1
|
Eserhaut DA, DeLeo JM, Fry AC. Blood Flow Restricted Resistance Exercise in Well-Trained Men: Salivary Biomarker Responses and Oxygen Saturation Kinetics. J Strength Cond Res 2024; 38:e716-e726. [PMID: 39808815 DOI: 10.1519/jsc.0000000000004913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
ABSTRACT Eserhaut, DA, DeLeo, JM, and Fry, AC. Blood flow restricted resistance exercise in well-trained men: Salivary biomarker responses and oxygen saturation kinetics. J Strength Cond Res 38(12): e716-e726, 2024-Resistance exercise with continuous lower-limb blood flow restriction (BFR) may provide supplementary benefit to highly resistance-trained men. Thus, the purpose of this study was to compare cardiovascular and salivary biomarker responses, along with skeletal muscle oxygen saturation (SmO2) during passive lower-limb BFR (pBFR), BFR resistance exercise performed to task failure (BFR+RE), and volume-matched resistance exercise (RE). A within-subjects, repeated measures design was used. Nineteen men (x̄±SD: relative squat 1RM: 1.9 ± 0.3 kg·bw-1) reported for 3 visits. First, body composition, blood pressure, back squat, and leg extension 1 repetition maximums (1RM) were assessed. Resting systolic blood pressure and proximal thigh circumferences were used to estimate arterial occlusion pressures (eAOP). Visit 1 involved pBFR, where BFR cuffs were inflated to 80% eAOP around the proximal thighs for 10 minutes while subjects were seated in a leg extension machine. Then, 24-120 hours later, 4 sets of bilateral seated leg extensions at 30% 1RM were performed to momentary task failure with 1-minute rest at the same 80% eAOP. After 72-120 hours rest, subjects matched the repetition performances from BFR+RE at 30% 1RM for the RE condition. BFR+RE elicited greater (p ≤ 0.05) heart rates, systolic, and diastolic blood pressures relative to pBFR and RE. Significantly elevated (p ≤ 0.05) blood lactate, salivary cortisol concentrations, and α-amylase activity occurred following BFR+RE relative to pBFR and RE. BFR+RE also induced blunted (p < 0.001) SmO2 interset resaturation rates compared with RE. In trained men, continuous BFR+RE seems to significantly alter acute physiological responses to a greater degree than either pBFR alone or volume-matched RE.
Collapse
Affiliation(s)
- Drake A Eserhaut
- Jayhawk Athletic Performance Laboratory, Wu Tsai Human Performance Alliance, University of Kansas, Lawrence, Kansas
| | | | | |
Collapse
|
2
|
Al lami Z, Kurtca M, Atique MU, Opekun AR, Siam MS, Jalal PK, Najafi B, Devaraj S, Mindikoglu AL. Dawn-to-dusk dry fasting decreases circulating inflammatory cytokines in subjects with increased body mass index. Metabol Open 2024; 21:100274. [PMID: 38455231 PMCID: PMC10918425 DOI: 10.1016/j.metop.2024.100274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Background The circadian rhythm involves numerous metabolic processes, including sleep/awakening, body temperature regulation, hormone secretion, hepatic function, cellular plasticity, and cytokine release (inflammation), that appear to have a dynamic relationship with all the processes above. Studies have linked various cytokines to the chronic state of low-grade inflammation and oxidative stress in obesity. Dawn-to-dusk dry fasting (DDDF) could alleviate the adverse effects of obesity by decreasing inflammation. This study examined the effects of DDDF on circulating inflammatory cytokines in subjects with increased body mass index (BMI). Methods The current observational prospective study included adult subjects with a BMI equal to or greater than 25 kg/m2 who practiced the annual religious 30-day DDDF. Individuals with significant underlying medical conditions were excluded to limit confounding factors. All subjects were evaluated within two weeks before 30-day DDDF, within the fourth week of 30-day DDDF, and within two weeks after 30-day DDDF. Multiple cytokines and clinical health indicators were measured at each evaluation. Results Thirteen subjects (10 men and three women) with a mean age of 32.9 years (SD = 9.7 years) and a mean BMI of 32 kg/m2 (SD = 4.6 kg/m2) were included. An overall associated decrease in the levels of multiple cytokines with DDDF was observed. A significant decrease in the mean interleukin 1 beta level was observed within the fourth week of 30-day DDDF (P = 0.045), which persisted even after the fasting period (P = 0.024). There was also a significant decrease in the mean levels of interleukin 15 (IL-15) (P = 0.014), interleukin 1 receptor antagonist (P = 0.041), macrophage-derived chemokine (MDC) (P = 0.013), and monokine induced by interferon gamma/chemokine (C-X-C motif) ligand 9 (P = 0.027) within the fourth week of 30-day DDDF and in the mean levels of fibroblast growth factor 2 (P = 0.010), interleukin 12 p40 subunit (P = 0.038), interleukin 22 (P = 0.025) and tumor necrosis factor alpha (P = 0.046) within two weeks after 30-DDDF. In terms of anthropometric parameters, there was a decrease in mean body weight (P = 0.032), BMI (P = 0.028), and hip circumference (P = 0.007) within the fourth week of 30-day DDDF and a decrease in mean weight (P = 0.026), BMI (P = 0.033) and hip circumference (P = 0.016) within two weeks after 30-day DDDF compared with the levels measured within two weeks before 30-day DDDF. Although there was no significant correlation between changes in weight and changes in circulating inflammatory cytokines, there was a significant positive correlation between changes in waist circumference and changes in specific inflammatory cytokines (e.g., IL-15, MDC, platelet-derived growth factor, soluble CD40L, vascular endothelial growth factor A) within the fourth week of 30-day DDDF and/or two weeks after 30-day DDDF. A significant decrease in mean average resting heart rate within the fourth week of 30-day DDDF was also observed (P = 0.023), and changes between average resting heart rate and changes in interleukin-8 levels within the fourth week of 30-day DDDF compared with baseline levels were positively correlated (r = 0.57, P = 0.042). Conclusion DDDF appears to be a unique and potent treatment to reduce low-grade chronic inflammation caused by obesity and visceral adiposity. Further studies with more extended follow-up periods are warranted to investigate the long-term anti-inflammatory benefits of DDDF in individuals with increased BMI.
