1
|
Lowe TL, Valencia DA, Velasquez VE, Quinlan ME, Clarke SG. Methylation and phosphorylation of formin homology domain proteins (Fhod1 and Fhod3) by protein arginine methyltransferase 7 (PRMT7) and Rho kinase (ROCK1). J Biol Chem 2024; 300:107857. [PMID: 39368550 DOI: 10.1016/j.jbc.2024.107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024] Open
Abstract
Protein post-translational modifications (PTMs) can regulate biological processes by altering an amino acid's bulkiness, charge, and hydrogen bonding interactions. Common modifications include phosphorylation, methylation, acetylation, and ubiquitylation. Although a primary focus of studying PTMs is understanding the effects of a single amino acid modification, the possibility of additional modifications increases the complexity. For example, substrate recognition motifs for arginine methyltransferases and some serine/threonine kinases overlap, leading to potential enzymatic crosstalk. In this study we have shown that the human family of formin homology domain-containing proteins (Fhods) contain a substrate recognition motif specific for human protein arginine methyltransferase 7 (PRMT7). In particular, PRMT7 methylates two arginine residues in the diaphanous autoinhibitory domain (DAD) of the family of Fhod proteins: R1588 and/or R1590 of Fhod3 isoform 4. Additionally, we confirmed that S1589 and S1595 in the DAD domain of Fhod3 can be phosphorylated by Rho/ROCK1 kinase. Significantly, we have determined that if S1589 is phosphorylated then PRMT7 cannot subsequently methylate R1588 or R1590. In contrast, if R1588 or R1590 of Fhod3 is methylated then ROCK1 phosphorylation activity is only slightly affected. Finally, we show that the interaction of the N-terminal DID domain can also inhibit the methylation of the DAD domain. Taken together these results suggest that the family of Fhod proteins, potential in vivo substrates for PRMT7, might be regulated by a combination of methylation and phosphorylation.
Collapse
Affiliation(s)
- Troy L Lowe
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California - Los Angeles, Los Angeles, California, USA
| | - Dylan A Valencia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California - Los Angeles, Los Angeles, California, USA
| | - Vicente E Velasquez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California - Los Angeles, Los Angeles, California, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California - Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
2
|
Xuan X, Zhang Y, Song Y, Zhang B, Liu J, Liu D, Lu S. Role of protein arginine methyltransferase 1 in obesity-related metabolic disorders: Research progress and implications. Diabetes Obes Metab 2024; 26:3491-3500. [PMID: 38747214 DOI: 10.1111/dom.15640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 08/06/2024]
Abstract
Obesity has become a major global problem that significantly confers an increased risk of developing life-threatening complications, including type 2 diabetes mellitus, fatty liver disease and cardiovascular diseases. Protein arginine methyltransferases (PRMTs) are enzymes that catalyse the methylation of target proteins. They are ubiquitous in eukaryotes and regulate transcription, splicing, cell metabolism and RNA biology. As a key, epigenetically modified enzyme, protein arginine methyltransferase 1 (PRMT1) is involved in obesity-related metabolic processes, such as lipid metabolism, the insulin signalling pathway, energy balance and inflammation, and plays an important role in the pathology of obesity-related metabolic disorders. This review summarizes recent research on the role of PRMT1 in obesity-related metabolic disorders. The primary objective was to comprehensively elucidate the functional role and regulatory mechanisms of PRMT1. Moreover, this study attempts to review the pathogenesis of PRMT1-mediated obesity-related metabolic disorders, thereby offering pivotal information for further studies and clinical treatment.
Collapse
Affiliation(s)
- Xiaolei Xuan
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yongjiao Zhang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Yufan Song
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Bingyang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Junjun Liu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Dong Liu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Sumei Lu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
3
|
Liang W, Xu F, Li L, Peng C, Sun H, Qiu J, Sun J. Epigenetic control of skeletal muscle atrophy. Cell Mol Biol Lett 2024; 29:99. [PMID: 38978023 PMCID: PMC11229277 DOI: 10.1186/s11658-024-00618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Skeletal muscular atrophy is a complex disease involving a large number of gene expression regulatory networks and various biological processes. Despite extensive research on this topic, its underlying mechanisms remain elusive, and effective therapeutic approaches are yet to be established. Recent studies have shown that epigenetics play an important role in regulating skeletal muscle atrophy, influencing the expression of numerous genes associated with this condition through the addition or removal of certain chemical modifications at the molecular level. This review article comprehensively summarizes the different types of modifications to DNA, histones, RNA, and their known regulators. We also discuss how epigenetic modifications change during the process of skeletal muscle atrophy, the molecular mechanisms by which epigenetic regulatory proteins control skeletal muscle atrophy, and assess their translational potential. The role of epigenetics on muscle stem cells is also highlighted. In addition, we propose that alternative splicing interacts with epigenetic mechanisms to regulate skeletal muscle mass, offering a novel perspective that enhances our understanding of epigenetic inheritance's role and the regulatory network governing skeletal muscle atrophy. Collectively, advancements in the understanding of epigenetic mechanisms provide invaluable insights into the study of skeletal muscle atrophy. Moreover, this knowledge paves the way for identifying new avenues for the development of more effective therapeutic strategies and pharmaceutical interventions.
Collapse
Affiliation(s)
- Wenpeng Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, China
| | - Li Li
- Nantong Center for Disease Control and Prevention, Medical School of Nantong University, Nantong, 226001, China
| | - Chunlei Peng
- Department of Medical Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, 226000, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
| | - Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China.
