1
|
Ushakov AV. Thyroid ultrasound pattern in primary hypothyroidism is similar to Graves' disease: a report of three cases. J Med Life 2024; 17:116-122. [PMID: 38737666 PMCID: PMC11080503 DOI: 10.25122/jml-2023-0507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/01/2024] [Indexed: 05/14/2024] Open
Abstract
Ultrasound can identify important characteristics in primary hypothyroidism and diffuse hyperthyroidism (Graves' disease). Therefore, sonologists are actively investigating ultrasound criteria to differentiate between these two conditions. Nevertheless, practice shows the absence of such ultrasonic landmarks. For the first time in the literature, three cases of primary hypothyroidism have demonstrated an ultrasound pattern identical to that of Graves' disease. This pattern includes the presence of goiter, marked total hypoechogenicity of the parenchyma, significantly or moderately increased blood flow intensity ('thyroid inferno'), and elevated peak systolic velocity of the superior thyroid arteries. These signs are less common in hypothyroidism compared to hyperthyroidism. Diagnostic data suggest that the pathogeneses of primary hypothyroidism and Graves' disease share the same mechanisms, leading to similar thyroid ultrasound patterns. One of these shared mechanisms is presumably thyroid overstimulation by the autonomic nervous system, which is adequate to the body's hormonal requirements in hypothyroidism but excessive in hyperthyroidism.
Collapse
|
2
|
Case of Graves’ disease recovery. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY CASE REPORTS 2023. [DOI: 10.1016/j.jecr.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
3
|
Miyamoto K, Saiki S, Matsumoto H, Suzuki A, Yamashita Y, Iseki T, Ueno SI, Shiina K, Kataura T, Kamagata K, Imamichi Y, Sasazawa Y, Fujimaki M, Akamatsu W, Hattori N. Systemic Metabolic Alteration Dependent on the Thyroid-Liver Axis in Early PD. Ann Neurol 2023; 93:303-316. [PMID: 36128871 PMCID: PMC10092289 DOI: 10.1002/ana.26510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) is a common neurodegenerative disease characterized by initial involvement of the olfactory bulb/amygdala or autonomic nerves followed by nigral degeneration. Although autonomic innervation strictly regulates multiorgan systems, including endocrine functions, circulation, and digestion, how dysautonomia in PD affects systemic metabolism has not been identified. In this study, we tried to estimate the pathogenic linkage of PD by nuclear medicine techniques, trans-omic analysis of blood samples, and cultured cell experiments. METHODS Thyroid mediastinum ratio of 123 I-metaiodobenzylguanidine (MIBG) scintigraphy was measured in 1,158 patients with PD. Furthermore, serum exosome miRNA transcriptome analysis and plasma metabolome analysis followed by trans-omic analysis were performed in patients with de novo PD and age-matched healthy control persons. Additionally, thyroid hormone was administered to skeletal muscle and liver derived cells to evaluate the effect of hypothyroidism for these organs. RESULTS Sympathetic denervation of thyroid correlating with its cardiac denervation was confirmed in 1,158 patients with PD by MIBG scintigraphy. Among patients with drug-naïve PD, comprehensive metabolome analysis revealed decreased levels of thyroxine and insufficient fatty acid β-oxidation, which positively correlate with one another. Likewise, both plasma metabolome data and transcriptome data of circulating exosomal miRNAs, revealed specific enrichment of the peroxisome proliferator-activated receptor (PPARα) axis. Finally, association of thyroid hormone with PPARα-dependent β-oxidation regulation was confirmed by in vitro experiments. INTERPRETATION Our findings suggest that interorgan communications between the thyroid and liver are disorganized in the early stage of PD, which would be a sensitive diagnostic biomarker for PD. ANN NEUROL 2023;93:303-316.