Collapse
Affiliation(s)
- Zahraa Al lami
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Miray Kurtca
- Clinical Chemistry and Point of Care Technology, Texas Children's Hospital and Health Centers, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Moin Uddin Atique
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Antone R. Opekun
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Gastroenterology, Nutrition and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Mohamad S. Siam
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Prasun K. Jalal
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| | - Bijan Najafi
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Sridevi Devaraj
- Clinical Chemistry and Point of Care Technology, Texas Children's Hospital and Health Centers, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Ayse L. Mindikoglu
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Abdalla-Silva RL, Zanetti GO, Lautherbach N, Schavinski AZ, Heck LC, Gonçalves DAP, Kettelhut IC, Navegantes LCC, Silveira WA. β 2-Adrenoceptors activation regulates muscle trophic-related genes following acute resistance exercise in mice. Front Physiol 2024; 15:1268380. [PMID: 38318197 PMCID: PMC10839027 DOI: 10.3389/fphys.2024.1268380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Resistance exercise (RE) training and pharmacological stimulation of β2-Adrenoceptors (β2-ARs) alone can promote muscle hypertrophy and prevent muscle atrophy. Although the activation of the sympathetic nervous system (SNS) is a well-established response during RE, the physiological contribution of the endogenous catecholamines and β2-ARs to the RE-induced changes on skeletal muscle protein metabolism remains unclear. This study investigated the effects of the β2-ARs blockade on the acute molecular responses induced by a single bout of RE in rodent skeletal muscles. Male C57BL6/J mice were subjected to a single bout of progressive RE (until exhaustion) on a vertical ladder under β2-AR blockade with ICI 118,551 (ICI; 10 mg kg-1, i. p.), or vehicle (sterile saline; 0.9%, i. p.), and the gene expression was analyzed in gastrocnemius (GAS) muscles by qPCR. We demonstrated that a single bout of RE acutely increased the circulating levels of stress-associated hormones norepinephrine (NE) and corticosterone (CORT), as well as the muscle phosphorylation levels of AMPK, p38 MAPK and CREB, immediately after the session. The acute increase in the phosphorylation levels of CREB was followed by the upregulation of CREB-target genes Sik1, Ppargc1a and Nr4a3 (a central regulator of the acute RE response), 3 h after the RE session. Conversely, β2-AR blockade reduced significantly the Sik1 and Nr4a3 mRNA levels in muscles of exercised mice. Furthermore, a single bout of RE stimulated the mRNA levels of the atrophic genes Map1lc3b and Gabarapl1 (autophagy-related genes) and Mstn (a well-known negative regulator of muscle growth). Unexpectedly, the gene expression of Igf-1 or Il-6 were not affected by RE, while the atrophic genes Murf1/Trim63 and Atrogin-1/Mafbx32 (ubiquitin-ligases) were increased only in muscles of exercised mice under β2-AR blockade. Interestingly, performing a single bout of RE under β2-AR blockade increased the mRNA levels of Mstn in muscles of exercised mice. These data suggest that β2-ARs stimulation during acute RE stimulates the hypertrophic gene Nr4a3 and prevents the overexpression of atrophic genes such as Mstn, Murf1/Trim63, and Atrogin-1/Mafbx32 in the first hours of postexercise recovery, indicating that he SNS may be physiologically important to muscle adaptations in response to resistance training.
Collapse
Affiliation(s)
- Ronaldo L. Abdalla-Silva
- Department of Biochemistry, Pharmacology and Physiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Gustavo O. Zanetti
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Natalia Lautherbach
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Aline Zanatta Schavinski
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Lilian C. Heck
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Dawit A. P. Gonçalves
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Sports Training Center, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isis C. Kettelhut
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Luiz C. C. Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Wilian A. Silveira
- Department of Biochemistry, Pharmacology and Physiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
4
|
Signals for Muscular Protein Turnover and Insulin Resistance in Critically Ill Patients: A Narrative Review. Nutrients 2023; 15:nu15051071. [PMID: 36904071 PMCID: PMC10005516 DOI: 10.3390/nu15051071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Sarcopenia in critically ill patients is a highly prevalent comorbidity. It is associated with a higher mortality rate, length of mechanical ventilation, and probability of being sent to a nursing home after the Intensive Care Unit (ICU). Despite the number of calories and proteins delivered, there is a complex network of signals of hormones and cytokines that affect muscle metabolism and its protein synthesis and breakdown in critically ill and chronic patients. To date, it is known that a higher number of proteins decreases mortality, but the exact amount needs to be clarified. This complex network of signals affects protein synthesis and breakdown. Some hormones regulate metabolism, such as insulin, insulin growth factor glucocorticoids, and growth hormone, whose secretion is affected by feeding states and inflammation. In addition, cytokines are involved, such as TNF-alpha and HIF-1. These hormones and cytokines have common pathways that activate muscle breakdown effectors, such as the ubiquitin-proteasome system, calpain, and caspase-3. These effectors are responsible for protein breakdown in muscles. Many trials have been conducted with hormones with different results but not with nutritional outcomes. This review examines the effect of hormones and cytokines on muscles. Knowing all the signals and pathways that affect protein synthesis and breakdown can be considered for future therapeutics.
