1
|
Horakova O, Janovska P, Irodenko I, Buresova J, van der Stelt I, Stanic S, Haasova E, Shekhar N, Kobets T, Keijer J, Zouhar P, Rossmeisl M, Kopecky J, Bardova K. Postnatal surge of adipose-secreted leptin is a robust predictor of fat mass trajectory in mice. Am J Physiol Endocrinol Metab 2024; 327:E729-E745. [PMID: 39441238 DOI: 10.1152/ajpendo.00237.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
The transient postnatal increase in circulating leptin levels, known as leptin surge, may increase later susceptibility to diet-induced obesity in rodents. However, the source of leptin during the surge needs to be better characterized, and the long-term effects of leptin are contradictory. Characterization of the interaction of leptin with the genetic background, sex, and other factors is required. Here, we focused on the impact of circulating leptin levels and several related variables, measured in 2- and 4-wk-old i) obesity-prone C57BL/6 (B6) and ii) obesity-resistant A/J mice. In total, 264 mice of both sexes were used. Posttranscriptionally controlled leptin secretion from subcutaneous white adipose tissue, the largest adipose tissue depot in mice pups, was the primary determinant of plasma leptin levels. When the animals were randomly assigned standard chow or high-fat diet (HFD) between 12 and 24 wk of age, the obesogenic effect of HFD feeding was observed in B6 but not A/J mice. Only leptin levels at 2 wk, i.e., close to the maximum in the postnatal leptin surge, correlated with both body weight (BW) trajectory throughout the life and adiposity of the 24-wk-old mice. Leptin surge explained 13 and 7% of the variance in BW and adiposity of B6 mice, and 9 and 35% of the variance in these parameters in A/J mice, with a minor role of sex. Our results prove the positive correlation between the leptin surge and adiposity in adulthood, reflecting the fundamental biological role of leptin. This role could be compromised in subjects with obesity.NEW & NOTEWORTHY The postnatal surge in circulating leptin levels in mice reflects particularly posttranscriptionally controlled release of this hormone from subcutaneous white adipose tissue. Leptinemia in 2-wk-old pups predicts both body weight and adiposity in adult mice fed a high-fat diet. The extent of these effects depends on genetically determined differences in propensity to obesity between C57BL/6 and A/J mice. The leptin effect on adiposity is compromised in the obesity-prone C57BL/6 mice.
Collapse
Affiliation(s)
- Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ilaria Irodenko
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Buresova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Inge van der Stelt
- Department of Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Sara Stanic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Eliska Haasova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nivasini Shekhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tatyana Kobets
- Metabolomics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaap Keijer
- Department of Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Estrada-Meza J, Videlo J, Bron C, Duchampt A, Saint-Béat C, Zergane M, Silva M, Rajas F, Bouret SG, Mithieux G, Gautier-Stein A. Intestinal gluconeogenesis controls the neonatal development of hypothalamic feeding circuits. Mol Metab 2024; 89:102036. [PMID: 39304064 PMCID: PMC11470480 DOI: 10.1016/j.molmet.2024.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVE Intestinal gluconeogenesis (IGN) regulates adult energy homeostasis in part by controlling the same hypothalamic targets as leptin. In neonates, leptin exhibits a neonatal surge controlling axonal outgrowth between the different hypothalamic nuclei involved in feeding circuits and autonomic innervation of peripheral tissues involved in energy and glucose homeostasis. Interestingly, IGN is induced during this specific time-window. We hypothesized that the neonatal pic of IGN also regulates the development of hypothalamic feeding circuits and sympathetic innervation of adipose tissues. METHODS We genetically induced neonatal IGN by overexpressing G6pc1 the catalytic subunit of glucose-6-phosphatase (the mandatory enzyme of IGN) at birth or at twelve days after birth. The neonatal development of hypothalamic feeding circuits was studied by measuring Agouti-related protein (AgRP) and Pro-opiomelanocortin (POMC) fiber density in hypothalamic nuclei of 20-day-old pups. The effect of the neonatal induction of intestinal G6pc1 on sympathetic innervation of the adipose tissues was studied via tyrosine hydroxylase (TH) quantification. The metabolic consequences of the neonatal induction of intestinal G6pc1 were studied in adult mice challenged with a high-fat/high-sucrose (HFHS) diet for 2 months. RESULTS Induction of intestinal G6pc1 at birth caused a neonatal reorganization of AgRP and POMC fiber density in the paraventricular nucleus of the hypothalamus, increased brown adipose tissue tyrosine hydroxylase levels, and protected against high-fat feeding-induced metabolic disorders. In contrast, inducing intestinal G6pc1 12 days after birth did not impact AgRP/POMC fiber densities, adipose tissue innervation or adult metabolism. CONCLUSION These findings reveal that IGN at birth but not later during postnatal life controls the development of hypothalamic feeding circuits and sympathetic innervation of adipose tissues, promoting a better management of metabolism in adulthood.
