin (HFD), a HFD with 800 mg/kg body weight of GGOH (GG), or a HFD with 0.75% ginger root extract (GRE). In the eighth week, their soleus muscles were analyzed for Pax7, MyoD, and MSTN gene and protein expression, SC myogenic state, and muscle cross-sectional area (CSA). The HFD group had a significantly lower number of Pax7+/MyoD- and Pax7+/MSTN+ cells, less Pax7 and MyoD gene expression, and less MyoD and MSTN protein expression, with a smaller CSA than the CON group. Compared to the GG and GRE groups, the HFD group had a significantly lower number of Pax7+/MSTN+ cells, less MyoD protein expression, and smaller CSA. The GRE group also had a significantly lower number of Pax7-/MyoD+ and greater MSTN protein expression than the HFD group. Nevertheless, the CON group had a significantly greater number of Pax7+/MyoD- than the GG and GRE groups, and a greater number of Pax7-/MyoD+ cells than the GRE group with a larger CSA than the GG group. GGOH and ginger persevered muscle CSA, possibly through increased MyoD and the ability to maintain the SC pool in T2D rats.
Collapse
Affiliation(s)
- Nigel C. Jiwan
- Department of Kinesiology, Hope College, Holland, MI 49423, USA;
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.R.A.); (R.S.)
| | - Casey R. Appell
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.R.A.); (R.S.)
| | - Raoul Sterling
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.R.A.); (R.S.)
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Hui-Ying Luk
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.R.A.); (R.S.)
| |
Collapse
|
2
|
RNA-Seq Analysis Identifies Differentially Expressed Genes in the Longissimus dorsi of Wagyu and Chinese Red Steppe Cattle. Int J Mol Sci 2022; 24:ijms24010387. [PMID: 36613828 PMCID: PMC9820533 DOI: 10.3390/ijms24010387] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
Meat quality has a close relationship with fat and connective tissue; therefore, screening and identifying functional genes related to lipid metabolism is essential for the production of high-grade beef. The transcriptomes of the Longissimus dorsi muscle in Wagyu and Chinese Red Steppe cattle, breeds with significant differences in meat quality and intramuscular fat deposition, were analyzed using RNA-seq to screen for candidate genes associated with beef quality traits. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the 388 differentially expressed genes (DEGs) were involved in biological processes such as short-chain fatty acid metabolism, regulation of fatty acid transport and the peroxisome proliferator-activated receptor (PPAR) signaling pathway. In addition, crystallin alpha B (CRYAB), ankyrin repeat domain 2 (ANKRD2), aldehyde dehydrogenase 9 family member A1 (ALDH9A1) and enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (EHHADH) were investigated for their effects on intracellular triglyceride and fatty acid content and their regulatory effects on genes in lipogenesis and fatty acid metabolism pathways. This study generated a dataset from transcriptome profiling of two cattle breeds, with differing capacities for fat-deposition in the muscle, and revealed molecular evidence that CRYAB, ANKRD2, ALDH9A1 and EHHADH are related to fat metabolism in bovine fetal fibroblasts (BFFs). The results provide potential functional genes for maker-assisted selection and molecular breeding to improve meat quality traits in beef cattle.