Collapse
|
5
|
Blears E, Ross E, Ogunbileje JO, Porter C, Murton AJ. The impact of catecholamines on skeletal muscle following massive burns: Friend or foe? Burns 2021; 47:756-764. [PMID: 33568281 DOI: 10.1016/j.burns.2021.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Profound skeletal muscle wasting in the setting of total body hypermetabolism is a defining characteristic of massive burns, compromising the patient's recovery and necessitating a protracted period of rehabilitation. In recent years, the prolonged use of the non-selective beta-blocker, propranolol, has gained prominence as an effective tool to assist with suppressing epinephrine-dependent burn-induced hypermetabolism and by extension, blunting muscle catabolism. However, synthetic β-adrenergic agonists, such as clenbuterol, are widely associated with the promotion of muscle growth in both animals and humans. Moreover, experimental adrenodemedullation is known to result in muscle catabolism. Therefore, the blunting of muscle β-adrenergic signaling via the use of propranolol would be expected to negatively impair muscle protein homeostasis. This review explores these paradoxical observations and identifies the manner by which propranolol is thought to exert its anti-catabolic effects in burn patients. Moreover, we identify potential avenues by which the use of beta-blocker therapy in the treatment of massive burns could potentially be further refined to promote the recovery of muscle mass in these critically ill patients while continuing to ameliorate total body hypermetabolism.
Collapse
Affiliation(s)
- Elizabeth Blears
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA; Department of Surgery, Allegheny Health Network, Pittsburgh, PA, USA
| | - Evan Ross
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - John O Ogunbileje
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Craig Porter
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center of Aging, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
6
|
Steiner JL, Johnson BR, Hickner RC, Ormsbee MJ, Williamson DL, Gordon BS. Adrenal stress hormone action in skeletal muscle during exercise training: An old dog with new tricks? Acta Physiol (Oxf) 2021; 231:e13522. [PMID: 32506657 DOI: 10.1111/apha.13522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Exercise is a key component of a healthy lifestyle as it helps maintain a healthy body weight and reduces the risk of various morbidities and co-morbidities. Exercise is an acute physiological stress that initiates a multitude of processes that attempt to restore physiological homeostasis and promote adaptation. A component of the stress response to exercise is the rapid release of hormones from the adrenal gland including glucocorticoids, the catecholamines and aldosterone. While each hormone targets several tissues throughout the body, skeletal muscle is of interest as it is central to physical function and various metabolic processes. Indeed, adrenal stress hormones have been shown to elicit specific performance benefits on the muscle. However, how the acute, short-lived release of these stress hormones during exercise influences adaptations of skeletal muscle to long-term training remains largely unknown. Thus, the objective of this review was to briefly highlight the known impact of adrenal stress hormones on skeletal muscle metabolism and function (Old Dog), and critically examine the current evidence supporting a role for these endogenous hormones in mediating long-term training adaptations in skeletal muscle (New Tricks).