Collapse
Affiliation(s)
| | - Jasmine Videlo
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Clara Bron
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Adeline Duchampt
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Mickael Zergane
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Marine Silva
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Fabienne Rajas
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Sebastien G Bouret
- University Lille, Inserm, CHU Lille, Laboratory of development and plasticity of the Neuroendocrine brain, Lille Neuroscience & Cognition, Inserm UMR-S1172, Lille, France
| | - Gilles Mithieux
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | | |
Collapse
|
3
|
Hu L, Zhang G, Tong X, Wang L, Qiu X, Yang H, Liu X, Huang H. Characterization of a novel adipose tissue located between abdominal lymph nodes and cervix/prostate in mice. Am J Physiol Endocrinol Metab 2024; 327:E134-E144. [PMID: 38747899 DOI: 10.1152/ajpendo.00110.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 07/18/2024]
Abstract
Perigonadal adipose tissue is a homogeneous white adipose tissue (WAT) in adult male mice without any brown adipose tissue (BAT). However, there are congenital differences in the gonads between male and female mice. Whether heterogeneity existed in perigonadal adipose tissues (ATs) in female mice remains unknown. This study reported a perigonadal brown-like AT located between abdominal lymph nodes and the uterine cervix in female mice, termed lymph node-cervical adipose tissue (LNCAT). Its counterpart, lymph node-prostatic adipose tissue (LNPAT), exhibited white phenotype in adult virgin male mice. When exposed to cold, LNCAT/LNPAT increased uncoupling protein 1 (UCP1) expression via activation of tyrosine hydroxylase (TH), in which abdominal lymph nodes were involved. Interestingly, the UCP1 expression in LNCAT/LNPAT varied under different reproductive stages. The UCP1 expression in LNCAT was upregulated at early pregnancy, declined at midlate pregnancy, and reverted in weaning dams. Mating behavior stimulated LNPAT browning in male mice. We found that androgen but not estrogen or progesterone inhibited UCP1 expression in LNCAT. Androgen administration reversed the castration-induced LNPAT browning. Our results identified a perigonadal brown-like AT in female mice and characterized its UCP1 expression patterns under various conditions.NEW & NOTEWORTHY A novel perigonadal brown-like AT (LNCAT) of female mice was identified. Abdominal lymph nodes were involved in cold-induced browning in this newly discovered adipose tissue. The UCP1 expression in LNCAT/LNPAT was also related to ages, sexes, and reproductive stages, in which androgen acted as an inhibitor role.