Collapse
|
3
|
Dede E, Liapis D, Davos C, Katsimpoulas M, Varela A, Mpotis I, Kostomitsopoulos N, Kadoglou NPE. The effects of exercise training on cardiac matrix metalloproteinases activity and cardiac function in mice with diabetic cardiomyopathy. Biochem Biophys Res Commun 2022; 586:8-13. [PMID: 34818584 DOI: 10.1016/j.bbrc.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022]
Abstract
AIM To evaluate the effects of exercise training (ET) on cardiac extracellular matrix (ECM) proteins homeostasis and cardiac dysfunction in mice with diabetic cardiomyopathy. METHODS Thirty-six male C57BL/6 mice were randomized into 3 groups for 8 weeks (12mice/group): Diabetic control-DC: Diabetes was induced by single streptozotocin injection (200 mg/kg i.p.); Diabetic exercise-DE: Diabetic mice underwent ET program on motorized-treadmill (6-times/week, 60min/session); Non-diabetic control-NDC: Vehicle-treated, sedentary, non-diabetic mice served as controls. Before euthanasia, all groups underwent transthoracic echocardiography (TTE). Post-mortem, left-ventricle (LV) samples were histologically analysed for ECM proteins (collagen, elastin), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). RESULTS DC group showed significantly higher cardiac contents of collagen and MMP-9 and lower elastic concentration than NDC (p < 0.001). The implementation of ET completely outweighed those diabetes-induced changes (DE vs NDC, p > 0.05). TIMP-1 levels significantly increased across all groups (DC: 18.98 ± 3.47%, DE: 24.24 ± 2.36%, NDC: 46.36 ± 5.91%; p < 0.05), while MMP-9/TIMP-1 ratio followed a reverse pattern. ET tended to increase MMP-2 concentrations versus DC (p = 0.055), but did not achieve non-diabetic levels (p < 0.05). TIMP-2 cardiac concentrations remained unaltered throughout the study (p > 0.05). Importantly, ET ameliorated both LV end-systolic internal diameter (LVESD) (p < 0.001) and the percentage of LV fractional shortening (FS%) (p = 0.006) compared to DC. Despite that favorable effect, the cardiac function level of DE group remained worse than NDC group (%FS: p = 0.002; LVESD: p < 0.001). CONCLUSION Systemic ET may favorably change ECM proteins, MMP-9 and TIMP-1 cardiac concentrations in mice with diabetic cardiomyopathy. Those results were associated with partial improvement of echocardiography-assessed cardiac function, indicating a therapeutic effect of ET in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Eleni Dede
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Greece
| | - Dimitrios Liapis
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Greece
| | - Constantinos Davos
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Greece
| | - Michalis Katsimpoulas
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Greece
| | - Aimilia Varela
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Greece
| | - Ioannis Mpotis
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Greece
| | | | | |
Collapse
|
4
|
Boskovic S, Marín-Juez R, Jasnic J, Reischauer S, El Sammak H, Kojic A, Faulkner G, Radojkovic D, Stainier DYR, Kojic S. Characterization of zebrafish (Danio rerio) muscle ankyrin repeat proteins reveals their conserved response to endurance exercise. PLoS One 2018; 13:e0204312. [PMID: 30252882 PMCID: PMC6155536 DOI: 10.1371/journal.pone.0204312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/05/2018] [Indexed: 12/30/2022] Open
Abstract
Muscle proteins with ankyrin repeats (MARPs) ANKRD1 and ANKRD2 are titin-associated proteins with a putative role as transcriptional co-regulators in striated muscle, involved in the cellular response to mechanical, oxidative and metabolic stress. Since many aspects of the biology of MARPs, particularly exact mechanisms of their action, in striated muscle are still elusive, research in this field will benefit from novel animal model system. Here we investigated the MARPs found in zebrafish for protein structure, evolutionary conservation, spatiotemporal expression profiles and response to increased muscle activity. Ankrd1 and Ankrd2 show overall moderate conservation at the protein level, more pronounced in the region of ankyrin repeats, motifs indispensable for their function. The two zebrafish genes, ankrd1a and ankrd1b, counterparts of mammalian ANKRD1/Ankrd1, have different expression profiles during first seven days of development. Mild increase of ankrd1a transcript levels was detected at 72 hpf (1.74±0.24 fold increase relative to 24 hpf time point), while ankrd1b expression was markedly upregulated from 24 hpf onward and peaked at 72 hpf (92.18±36.95 fold increase relative to 24 hpf time point). Spatially, they exhibited non-overlapping expression patterns during skeletal muscle development in trunk (ankrd1a) and tail (ankrd1b) somites. Expression of ankrd2 was barely detectable. Zebrafish MARPs, expressed at a relatively low level in adult striated muscle, were found to be responsive to endurance exercise training consisting of two bouts of 3 hours of forced swimming daily, for five consecutive days. Three hours after the last exercise bout, ankrd1a expression increased in cardiac muscle (6.19±5.05 fold change), while ankrd1b and ankrd2 were upregulated in skeletal muscle (1.97±1.05 and 1.84±0.58 fold change, respectively). This study provides the foundation to establish zebrafish as a novel in vivo model for further investigation of MARPs function in striated muscle.