Collapse
Affiliation(s)
- Kengo Miyamoto
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Saiki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Matsumoto
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan.,Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Saitama, Japan
| | - Ayami Suzuki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuri Yamashita
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Aging Biology in Health and Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatou Iseki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shin-Ichi Ueno
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenta Shiina
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsushi Kataura
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Imamichi
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yukiko Sasazawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Motoki Fujimaki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Kim YS, Song JH, Kim YJ, Lee KJ, Lee SH, Kim NE. Effect of the stellate ganglion block on symptoms of ulcerative colitis: A case report. Medicine (Baltimore) 2021; 100:e26684. [PMID: 34398039 PMCID: PMC8294900 DOI: 10.1097/md.0000000000026684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/07/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Chronic ulcerative colitis is an autoimmune disease in which epithelial injury continuously occurs in the colonic mucosa. While mesalazine (5-aminosalicylic acid) is used to treat ulcerative colitis, it can also cause liver failure, headaches, and abdominal pain; therefore, an alternative treatment is required. The purpose of this study was to evaluate the effectiveness of 80 stellate ganglion blocks in reducing pain and other symptoms in a patient with chronic ulcerative colitis. PATIENT CONCERNS A 54-year-old female patient with a history of ulcerative colitis was concerned with worsening symptoms, such as abdominal discomfort and bloody-mucous stools, over the past 3 years. DIAGNOSES Oozing mucosal bleeding and a small amount of exudate were observed on colonoscopy; a diagnosis of ulcerative colitis was made upon histologic examination. INTERVENTIONS AND OUTCOMES A total of 80 stellate ganglion blocks were administered, after which the patient's symptom and pain level was decreased from 6 to 4 points on the numeric rating scale (11-point, 0 = no pain, 10 = worst pain imaginable). Improved clinical signs were observed on colonoscopy at a follow-up assessment. LESSONS The stellate ganglion block may be effective for the reduction of pain and other symptoms in patients with chronic ulcerative colitis.
Collapse
|
5
|
Abdreshov SN, Demchenko GA, Mamataeva AT, Atanbaeva GK, Mankibaeva SA, Akhmetbaeva NA, Kozhaniyazova UN, Nauryzbai UB. Condition of Adrenergic Innervation Apparatus of the Thyroid Gland, Blood and Lymph Vessels, and Lymph Nodes during Correction of Hypothyrosis. Bull Exp Biol Med 2021; 171:281-285. [PMID: 34173919 DOI: 10.1007/s10517-021-05212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 11/28/2022]
Abstract
We used specific histochemical fluorescence-microscopic method of visualization of catecholamines to study adrenergic innervation of the thyroid gland tissue, blood vessels of the thyroid gland, cervical lymphatic vessel and lymph nodes in rats during correction of hypothyroidism with a bioactive formulation (Vozrozhdenie Plus balm with Potentilla alba L.). In experimental hypothyroidism, adrenergic innervation of the thyroid gland and the wall of the cervical lymph node, concentrated mainly along the arterial vessels and the cervical lymphatic vessel, retained its structural formations (plexuses and varicosities), but diffusion of catecholamines outside these formations was observed. Correction with the bioactive formulation restored of the contours of the nerve plexuses and varicosities and their brighter fluorescence in the thyroid gland and cervical lymphatic vessel and node. During correction of hypothyroidism with the bioactive formulation, reorganization of regional lymphatic vessels and nodes was more pronounced than reorganization of the thyroid gland.
Collapse
Affiliation(s)
- S N Abdreshov
- Laboratory of Physiology of the Lymphatic System, Institute of Human and Animal Physiology, Science Committee, Ministry of Education and Science, Republic of Kazakhstan, Almaty, Republic of Kazakhstan.