Collapse
Affiliation(s)
- Lihao Hu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, People's Republic of China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Gaochen Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, People's Republic of China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Xiaoyu Tong
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, People's Republic of China
| | - Lulu Wang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, People's Republic of China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Xiang Qiu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, People's Republic of China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Hongbo Yang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, People's Republic of China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Xinmei Liu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, People's Republic of China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, People's Republic of China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Yuan Y, Hu R, Park J, Xiong S, Wang Z, Qian Y, Shi Z, Wu R, Han Z, Ong SG, Lin S, Varady KA, Xu P, Berry DC, Shu G, Jiang Y. Macrophage-derived chemokine CCL22 establishes local LN-mediated adaptive thermogenesis and energy expenditure. SCIENCE ADVANCES 2024; 10:eadn5229. [PMID: 38924414 PMCID: PMC11204298 DOI: 10.1126/sciadv.adn5229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
There is a regional preference around lymph nodes (LNs) for adipose beiging. Here, we show that local LN removal within inguinal white adipose tissue (iWAT) greatly impairs cold-induced beiging, and this impairment can be restored by injecting M2 macrophages or macrophage-derived C-C motif chemokine (CCL22) into iWAT. CCL22 injection into iWAT effectively promotes iWAT beiging, while blocking CCL22 with antibodies can prevent it. Mechanistically, the CCL22 receptor, C-C motif chemokine receptor 4 (CCR4), within eosinophils and its downstream focal adhesion kinase/p65/interleukin-4 signaling are essential for CCL22-mediated beige adipocyte formation. Moreover, CCL22 levels are inversely correlated with body weight and fat mass in mice and humans. Acute elevation of CCL22 levels effectively prevents diet-induced body weight and fat gain by enhancing adipose beiging. Together, our data identify the CCL22-CCR4 axis as an essential mediator for LN-controlled adaptive thermogenesis and highlight its potential to combat obesity and its associated complications.
Collapse
Affiliation(s)
- Yexian Yuan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruoci Hu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jooman Park
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shaolei Xiong
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zilai Wang
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yanyu Qian
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zuoxiao Shi
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ruifan Wu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenbo Han
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shuhao Lin
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Krista A. Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Miles TK, Allensworth-James ML, Odle AK, Silva Moreira AR, Haney AC, LaGasse AN, Gies AJ, Byrum SD, Riojas AM, MacNicol MC, MacNicol AM, Childs GV. Maternal undernutrition results in transcript changes in male offspring that may promote resistance to high fat diet induced weight gain. Front Endocrinol (Lausanne) 2024; 14:1332959. [PMID: 38720938 PMCID: PMC11077627 DOI: 10.3389/fendo.2023.1332959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 05/12/2024] Open
Abstract
Maternal nutrition during embryonic development and lactation influences multiple aspects of offspring health. Using mice, this study investigates the effects of maternal caloric restriction (CR) during mid-gestation and lactation on offspring neonatal development and on adult metabolic function when challenged by a high fat diet (HFD). The CR maternal model produced male and female offspring that were significantly smaller, in terms of weight and length, and females had delayed puberty. Adult offspring born to CR dams had a sexually dimorphic response to the high fat diet. Compared to offspring of maternal control dams, adult female, but not male, CR offspring gained more weight in response to high fat diet at 10 weeks. In adipose tissue of male HFD offspring, maternal undernutrition resulted in blunted expression of genes associated with weight gain and increased expression of genes that protect against weight gain. Regardless of maternal nutrition status, HFD male offspring showed increased expression of genes associated with progression toward nonalcoholic fatty liver disease (NAFLD). Furthermore, we observed significant, sexually dimorphic differences in serum TSH. These data reveal tissue- and sex-specific changes in gene and hormone regulation following mild maternal undernutrition, which may offer protection against diet induced weight gain in adult male offspring.
Collapse
Affiliation(s)
- Tiffany K. Miles
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Melody L. Allensworth-James
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Angela K. Odle
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ana Rita Silva Moreira
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Anessa C. Haney
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Alex N. LaGasse
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Allen J. Gies
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Stephanie D. Byrum
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Angelica M. Riojas
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Melanie C. MacNicol
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Angus M. MacNicol
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Gwen V. Childs
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
6
|
Page L, Younge N, Freemark M. Hormonal Determinants of Growth and Weight Gain in the Human Fetus and Preterm Infant. Nutrients 2023; 15:4041. [PMID: 37764824 PMCID: PMC10537367 DOI: 10.3390/nu15184041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The factors controlling linear growth and weight gain in the human fetus and newborn infant are poorly understood. We review here the changes in linear growth, weight gain, lean body mass, and fat mass during mid- and late gestation and the early postnatal period in the context of changes in the secretion and action of maternal, placental, fetal, and neonatal hormones, growth factors, and adipocytokines. We assess the effects of hormonal determinants on placental nutrient delivery and the impact of preterm delivery on hormone expression and postnatal growth and metabolic function. We then discuss the effects of various maternal disorders and nutritional and pharmacologic interventions on fetal and perinatal hormone and growth factor production, growth, and fat deposition and consider important unresolved questions in the field.