Collapse
Affiliation(s)
- Srdjan Boskovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jovana Jasnic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hadil El Sammak
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Dragica Radojkovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Snezana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
5
|
Koskinen SOA, Kyröläinen H, Flink R, Selänne HP, Gagnon SS, Ahtiainen JP, Nindl BC, Lehti M. Human skeletal muscle type 1 fibre distribution and response of stress-sensing proteins along the titin molecule after submaximal exhaustive exercise. Histochem Cell Biol 2017; 148:545-555. [PMID: 28712031 DOI: 10.1007/s00418-017-1595-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2017] [Indexed: 01/05/2023]
Abstract
Early responses of stress-sensing proteins, muscle LIM protein (MLP), ankyrin repeat proteins (Ankrd1/CARP and Ankrd2/Arpp) and muscle-specific RING finger proteins (MuRF1 and MuRF2), along the titin molecule were investigated in the present experiment after submaximal exhaustive exercise. Ten healthy men performed continuous drop jumping unilaterally on a sledge apparatus with a submaximal height until complete exhaustion. Five stress-sensing proteins were analysed by mRNA measurements from biopsies obtained immediately and 3 h after the exercise from exercised vastus lateralis muscle while control biopsies were obtained from non-exercised legs before the exercise. Decreased maximal jump height and increased serum creatine kinase activities as indirect markers for muscle damage and HSP27 immunostainings on muscle biopsies as a direct marker for muscle damage indicated that the current exercised protocol caused muscle damage. mRNA levels for four (MLP, Ankrd1/CARP, MuRF1 and MuRF2) out of the five studied stress sensors significantly (p < 0.05) increased 3 h after fatiguing exercise. The magnitude of MLP and Ankrd2 responses was related to the proportion of type 1 myofibres. Our data showed that the submaximal exhaustive exercise with subject's own physical fitness level activates titin-based stretch-sensing proteins. These results suggest that both degenerative and regenerative pathways are activated in very early phase after the exercise or probably already during the exercise. Activation of these proteins represents an initial step forward adaptive remodelling of the exercised muscle and may also be involved in the initiation of myofibre repair.
Collapse
Affiliation(s)
- Satu O A Koskinen
- LIKES Research Centre for Physical Activity and Health, Rautpohjankatu 8, 40700, Jyväskylä, Finland.
- Unit of Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, 40700, Jyväskylä, Finland.
| | - Heikki Kyröläinen
- Unit of Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, 40700, Jyväskylä, Finland
| | - Riina Flink
- Unit of Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, 40700, Jyväskylä, Finland
| | - Harri P Selänne
- Department of Psychology, University of Jyväskylä, Alvar Aallon katu 9, 40600, Jyväskylä, Finland
- Hospital Mehiläinen, Sports Injury Clinic, Pohjoinen Hesperiankatu 17 C, 00260, Helsinki, Finland
| | - Sheila S Gagnon
- Wolf Orthopaedic Biomechanics Laboratory, Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Canada
| | - Juha P Ahtiainen
- Unit of Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, 40700, Jyväskylä, Finland
| | - Bradley C Nindl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, University of Pittsburgh, 3860 South Water Street, Pittsburgh, PA, 15203, USA
| | - Maarit Lehti
- LIKES Research Centre for Physical Activity and Health, Rautpohjankatu 8, 40700, Jyväskylä, Finland
| |
Collapse
|
6
|
Wang Q, Guo T, Portas J, McPherron AC. A soluble activin receptor type IIB does not improve blood glucose in streptozotocin-treated mice. Int J Biol Sci 2015; 11:199-208. [PMID: 25561902 PMCID: PMC4279095 DOI: 10.7150/ijbs.10430] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM), or insulin dependent DM, is accompanied by decreased muscle mass. The growth factor myostatin (MSTN) is a negative regulator of muscle growth, and a loss of MSTN signaling has been shown to increase muscle mass and prevent the development of obesity, insulin resistance and lipodystrophic diabetes in mice. The effects of MSTN inhibition in a T1DM model on muscle mass and blood glucose are unknown. We asked whether MSTN inhibition would increase muscle mass and decrease hyperglycemia in mice treated with streptozotocin (STZ) to destroy pancreatic beta cells. After diabetes developed, mice were treated with a soluble MSTN/activin receptor fused to Fc (ACVR2B:Fc). ACVR2B:Fc increased body weight and muscle mass compared to vehicle treated mice. Unexpectedly, ACVR2B:Fc reproducibly exacerbated hyperglycemia within approximately one week of administration. ACVR2B:Fc treatment also elevated serum levels of the glucocorticoid corticosterone. These results suggest that although MSTN/activin inhibitors increased muscle mass, they may be counterproductive in improving health in patients with T1DM.