| | - G A Demchenko
- Laboratory of Physiology of the Lymphatic System, Institute of Human and Animal Physiology, Science Committee, Ministry of Education and Science, Republic of Kazakhstan, Almaty, Republic of Kazakhstan
| | - A T Mamataeva
- Laboratory of Physiology of the Lymphatic System, Institute of Human and Animal Physiology, Science Committee, Ministry of Education and Science, Republic of Kazakhstan, Almaty, Republic of Kazakhstan
| | - G K Atanbaeva
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - S A Mankibaeva
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - N A Akhmetbaeva
- Laboratory of Physiology of the Lymphatic System, Institute of Human and Animal Physiology, Science Committee, Ministry of Education and Science, Republic of Kazakhstan, Almaty, Republic of Kazakhstan
| | - U N Kozhaniyazova
- Laboratory of Physiology of the Lymphatic System, Institute of Human and Animal Physiology, Science Committee, Ministry of Education and Science, Republic of Kazakhstan, Almaty, Republic of Kazakhstan
| | - U B Nauryzbai
- Laboratory of Physiology of the Lymphatic System, Institute of Human and Animal Physiology, Science Committee, Ministry of Education and Science, Republic of Kazakhstan, Almaty, Republic of Kazakhstan
| |
Collapse
|
6
|
Rowe CW, Dill T, Griffin N, Jobling P, Faulkner S, Paul JW, King S, Smith R, Hondermarck H. Innervation of papillary thyroid cancer and its association with extra-thyroidal invasion. Sci Rep 2020; 10:1539. [PMID: 32001748 PMCID: PMC6992619 DOI: 10.1038/s41598-020-58425-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/13/2020] [Indexed: 12/04/2022] Open
Abstract
Nerves are emerging regulators of cancer progression and in several malignancies innervation of the tumour microenvironment is associated with tumour aggressiveness. However, the innervation of thyroid cancer is unclear. Here, we investigated the presence of nerves in thyroid cancers and the potential associations with clinicopathological parameters. Nerves were detected by immunohistochemistry using the pan-neuronal marker PGP9.5 in whole-slide sections of papillary thyroid cancer (PTC) (n = 75), compared to follicular thyroid cancer (FTC) (n = 13), and benign thyroid tissues (n = 26). Nerves were detected in most normal thyroid tissues and thyroid cancers, but nerve density was increased in PTC (12 nerves/cm2 [IQR 7–21]) compared to benign thyroid (6 nerves/cm2 [IQR: 3–10]) (p = 0.001). In contrast, no increase in nerve density was observed in FTC. In multivariate analysis, nerve density correlated positively with extrathyroidal invasion (p < 0.001), and inversely with tumour size (p < 0.001). The majority of nerves were adrenergic, although cholinergic and peptidergic innervation was detected. Perineural invasion was present in 35% of PTC, and was independently associated with extrathyroidal invasion (p = 0.008). This is the first report of infiltration of nerves into the tumour microenvironment of thyroid cancer and its association with tumour aggressiveness. The role of nerves in thyroid cancer pathogenesis should be further investigated.
Collapse
Affiliation(s)
- Christopher W Rowe
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia. .,Department of Endocrinology, John Hunter Hospital, Locked Bag 1, Newcastle, NSW, 2310, Australia. .,Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, 2305, NSW, Australia.
| | - Tony Dill
- Department of Anatomical Pathology, NSW Health Pathology (Hunter), Locked Bag 1, HMRC, Newcastle, NSW, 2310, Australia.,ACT Pathology, Canberra Health Services, ACT Government, Canberra Hospital, Canberra, ACT, Australia
| | - Nathan Griffin
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, 2305, NSW, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Phil Jobling
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Sam Faulkner
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, 2305, NSW, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jonathan W Paul
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, 2305, NSW, Australia
| | - Simon King
- Department of Anatomical Pathology, NSW Health Pathology (Hunter), Locked Bag 1, HMRC, Newcastle, NSW, 2310, Australia
| | - Roger Smith
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Department of Endocrinology, John Hunter Hospital, Locked Bag 1, Newcastle, NSW, 2310, Australia.,Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, 2305, NSW, Australia
| | - Hubert Hondermarck
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, 2305, NSW, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
7
|
Abdreshov SN, Akhmetbaeva NA, Atanbaeva GK, Mamataeva AT, Nauryzbai UB. Adrenergic Innervation of the thyroid Gland, Blood and Lymph Vessels, and Lymph Nodes in Hypothyroidism. Bull Exp Biol Med 2019; 168:295-299. [PMID: 31782006 DOI: 10.1007/s10517-019-04694-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 11/25/2022]
Abstract
Adrenergic innervation in the tissue of the thyroid gland, blood vessels of the thyroid gland, cervical lymphatic vessel, and lymph nodes in rats with hypothyroidism was studied by using a specific histochemical fluorescent-microscopic method of visualization of catecholamines. The presence of adrenergic innervation in the blood and lymph vessels and nodes was demonstrated. In hypothyroidism, diffusion of norepinephrine from nerve fibers and varicose thickenings was observed in the wall of the upper and lower thyroid arteries and adjacent cervical lymphatic vessels and nodes.