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China.
| |
Collapse
|
4
|
Zhang Y, Wei S, Jin EJ, Jo Y, Oh CM, Bae GU, Kang JS, Ryu D. Protein Arginine Methyltransferases: Emerging Targets in Cardiovascular and Metabolic Disease. Diabetes Metab J 2024; 48:487-502. [PMID: 39043443 PMCID: PMC11307121 DOI: 10.4093/dmj.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders stand as formidable challenges that significantly impact the clinical outcomes and living quality for afflicted individuals. An intricate comprehension of the underlying mechanisms is paramount for the development of efficacious therapeutic strategies. Protein arginine methyltransferases (PRMTs), a class of enzymes responsible for the precise regulation of protein methylation, have ascended to pivotal roles and emerged as crucial regulators within the intrinsic pathophysiology of these diseases. Herein, we review recent advancements in research elucidating on the multifaceted involvements of PRMTs in cardiovascular system and metabolic diseases, contributing significantly to deepen our understanding of the pathogenesis and progression of these maladies. In addition, this review provides a comprehensive analysis to unveil the distinctive roles of PRMTs across diverse cell types implicated in cardiovascular and metabolic disorders, which holds great potential to reveal novel therapeutic interventions targeting PRMTs, thus presenting promising perspectives to effectively address the substantial global burden imposed by CVDs and metabolic disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Eun-Ju Jin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Gyu-Un Bae
- Muscle Physiome Institute, College of Pharmacy, Sookmyung Women’s University, Seoul, Korea
- Research Institute of Aging-Related Diseases, AniMusCure Inc., Suwon, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
- Research Institute of Aging-Related Diseases, AniMusCure Inc., Suwon, Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
5
|
Stouth DW, vanLieshout TL, Mikhail AI, Ng SY, Raziee R, Edgett BA, Vasam G, Webb EK, Gilotra KS, Markou M, Pineda HC, Bettencourt-Mora BG, Noor H, Moll Z, Bittner ME, Gurd BJ, Menzies KJ, Ljubicic V. CARM1 drives mitophagy and autophagy flux during fasting-induced skeletal muscle atrophy. Autophagy 2024; 20:1247-1269. [PMID: 38018843 PMCID: PMC11210918 DOI: 10.1080/15548627.2023.2288528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
CARM1 (coactivator associated arginine methyltransferase 1) has recently emerged as a powerful regulator of skeletal muscle biology. However, the molecular mechanisms by which the methyltransferase remodels muscle remain to be fully understood. In this study, carm1 skeletal muscle-specific knockout (mKO) mice exhibited lower muscle mass with dysregulated macroautophagic/autophagic and atrophic signaling, including depressed AMP-activated protein kinase (AMPK) site-specific phosphorylation of ULK1 (unc-51 like autophagy activating kinase 1; Ser555) and FOXO3 (forkhead box O3; Ser588), as well as MTOR (mechanistic target of rapamycin kinase)-induced inhibition of ULK1 (Ser757), along with AKT/protein kinase B site-specific suppression of FOXO1 (Ser256) and FOXO3 (Ser253). In addition to lower mitophagy and autophagy flux in skeletal muscle, carm1 mKO led to increased mitochondrial PRKN/parkin accumulation, which suggests that CARM1 is required for basal mitochondrial turnover and autophagic clearance. carm1 deletion also elicited PPARGC1A (PPARG coactivator 1 alpha) activity and a slower, more oxidative muscle phenotype. As such, these carm1 mKO-evoked adaptations disrupted mitophagy and autophagy induction during food deprivation and collectively served to mitigate fasting-induced muscle atrophy. Furthermore, at the threshold of muscle atrophy during food deprivation experiments in humans, skeletal muscle CARM1 activity decreased similarly to our observations in mice, and was accompanied by site-specific activation of ULK1 (Ser757), highlighting the translational impact of the methyltransferase in human skeletal muscle. Taken together, our results indicate that CARM1 governs mitophagic, autophagic, and atrophic processes fundamental to the maintenance and remodeling of muscle mass. Targeting the enzyme may provide new therapeutic approaches for mitigating skeletal muscle atrophy.Abbreviation: ADMA: asymmetric dimethylarginine; AKT/protein kinase B: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ATG: autophagy related; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; CARM1: coactivator associated arginine methyltransferase 1; Col: colchicine; CSA: cross-sectional area; CTNS: cystinosin, lysosomal cystine transporter; EDL: extensor digitorum longus; FBXO32/MAFbx: F-box protein 32; FOXO: forkhead box O; GAST: gastrocnemius; H2O2: hydrogen peroxide; IMF: intermyofibrillar; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; mKO: skeletal muscle-specific knockout; MMA: monomethylarginine; MTOR: mechanistic target of rapamycin kinase; MYH: myosin heavy chain; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; OXPHOS: oxidative phosphorylation; PABPC1/PABP1: poly(A) binding protein cytoplasmic 1; PPARGC1A/PGC-1α: PPARG coactivator 1 alpha; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; PRMT: protein arginine methyltransferase; Sal: saline; SDMA: symmetric dimethylarginine; SIRT1: sirtuin 1; SKP2: S-phase kinase associated protein 2; SMARCC1/BAF155: SWI/SNF related, matrix associated, actin dependent regulator of chromatin subfamily c member 1; SOL: soleus; SQSTM1/p62: sequestosome 1; SS: subsarcolemmal; TA: tibialis anterior; TFAM: transcription factor A, mitochondrial; TFEB: transcription factor EB; TOMM20: translocase of outer mitochondrial membrane 20; TRIM63/MuRF1: tripartite motif containing 63; ULK1: unc-51 like autophagy activating kinase 1; VPS11: VPS11 core subunit of CORVET and HOPS complexes; WT: wild-type.