Collapse
Affiliation(s)
- Qian Wang
- 1. Current Addresses: Pathology Department, Stony Brook University Medical Center, Stony Brook, New York, USA
| | - Tingqing Guo
- 2. Novo Nordisk Research Centre China, Changping District, Beijing, China
| | - Jennifer Portas
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
7
|
Effect of nicotinamide on amino acids content in bone collagen depending on biological availability of vitamins in diabetic rats. UKRAINIAN BIOCHEMICAL JOURNAL 2014; 86:138-49. [DOI: 10.15407/ubj86.04.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
8
|
Bean C, Verma NK, Yamamoto DL, Chemello F, Cenni V, Filomena MC, Chen J, Bang ML, Lanfranchi G. Ankrd2 is a modulator of NF-κB-mediated inflammatory responses during muscle differentiation. Cell Death Dis 2014; 5:e1002. [PMID: 24434510 PMCID: PMC4040671 DOI: 10.1038/cddis.2013.525] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/23/2013] [Accepted: 11/25/2013] [Indexed: 12/29/2022]
Abstract
Adaptive responses of skeletal muscle regulate the nuclear shuttling of the sarcomeric protein Ankrd2 that can transduce different stimuli into specific adaptations by interacting with both structural and regulatory proteins. In a genome-wide expression study on Ankrd2-knockout or -overexpressing primary proliferating or differentiating myoblasts, we found an inverse correlation between Ankrd2 levels and the expression of proinflammatory genes and identified Ankrd2 as a potent repressor of inflammatory responses through direct interaction with the NF-κB repressor subunit p50. In particular, we identified Gsk3β as a novel direct target of the p50/Ankrd2 repressosome dimer and found that the recruitment of p50 by Ankrd2 is dependent on Akt2-mediated phosphorylation of Ankrd2 upon oxidative stress during myogenic differentiation. Surprisingly, the absence of Ankrd2 in slow muscle negatively affected the expression of cytokines and key calcineurin-dependent genes associated with the slow-twitch muscle program. Thus, our findings support a model in which alterations in Ankrd2 protein and phosphorylation levels modulate the balance between physiological and pathological inflammatory responses in muscle.
Collapse
Affiliation(s)
- C Bean
- Department of Biology, Innovative Biotechnologies Interdepartmental Research Center, University of Padova, Padova, Italy
| | - N K Verma
- Department of Biology, Innovative Biotechnologies Interdepartmental Research Center, University of Padova, Padova, Italy
| | - D L Yamamoto
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - F Chemello
- Department of Biology, Innovative Biotechnologies Interdepartmental Research Center, University of Padova, Padova, Italy
| | - V Cenni
- Institute of Molecular Genetics, National Research Council, Bologna Unit/IOR, Bologna, Italy
| | - M C Filomena
- 1] Department of Translational Medicine, University of Milan, Milan, Italy [2] Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - J Chen
- University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - M L Bang
- 1] Humanitas Clinical and Research Center, Rozzano, Milan, Italy [2] Milan Unit, Institute of Genetic and Biomedical Research, National Research Council, Milan, Italy
| | - G Lanfranchi
- Department of Biology, Innovative Biotechnologies Interdepartmental Research Center, University of Padova, Padova, Italy
| |
Collapse
|
9
|