Collapse
Affiliation(s)
- S N Abdreshov
- Laboratory of Lymphatic System Physiology, Institute of Human and Animal Physiology, Ministry of Education and Science of the Republic of Kazakhstan, Nur-Sultan, Kazakhstan.
| | - N A Akhmetbaeva
- Laboratory of Lymphatic System Physiology, Institute of Human and Animal Physiology, Ministry of Education and Science of the Republic of Kazakhstan, Nur-Sultan, Kazakhstan
| | - G K Atanbaeva
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - A T Mamataeva
- Laboratory of Lymphatic System Physiology, Institute of Human and Animal Physiology, Ministry of Education and Science of the Republic of Kazakhstan, Nur-Sultan, Kazakhstan
| | - U B Nauryzbai
- Laboratory of Lymphatic System Physiology, Institute of Human and Animal Physiology, Ministry of Education and Science of the Republic of Kazakhstan, Nur-Sultan, Kazakhstan
| |
Collapse
|
8
|
TSH-independent release of thyroid hormones through cold exposure in aging rats. Oncotarget 2017; 8:89431-89438. [PMID: 29163760 PMCID: PMC5685681 DOI: 10.18632/oncotarget.19851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/26/2017] [Indexed: 01/27/2023] Open
Abstract
Thyroid function decreases and cold exposure response becomes impaired with increasing age. We investigated the age-related changes in thyroid structure and function and cold-induced changes in the thyroid activity of aging rats. Thirty-two male Sprague–Dawley rats were randomly divided into four groups (8 rats per group): young (7 months) and old (22 months) groups exposed to room temperature and cold stress. The active follicle ratio and serum free T3, T4 and TSH, and TSH receptor (TSHR) concentrations in the thyroid tissues of the rats from each group were compared. At room temperature, old rats had significantly lower active follicle ratio and free T3 and T4 concentrations than young rats. Furthermore, old rats displayed higher TSH level than young. Exposure to cold temperature led to significantly increased active colloid ratio and free T3 and T4 concentrations among old rats, but no significant differences were found among young rats. Additionally, no significant changes in the TSH and TSHR levels were observed after cold exposure in both young and old rats. Old rats have lower thyroid function than young rats under normal temperature. Aging rats are more susceptible to cold stress than young rats, and cold-induced thyroid activation occurs independently of TSH. We investigated the age-related changes in the thyroid structure and function and cold-induced changes in the thyroid activity of aging rats. Aging rats have structurally less active thyroid follicles and functionally lower thyroid hormone levels than young rats. Furthermore, old rats are more susceptible to cold stress than young rats, and cold-induced thyroid activation occurs independently of TSH.