Collapse
Affiliation(s)
- Derek W. Stouth
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Andrew I. Mikhail
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sean Y. Ng
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Rozhin Raziee
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Brittany A. Edgett
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Erin K. Webb
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Kevin S. Gilotra
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Matthew Markou
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Hannah C. Pineda
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Haleema Noor
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Zachary Moll
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Megan E. Bittner
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Brendon J. Gurd
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
| | - Keir J. Menzies
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology and the Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Wong JPH, Blazev R, Ng YK, Goodman CA, Montgomery MK, Watt KI, Carl CS, Watt MJ, Voldstedlund CT, Richter EA, Crouch PJ, Steyn FJ, Ngo ST, Parker BL. Characterization of the skeletal muscle arginine methylome in health and disease reveals remodeling in amyotrophic lateral sclerosis. FASEB J 2024; 38:e23647. [PMID: 38787599 DOI: 10.1096/fj.202400045r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Arginine methylation is a protein posttranslational modification important for the development of skeletal muscle mass and function. Despite this, our understanding of the regulation of arginine methylation under settings of health and disease remains largely undefined. Here, we investigated the regulation of arginine methylation in skeletal muscles in response to exercise and hypertrophic growth, and in diseases involving metabolic dysfunction and atrophy. We report a limited regulation of arginine methylation under physiological settings that promote muscle health, such as during growth and acute exercise, nor in disease models of insulin resistance. In contrast, we saw a significant remodeling of asymmetric dimethylation in models of atrophy characterized by the loss of innervation, including in muscle biopsies from patients with myotrophic lateral sclerosis (ALS). Mass spectrometry-based quantification of the proteome and asymmetric arginine dimethylome of skeletal muscle from individuals with ALS revealed the largest compendium of protein changes with the identification of 793 regulated proteins, and novel site-specific changes in asymmetric dimethyl arginine (aDMA) of key sarcomeric and cytoskeletal proteins. Finally, we show that in vivo overexpression of PRMT1 and aDMA resulted in increased fatigue resistance and functional recovery in mice. Our study provides evidence for asymmetric dimethylation as a regulator of muscle pathophysiology and presents a valuable proteomics resource and rationale for numerous methylated and nonmethylated proteins, including PRMT1, to be pursued for therapeutic development in ALS.
Collapse
Affiliation(s)
- Julian P H Wong
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ronnie Blazev
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yaan-Kit Ng
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig A Goodman
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Magdalene K Montgomery
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kevin I Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Christian S Carl
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christian T Voldstedlund
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Peter J Crouch
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Frederik J Steyn
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Shyuan T Ngo
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Vanlieshout TL, Stouth DW, Raziee R, Sraka ASJ, Masood HA, Ng SY, Mattina SR, Mikhail AI, Manta A, Ljubicic V. Sex-Specific Effect of CARM1 in Skeletal Muscle Adaptations to Exercise. Med Sci Sports Exerc 2024; 56:486-498. [PMID: 37882083 DOI: 10.1249/mss.0000000000003333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
PURPOSE The purpose of this study was to determine how the intersection of coactivator-associated arginine methyltransferase 1 (CARM1) and biological sex affects skeletal muscle adaptations to chronic physical activity. METHODS Twelve-week-old female (F) and male (M) wild-type (WT) and CARM1 skeletal muscle-specific knockout (mKO) mice were randomly assigned to sedentary (SED) or voluntary wheel running (VWR) experimental groups. For 8 wk, the animals in the VWR cohort had volitional access to running wheels. Subsequently, we performed whole-body functional tests, and 48 h later muscles were harvested for molecular analysis. Western blotting, enzyme activity assays, as well as confocal and transmission electron microscopy were used to examine skeletal muscle biology. RESULTS Our data reveal a sex-dependent reduction in VWR volume caused by muscle-specific ablation of CARM1, as F CARM1 mKO mice performed less chronic, volitional exercise than their WT counterparts. Regardless of VWR output, exercise-induced adaptations in physiological function were similar between experimental groups. A broad panel of protein arginine methyltransferase (PRMT) biology measurements, including markers of arginine methyltransferase expression and activity, were unaffected by VWR, except for CARM1 and PRMT7 protein levels, which decreased and increased with VWR, respectively. Changes in myofiber morphology and mitochondrial protein content showed similar trends among animals. However, a closer examination of transmission electron microscopy images revealed contrasting responses to VWR in CARM1 mKO mice compared with WT littermates, particularly in mitochondrial size and fractional area. CONCLUSIONS The present findings demonstrate that CARM1 mKO reduces daily running volume in F mice, as well as exercise-evoked skeletal muscle mitochondrial plasticity, which indicates that this enzyme plays an essential role in sex-dependent differences in exercise performance and mitochondrial health.
Collapse
|
8
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
9
|
Chen T, Liu J, Li S, Wang P, Shang G. The role of protein arginine N-methyltransferases in inflammation. Semin Cell Dev Biol 2024; 154:208-214. [PMID: 36075843 DOI: 10.1016/j.semcdb.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Protein arginine methyltransferases (PRMTs) promote the methylation of numerous proteins at their arginine residues. An increasing number of publications have suggested that dysregulation of PRMTs participates in various human diseases, such as cardiovascular diseases, cancer, diabetes and neurodegenerative disorders. Inflammation is one normal response to infection or injury by immune system, which can keep body homeostasis. Emerging data reveal that inflammation is associated with the development of numerous diseases. Moreover, accumulated evidence proves that PRMTs have been characterized to regulate inflammation in various diseases. In this review article, we delineate the function and molecular mechanism of PRMTs in regulation of inflammation in current literature. Moreover, we discuss that targeting PRMTs by its inhibitors and compounds could have therapeutic potential.
Collapse
Affiliation(s)
- Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jinxin Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Shizhe Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Peter Wang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui 233030, China.