van Lunteren E, Moyer M. Gene expression of sternohyoid and diaphragm muscles in type 2 diabetic rats. BMC Endocr Disord 2013; 13:43. [PMID: 24199937 PMCID: PMC3851765 DOI: 10.1186/1472-6823-13-43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/26/2013] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Type 2 diabetes differs from type 1 diabetes in its pathogenesis. Type 1 diabetic diaphragm has altered gene expression which includes lipid and carbohydrate metabolism, ubiquitination and oxidoreductase activity. The objectives of the present study were to assess respiratory muscle gene expression changes in type 2 diabetes and to determine whether they are greater for the diaphragm than an upper airway muscle. METHODS Diaphragm and sternohyoid muscle from Zucker diabetic fatty (ZDF) rats were analyzed with Affymetrix gene expression arrays. RESULTS The two muscles had 97 and 102 genes, respectively, with at least ± 1.5-fold significantly changed expression with diabetes, and these were assigned to gene ontology groups based on over-representation analysis. Several significantly changed groups were common to both muscles, including lipid metabolism, carbohydrate metabolism, muscle contraction, ion transport and collagen, although the number of genes and the specific genes involved differed considerably for the two muscles. In both muscles there was a shift in metabolism gene expression from carbohydrate metabolism toward lipid metabolism, but the shift was greater and involved more genes in diabetic diaphragm than diabetic sternohyoid muscle. Groups present in only diaphragm were blood circulation and oxidoreductase activity. Groups present in only sternohyoid were immune & inflammation and response to stress & wounding, with complement genes being a prominent component. CONCLUSION Type 2 diabetes-induced gene expression changes in respiratory muscles has both similarities and differences relative to previous data on type 1 diabetes gene expression. Furthermore, the diabetic alterations in gene expression differ between diaphragm and sternohyoid.
Collapse
Affiliation(s)
- Erik van Lunteren
- Pulmonary, Critical Care & Sleep Division, Department of Medicine, Louis Stokes, Cleveland, USA
- Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michelle Moyer
- Pulmonary, Critical Care & Sleep Division, Department of Medicine, Louis Stokes, Cleveland, USA
| |
Collapse
|
10
|
Dutra DB, Bueno PG, Silva RN, Nakahara NH, Selistre-Araújo HS, Nonaka KO, Leal AM. Expression of myostatin, myostatin receptors and follistatin in diabetic rats submitted to exercise. Clin Exp Pharmacol Physiol 2013; 39:417-22. [PMID: 22332899 DOI: 10.1111/j.1440-1681.2012.05690.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myostatin (MSTN) has been implicated in metabolic adaptation to physiological stimuli, such as physical exercise, which is linked to improved glucose homeostasis. The aim of the present study was to evaluate the influence of exercise on the expression of MSTN, MSTN receptors (ActRIIB and ALK4) and follistatin (FS) in the muscle and fat of streptozotocin-induced diabetic rats. Control and diabetic rats were randomly assigned to a swimming training group (EC and ED, respectively) and a sedentary group (SC and SD, respectively). Exercising animals swam for 45 min at 0900 and 1700 hours, 5 day/week, for 4 weeks. The mRNA expression of MSTN, ActRIIB, ALK4 and FS mRNA was quantified by real-time reverse transcription-polymerase chain reaction. Expression of MSTN and FS mRNA increased in the muscle and subcutaneous fat of SD compared with SC rats. Expression of ActRIIB mRNA was increased in the muscle, mesenteric fat and brown adipose tissue (BAT) of SD compared with SC rats, whereas ALK4 mRNA expression was only increased in the BAT of SD compared with SC rats. After training, MSTN and ActRIIB expression was lower in the BAT of EC compared with SC rats. Expression of MSTN mRNA increased in the mesenteric fat of ED compared with SD rats, whereas FS mRNA expression decreased in the muscle, mesenteric and subcutaneous fat and BAT. Lower ALK4 mRNA expression was noted in the BAT of ED compared with SD rats. These results indicate that MSTN, its receptors and FS expression change in both the muscle and fat of diabetic rats and that the expression of these factors can be modulated by exercise in diabetes.