Collapse
Affiliation(s)
- Jennifer L. Steiner
- Department of Nutrition, Food and Exercise Sciences Florida State University Tallahassee FL USA
- Institute of Sports Sciences and Medicine Florida State University Tallahassee FL USA
| | - Bonde R. Johnson
- Department of Nutrition, Food and Exercise Sciences Florida State University Tallahassee FL USA
| | - Robert C. Hickner
- Department of Nutrition, Food and Exercise Sciences Florida State University Tallahassee FL USA
- Institute of Sports Sciences and Medicine Florida State University Tallahassee FL USA
- Department of Biokinetics, Exercise and Leisure Sciences University of KwaZulu‐Natal Durban South Africa
| | - Michael J. Ormsbee
- Department of Nutrition, Food and Exercise Sciences Florida State University Tallahassee FL USA
- Institute of Sports Sciences and Medicine Florida State University Tallahassee FL USA
- Department of Biokinetics, Exercise and Leisure Sciences University of KwaZulu‐Natal Durban South Africa
| | - David L. Williamson
- Kinesiology Program School of Behavioral Sciences and Education Pennsylvania State University at Harrisburg Middletown PA USA
| | - Bradley S. Gordon
- Department of Nutrition, Food and Exercise Sciences Florida State University Tallahassee FL USA
- Institute of Sports Sciences and Medicine Florida State University Tallahassee FL USA
| |
Collapse
|
7
|
Silveira WA, Gonçalves DA, Machado J, Lautherbach N, Lustrino D, Paula-Gomes S, Pereira MG, Miyabara EH, Sandri M, Kettelhut IC, Navegantes LC. cAMP-dependent protein kinase inhibits FoxO activity and regulates skeletal muscle plasticity in mice. FASEB J 2020; 34:12946-12962. [PMID: 32772437 DOI: 10.1096/fj.201902102rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 01/04/2023]
Abstract
Although we have shown that catecholamines suppress the activity of the Ubiquitin-Proteasome System (UPS) and atrophy-related genes expression through a cAMP-dependent manner in skeletal muscle from rodents, the underlying mechanisms remain unclear. Here, we report that a single injection of norepinephrine (NE; 1 mg kg-1 ; s.c) attenuated the fasting-induced up-regulation of FoxO-target genes in tibialis anterior (TA) muscles by the stimulation of PKA/CREB and Akt/FoxO1 signaling pathways. In addition, muscle-specific activation of PKA by the overexpression of PKA catalytic subunit (PKAcat) suppressed FoxO reporter activity induced by (1) a wild-type; (2) a non-phosphorylatable; (3) a non-phosphorylatable and non-acetylatable forms of FoxO1 and FoxO3; (4) downregulation of FoxO protein content, and probably by (5) PGC-1α up-regulation. Consistently, the overexpression of the PKAcat inhibitor (PKI) up-regulated FoxO activity and the content of Atrogin-1 and MuRF1, as well as induced muscle fiber atrophy, the latter effect being prevented by the overexpression of a dominant negative (d. n.) form of FoxO (d.n.FoxO). The sustained overexpression of PKAcat induced fiber-type transition toward a smaller, slower, and more oxidative phenotype and improved muscle resistance to fatigue. Taken together, our data provide the first evidence that endogenous PKA activity is required to restrain the basal activity of FoxO and physiologically important to maintain skeletal muscle mass.
Collapse
Affiliation(s)
- Wilian A Silveira
- Departments of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,Institute of Biological and Natural Science, Federal University of Triângulo Mineiro (UFTM), Uberaba, Brazil
| | - Dawit A Gonçalves
- Departments of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,Departments of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Juliano Machado
- Departments of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany
| | - Natalia Lautherbach
- Departments of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Danilo Lustrino
- Departments of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Silvia Paula-Gomes
- Departments of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marcelo G Pereira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy.,Myology Center, University of Padova, Padova, Italy
| | - Isis C Kettelhut
- Departments of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,Departments of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Luiz C Navegantes
- Departments of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Przygodda F, Lautherbach N, Buzelle SL, Goncalves DA, Assis AP, Paula-Gomes S, Garófalo MAR, Heck LC, Matsuo FS, Mota RF, Osako MK, Kettelhut IC, Navegantes LC. Sympathetic innervation suppresses the autophagic-lysosomal system in brown adipose tissue under basal and cold-stimulated conditions. J Appl Physiol (1985) 2020; 128:855-871. [PMID: 32027543 DOI: 10.1152/japplphysiol.00065.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The sympathetic nervous system (SNS) activates cAMP signaling and promotes trophic effects on brown adipose tissue (BAT) through poorly understood mechanisms. Because norepinephrine has been found to induce antiproteolytic effects on muscle and heart, we hypothesized that the SNS could inhibit autophagy in interscapular BAT (IBAT). Here, we describe that selective sympathetic denervation of rat IBAT kept at 25°C induced atrophy, and in parallel dephosphorylated forkhead box class O (FoxO), and increased cathepsin activity, autophagic flux, autophagosome formation, and expression of autophagy-related genes. Conversely, cold stimulus (4°C) for up to 72 h induced thermogenesis and IBAT hypertrophy, an anabolic effect that was associated with inhibition of cathepsin activity, autophagic flux, and autophagosome formation. These effects were abrogated by sympathetic denervation, which also upregulated Gabarapl1 mRNA. In addition, the cold-driven sympathetic activation stimulated the mechanistic target of rapamycin (mTOR) pathway, leading to the enhancement of protein synthesis, evaluated in vivo by puromycin incorporation, and to the inhibitory phosphorylation of Unc51-like kinase-1, a key protein in the initiation of autophagy. This coincided with a higher content of exchange protein-1 directly activated by cAMP (Epac1), a cAMP effector, and phosphorylation of Akt at Thr308, all these effects being abolished by denervation. Systemic treatment with norepinephrine for 72 h mimicked most of the cold effects on IBAT. These data suggest that the noradrenergic sympathetic inputs to IBAT restrain basal autophagy via suppression of FoxO and, in the setting of cold, stimulate protein synthesis via the Epac/Akt/mTOR-dependent pathway and suppress the autophagosome formation, probably through posttranscriptional mechanisms.NEW & NOTEWORTHY The underlying mechanisms related to the anabolic role of sympathetic innervation on brown adipose tissue (BAT) are unclear. We show that sympathetic denervation activates autophagic-lysosomal degradation, leading to a loss of mitochondrial proteins and BAT atrophy. Conversely, cold-driven sympathetic activation suppresses autophagy and stimulates protein synthesis, leading to BAT hypertrophy. Given its high-potential capacity for heat production, understanding the mechanisms that contribute to BAT mass is important to optimize chances of survival for endotherms in cold ambients.