| | - Guanning Shang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
10
|
Webb EK, Ng SY, Mikhail AI, Stouth DW, vanLieshout TL, Syroid AL, Ljubicic V. Impact of short-term, pharmacological CARM1 inhibition on skeletal muscle mass, function, and atrophy in mice. Am J Physiol Endocrinol Metab 2023; 325:E252-E266. [PMID: 37493245 PMCID: PMC10625826 DOI: 10.1152/ajpendo.00047.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of arginine residues on target proteins critical for health and disease. The purpose of this study was to characterize the effects of short-term, pharmacological CARM1 inhibition on skeletal muscle size, function, and atrophy. Adult mice (n = 10 or 11/sex) were treated with either a CARM1 inhibitor (150 mg/kg EZM2302; EZM) or vehicle (Veh) via oral gavage for 11-13 days and muscle mass, function, and exercise capacity were assessed. In addition, we investigated the effect of CARM1 suppression on unilateral hindlimb denervation (DEN)-induced muscle atrophy (n = 8/sex). We report that CARM1 inhibition caused significant reductions in the asymmetric dimethylation of known CARM1 substrates but no change in CARM1 protein or mRNA content in skeletal muscle. Reduced CARM1 activity did not affect body or muscle mass, however, we observed a decrease in exercise capacity and muscular endurance in male mice. CARM1 methyltransferase activity increased in the muscle of Veh-treated mice following 7 days of DEN, and this response was blunted in EZM-dosed mice. Skeletal muscle mass and myofiber cross-sectional area were significantly reduced in DEN compared with contralateral, non-DEN limbs to a similar degree in both treatment groups. Furthermore, skeletal muscle atrophy and autophagy gene expression programs were elevated in response to DEN independent of CARM1 suppression. Collectively, these results suggest that short-term, pharmacological CARM1 inhibition in adult animals affects muscle performance in a sex-specific manner but does not impact the maintenance and remodeling of skeletal muscle mass during conditions of neurogenic muscle atrophy.NEW & NOTEWORTHY Short-term pharmacological inhibition of coactivator-associated arginine methyltransferase 1 (CARM1) was effective at significantly reducing CARM1 methyltransferase function in skeletal muscle. CARM1 inhibition did not impact muscle mass, but exercise capacity was impaired, particularly in male mice, whereas morphological and molecular signatures of denervation-induced muscle atrophy were largely maintained in animals administered the inhibitor. Altogether, the role of CARM1 in neuromuscular biology remains complex and requires further investigation of its therapeutic potential in muscle-wasting conditions.
Collapse
Affiliation(s)
- Erin K Webb
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Sean Y Ng
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Andrew I Mikhail
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Derek W Stouth
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Tiffany L vanLieshout
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Anika L Syroid
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Dominici C, Villarreal OD, Dort J, Heckel E, Wang YC, Ragoussis I, Joyal JS, Dumont N, Richard S. Inhibition of type I PRMTs reforms muscle stem cell identity enhancing their therapeutic capacity. eLife 2023; 12:RP84570. [PMID: 37285284 PMCID: PMC10328524 DOI: 10.7554/elife.84570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
In skeletal muscle, muscle stem cells (MuSC) are the main cells responsible for regeneration upon injury. In diseased skeletal muscle, it would be therapeutically advantageous to replace defective MuSCs, or rejuvenate them with drugs to enhance their self-renewal and ensure long-term regenerative potential. One limitation of the replacement approach has been the inability to efficiently expand MuSCs ex vivo, while maintaining their stemness and engraftment abilities. Herein, we show that inhibition of type I protein arginine methyltransferases (PRMTs) with MS023 increases the proliferative capacity of ex vivo cultured MuSCs. Single cell RNA sequencing (scRNAseq) of ex vivo cultured MuSCs revealed the emergence of subpopulations in MS023-treated cells which are defined by elevated Pax7 expression and markers of MuSC quiescence, both features of enhanced self-renewal. Furthermore, the scRNAseq identified MS023-specific subpopulations to be metabolically altered with upregulated glycolysis and oxidative phosphorylation (OxPhos). Transplantation of MuSCs treated with MS023 had a better ability to repopulate the MuSC niche and contributed efficiently to muscle regeneration following injury. Interestingly, the preclinical mouse model of Duchenne muscular dystrophy had increased grip strength with MS023 treatment. Our findings show that inhibition of type I PRMTs increased the proliferation capabilities of MuSCs with altered cellular metabolism, while maintaining their stem-like properties such as self-renewal and engraftment potential.
Collapse
Affiliation(s)
- Claudia Dominici
- Segal Cancer Center, Lady Davis Institute for Medical Research, McGill UniversityMontrealCanada
- Departments of Human Genetics, McGill UniversityMontrealCanada
| | - Oscar D Villarreal
- Segal Cancer Center, Lady Davis Institute for Medical Research, McGill UniversityMontrealCanada
| | - Junio Dort
- CHU Sainte-Justine Research Center, Université de MontréalMontréalCanada
| | - Emilie Heckel
- CHU Sainte-Justine Research Center, Université de MontréalMontréalCanada
| | | | | | | | - Nicolas Dumont
- CHU Sainte-Justine Research Center, Université de MontréalMontréalCanada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, McGill UniversityMontrealCanada
- Departments of Human Genetics, McGill UniversityMontrealCanada
- Gerald Bronfman, Department of Oncology, McGill UniversityMontréalCanada
- Departments of Medicine, McGill UniversityMontrealCanada
- Departments of Biochemistry, McGill UniversityMontréalCanada
| |
Collapse
|
12
|
Zhong Q, Zheng K, Li W, An K, Liu Y, Xiao X, Hai S, Dong B, Li S, An Z, Dai L. Post-translational regulation of muscle growth, muscle aging and sarcopenia. J Cachexia Sarcopenia Muscle 2023. [PMID: 37127279 DOI: 10.1002/jcsm.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/07/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023] Open
Abstract
Skeletal muscle makes up 30-40% of the total body mass. It is of great significance in maintaining digestion, inhaling and exhaling, sustaining body posture, exercising, protecting joints and many other aspects. Moreover, muscle is also an important metabolic organ that helps to maintain the balance of sugar and fat. Defective skeletal muscle function not only limits the daily activities of the elderly but also increases the risk of disability, hospitalization and death, placing a huge burden on society and the healthcare system. Sarcopenia is a progressive decline in muscle mass, muscle strength and muscle function with age caused by environmental and genetic factors, such as the abnormal regulation of protein post-translational modifications (PTMs). To date, many studies have shown that numerous PTMs, such as phosphorylation, acetylation, ubiquitination, SUMOylation, glycosylation, glycation, methylation, S-nitrosylation, carbonylation and S-glutathionylation, are involved in the regulation of muscle health and diseases. This article systematically summarizes the post-translational regulation of muscle growth and muscle atrophy and helps to understand the pathophysiology of muscle aging and develop effective strategies for diagnosing, preventing and treating sarcopenia.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Zheng
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wanmeng Li
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kang An
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xina Xiao
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Hai
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Biao Dong