Collapse
|
9
|
Gavrila A, Hasselgren PO, Glasgow A, Doyle AN, Lee AJ, Fox P, Gautam S, Hennessey JV, Kolodny GM, Cypess AM. Variable Cold-Induced Brown Adipose Tissue Response to Thyroid Hormone Status. Thyroid 2017; 27:1-10. [PMID: 27750020 PMCID: PMC5206686 DOI: 10.1089/thy.2015.0646] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND In addition to its role in adaptive thermogenesis, brown adipose tissue (BAT) may protect from weight gain, insulin resistance/diabetes, and metabolic syndrome. Prior studies have shown contradictory results regarding the influence of thyroid hormone (TH) levels on BAT volume and activity. The aim of this pilot study was to gain further insights regarding the effect of TH treatment on BAT function in adult humans by evaluating the BAT mass and activity prospectively in six patients, first in the hypothyroid and then in the thyrotoxic phase. METHODS The study subjects underwent 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) scanning after cold exposure to measure BAT mass and activity while undergoing treatment for differentiated thyroid cancer, first while hypothyroid following TH withdrawal at the time of the radioactive iodine treatment and then three to six months after starting TH suppressive treatment when they were iatrogenically thyrotoxic. Thermogenic and metabolic parameters were measured in both phases. RESULTS All study subjects had detectable BAT under cold stimulation in both the hypothyroid and thyrotoxic state. The majority but not all (4/6) subjects showed an increase in detectable BAT volume and activity under cold stimulation between the hypothyroid and thyrotoxic phase (total BAT volume: 72.0 ± 21.0 vs. 87.7 ± 16.5 mL, p = 0.25; total BAT activity 158.1 ± 72.8 vs. 189.0 ± 55.5 SUV*g/mL, p = 0.34). Importantly, circulating triiodothyronine was a stronger predictor of energy expenditure changes compared with cold-induced BAT activity. CONCLUSIONS Iatrogenic hypothyroidism lasting two to four weeks does not prevent cold-induced BAT activation, while the use of TH to induce thyrotoxicosis does not consistently increase cold-induced BAT activity. It remains to be determined which physiological factors besides TH play a role in regulating BAT function.
Collapse
Affiliation(s)
- Alina Gavrila
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Per-Olof Hasselgren
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Allison Glasgow
- Harvard Catalyst Clinical Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Ashley N. Doyle
- Harvard Catalyst Clinical Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Alice J. Lee
- Harvard Catalyst Clinical Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Peter Fox
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Shiva Gautam
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - James V. Hennessey
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Gerald M. Kolodny
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Aaron M. Cypess
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Khan MA, Fenton SE, Swank AE, Hester SD, Williams A, Wolf DC. A Mixture of Ammonium Perchlorate and Sodium Chlorate Enhances Alterations of the Pitutary-Thyroid Axis Caused by the Individual Chemicals in Adult Male F344 Rats. Toxicol Pathol 2016; 33:776-83. [PMID: 16392172 DOI: 10.1080/01926230500449832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ammonium perchlorate (AP) and sodium chlorate (SC) have been detected in public drinking water supplies in many parts of the United States. These chemicals cause perturbations in pituitary-thyroid homeostasis in animals by competitively inhibiting iodide uptake, thus hindering the synthesis of thyroglobulin and reducing circulating T4 (thyroxine). Little is known about the short-term exposure effects of mixtures of perchlorate and chlorate. The present study investigated the potential for the response to a mixture of these chemicals on the pituitary-thyroid axis in rats to be greater than that induced by the individual chemicals. Adult male F-344 rats were exposed, via their drinking water, to the nominal concentrations of 0.1, 1.0, 10 mg/L AP or 10, 100, 1000 mg/L SC and their mixtures for 7 days. Serum T4 levels were significantly ( p < 0.05) reduced in rats following exposure to the mixtures, but not after exposure to the individual chemicals. Serum T3 (triiodothyronine) was not altered by treatment and TSH (thyroid stimulating hormone) was only increased after the high-dose chlorate treatment. Histological examination of the thyroid gland showed colloid depletion and hypertrophy of follicular epithelial cells in high-dose single chemical and all mixture-treated rats, while hyperplasia was observed only in some of the rats treated with mixtures (AP 10 + SC 100, AP 0.1 + SC 1000, and AP 10 + SC 1000 mg/L). These data suggest that short-term exposure to the mixture of AP and SC enhances the effect of either chemical alone on the pituitary-thyroid axis in rats.