Collapse
Affiliation(s)
- Laura Page
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Noelle Younge
- Neonatology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Michael Freemark
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC 27710, USA;
- The Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
7
|
Donato J. Programming of metabolism by adipokines during development. Nat Rev Endocrinol 2023:10.1038/s41574-023-00828-1. [PMID: 37055548 DOI: 10.1038/s41574-023-00828-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/15/2023]
Abstract
The intrauterine and early postnatal periods represent key developmental stages in which an organism is highly susceptible to being permanently influenced by maternal factors and nutritional status. Strong evidence indicates that either undernutrition or overnutrition during development can predispose individuals to disease later in life, especially type 2 diabetes mellitus and obesity, a concept known as metabolic programming. Adipose tissue produces important signalling molecules that control energy and glucose homeostasis, including leptin and adiponectin. In addition to their well-characterized metabolic effects in adults, adipokines have been associated with metabolic programming by affecting different aspects of development. Therefore, alterations in the secretion or signalling of adipokines, caused by nutritional insults in early life, might lead to metabolic diseases in adulthood. This Review summarizes and discusses the potential role of several adipokines in inducing metabolic programming through their effects during development. The identification of the endocrine factors that act in early life to permanently influence metabolism represents a key step in understanding the mechanisms behind metabolic programming. Thus, future strategies aiming to prevent and treat these metabolic diseases can be designed, taking into consideration the relationship between adipokines and the developmental origins of health and disease.
Collapse
Affiliation(s)
- Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Varshney R, Das S, Trahan GD, Farriester JW, Mullen GP, Kyere-Davies G, Presby DM, Houck JA, Webb PG, Dzieciatkowska M, Jones KL, Rodeheffer MS, Friedman JE, MacLean PS, Rudolph MC. Neonatal intake of Omega-3 fatty acids enhances lipid oxidation in adipocyte precursors. iScience 2023; 26:105750. [PMID: 36590177 PMCID: PMC9800552 DOI: 10.1016/j.isci.2022.105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Establishing metabolic programming begins during fetal and postnatal development, and early-life lipid exposures play a critical role during neonatal adipogenesis. We define how neonatal consumption of a low omega-6 to -3 fatty acid ratio (n6/n3 FA ratio) establishes FA oxidation in adipocyte precursor cells (APCs) before they become adipocytes. In vivo, APCs isolated from mouse pups exposed to the low n6/n3 FA ratio had superior FA oxidation capacity, elevated beige adipocyte mRNAs Ppargc1α, Ucp2, and Runx1, and increased nuclear receptor NR2F2 protein. In vitro, APC treatment with NR2F2 ligand-induced beige adipocyte mRNAs and increased mitochondrial potential but not mass. Single-cell RNA-sequencing analysis revealed low n6/n3 FA ratio yielded more mitochondrial-high APCs and linked APC NR2F2 levels with beige adipocyte signatures and FA oxidation. Establishing beige adipogenesis is of clinical relevance, because fat depots with energetically active, smaller, and more numerous adipocytes improve metabolism and delay metabolic dysfunction.