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Cacheiro P, Westerberg CH, Mager J, Dickinson ME, Nutter LMJ, Muñoz-Fuentes V, Hsu CW, Van den Veyver IB, Flenniken AM, McKerlie C, Murray SA, Teboul L, Heaney JD, Lloyd KCK, Lanoue L, Braun RE, White JK, Creighton AK, Laurin V, Guo R, Qu D, Wells S, Cleak J, Bunton-Stasyshyn R, Stewart M, Harrisson J, Mason J, Haseli Mashhadi H, Parkinson H, Mallon AM, Smedley D. Mendelian gene identification through mouse embryo viability screening. Genome Med 2022; 14:119. [PMID: 36229886 PMCID: PMC9563108 DOI: 10.1186/s13073-022-01118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/26/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The diagnostic rate of Mendelian disorders in sequencing studies continues to increase, along with the pace of novel disease gene discovery. However, variant interpretation in novel genes not currently associated with disease is particularly challenging and strategies combining gene functional evidence with approaches that evaluate the phenotypic similarities between patients and model organisms have proven successful. A full spectrum of intolerance to loss-of-function variation has been previously described, providing evidence that gene essentiality should not be considered as a simple and fixed binary property. METHODS Here we further dissected this spectrum by assessing the embryonic stage at which homozygous loss-of-function results in lethality in mice from the International Mouse Phenotyping Consortium, classifying the set of lethal genes into one of three windows of lethality: early, mid, or late gestation lethal. We studied the correlation between these windows of lethality and various gene features including expression across development, paralogy and constraint metrics together with human disease phenotypes. We explored a gene similarity approach for novel gene discovery and investigated unsolved cases from the 100,000 Genomes Project. RESULTS We found that genes in the early gestation lethal category have distinct characteristics and are enriched for genes linked with recessive forms of inherited metabolic disease. We identified several genes sharing multiple features with known biallelic forms of inborn errors of the metabolism and found signs of enrichment of biallelic predicted pathogenic variants among early gestation lethal genes in patients recruited under this disease category. We highlight two novel gene candidates with phenotypic overlap between the patients and the mouse knockouts. CONCLUSIONS Information on the developmental period at which embryonic lethality occurs in the knockout mouse may be used for novel disease gene discovery that helps to prioritise variants in unsolved rare disease cases.
Collapse
Affiliation(s)
- Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lauryl M J Nutter
- The Hospital for Sick Children, The Centre for Phenogenomics, Toronto, Canada
| | - Violeta Muñoz-Fuentes
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, UK
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.,Department of Education, Innovation and Technology, Baylor College of Medicine, Houston, TX, USA
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Ann M Flenniken
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, The Centre for Phenogenomics, Toronto, Canada
| | - Colin McKerlie
- The Hospital for Sick Children, The Centre for Phenogenomics, Toronto, Canada
| | | | - Lydia Teboul
- The Mary Lyon Centre, MRC Harwell Institute, Harwell, Oxfordshire, UK
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - K C Kent Lloyd
- Mouse Biology Program, University of California Davis, Davis, CA, USA
| | - Louise Lanoue
- Mouse Biology Program, University of California Davis, Davis, CA, USA
| | | | | | - Amie K Creighton
- The Hospital for Sick Children, The Centre for Phenogenomics, Toronto, Canada
| | - Valerie Laurin
- The Hospital for Sick Children, The Centre for Phenogenomics, Toronto, Canada
| | - Ruolin Guo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, The Centre for Phenogenomics, Toronto, Canada
| | - Dawei Qu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, The Centre for Phenogenomics, Toronto, Canada
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell Institute, Harwell, Oxfordshire, UK
| | - James Cleak
- The Mary Lyon Centre, MRC Harwell Institute, Harwell, Oxfordshire, UK
| | | | - Michelle Stewart
- The Mary Lyon Centre, MRC Harwell Institute, Harwell, Oxfordshire, UK
| | - Jackie Harrisson
- The Mary Lyon Centre, MRC Harwell Institute, Harwell, Oxfordshire, UK
| | - Jeremy Mason
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, UK
| | - Hamed Haseli Mashhadi
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, UK
| | | | | | | | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
14
|
Zhu Y, Lin X, Zhou X, Prochownik EV, Wang F, Li Y. Posttranslational control of lipogenesis in the tumor microenvironment. J Hematol Oncol 2022; 15:120. [PMID: 36038892 PMCID: PMC9422141 DOI: 10.1186/s13045-022-01340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Metabolic reprogramming of cancer cells within the tumor microenvironment typically occurs in response to increased nutritional, translation and proliferative demands. Altered lipid metabolism is a marker of tumor progression that is frequently observed in aggressive tumors with poor prognosis. Underlying these abnormal metabolic behaviors are posttranslational modifications (PTMs) of lipid metabolism-related enzymes and other factors that can impact their activity and/or subcellular localization. This review focuses on the roles of these PTMs and specifically on how they permit the re-wiring of cancer lipid metabolism, particularly within the context of the tumor microenvironment.
Collapse
Affiliation(s)
- Yahui Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.,School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xingrong Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Xiaojun Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, The Department of Microbiology and Molecular Genetics, The Pittsburgh Liver Research Center and The Hillman Cancer Center of UPMC, The University of Pittsburgh Medical Center, Pittsburgh, PA, 15224, USA
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China.
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China. .,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
15
|
vanLieshout TL, Stouth DW, Hartel NG, Vasam G, Ng SY, Webb EK, Rebalka IA, Mikhail AI, Graham NA, Menzies KJ, Hawke TJ, Ljubicic V. The CARM1 transcriptome and arginine methylproteome mediate skeletal muscle integrative biology. Mol Metab 2022; 64:101555. [PMID: 35872306 PMCID: PMC9379683 DOI: 10.1016/j.molmet.2022.101555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Coactivator-associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of arginine residues on target proteins to regulate critical processes in health and disease. A mechanistic understanding of the role(s) of CARM1 in skeletal muscle biology is only gradually emerging. The purpose of this study was to elucidate the function of CARM1 in regulating the maintenance and plasticity of skeletal muscle. METHODS We used transcriptomic, methylproteomic, molecular, functional, and integrative physiological approaches to determine the specific impact of CARM1 in muscle homeostasis. RESULTS Our data defines the occurrence of arginine methylation in skeletal muscle and demonstrates that this mark occurs on par with phosphorylation and ubiquitination. CARM1 skeletal muscle-specific knockout (mKO) mice displayed altered transcriptomic and arginine methylproteomic signatures with molecular and functional outcomes confirming remodeled skeletal muscle contractile and neuromuscular junction characteristics, which presaged decreased exercise tolerance. Moreover, CARM1 regulates AMPK-PGC-1α signalling during acute conditions of activity-induced muscle plasticity. CONCLUSIONS This study uncovers the broad impact of CARM1 in the maintenance and remodelling of skeletal muscle biology.