Collapse
Affiliation(s)
- Moazzam A Khan
- National Research Council, Environmental Carcinogenesis Divisions, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
11
|
Bartness TJ, Liu Y, Shrestha YB, Ryu V. Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol 2014; 35:473-93. [PMID: 24736043 PMCID: PMC4175185 DOI: 10.1016/j.yfrne.2014.04.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/10/2014] [Accepted: 04/04/2014] [Indexed: 01/22/2023]
Abstract
White adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS) and its activation is necessary for lipolysis. WAT parasympathetic innervation is not supported. Fully-executed SNS-norepinephrine (NE)-mediated WAT lipolysis is dependent on β-adrenoceptor stimulation ultimately hinging on hormone sensitive lipase and perilipin A phosphorylation. WAT sympathetic drive is appropriately measured electrophysiologically and neurochemically (NE turnover) in non-human animals and this drive is fat pad-specific preventing generalizations among WAT depots and non-WAT organs. Leptin-triggered SNS-mediated lipolysis is weakly supported, whereas insulin or adenosine inhibition of SNS/NE-mediated lipolysis is strongly supported. In addition to lipolysis control, increases or decreases in WAT SNS drive/NE inhibit and stimulate white adipocyte proliferation, respectively. WAT sensory nerves are of spinal-origin and sensitive to local leptin and increases in sympathetic drive, the latter implicating lipolysis. Transsynaptic viral tract tracers revealed WAT central sympathetic and sensory circuits including SNS-sensory feedback loops that may control lipolysis.
Collapse
Affiliation(s)
- Timothy J Bartness
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA.
| | - Yang Liu
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA; Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yogendra B Shrestha
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vitaly Ryu
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA; Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Origins and neurochemical complexity of preganglionic neurons supplying the superior cervical ganglion in the domestic pig. J Mol Neurosci 2014; 55:297-304. [PMID: 24854048 PMCID: PMC4303702 DOI: 10.1007/s12031-014-0321-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/29/2014] [Indexed: 12/30/2022]
Abstract
The superior cervical ganglion (SCG) is a center of sympathetic innervation of all head and neck organs. SCG sympathetic preganglionic neurons (SPN) were found in the nucleus intermediolateralis pars principalis (IMLpp), the nucleus intermediolateralis pars funicularis (IMLpf), the nucleus intercalatus spinalis (IC), and the nucleus intercalatus spinalis pars paraependymalis (ICpe). Despite its importance, little is known of SCG innervation and chemical coding in the laboratory pig, a model that is physiologically and anatomically representative of humans. Here in our study, we established the distribution and chemical coding of Fast Blue (FB) retrogradely labelled SPN innervating porcine SCG. After unilateral injection of FB retrograde tracer into the left SCG, labeled neurons were found solely on the ipsilateral side with approximately 98 % located in Th1–Th3 segments and predominantly distributed in the IMLpp and IMLpf. Neurochemical analysis revealed that approximately 80 % of SPN were positive both to choline acetyltransferase (ChAT) and nitric oxide synthase (NOS) and were surrounded by a plethora of opioidergic and peptiergic nerve terminals. The results of our study provide a detailed description of the porcine preganglionic neuroarchitecture of neurons controlling the SCG, setting the stage for further studies concerning SPN plasticity under experimental/pathological conditions.