Collapse
Affiliation(s)
- Rohan Varshney
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Snehasis Das
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - G. Devon Trahan
- Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob W. Farriester
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gregory P. Mullen
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gertrude Kyere-Davies
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David M. Presby
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Julie A. Houck
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Patricia G. Webb
- Department of Reproductive Science, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Kenneth L. Jones
- Department of Cell Biology and Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Matthew S. Rodeheffer
- Department of Molecular, Cellular and Developmental Biology, Department of Comparative Medicine, Yale University, New Haven, CT, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Paul S. MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Michael C. Rudolph
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
9
|
Xie H, Liu X, Zhou Q, Huang T, Zhang L, Gao J, Wang Y, Liu Y, Yan T, Zhang S, Wang CY. DNA Methylation Modulates Aging Process in Adipocytes. Aging Dis 2022; 13:433-446. [PMID: 35371604 PMCID: PMC8947842 DOI: 10.14336/ad.2021.0904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
Aging has been recognized to be a highly complex biological health problem with a high risk of chronic diseases, including type 2 diabetes, atherosclerosis, chronic bronchitis or emphysema, cancer and Alzheimer's disease. Particularly, age-related turnover in adipose tissue is a major contributor to metabolic syndromes and shortened lifespan. Adipocytes undergo senescence in early stage, which results in adipose tissue metabolic dysfunction, redistribution, and inflammation. The well-established association between DNA methylation (DNAm) and aging has been observed in the past few decades. Indeed, age-related alteration in DNAm is highly tissue-specific. This review intends to summarize the advancements how DNAm changes coupled with aging process in adipose tissue, by which DNAm regulates cellular senescence, metabolic function, adipokine secretion and beiging process in adipocytes. Elucidation of the effect of DNAm on adipose aging would have great potential to the development of epigenetic therapeutic strategies against aging-related diseases in clinical settings.
Collapse
Affiliation(s)
- Hao Xie
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xin Liu
- Department of Interventional Radiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qing Zhou
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Teng Huang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jia Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuhan Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yanjun Liu
- The Center for Obesity and Metabolic Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Sichuan, China.,The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu & The affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China.
| | - Tong Yan
- The Center for Obesity and Metabolic Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Sichuan, China.
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Correspondence should be addressed to: Drs. Cong-Yi Wang () or Shu Zhang (), the Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Correspondence should be addressed to: Drs. Cong-Yi Wang () or Shu Zhang (), the Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Li F, Wang S, Cui X, Jing J, Yu L, Xue B, Shi H. Adipocyte Utx Deficiency Promotes High-Fat Diet-Induced Metabolic Dysfunction in Mice. Cells 2022; 11:181. [PMID: 35053297 PMCID: PMC8773702 DOI: 10.3390/cells11020181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
While the main function of white adipose tissue (WAT) is to store surplus of energy as triacylglycerol, that of brown adipose tissue (BAT) is to burn energy as heat. Epigenetic mechanisms participate prominently in both WAT and BAT energy metabolism. We previously reported that the histone demethylase ubiquitously transcribed tetratricopeptide (Utx) is a positive regulator of brown adipocyte thermogenesis. Here, we aimed to investigate whether Utx also regulates WAT metabolism in vivo. We generated a mouse model with Utx deficiency in adipocytes (AUTXKO). AUTXKO animals fed a chow diet had higher body weight, more fat mass and impaired glucose tolerance. AUTXKO mice also exhibited cold intolerance with an impaired brown fat thermogenic program. When challenged with high-fat diet (HFD), AUTXKO mice displayed adipose dysfunction featured by suppressed lipogenic pathways, exacerbated inflammation and fibrosis with less fat storage in adipose tissues and more lipid storage in the liver; as a result, AUTXKO mice showed a disturbance in whole body glucose homeostasis and hepatic steatosis. Our data demonstrate that Utx deficiency in adipocytes limits adipose tissue expansion under HFD challenge and induces metabolic dysfunction via adipose tissue remodeling. We conclude that adipocyte Utx is a key regulator of systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Fenfen Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (S.W.); (X.C.); (J.J.)
| | - Shirong Wang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (S.W.); (X.C.); (J.J.)
| | - Xin Cui
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (S.W.); (X.C.); (J.J.)
| | - Jia Jing
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (S.W.); (X.C.); (J.J.)
| | - Liqing Yu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (S.W.); (X.C.); (J.J.)
