1
|
Goldenberg N, Horowitz JF, Gorgey A, Sakharova A, Barkan AL. Role of pulsatile growth hormone (GH) secretion in the regulation of lipolysis in fasting humans. Clin Diabetes Endocrinol 2022; 8:1. [PMID: 35101148 PMCID: PMC8805297 DOI: 10.1186/s40842-022-00137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
Background The increase in growth hormone (GH) secretion during a prolonged fast stimulates lipolytic rate, thereby augmenting the mobilization of endogenous energy at a time when fuel availability is very low. Study aim To identify the specific component of GH secretory pattern responsible for the stimulation of lipolytic rate during fasting in humans. Study protocol We measured lipolytic rate (using stable isotope dilution technique) after an overnight fast in 15 young, healthy, non-obese subjects (11 men and 4 women), and again on four separate occasions after a 59 h fast. These four prolonged fasting trials differed only by the contents of an infusion solution provided throughout the 59 h fasting period. Subjects were infused either with normal saline (“Control”; n = 15) or with graded doses of a GH Releasing Hormone Receptor Antagonist (GHRHa):10 μg/kg/h (“High”; n = 15), 1 μg /kg/h (“Medium”; n = 8), or 0.5 μg /kg/h (“Low”; n = 6). Results As expected, the 59 h fast completely suppressed plasma insulin levels and markedly increased endogenous GH concentrations (12 h vs 59 h Fast; p = 0.0044). Administration of GHRHa induced dose-dependent reduction in GH concentrations in response to the 59 h fast (p < 0.05). We found a strong correlation between the rate of lipolysis and GH mean peak amplitude (R = 0.471; p = 0.0019), and total GH pulse area under the curve (AUC) (R = 0.49; p = 0.0015), but not the GH peak frequency (R = 0.044; p = 0.8) or interpulse GH concentrations (R = 0.25; p = 0.115). Conclusion During prolonged fasting (i.e., 2–3 days), when insulin secretion is abolished, the pulsatile component of GH secretion becomes a key metabolic regulator of the increase in lipolytic rate.
Collapse
|
2
|
Sorkina EL, Chichkova VV, Sklyanik IA, Shestakova MV, Mel'nichenko GA, Barkan A. [The role of glucose and insulin in the metabolic regulation of growth hormone secretion]. ACTA ACUST UNITED AC 2021; 67:52-59. [PMID: 33586392 PMCID: PMC8926113 DOI: 10.14341/probl12660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
The exact physiological basis for the suppression of growth hormone secretion by oral glucose intake remains unknown, despite the widespread use of the oral glucose tolerance test in endocrinology. Lack of growth hormone suppression by glucose occurs in about a third of patients with acromegaly, as well as in other disorders. It is currently known that the secretion of growth hormone is affected by various factors, such as age, gender, body mass index, and the redistribution of adipose tissue. There is also evidence of the impact of overeating as well as being overweight on the secretion of growth hormone. It is known that both of these conditions are associated with hyperinsulinemia, which determines the possibility of its predominant role in suppressing the secretion of growth hormone. The purpose of this review is to discuss the accumulated data on the isolated effects of hyperglycemia and hyperinsulinemia on growth hormone secretion, as well as other metabolic regulators and conditions affecting its signaling. Understanding of the pathophysiological basis of these mechanisms is essential for further research of the role of glucose and insulin in the metabolic regulation of growth hormone secretion. However, the studies in animal models are complicated by interspecific differences in the response of growth hormone to glucose loading, and the only possible available model in healthy people may be the hyperinsulinemic euglycemic clamp.