Collapse
|
13
|
Colin IM, Denef JF, Lengelé B, Many MC, Gérard AC. Recent insights into the cell biology of thyroid angiofollicular units. Endocr Rev 2013; 34:209-38. [PMID: 23349248 PMCID: PMC3610675 DOI: 10.1210/er.2012-1015] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 11/07/2012] [Indexed: 01/06/2023]
Abstract
In thyrocytes, cell polarity is of crucial importance for proper thyroid function. Many intrinsic mechanisms of self-regulation control how the key players involved in thyroid hormone (TH) biosynthesis interact in apical microvilli, so that hazardous biochemical processes may occur without detriment to the cell. In some pathological conditions, this enzymatic complex is disrupted, with some components abnormally activated into the cytoplasm, which can lead to further morphological and functional breakdown. When iodine intake is altered, autoregulatory mechanisms outside the thyrocytes are activated. They involve adjacent capillaries that, together with thyrocytes, form the angiofollicular units (AFUs) that can be considered as the functional and morphological units of the thyroid. In response to iodine shortage, a rapid expansion of the microvasculature occurs, which, in addition to nutrients and oxygen, optimizes iodide supply. These changes are triggered by angiogenic signals released from thyrocytes via a reactive oxygen species/hypoxia-inducible factor/vascular endothelial growth factor pathway. When intra- and extrathyrocyte autoregulation fails, other forms of adaptation arise, such as euthyroid goiters. From onset, goiters are morphologically and functionally heterogeneous due to the polyclonal nature of the cells, with nodules distributed around areas of quiescent AFUs containing globules of compact thyroglobulin (Tg) and surrounded by a hypotrophic microvasculature. Upon TSH stimulation, quiescent AFUs are activated with Tg globules undergoing fragmentation into soluble Tg, proteins involved in TH biosynthesis being expressed and the local microvascular network extending. Over time and depending on physiological needs, AFUs may undergo repetitive phases of high, moderate, or low cell and tissue activity, which may ultimately culminate in multinodular goiters.
Collapse
Affiliation(s)
- Ides M Colin
- Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique, Secteur des Sciences de la Santé, Université Catholique de Louvain (UCL), UCL-5251, 52 Avenue E. Mounier, B-1200, Bruxelles, Belgium.
| | | | | | | | | |
Collapse
|
14
|
Engeland WC. Sensitization of endocrine organs to anterior pituitary hormones by the autonomic nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2013; 117:37-44. [DOI: 10.1016/b978-0-444-53491-0.00004-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
15
|
Physiopathological changes related to the use of ractopamine in swine: Clinical and pathological investigations. Livest Sci 2012. [DOI: 10.1016/j.livsci.2011.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Fliers E, Klieverik LP, Kalsbeek A. Novel neural pathways for metabolic effects of thyroid hormone. Trends Endocrinol Metab 2010; 21:230-6. [PMID: 20005733 DOI: 10.1016/j.tem.2009.11.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 11/29/2022]
Abstract
The relation between thyrotoxicosis, the clinical syndrome resulting from exposure to excessive thyroid hormone concentrations, and the sympathetic nervous system remains enigmatic. Nevertheless, beta-adrenergic blockers are widely used to manage severe thyrotoxicosis. Recent experiments show that the effects of thyrotoxicosis on hepatic glucose production and insulin sensitivity can be modulated by selective hepatic sympathetic and parasympathetic denervation. Indeed, thyroid hormone stimulates hepatic glucose production via a sympathetic pathway, a novel central pathway for thyroid hormone action. Rodent studies suggest that similar neural routes exist for thyroid hormone analogues (e.g. thyronamines). Further elucidation of central effects of thyroid hormone on autonomic outflow to metabolic organs, including the thyroid and brown adipose tissue, will add to our understanding of hyperthyroidism.
Collapse
Affiliation(s)
- Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
17
|
Goldenberg D, Zagon IS, Fedok F, Crist HS, McLaughlin PJ. Expression of opioid growth factor (OGF)-OGF receptor (OGFr) axis in human nonmedullary thyroid cancer. Thyroid 2008; 18:1165-70. [PMID: 19014324 DOI: 10.1089/thy.2008.0112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although thyroid cancers are readily treatable with surgery and radioactive iodine, there are problems in managing recurring, as well as locally advanced, thyroid cancer. The opioid growth factor (OGF) and its receptor, OGF receptor (OGFr), form a tonically active, autocrine-paracrine loop that serves to inhibit cell proliferation in a wide variety of normal and abnormal cells and tissues. In the present study we examined the presence and distribution of OGF and OGFr in nonmedullary thyroid cancer, including papillary, follicular, and anaplastic, as well as thyroid tissue from patients with nonmalignant disease. METHODS Patient samples of thyroid cancers and goiter were collected at the time of resection and processed for immunohistochemistry of OGF and OGFr, as well as pharmacological binding assays for OGFr. RESULTS Both peptide and receptor were detected in the cytoplasm and nucleus of all nonmedullary thyroid cancers, as well as in goiter. Specific and saturable binding of OGFr was found in all thyroid samples. CONCLUSIONS The finding that a potent negative growth regulator and its receptor are present in nonmedullary thyroid cancers and thyroid tissues from patients with nonmalignant disease lead us to suggest that the OGF-OGFr axis serves as a regulator of cell proliferation in these tissues. Moreover, modulation of this biological system may be used to treat progression of nonmedullary thyroid neoplasias.