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (S.W.); (X.C.); (J.J.)
| |
Collapse
|
11
|
The postnatal leptin surge in mice is variable in both time and intensity and reflects nutritional status. Int J Obes (Lond) 2022; 46:39-49. [PMID: 34475504 PMCID: PMC8748198 DOI: 10.1038/s41366-021-00957-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES The murine postnatal leptin surge occurs within the first 4 weeks of life and is critical for neuronal projection development within hypothalamic feeding circuits. Here we describe the influence of nutritional status on the timing and magnitude of the postnatal leptin surge in mice. METHODS Plasma leptin concentrations were measured 1-3 times per week for the first 4 weeks of life in C57BL/6J pups reared in litters adjusted to 3 (small), 7-8 (normal), or 11-12 (large) pups per dam fed breeder chow or raised in litters of 7-8 by dams fed high-fat diet (HFD) ad libitum starting either prior to conception or at parturition. RESULTS Mice raised in small litters become fatter than pups raised in either normal or large litters. The leptin surge in small litter pups starts earlier, lasts longer, and is dramatically larger in magnitude compared to normal litter pups, even when leptin concentrations are normalized to fat mass. In mice reared in large litters, weight gain is diminished and the surge is both significantly delayed and lower in magnitude compared to control pups. Pups reared by HFD-fed dams (starting preconception or at parturition) are fatter and have augmented leptin surge magnitude compared to pups suckled by chow-fed dams. Surge timing varies depending upon nutritional status of the pup; the source of the surge is primarily subcutaneous adipose tissue. At peak leptin surge, within each group, fat mass and plasma leptin are uncorrelated; in comparison with adults, pups overproduce leptin relative to fat mass. Plasma leptin elevation persists longer than previously described; at postnatal day 27 mice continue overproducing leptin relative to fat mass. CONCLUSIONS In mice, small litter size and maternal HFD feeding during the perinatal period augment the plasma leptin surge whereas large litter size is associated with a delayed surge of reduced magnitude.
Collapse
|
12
|
Bruder J, Fromme T. Global Adipose Tissue Remodeling During the First Month of Postnatal Life in Mice. Front Endocrinol (Lausanne) 2022; 13:849877. [PMID: 35250892 PMCID: PMC8892685 DOI: 10.3389/fendo.2022.849877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
During the first month of postnatal life, adipose tissue depots of mice go through a drastic, but transient, remodeling process. Between postnatal days 10 and 20, several white fat depots display a strong and sudden surge in beige adipocyte emergence that reverts until day 30. At the same time, brown fat depots appear to undergo an opposite phenomenon. We comprehensively describe these events, their depot specificity and known environmental and genetic interactions, such as maternal diet, housing temperature and mouse strain. We further discuss potential mechanisms and plausible purposes, including the tempting hypothesis that postnatal transient remodeling creates a lasting adaptive capacity still detectable in adult animals. Finally, we propose postnatal adipose tissue remodeling as a model process to investigate mechanisms of beige adipocyte recruitment advantageous to cold exposure or adrenergic stimulation in its entirely endogenous sequence of events without external manipulation.
Collapse
Affiliation(s)
- Johanna Bruder
- Else Kröner-Fresenius Center for Nutritional Medicine (EKFZ), Technical University of Munich, Freising, Germany
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- *Correspondence: Tobias Fromme,
| |
Collapse
|
13
|
Wang S, Cao Q, Cui X, Jing J, Li F, Shi H, Xue B, Shi H. Dnmt3b Deficiency in Myf5 +-Brown Fat Precursor Cells Promotes Obesity in Female Mice. Biomolecules 2021; 11:1087. [PMID: 34439754 PMCID: PMC8393658 DOI: 10.3390/biom11081087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Increasing energy expenditure through activation of brown fat thermogenesis is a promising therapeutic strategy for the treatment of obesity. Epigenetic regulation has emerged as a key player in regulating brown fat development and thermogenic program. Here, we aimed to study the role of DNA methyltransferase 3b (Dnmt3b), a DNA methyltransferase involved in de novo DNA methylation, in the regulation of brown fat function and energy homeostasis. We generated a genetic model with Dnmt3b deletion in brown fat-skeletal lineage precursor cells (3bKO mice) by crossing Dnmt3b-floxed (fl/fl) mice with Myf5-Cre mice. Female 3bKO mice are prone to diet-induced obesity, which is associated with decreased energy expenditure. Dnmt3b deficiency also impairs cold-induced thermogenic program in brown fat. Surprisingly, further RNA-seq analysis reveals a profound up-regulation of myogenic markers in brown fat of 3bKO mice, suggesting a myocyte-like remodeling in brown fat. Further motif enrichment and pyrosequencing analysis suggests myocyte enhancer factor 2C (Mef2c) as a mediator for the myogenic alteration in Dnmt3b-deficient brown fat, as indicated by decreased methylation at its promoter. Our data demonstrate that brown fat Dnmt3b is a key regulator of brown fat development, energy metabolism and obesity in female mice.