Collapse
Affiliation(s)
- Franciele Przygodda
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Natalia Lautherbach
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Samyra Lopes Buzelle
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dawit Albieiro Goncalves
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Paula Assis
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sílvia Paula-Gomes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Lilian Carmo Heck
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Flávia Sayuri Matsuo
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ryerson Fonseca Mota
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mariana Kiomy Osako
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Isis C Kettelhut
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
9
|
Gordon BS, Rossetti ML, Eroshkin AM. Arrdc2 and Arrdc3 elicit divergent changes in gene expression in skeletal muscle following anabolic and catabolic stimuli. Physiol Genomics 2019; 51:208-217. [DOI: 10.1152/physiolgenomics.00007.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle is a highly plastic organ regulating various processes in the body. As such, loss of skeletal muscle underlies the increased morbidity and mortality risk that is associated with numerous conditions. However, no therapies are available to combat the loss of muscle mass during atrophic conditions, which is due in part to the incomplete understanding of the molecular networks altered by anabolic and catabolic stimuli. Thus, the current objective was to identify novel gene networks modulated by such stimuli. For this, total RNA from the tibialis anterior muscle of mice that were fasted overnight or fasted overnight and refed the next morning was subjected to microarray analysis. The refeeding stimulus altered the expression of genes associated with signal transduction. Specifically, expression of alpha arrestin domain containing 2 (Arrdc2) and alpha arrestin domain containing 3 (Arrdc3) was significantly lowered 70–85% by refeeding. Subsequent analysis showed that expression of these genes was also lowered 50–75% by mechanical overload, with the combination of nutrients and mechanical overload acting synergistically to lower Arrdc2 and Arrdc3 expression. On the converse, stimuli that suppress growth such as testosterone depletion or acute aerobic exercise increased Arrdc2 and Arrdc3 expression in skeletal muscle. While Arrdc2 and Arrdc3 exhibited divergent changes in expression following anabolic or catabolic stimuli, no other member of the Arrdc family of genes exhibited the consistent change in expression across the analyzed conditions. Thus, Arrdc2 and Arrdc3 are a novel set of genes that may be implicated in the regulation of skeletal muscle mass.
Collapse
Affiliation(s)
- Bradley S. Gordon
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| | - Michael L. Rossetti
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, Florida
| | - Alexey M. Eroshkin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Rancho BioSciences, San Diego, California
| |
Collapse
|
10
|
Gonçalves DA, Silveira WA, Manfredi LH, Graça FA, Armani A, Bertaggia E, O Neill BT, Lautherbach N, Machado J, Nogara L, Pereira MG, Arcidiacono D, Realdon S, Kahn CR, Sandri M, Kettelhut IC, Navegantes LCC. Insulin/IGF1 signalling mediates the effects of β 2 -adrenergic agonist on muscle proteostasis and growth. J Cachexia Sarcopenia Muscle 2019; 10:455-475. [PMID: 30932373 PMCID: PMC6463755 DOI: 10.1002/jcsm.12395] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Stimulation of β2 -adrenoceptors can promote muscle hypertrophy and fibre type shift, and it can counteract atrophy and weakness. The underlying mechanisms remain elusive. METHODS Fed wild type (WT), 2-day fasted WT, muscle-specific insulin (INS) receptor (IR) knockout (M-IR-/- ), and MKR mice were studied with regard to acute effects of the β2 -agonist formoterol (FOR) on protein metabolism and signalling events. MKR mice express a dominant negative IGF1 receptor, which blocks both INS/IGF1 signalling. All received one injection of FOR (300 μg kg-1 subcutaneously) or saline. Skeletal muscles and serum samples were analysed from 30 to 240 min. For the study of chronic effects of FOR on muscle plasticity and function as well as intracellular signalling pathways, fed WT and MKR mice were treated with formoterol (300 μg kg-1 day-1 ) for 30 days. RESULTS In fed and fasted mice, one injection of FOR inhibited autophagosome formation (LC3-II content, 65%, P ≤ 0.05) that was paralleled by an increase in serum INS levels (4-fold to 25-fold, P ≤ 0.05) and the phosphorylation of Akt (4.4-fold to 6.5-fold, P ≤ 0.05) and ERK1/2 (50% to two-fold, P ≤ 0.05). This led to the suppression (40-70%, P ≤ 0.05) of the master regulators of atrophy, FoxOs, and the mRNA levels of their target genes. FOR enhanced (41%, P ≤ 0.05) protein synthesis only in fed condition and stimulated (4.4-fold to 35-fold, P ≤ 0.05) the prosynthetic Akt/mTOR/p70S6K pathway in both fed and fasted states. FOR effects on Akt signalling during fasting were blunted in both M-IR-/- and MKR mice. Inhibition of proteolysis markers by FOR was prevented only in MKR mice. Blockade of PI3K/Akt axis and mTORC1, but not ERK1/2, in fasted mice also suppressed the acute FOR effects on proteolysis and autophagy. Chronic stimulation of β2 -adrenoceptors in fed WT mice increased body (11%, P ≤ 0.05) and muscle (15%, P ≤ 0.05) growth and downregulated atrophy-related genes (30-40%, P ≤ 0.05), but these effects were abolished in MKR mice. Increases in muscle force caused by FOR (WT, 24%, P ≤ 0.05) were only partially impaired in MKR mice (12%, P ≤ 0.05), and FOR-induced slow-to-fast fibre type shift was not blocked at all in these animals. In MKR mice, FOR also restored the lower levels of muscle SDH activity to basal WT values and caused a marked reduction (57%, P ≤ 0.05) in the number of centrally nucleated fibers. CONCLUSIONS NS/IGF1 signalling is necessary for the anti-proteolytic and hypertrophic effects of in vivo β2 -adrenergic stimulation and appears to mediate FOR-induced enhancement of protein synthesis. INS/IGF1 signalling only partially contributes to gain in strength and does not mediate fibre type transition induced by FOR.