Collapse
Affiliation(s)
- Daniela B Dutra
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Elliott B, Renshaw D, Getting S, Mackenzie R. The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol (Oxf) 2012; 205:324-40. [PMID: 22340904 DOI: 10.1111/j.1748-1716.2012.02423.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/04/2011] [Accepted: 01/31/2012] [Indexed: 12/11/2022]
Abstract
Myostatin is a powerful negative regulator of skeletal muscle mass in mammalian species. It plays a key role in skeletal muscle homeostasis and has now been well described since its discovery. Myostatin is capable of inducing muscle atrophy via its inhibition of myoblast proliferation, increasing ubiquitin-proteasomal activity and downregulating activity of the IGF-Akt pathway. These well-recognized effects are seen in multiple atrophy causing situations, including injury, diseases such as cachexia, disuse and space flight, demonstrating the importance of the myostatin signalling mechanism. Based on this central role, significant work has been pursued to inhibit myostatin's actions in vivo. Importantly, several new studies have uncovered roles for myostatin distinct from skeletal muscle size. Myostatin has been suggested to play a role in cardiomyocyte homeostasis, glucose metabolism and adipocyte proliferation, all of which are examined in detail below. Based on these effects, myostatin inhibition has potential to be widely utilized in many Western diseases such as chronic obstructive pulmonary disease, type II diabetes and obesity. However, if myostatin inhibitors are to successfully translate from bench-top to bedside in the near future, awareness must be raised on these non-traditional effects of myostatin away from skeletal muscle. Indeed, further research into these novel areas is required.
Collapse
Affiliation(s)
- B. Elliott
- Infection & Immunity Group; Department of Human & Health Science, School of Life Sciences; University of Westminster; London; UK
| | - D. Renshaw
- Infection & Immunity Group; Department of Human & Health Science, School of Life Sciences; University of Westminster; London; UK
| | - S. Getting
- Infection & Immunity Group; Department of Human & Health Science, School of Life Sciences; University of Westminster; London; UK
| | - R. Mackenzie
- Infection & Immunity Group; Department of Human & Health Science, School of Life Sciences; University of Westminster; London; UK
| |
Collapse
|
12
|
Hobi N, Ravasio A, Haller T. Interfacial stress affects rat alveolar type II cell signaling and gene expression. Am J Physiol Lung Cell Mol Physiol 2012; 303:L117-29. [PMID: 22610352 DOI: 10.1152/ajplung.00340.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous work from our group (Ravasio A, Hobi N, Bertocchi C, Jesacher A, Dietl P, Haller T. Am J Physiol Cell Physiol 300: C1456-C1465, 2011.) showed that contact of alveolar epithelial type II cells with an air-liquid interface (I(AL)) leads to a paradoxical situation. It is a potential threat that can cause cell injury, but also a Ca(2+)-dependent stimulus for surfactant secretion. Both events can be explained by the impact of interfacial tensile forces on cellular structures. Here, the strength of this mechanical stimulus became also apparent in microarray studies by a rapid and significant change on the transcriptional level. Cells challenged with an I(AL) in two different ways showed activation/inactivation of cellular pathways involved in stress response and defense, and a detailed Pubmatrix search identified genes associated with several lung diseases and injuries. Altogether, they suggest a close relationship of interfacial stress sensation with current models in alveolar micromechanics. Further similarities between I(AL) and cell stretch were found with respect to the underlying signaling events. The source of Ca(2+) was extracellular, and the transmembrane Ca(2+) entry pathway suggests the involvement of a mechanosensitive channel. We conclude that alveolar type II cells, due to their location and morphology, are specific sensors of the I(AL), but largely protected from interfacial stress by surfactant release.
Collapse
Affiliation(s)
- Nina Hobi
- Department of Physiology and Medical Physics, Division of Physiology, Innsbruck Medical University, Austria
| | | | | |
Collapse
|
13
|
Kojic S, Radojkovic D, Faulkner G. Muscle ankyrin repeat proteins: their role in striated muscle function in health and disease. Crit Rev Clin Lab Sci 2011; 48:269-94. [DOI: 10.3109/10408363.2011.643857] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Goto K, Oda H, Kondo H, Igaki M, Suzuki A, Tsuchiya S, Murase T, Hase T, Fujiya H, Matsumoto I, Naito H, Sugiura T, Ohira Y, Yoshioka T. Responses of muscle mass, strength and gene transcripts to long-term heat stress in healthy human subjects. Eur J Appl Physiol 2010; 111:17-27. [PMID: 20803152 DOI: 10.1007/s00421-010-1617-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2010] [Indexed: 01/13/2023]
Abstract
The present study was performed to investigate the effects of long-term heat stress on mass, strength and gene expression profile of human skeletal muscles without exercise training. Eight healthy men were subjected to 10-week application of heat stress, which was performed for the quadriceps muscles for 8 h/day and 4 days/week by using a heat- and steam-generating sheet. Maximum isometric force during knee extension of the heated leg significantly increased after heat stress (~5.8%, P < 0.05). Mean cross-sectional areas (CSAs) of vastus lateralis (VL, ~2.7%) and rectus femoris (~6.1%) muscles, as well as fiber CSA (8.3%) in VL, in the heated leg were also significantly increased (P < 0.05). Statistical analysis of microarrays (SAM) revealed that 10 weeks of heat stress increased the transcript level of 925 genes and decreased that of 1,300 genes, and gene function clustering analysis (Database for Annotation, Visualization and Integrated Discovery: DAVID) showed that these regulated transcripts stemmed from diverse functional categories. Transcript level of ubiquinol-cytochrome c reductase binding protein (UQCRB) was significantly increased by 10 weeks of heat stress (~3.0 folds). UQCRB is classified as one of the oxidative phosphorylation-associated genes, suggesting that heat stress can stimulate ATP synthesis. These results suggested that long-term application of heat stress could be effective in increasing the muscle strength associated with hypertrophy without exercise training.