Collapse
Affiliation(s)
- Shirong Wang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Qiang Cao
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Xin Cui
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Jia Jing
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Fenfen Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| |
Collapse
|
14
|
Chi J, Lin Z, Barr W, Crane A, Zhu XG, Cohen P. Early postnatal interactions between beige adipocytes and sympathetic neurites regulate innervation of subcutaneous fat. eLife 2021; 10:e64693. [PMID: 33591269 PMCID: PMC7990502 DOI: 10.7554/elife.64693] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/15/2021] [Indexed: 01/13/2023] Open
Abstract
While beige adipocytes have been found to associate with dense sympathetic neurites in mouse inguinal subcutaneous white fat (iWAT), little is known about when and how this patterning is established. Here, we applied whole-tissue imaging to examine the development of sympathetic innervation in iWAT. We found that parenchymal neurites actively grow between postnatal day 6 (P6) and P28, overlapping with early postnatal beige adipogenesis. Constitutive deletion of Prdm16 in adipocytes led to a significant reduction in early postnatal beige adipocytes and sympathetic density within this window. Using an inducible, adipocyte-specific Prdm16 knockout model, we found that Prdm16 is required for guiding sympathetic growth during early development. Deleting Prdm16 in adult animals, however, did not affect sympathetic structure in iWAT. Together, these findings highlight that beige adipocyte-sympathetic neurite communication is crucial to establish sympathetic structure during the early postnatal period but may be dispensable for its maintenance in mature animals.
Collapse
Affiliation(s)
- Jingyi Chi
- Laboratory of Molecular Metabolism, The Rockefeller UniversityNew YorkUnited States
| | - Zeran Lin
- Laboratory of Molecular Metabolism, The Rockefeller UniversityNew YorkUnited States
| | - William Barr
- Laboratory of Molecular Metabolism, The Rockefeller UniversityNew YorkUnited States
| | - Audrey Crane
- Laboratory of Molecular Metabolism, The Rockefeller UniversityNew YorkUnited States
| | - Xiphias Ge Zhu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller UniversityNew YorkUnited States
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
15
|
Maurer S, Harms M, Boucher J. The colorful versatility of adipocytes: white-to-brown transdifferentiation and its therapeutic potential in humans. FEBS J 2020; 288:3628-3646. [PMID: 32621398 DOI: 10.1111/febs.15470] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
Brown and brite adipocytes contribute to energy expenditure through nonshivering thermogenesis. Though these cell types are thought to arise primarily from the de novo differentiation of precursor cells, their abundance is also controlled through the transdifferentiation of mature white adipocytes. Here, we review recent advances in our understanding of the regulation of white-to-brown transdifferentiation, as well as the conversion of brown and brite adipocytes to dormant, white-like fat cells. Converting mature white adipocytes into brite cells or reactivating dormant brown and brite adipocytes has emerged as a strategy to ameliorate human metabolic disorders. We analyze the evidence of learning from mice and how they translate to humans to ultimately scrutinize the relevance of this concept. Moreover, we estimate that converting a small percentage of existing white fat mass in obese subjects into active brite adipocytes could be sufficient to achieve meaningful benefits in metabolism. In conclusion, novel browning agents have to be identified before adipocyte transdifferentiation can be realized as a safe and efficacious therapy.
Collapse
Affiliation(s)
- Stefanie Maurer
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Matthew Harms
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|