Collapse
Affiliation(s)
- Dawit A Gonçalves
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Biochemistry/Immunology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Wilian A Silveira
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leandro H Manfredi
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávia A Graça
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andrea Armani
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Enrico Bertaggia
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Brian T O Neill
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Natalia Lautherbach
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juliano Machado
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Marcelo G Pereira
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Diletta Arcidiacono
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Stefano Realdon
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy.,Myology Center, University of Padova, Padova, Italy
| | - Isis C Kettelhut
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Biochemistry/Immunology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz Carlos C Navegantes
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
11
|
26S Proteasomes are rapidly activated by diverse hormones and physiological states that raise cAMP and cause Rpn6 phosphorylation. Proc Natl Acad Sci U S A 2019; 116:4228-4237. [PMID: 30782827 DOI: 10.1073/pnas.1809254116] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pharmacological agents that raise cAMP and activate protein kinase A (PKA) stimulate 26S proteasome activity, phosphorylation of subunit Rpn6, and intracellular degradation of misfolded proteins. We investigated whether a similar proteasome activation occurs in response to hormones and under various physiological conditions that raise cAMP. Treatment of mouse hepatocytes with glucagon, epinephrine, or forskolin stimulated Rpn6 phosphorylation and the 26S proteasomes' capacity to degrade ubiquitinated proteins and peptides. These agents promoted the selective degradation of short-lived proteins, which are misfolded and regulatory proteins, but not the bulk of cell proteins or lysosomal proteolysis. Proteasome activities and Rpn6 phosphorylation increased similarly in working hearts upon epinephrine treatment, in skeletal muscles of exercising humans, and in electrically stimulated rat muscles. In WT mouse kidney cells, but not in cells lacking PKA, treatment with antidiuretic hormone (vasopressin) stimulated within 5-minutes proteasomal activity, Rpn6 phosphorylation, and the selective degradation of short-lived cell proteins. In livers and muscles of mice fasted for 12-48 hours cAMP levels, Rpn6 phosphorylation, and proteasomal activities increased without any change in proteasomal content. Thus, in vivo cAMP-PKA-mediated proteasome activation is a common cellular response to diverse endocrine stimuli and rapidly enhances the capacity of target tissues to degrade regulatory and misfolded proteins (e.g., proteins damaged upon exercise). The increased destruction of preexistent regulatory proteins may help cells adapt their protein composition to new physiological conditions.
Collapse
|
12
|
Hypoxia impairs adaptation of skeletal muscle protein turnover- and AMPK signaling during fasting-induced muscle atrophy. PLoS One 2018; 13:e0203630. [PMID: 30212583 PMCID: PMC6136752 DOI: 10.1371/journal.pone.0203630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/23/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Hypoxemia in humans may occur during high altitude mountaineering and in patients suffering from ventilatory insufficiencies such as cardiovascular- or respiratory disease including Chronic Obstructive Pulmonary Disease (COPD). In these conditions, hypoxemia has been correlated to reduced appetite and decreased food intake. Since hypoxemia and reduced food intake intersect in various physiological and pathological conditions and both induce loss of muscle mass, we investigated whether hypoxia aggravates fasting-induced skeletal muscle atrophy and evaluated underlying protein turnover signaling. METHODS Mice were kept under hypoxic (8% oxygen) or normoxic conditions (21% oxygen), or were pair-fed to the hypoxia group for 12 days. Following an additional 24 hours of fasting, muscle weight and protein turnover signaling were assessed in the gastrocnemius muscle by RT-qPCR and Western blotting. RESULTS Loss of gastrocnemius muscle mass in response to fasting in the hypoxic group was increased compared to the normoxic group, but not to the pair-fed normoxic control group. Conversely, the fasting-induced increase in poly-ubiquitin conjugation, and expression of the ubiquitin 26S-proteasome E3 ligases, autophagy-lysosomal degradation-related mRNA transcripts and proteins, and markers of the integrated stress response (ISR), were attenuated in the hypoxia group compared to the pair-fed group. Mammalian target of rapamycin complex 1 (mTORC1) downstream signaling was reduced by fasting under normoxic conditions, but sustained under hypoxic conditions. Activation of AMP-activated protein kinase (AMPK) / tuberous sclerosis complex 2 (TSC2) signaling by fasting was absent, in line with retained mTORC1 activity under hypoxic conditions. Similarly, hypoxia suppressed AMPK-mediated glucocorticoid receptor (GR) signaling following fasting, which corresponded with blunted proteolytic signaling responses. CONCLUSIONS Hypoxia aggravates fasting-induced muscle wasting, and suppresses AMPK and ISR activation. Altered AMPK-mediated regulation of mTORC1 and GR may underlie aberrant protein turnover signaling and affect muscle atrophy responses in hypoxic skeletal muscle.