Collapse
Affiliation(s)
| | - Derek W Stouth
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Nicolas G Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Sean Y Ng
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Erin K Webb
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Andrew I Mikhail
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology and the Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Rd, K1H 8M5, Ottawa, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
16
|
Massignani E, Giambruno R, Maniaci M, Nicosia L, Yadav A, Cuomo A, Raimondi F, Bonaldi T. ProMetheusDB: An In-Depth Analysis of the High-Quality Human Methyl-proteome. Mol Cell Proteomics 2022; 21:100243. [PMID: 35577067 PMCID: PMC9207298 DOI: 10.1016/j.mcpro.2022.100243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 01/01/2023] Open
Abstract
Protein arginine (R) methylation is a post-translational modification involved in various biological processes, such as RNA splicing, DNA repair, immune response, signal transduction, and tumor development. Although several advancements were made in the study of this modification by mass spectrometry, researchers still face the problem of a high false discovery rate. We present a dataset of high-quality methylations obtained from several different heavy methyl stable isotope labeling with amino acids in cell culture experiments analyzed with a machine learning–based tool and show that this model allows for improved high-confidence identification of real methyl-peptides. Overall, our results are consistent with the notion that protein R methylation modulates protein–RNA interactions and suggest a role in rewiring protein–protein interactions, for which we provide experimental evidence for a representative case (i.e., NONO [non-POU domain–containing octamer-binding protein]–paraspeckle component 1 [PSPC1]). Upon intersecting our R-methyl-sites dataset with the PhosphoSitePlus phosphorylation dataset, we observed that R methylation correlates differently with S/T-Y phosphorylation in response to various stimuli. Finally, we explored the application of heavy methyl stable isotope labeling with amino acids in cell culture to identify unconventional methylated residues and successfully identified novel histone methylation marks on serine 28 and threonine 32 of H3. The database generated, named ProMetheusDB, is freely accessible at https://bioserver.ieo.it/shiny/app/prometheusdb. hmSEEKER 2.0 identifies methyl-peptides from hmSILAC data through machine learning. Arginine methylation plays a role in modulating protein–protein interactions. Arginine methylations occur more frequently in proximity of phosphorylation sites. hmSEEKER 2.0 was used to identify methylations occurring on nonstandard amino acids.
Collapse
Affiliation(s)
- Enrico Massignani
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; European School of Molecular Medicine (SEMM), Milan, Italy
| | - Roberto Giambruno
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Center for Genomic Science of Istituto Italiano di Tecnologia at European School of Molecular Medicine, Istituto Italiano di Tecnologia, Milan, Italy; Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Marianna Maniaci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; European School of Molecular Medicine (SEMM), Milan, Italy
| | - Luciano Nicosia
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Avinash Yadav
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Raimondi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
17
|
Marsden AJ, Riley DRJ, Birkett S, Rodriguez-Barucg Q, Guinn BA, Carroll S, Ingle L, Sathyapalan T, Beltran-Alvarez P. Love is in the hair: arginine methylation of human hair proteins as novel cardiovascular biomarkers. Amino Acids 2022; 54:591-600. [PMID: 34181092 PMCID: PMC9117359 DOI: 10.1007/s00726-021-03024-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022]
Abstract
Cardiovascular disease is the major cause of death worldwide. Extensive cardiovascular biomarkers are available using blood tests but very few, if any, investigations have described non-invasive tests for cardiovascular biomarkers based on readily available hair samples. Here we show, first, that human hair proteins are post-translationally modified by arginine methylation (ArgMe). Using western blot, proteomic data mining and mass spectrometry, we identify several ArgMe events in hair proteins and we show that keratin-83 is extensively modified by ArgMe in the human hair. Second, using a preliminary cohort (n = 18) of heterogenous healthy donors, we show that the levels of protein ArgMe in hair correlate with serum concentrations of a well-established cardiovascular biomarker, asymmetric dimethylarginine (ADMA). Compared to blood collection, hair sampling is cheaper, simpler, requires minimal training and carries less health and safety and ethical risks. For these reasons, developing the potential of hair protein ArgMe as clinically useful cardiovascular biomarkers through further research could be useful in future prevention and diagnosis of cardiovascular disease.
Collapse
Affiliation(s)
| | - David R J Riley
- Department of Biomedical Sciences, University of Hull, Cottingham Rd, Hull, HU6 7RX, UK
| | - Stefan Birkett
- Department of Sport, Health and Exercise Science, University of Hull, Hull, UK
- School of Sport and Health Sciences, University of Central Lancashire, Preston, UK
| | | | - Barbara-Ann Guinn
- Department of Biomedical Sciences, University of Hull, Cottingham Rd, Hull, HU6 7RX, UK
| | - Sean Carroll
- Department of Sport, Health and Exercise Science, University of Hull, Hull, UK
| | - Lee Ingle
- Department of Sport, Health and Exercise Science, University of Hull, Hull, UK
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Pedro Beltran-Alvarez
- Department of Biomedical Sciences, University of Hull, Cottingham Rd, Hull, HU6 7RX, UK.