Collapse
Affiliation(s)
- Katsumasa Goto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi, 440-8511, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ebert SM, Monteys AM, Fox DK, Bongers KS, Shields BE, Malmberg SE, Davidson BL, Suneja M, Adams CM. The transcription factor ATF4 promotes skeletal myofiber atrophy during fasting. Mol Endocrinol 2010; 24:790-9. [PMID: 20197309 DOI: 10.1210/me.2009-0345] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Prolonged fasting alters skeletal muscle gene expression in a manner that promotes myofiber atrophy, but the underlying mechanisms are not fully understood. Here, we examined the potential role of activating transcription factor 4 (ATF4), a transcription factor with an evolutionarily ancient role in the cellular response to starvation. In mouse skeletal muscle, fasting increases the level of ATF4 mRNA. To determine whether increased ATF4 expression was required for myofiber atrophy, we reduced ATF4 expression with an inhibitory RNA targeting ATF4 and found that it reduced myofiber atrophy during fasting. Likewise, reducing the fasting level of ATF4 mRNA with a phosphorylation-resistant form of eukaryotic initiation factor 2alpha decreased myofiber atrophy. To determine whether ATF4 was sufficient to reduce myofiber size, we overexpressed ATF4 and found that it reduced myofiber size in the absence of fasting. In contrast, a transcriptionally inactive ATF4 construct did not reduce myofiber size, suggesting a requirement for ATF4-mediated transcriptional regulation. To begin to determine the mechanism of ATF4-mediated myofiber atrophy, we compared the effects of fasting and ATF4 overexpression on global skeletal muscle mRNA expression. Interestingly, expression of ATF4 increased a small subset of five fasting-responsive mRNAs, including four of the 15 mRNAs most highly induced by fasting. These five mRNAs encode proteins previously implicated in growth suppression (p21(Cip1/Waf1), GADD45alpha, and PW1/Peg3) or titin-based stress signaling [muscle LIM protein (MLP) and cardiac ankyrin repeat protein (CARP)]. Taken together, these data identify ATF4 as a novel mediator of skeletal myofiber atrophy during starvation.