Collapse
|
13
|
Manfredi LH, Lustrino D, Machado J, Silveira WA, Zanon NM, Navegantes LC, Kettelhut IC. Adrenodemedullation activates the Ca2+-dependent proteolysis in soleus muscles from rats exposed to cold. J Appl Physiol (1985) 2017; 122:317-326. [DOI: 10.1152/japplphysiol.00198.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 09/20/2016] [Accepted: 10/04/2016] [Indexed: 01/19/2023] Open
Abstract
Previous studies have shown that catecholamines in vivo and in vitro inhibit the activity of Ca2+-dependent proteolysis in skeletal muscles under basal conditions. In the present study we sought to investigate the role of catecholamines in regulating the Ca2+-dependent proteolysis in soleus and extensor digitorum longus (EDL) muscles from rats acutely exposed to cold. Overall proteolysis, the activity of proteolytic systems, protein levels and gene expression of different components of the calpain system were investigated in rats submitted to adrenodemedullation (ADMX) and exposed to cold for 24 h. ADMX drastically reduced plasma epinephrine and promoted an additional increase in the overall proteolysis, which was already increased by cold exposure. The rise in the rate of protein degradation in soleus muscles from adrenodemedullated cold-exposed rats was caused by the high activity of the Ca2+-dependent proteolysis, which was associated with the generation of a 145-kDa cleaved α-fodrin fragment, a typical calpain substrate, and lower protein levels and mRNA expression of calpastatin, the endogenous calpain inhibitor. Unlike that observed for soleus muscles, the cold-induced muscle proteolysis in EDL was not affected by ADMX. In isolated soleus muscle, clenbuterol, a selective β2-adrenoceptor agonist, reduced the basal Ca2+-dependent proteolysis and completely abolished the activation of this pathway by the cholinergic agonist carbachol. These data suggest that catecholamines released from the adrenal medulla inhibit cold-induced protein breakdown in soleus, and this antiproteolytic effect on the Ca2+-dependent proteolytic system is apparently mediated through expression of calpastatin, which leads to suppression of calpain activation. NEW & NOTEWORTHY Although many effects of the sympathetic nervous system on muscle physiology are known, the role of catecholamines in skeletal muscle protein metabolism has been scarcely studied. We suggest that catecholamines released from adrenal medulla may be of particular importance for restraining the activation of the Ca2+-dependent proteolysis in soleus muscles during acute cold exposure. This finding helps us to understand the adaptive changes that occur in skeletal muscle protein metabolism during cold stress.
Collapse
Affiliation(s)
- L. H. Manfredi
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Federal University of Fronteira Sul (UFFS), Chapecó, Santa Catarina, Brazil; and
| | - D. Lustrino
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - J. Machado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - W. A. Silveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - N. M. Zanon
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - L. C. Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - I. C. Kettelhut
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
14
|
Przygodda F, Manfredi LH, Machado J, Gonçalves DAP, Zanon NM, Bonagamba LGH, Machado BH, Kettelhut ÍC, Navegantes LCC. Acute intermittent hypoxia in rats activates muscle proteolytic pathways through a gluccorticoid-dependent mechanism. J Appl Physiol (1985) 2016; 122:1114-1124. [PMID: 27932681 DOI: 10.1152/japplphysiol.00977.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 11/18/2016] [Accepted: 12/03/2016] [Indexed: 02/08/2023] Open
Abstract
Although it is well known that chronic hypoxia induces muscle wasting, the effects of intermittent hypoxia on skeletal muscle protein metabolism remain unclear. We hypothesized that acute intermittent hypoxia (AIH), a challenge that activates the hypothalamic-pituitary-adrenal axis, would alter muscle protein homeostasis through a glucocorticoid-dependent mechanism. Three-week-old rats were submitted to adrenalectomy (ADX) and exposed to 8 h of AIH (6% O2 for 40 s at 9-min intervals). Animals were euthanized, and the soleus and extensor digitorum longus (EDL) muscles were harvested and incubated in vitro for measurements of protein turnover. AIH increased plasma levels of corticosterone and induced insulin resistance as estimated by the insulin tolerance test and lower rates of muscle glucose oxidation and the HOMA index. In both soleus and EDL muscles, rates of overall proteolysis increased after AIH. This rise was accompanied by an increased proteolytic activities of the ubiquitin(Ub)-proteasome system (UPS) and lysosomal and Ca2+-dependent pathways. Furthermore, AIH increased Ub-protein conjugates and gene expression of atrogin-1 and MuRF-1, two key Ub-protein ligases involved in muscle atrophy. In parallel, AIH increased the mRNA expression of the autophagy-related genes LC3b and GABARAPl1. In vitro rates of protein synthesis in skeletal muscles did not differ between AIH and control rats. ADX completely blocked the insulin resistance in hypoxic rats and the AIH-induced activation of proteolytic pathways and atrogene expression in both soleus and EDL muscles. These results demonstrate that AIH induces insulin resistance in association with activation of the UPS, the autophagic-lysosomal process, and Ca2+-dependent proteolysis through a glucocorticoid-dependent mechanism.NEW & NOTEWORTHY Since hypoxia is a condition in which the body is deprived of adequate oxygen supply and muscle wasting is induced, the present work provides evidence linking hypoxia to proteolysis through a glucocorticoid-dependent mechanism. We show that the activation of proteolytic pathways, atrophy-related genes, and insulin resistance in rats exposed to acute intermittent hypoxia was abolished by surgical removal of adrenal gland. This finding will be helpful for understanding of the muscle wasting in hypoxemic conditions.