| |
Collapse
|
18
|
Zhao B, Zhang D, Sun Y, Lei M, Zeng P, Wang Y, Hong Y, Jiao Y, Cai C. Explore the effect of LLY-283 on the ototoxicity of auditory cells caused by cisplatin: A bioinformatic analysis based on RNA-seq. J Clin Lab Anal 2022; 36:e24176. [PMID: 34997776 PMCID: PMC8842247 DOI: 10.1002/jcla.24176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cisplatin is a commonly used chemotherapeutic drug in clinics, and long-term application will lead to hearing impairment. LLY-283, an inhibitor of PRMT5, has not been reported in deafness. Our study aimed to explore the mechanism of LLY-283 in hearing impairment. MATERIALS AND METHODS First, we performed RNA-seq (cisplatin in the experimental group and DMSO in the control group) to obtain the biological processes mainly involved in differentially expressed genes (DEGs). CCK-8 and LDH experiments were used to observe the effect of LLY-283 on cisplatin-induced auditory cell injury. ROS experiment was used to monitor the impact of LLY-283 on oxidative damage of auditory cells. Effect of LLY-283 on apoptosis of auditory cells detected by TUNEL experiment. PCR and Western blotting were used to detect the expression of genes and proteins related to auditory cell apoptosis in LLY-283 cells. Meanwhile, we explored the effect of LLY-283 on the expression of PRMT5 in cisplatin-induced hearing impaired cells at RNA and protein levels. RESULTS Biological process analysis showed that DEGs were mainly enriched in the apoptotic process involved in morphogenesis (-Log10 P = 3.71). CCK-8 and LDH experiments confirmed that LLY-283 could save cisplatin-induced auditory cell injury. ROS experiments confirmed that LLY-283 could rescue cisplatin-induced oxidative damage to auditory cells. TUNEL experiments confirmed that LLY-283 could protect cisplatin-induced apoptosis of auditory cells. Meanwhile, LLY-283 could inhibit the expression of PRMT5 in auditory cells induced by cisplatin. CONCLUSION LLY-283 can rescue cisplatin-induced auditory cell apoptosis injury. LLY-283 can inhibit the increase in PRMT5 expression induced by cisplatin.
Collapse
Affiliation(s)
- Bin Zhao
- Xiamen Health and Medical Big Data CenterXiamenChina
- School of MedicineXiamen UniversityXiamenChina
| | - Dongdong Zhang
- School of MedicineXiamen UniversityXiamenChina
- Department of Otolaryngology‐Head and Neck SurgeryTeaching Hospital of Fujian Medical UniversityXiamenChina
- Department of Otolaryngology‐Head and Neck SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| | - Yixin Sun
- School of MedicineXiamen UniversityXiamenChina
| | - Min Lei
- School of MedicineXiamen UniversityXiamenChina
- Department of Otolaryngology‐Head and Neck SurgeryTeaching Hospital of Fujian Medical UniversityXiamenChina
- Department of Otolaryngology‐Head and Neck SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| | - Peiji Zeng
- Department of Otolaryngology‐Head and Neck SurgeryTeaching Hospital of Fujian Medical UniversityXiamenChina
- Department of Otolaryngology‐Head and Neck SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| | - Yue Wang
- School of MedicineXiamen UniversityXiamenChina
- Department of Otolaryngology‐Head and Neck SurgeryTeaching Hospital of Fujian Medical UniversityXiamenChina
- Department of Otolaryngology‐Head and Neck SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| | - Yongjun Hong
- Department of Otolaryngology‐Head and Neck SurgeryTeaching Hospital of Fujian Medical UniversityXiamenChina
- Department of Otolaryngology‐Head and Neck SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| | - Yanchao Jiao
- Department of Otolaryngology‐Head and Neck SurgeryTeaching Hospital of Fujian Medical UniversityXiamenChina
- Department of Otolaryngology‐Head and Neck SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| | - Chengfu Cai
- School of MedicineXiamen UniversityXiamenChina
- Department of Otolaryngology‐Head and Neck SurgeryTeaching Hospital of Fujian Medical UniversityXiamenChina
- Department of Otolaryngology‐Head and Neck SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| |
Collapse
|
19
|
Mahmoud AM. An Overview of Epigenetics in Obesity: The Role of Lifestyle and Therapeutic Interventions. Int J Mol Sci 2022; 23:ijms23031341. [PMID: 35163268 PMCID: PMC8836029 DOI: 10.3390/ijms23031341] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity has become a global epidemic that has a negative impact on population health and the economy of nations. Genetic predispositions have been demonstrated to have a substantial role in the unbalanced energy metabolism seen in obesity. However, these genetic variations cannot entirely explain the massive growth in obesity over the last few decades. Accumulating evidence suggests that modern lifestyle characteristics such as the intake of energy-dense foods, adopting sedentary behavior, or exposure to environmental factors such as industrial endocrine disruptors all contribute to the rising obesity epidemic. Recent advances in the study of DNA and its alterations have considerably increased our understanding of the function of epigenetics in regulating energy metabolism and expenditure in obesity and metabolic diseases. These epigenetic modifications influence how DNA is transcribed without altering its sequence. They are dynamic, reflecting the interplay between the body and its surroundings. Notably, these epigenetic changes are reversible, making them appealing targets for therapeutic and corrective interventions. In this review, I discuss how these epigenetic modifications contribute to the disordered energy metabolism in obesity and to what degree lifestyle and weight reduction strategies and pharmacological drugs can restore energy balance by restoring normal epigenetic profiles.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
20
|
Baddam P, Young D, Dunsmore G, Nie C, Eaton F, Elahi S, Jovel J, Adesida AB, Dufour A, Graf D. Nasal Septum Deviation as the Consequence of BMP-Controlled Changes to Cartilage Properties. Front Cell Dev Biol 2021; 9:696545. [PMID: 34249945 PMCID: PMC8265824 DOI: 10.3389/fcell.2021.696545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
The nasal septum cartilage is a specialized hyaline cartilage important for normal midfacial growth. Abnormal midfacial growth is associated with midfacial hypoplasia and nasal septum deviation (NSD). However, the underlying genetics and associated functional consequences of these two anomalies are poorly understood. We have previously shown that loss of Bone Morphogenetic Protein 7 (BMP7) from neural crest (BMP7 ncko ) leads to midfacial hypoplasia and subsequent septum deviation. In this study we elucidate the cellular and molecular abnormalities underlying NSD using comparative gene expression, quantitative proteomics, and immunofluorescence analysis. We show that reduced cartilage growth and septum deviation are associated with acquisition of elastic cartilage markers and share similarities with osteoarthritis (OA) of the knee. The genetic reduction of BMP2 in BMP7 ncko mice was sufficient to rescue NSD and suppress elastic cartilage markers. To our knowledge this investigation provides the first genetic example of an in vivo cartilage fate switch showing that this is controlled by the relative balance of BMP2 and BMP7. Cellular and molecular changes similar between NSD and knee OA suggest a related etiology underlying these cartilage abnormalities.