Collapse
Affiliation(s)
- Scott M Ebert
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Legerlotz K, Matthews KG, McMahon CD, Smith HK. Botulinum toxin-induced paralysis leads to slower myosin heavy chain isoform composition and reduced titin content in juvenile rat gastrocnemius muscle. Muscle Nerve 2009; 39:472-9. [DOI: 10.1002/mus.21247] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Krause MP, Riddell MC, Gordon CS, Imam SA, Cafarelli E, Hawke TJ. Diabetic myopathy differs between Ins2Akita+/- and streptozotocin-induced Type 1 diabetic models. J Appl Physiol (1985) 2009; 106:1650-9. [PMID: 19246652 DOI: 10.1152/japplphysiol.91565.2008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mechanistic studies examining the effects of Type 1 diabetes mellitus (T1DM) on skeletal muscle have largely relied on streptozotocin-induced diabetic (STZ) rodents. Unfortunately, characterization of diabetic myopathy in this model is confounded by the effects of streptozotocin on skeletal muscle independent of the diabetic phenotype. Here we define adolescent diabetic myopathy in a novel, genetic model of T1DM, Ins2(Akita+/-) mice, and contrast these findings with STZ mice. Eight weeks of diabetes resulted in significantly reduced gastrocnemius-plantaris-soleus mass (control: 0.16 +/- 0.005 g; Ins2(Akita+/-): 0.12 +/- 0.003 g; STZ: 0.12 +/- 0.01g) and IIB/D fiber area in Ins2(Akita+/-) (1,294 +/- 94 microm(2)) and STZ (1,768 +/- 163 microm(2)) compared with control (2,241 +/- 144 microm(2)). Conversely, STZ type I fibers (1,535 +/- 165 microm(2)) were significantly larger than Ins2(Akita+/-) (915 +/- 76 microm(2)) but not control (1,152 +/- 86 microm(2)). Intramyocellular lipid increased in STZ (122.9 +/- 3.6% of control) but not Ins2(Akita+/-) likely resultant from depressed citrate synthase (control: 6.2 +/- 1.2 micromol.s(-1).mg(-1); Ins2(Akita+/-): 5.2 +/- 0.8 micromol.s(-1).mg(-1); STZ: 2.8 +/- 0.5 micromol.s(-1).mg(-1)) and 3-beta-hydroxyacyl coenzyme-A dehydrogenase (control: 4.2 +/- 0.6 nmol.s(-1).mg(-1); Ins2(Akita+/-): 5.0 +/- 0.6 nmol.s(-1).mg(-1); STZ: 2.7 +/- 0.6 nmol.s(-1).mg(-1)) enzyme activity in STZ muscle. In situ muscle stimulation revealed lower absolute peak tetanic force in Ins2(Akita+/-) (70.2 +/- 8.2% of control) while STZ exhibited an insignificant decrease (87.6 +/- 7.9% of control). Corrected for muscle mass, no force loss was observed in Ins2(Akita+/-), while STZ was significantly elevated vs. control and Ins2(Akita+/-). These results demonstrate that atrophy and specific fiber-type loss in Ins2(Akita+/-) muscle did not affect contractile properties (relative to muscle mass). Furthermore, we demonstrate distinctive contractile, metabolic, and phenotypic properties in STZ vs. Ins2(Akita+/-) diabetic muscle despite similarity in hyperglycemia/hypoinsulinemia, raising concerns of our current state of knowledge regarding the effects of T1DM on skeletal muscle.
Collapse
Affiliation(s)
- Matthew P Krause
- Dept. of Pathology and Molecular Medicine, McMaster Univ., 4N65, Health Sciences Centre, 1200 Main St. W., Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Velders M, Legerlotz K, Falconer SJ, Stott NS, McMahon CD, Smith HK. Effect of botulinum toxin A-induced paralysis and exercise training on mechanosensing and signalling gene expression in juvenile rat gastrocnemius muscle. Exp Physiol 2008; 93:1273-83. [DOI: 10.1113/expphysiol.2008.043174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Legerlotz K, Smith HK. Role of MyoD in denervated, disused, and exercised muscle. Muscle Nerve 2008; 38:1087-100. [PMID: 18642380 DOI: 10.1002/mus.21087] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The myogenic regulatory factor MyoD plays an important role in embryonic and adult skeletal muscle growth. Even though it is best known as a marker for activated satellite cells, it is also expressed in myonuclei, and its expression can be induced by a variety of different conditions. Several model systems have been used to study the mechanisms behind MyoD regulation, such as exercise, stretch, disuse, and denervation. Since MyoD reacts in a highly muscle-specific manner, and its expression varies over time and between species, universally valid predictions and explanations for changes in MyoD expression are not possible. This review explores the complex role of MyoD in muscle plasticity by evaluating the induction of MyoD expression in the context of muscle composition and electrical and mechanical stimulation.
Collapse
Affiliation(s)
- Kirsten Legerlotz
- Department of Sport and Exercise Science, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
| | | |
Collapse
|
20
|
The Sarcomere and the Nucleus: Functional Links to Hypertrophy, Atrophy and Sarcopenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 642:176-91. [DOI: 10.1007/978-0-387-84847-1_13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|