Collapse
Affiliation(s)
- David Goldenberg
- Division of Otolaryngology, Department of Surgery, H091, College of Medicine, The Penn State University, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | |
Collapse
|
18
|
Abstract
The sympathoadrenal system, including the sympathetic nervous system and the adrenal medulla, interacts with thyroid hormone (TH) at various levels. Both systems are evolutionary old and regulate independent functions, playing probably independent roles in poikilothermic species. With the advent of homeothermy, TH acquired a new role, which is to stimulate thermogenic mechanisms and synergize with the sympathoadrenal system to produce heat and maintain body temperature. An important part of this new function is mediated through coordinated and, most of the time, synergistic interactions with the sympathoadrenal system. Catecholamines can in turn activate TH in a tissue-specific manner, most notably in brown adipose tissue. Such interactions are of great adaptive value in cold adaptation and in states needing high-energy output. Conversely, in states of emergency where energy demand should be reduced, such as disease and starvation, both systems are turned down. In pathological states, where one of the systems is fixed at a high or a low level, coordination is lost with disruption of the physiology and development of symptoms. Exaggerated responses to catecholamines dominate the manifestations of thyrotoxicosis, while hypothyroidism is characterized by a narrowing of adaptive responses (e.g., thermogenic, cardiovascular, and lipolytic). Finally, emerging results suggest the possibility that disrupted interactions between the two systems contribute to explain metabolic variability, for example, fuel efficiency, energy expenditure, and lipolytic responses.
Collapse
Affiliation(s)
- J Enrique Silva
- Baystate Medical Center, Tufts University Medical School, Springfield, Massachusetts 01199, USA.
| | | |
Collapse
|
19
|
McGowan BM, Stanley SA, Smith KL, Minnion JS, Donovan J, Thompson EL, Patterson M, Connolly MM, Abbott CR, Small CJ, Gardiner JV, Ghatei MA, Bloom SR. Effects of acute and chronic relaxin-3 on food intake and energy expenditure in rats. ACTA ACUST UNITED AC 2006; 136:72-7. [PMID: 16764952 DOI: 10.1016/j.regpep.2006.04.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 03/31/2006] [Accepted: 04/28/2006] [Indexed: 11/20/2022]
Abstract
The effects of acute and repeated intraparaventricular (iPVN) administration of human relaxin-3 (H3) were examined on food intake, energy expenditure, and the hypothalamo-pituitary thyroid axis in male Wistar rats. An acute high dose iPVN injection of H3 significantly increased food intake 1 h post-administration [0.4+/-0.1 g (vehicle) vs 1.6+/-0.5 g (180 pmol H3), 2.4+/-0.5 g (540 pmol H3) and 2.2+/-0.5 g (1,620 pmol H3), p<0.05 for all doses vs vehicle]. Repeated iPVN H3 injection (180 pmol/twice a day for 7 days) significantly increased cumulative food intake in ad libitum fed animals compared with vehicle [211.8+/-7.1 g (vehicle) vs 261.6+/-6.7 g (ad libitum fed H3), p<0.05]. Plasma leptin was increased in the H3 ad libitum fed group. Plasma thyroid stimulating hormone was significantly decreased after acute and repeated administration of H3. These data suggest H3 may play a role in long-term control of food intake.
Collapse
Affiliation(s)
- B M McGowan
- Department of Metabolic Medicine, Faculty of Medicine, Imperial College, Hammersmith Campus, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|