Collapse
Affiliation(s)
- Franciele Przygodda
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leandro Henrique Manfredi
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
| | - Juliano Machado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dawit A P Gonçalves
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; and
| | - Neusa M Zanon
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leni G H Bonagamba
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Benedito H Machado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ísis C Kettelhut
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; and
| | - Luiz C C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil;
| |
Collapse
|
15
|
dos Santos MP, Batistela E, Pereira MP, Paula-Gomes S, Zanon NM, Kettelhut IDC, Karatzaferi C, Andrade CMB, de França SA, Baviera AM, Kawashita NH. Higher insulin sensitivity in EDL muscle of rats fed a low-protein, high-carbohydrate diet inhibits the caspase-3 and ubiquitin-proteasome proteolytic systems but does not increase protein synthesis. J Nutr Biochem 2016; 34:89-98. [DOI: 10.1016/j.jnutbio.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 12/11/2022]
|
16
|
Gómez-SanMiguel AB, Gomez-Moreira C, Nieto-Bona MP, Fernández-Galaz C, Villanúa MÁ, Martín AI, López-Calderón A. Formoterol decreases muscle wasting as well as inflammation in the rat model of rheumatoid arthritis. Am J Physiol Endocrinol Metab 2016; 310:E925-37. [PMID: 27245339 DOI: 10.1152/ajpendo.00503.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/27/2016] [Indexed: 12/19/2022]
Abstract
Adjuvant-induced arthritis is an experimental model of rheumatoid arthritis that is associated with body weight loss and muscle wasting. β2-adrenergic receptor agonists are powerful anabolic agents that trigger skeletal muscle hypertrophy and have been proposed as a promising treatment for muscle wasting in human patients. The aim of this work was to determine whether formoterol, a selective β2-adrenoreceptor agonist, is able to ameliorate muscle wasting in arthritic rats. Arthritis was induced in male Wistar rats by intradermal injection of Freund's adjuvant. Control and arthritic rats were injected daily with 50 μg/kg sc formoterol or saline for 12 days. Body weight change, food intake, and arthritis index were analyzed. After euthanasia, in the gastrocnemius mRNA was analyzed by PCR, and proteins were analyzed by Western blotting. Arthritis decreased gastrocnemius weight, cross-sectional area, and myofiber size, whereas formoterol increased those variables in both arthritic and control rats. Formoterol decreased the external signs of arthritis as well as NF-κB(p65) activation, TNFα, and COX-2 levels in the gastrocnemius of arthritic and control rats. Those effects of formoterol were associated with a decreased expression of myostatin, atrogin-1, and MuRF1 and in LC3b lipidation. Arthritis increased the expression of MyoD, myogenin, IGF-I, and IGFBP-3 and -5 in the gastrocnemius. In control and in arthritic rats, treatment with formoterol increased Akt phosphorylation and myogenin levels, whereas it decreased IGFBP-3 expression in the gastrocnemius. These data suggest that formoterol has an anti-inflammatory effect and decreases muscle wasting in arthritic rats through increasing Akt activity and myogenin and decreasing myostatin, the p-NF-κB(p65)/TNF pathway, and IGFBP-3.
Collapse
Affiliation(s)
| | - Carolina Gomez-Moreira
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain; and
| | - María Paz Nieto-Bona
- Department of Basic Sciences in Health, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Carmen Fernández-Galaz
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain; and
| | - Maria Ángeles Villanúa
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain; and
| | - Ana Isabel Martín
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain; and
| | | |
Collapse
|
17
|
Antioxidant supplement inhibits skeletal muscle constitutive autophagy rather than fasting-induced autophagy in mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:315896. [PMID: 25028602 PMCID: PMC4084590 DOI: 10.1155/2014/315896] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/28/2014] [Accepted: 05/16/2014] [Indexed: 12/13/2022]
Abstract
In this study, we tested the hypothesis that NAC administration leads to reduced oxidative stress and thus to decreased expression of autophagy markers in young mice. Our results reveal that NAC administration results in reduced muscle mRNA levels of several autophagy markers, including Beclin-1, Atg7, LC3, Atg9, and LAMP2. However, NAC supplement fails to block the activation of skeletal muscle autophagy in response to fasting, because fasting significantly increases the mRNA level of several autophagy markers and LC3 lipidation. We further examined the effects of NAC administration on mitochondrial antioxidant capacity in fed and 24-hour fasted mice. Our results clearly show that NAC administration depresses the expression of manganese superoxide dismutase (MnSOD) and TP53-induced glycolysis and apoptosis regulator (TIGAR), both of which play a predominant antioxidant role in mitochondria by reducing ROS level. In addition, we found no beneficial effect of NAC supplement on muscle mass but it can protect from muscle loss in response to fasting. Collectively, our findings indicate that ROS is required for skeletal muscle constitutive autophagy, rather than starvation-induced autophagy, and that antioxidant NAC inhibits constitutive autophagy by the regulation of mitochondrial ROS production and antioxidant capacity.
Collapse
|