Collapse
Affiliation(s)
- Pranidhi Baddam
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Daniel Young
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Garett Dunsmore
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Chunpeng Nie
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Farah Eaton
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Juan Jovel
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Daniel Graf
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
21
|
Hwang JW, Cho Y, Bae GU, Kim SN, Kim YK. Protein arginine methyltransferases: promising targets for cancer therapy. Exp Mol Med 2021; 53:788-808. [PMID: 34006904 PMCID: PMC8178397 DOI: 10.1038/s12276-021-00613-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Protein methylation, a post-translational modification (PTM), is observed in a wide variety of cell types from prokaryotes to eukaryotes. With recent and rapid advancements in epigenetic research, the importance of protein methylation has been highlighted. The methylation of histone proteins that contributes to the epigenetic histone code is not only dynamic but is also finely controlled by histone methyltransferases and demethylases, which are essential for the transcriptional regulation of genes. In addition, many nonhistone proteins are methylated, and these modifications govern a variety of cellular functions, including RNA processing, translation, signal transduction, DNA damage response, and the cell cycle. Recently, the importance of protein arginine methylation, especially in cell cycle regulation and DNA repair processes, has been noted. Since the dysregulation of protein arginine methylation is closely associated with cancer development, protein arginine methyltransferases (PRMTs) have garnered significant interest as novel targets for anticancer drug development. Indeed, several PRMT inhibitors are in phase 1/2 clinical trials. In this review, we discuss the biological functions of PRMTs in cancer and the current development status of PRMT inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Jee Won Hwang
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Yena Cho
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Gyu-Un Bae
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Su-Nam Kim
- grid.35541.360000000121053345Natural Product Research Institute, Korea Institute of Science and Technology, Gangneung, 25451 Republic of Korea
| | - Yong Kee Kim
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| |
Collapse
|
22
|
Liang Z, Liu L, Wen C, Jiang H, Ye T, Ma S, Liu X. Clinicopathological and Prognostic Significance of PRMT5 in Cancers: A System Review and Meta-Analysis. Cancer Control 2021; 28:10732748211050583. [PMID: 34758643 PMCID: PMC8591649 DOI: 10.1177/10732748211050583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Since protein arginine methyltransferase 5 (PRMT5) is abnormally expressed in various tumors, in this study we aim to assess the association between PRMT5 and clinicopathological and prognostic features. METHODS Electronic databases including PubMed, Web of Science, Scopus, ScienceDirect, and the Cochrane Library were searched until July 25, 2021. The critical appraisal of the eligible studies was performed using the Newcastle-Ottawa Quality Assessment Scale. Pooled hazard ratios (HR) and pooled odds ratios (OR) were calculated to assess the effect. Engauge Digitizer version 12.1, STATA version 15.1, and R version 4.0.5 were used to obtain and analysis the data. RESULTS A total of 32 original studies covering 15,583 patients were included. In our data, it indicated that high level of PRMT5 was significantly correlated with advanced tumor stage (OR = 2.12, 95% CI: 1.22-3.70, P =.008; I2 = 80.7%) and positively correlated with poor overall survival (HR = 1.59, 95% CI: 1.46-1.73, P < .001; I2 = 50%) and progression-free survival (HR = 1.53, 95% CI: 1.24-1.88, P < .001; I2 = 0%). In addition, sub-group analysis showed that high level of PRMT5 was associated with poor overall survival for such 5 kinds of cancers as hepatocellular carcinoma, pancreatic cancer, breast cancer, gastric cancer, and lung cancer. CONCLUSION For the first time we found PRMT5 was pan-cancerous as a prognostic biomarker and high level of PRMT5 was associated with poor prognosis for certain cancers.
Collapse
Affiliation(s)
- Zhenzhen Liang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lianchang Liu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Chaowei Wen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Heya Jiang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tianxia Ye
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaodong Liu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
23
|
CARM1 Regulates AMPK Signaling in Skeletal Muscle. iScience 2020; 23:101755. [PMID: 33241200 PMCID: PMC7672286 DOI: 10.1016/j.isci.2020.101755] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/28/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is an emerging mediator of skeletal muscle plasticity. We employed genetic, physiologic, and pharmacologic approaches to determine whether CARM1 regulates the master neuromuscular phenotypic modifier AMP-activated protein kinase (AMPK). CARM1 skeletal muscle-specific knockout (mKO) mice displayed reduced muscle mass and dysregulated autophagic and atrophic processes downstream of AMPK. We observed altered interactions between CARM1 and AMPK and its network, including forkhead box protein O1, during muscle disuse. CARM1 methylated AMPK during the early stages of muscle inactivity, whereas CARM1 mKO mitigated progression of denervation-induced atrophy and was accompanied by attenuated phosphorylation of AMPK targets such as unc-51 like autophagy-activating kinase 1Ser555. Lower acetyl-coenzyme A corboxylaseSer79 phosphorylation, as well as reduced peroxisome proliferator-activated receptor-γ coactivator-1α, was also observed in mKO animals following acute administration of the direct AMPK activator MK-8722. Our study suggests that targeting CARM1-AMPK interplay may have broad impacts on neuromuscular health and disease. Role of the arginine methyltransferase CARM1 in muscle biology remains undefined Skeletal muscle-specific removal of CARM1 alters autophagic and atrophic processes CARM1 methylates AMPK and mediates AMPK signaling during neurogenic muscle disuse Targeted pharmacological AMPK stimulation is impacted by CARM1 in skeletal muscle
Collapse
|