Collapse
Affiliation(s)
| | | | | | | | | | - A Barkan
- University of Michigan, Ann Arbor
| |
Collapse
|
3
|
Bray GA, Bouchard C. The biology of human overfeeding: A systematic review. Obes Rev 2020; 21:e13040. [PMID: 32515127 DOI: 10.1111/obr.13040] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/18/2020] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
This systematic review has examined more than 300 original papers dealing with the biology of overfeeding. Studies have varied from 1 day to 6 months. Overfeeding produced weight gain in adolescents, adult men and women and in older men. In longer term studies, there was a clear and highly significant relationship between energy ingested and weight gain and fat storage with limited individual differences. There is some evidence for a contribution of a genetic component to this response variability. The response to overfeeding was affected by the baseline state of the groups being compared: those with insulin resistance versus insulin sensitivity; those prone to obesity versus those resistant to obesity; and those with metabolically abnormal obesity versus those with metabolically normal obesity. Dietary components, such as total fat, polyunsaturated fat and carbohydrate influenced the patterns of adipose tissue distribution as did the history of low or normal birth weight. Overfeeding affected the endocrine system with increased circulating concentrations of insulin and triiodothyronine frequently present. Growth hormone, in contrast, was rapidly suppressed. Changes in plasma lipids were influenced by diet, exercise and the magnitude of weight gain. Adipose tissue and skeletal muscle morphology and metabolism are substantially altered by chronic overfeeding.
Collapse
Affiliation(s)
- George A Bray
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Claude Bouchard
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| |
Collapse
|
4
|
Nakamura A, Sato K, Kanazawa M, Kondo M, Endo H, Takahashi T, Nozaki E. Impact of decreased insulin resistance by ezetimibe on postprandial lipid profiles and endothelial functions in obese, non-diabetic-metabolic syndrome patients with coronary artery disease. Heart Vessels 2018; 34:916-925. [PMID: 30519809 PMCID: PMC6531627 DOI: 10.1007/s00380-018-1319-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/30/2018] [Indexed: 01/09/2023]
Abstract
The association between insulin resistance and lipid dysmetabolism after consuming a meal is unclear. We aimed at assessing the effects of ezetimibe on postprandial hyperlipidemia and hyperinsulinemia and to find out whether the medication improves endothelial function in obese metabolic syndrome (MetS) patients with coronary artery disease (CAD). We obtained oral fat loading test results (4 and 6 h after load) and brachial flow-mediated vasodilation (FMD) measurements before and 24 weeks after ezetimibe treatment initiation from 27 MetS patients with CAD and from 68 control patients with CAD alone. Serum triglyceride (TG) and insulin levels (2 h after the loading dose) were significantly higher in MetS patients than in control patients. The incremental areas under the curve (iAUCs) for these levels decreased significantly after ezetimibe treatment in MetS patients but not in control patients. Treatment with ezetimibe resulted in significant FMD changes in MetS patients (from 3.4 to 4.9%, P = 0.002), but not in control patients (from 5.1 to 5.4%, P = 0.216). When MetS patients were divided into two groups based on the median insulin iAUC reduction rate (higher group ≥ 34%, n = 14; lower group < 34%, n = 13), those in the higher group showed a significantly higher rate of change in the iAUCs of TG and FMD than those in the lower group (TG, 31.0% vs. 10.8%; P = 0.033; FMD, 39.2% vs. 9.8%; P = 0.037). These results suggest that ezetimibe may reverse insulin resistance, reducing lipid dysmetabolism after a meal and endothelial dysfunction in MetS patients with CAD.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan.
| | - Kenjiro Sato
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| | - Masanori Kanazawa
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| | - Masateru Kondo
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| | - Hideaki Endo
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| | - Tohru Takahashi
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| | - Eiji Nozaki
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| |
Collapse
|
5
|
Ajmal A, McKean E, Sullivan S, Barkan A. Decreased quality of life (QoL) in hypopituitary patients: involvement of glucocorticoid replacement and radiation therapy. Pituitary 2018; 21:624-630. [PMID: 30349995 DOI: 10.1007/s11102-018-0918-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE Hypopituitary patients are assumed to have decreased QoL due to GHD. However, in placebo controlled trials, the effects of GH replacement are no different from placebo. Hydrocortisone dose > 20 mg/day and pituitary radiation are independently associated with poorer QoL. We assessed QoL in panhypopituitary GH- deficient patients never treated with GH. METHODS Study group was divided into: (a) surgery followed by radiation (n = 21) and (b) surgery alone (n = 32). Mean duration of GHD was 71.4 ± 7.8 months and mean daily hydrocortisone dose was 15 ± 0.7 mg. Control group had transnasal surgery for benign sinus conditions (n = 54). RESULTS AGHDA scores were significantly worse in the entire study group compared to controls (8.1 ± 1.0 vs. 5.1 ± 0.9, p = 0.03). In patients with history of radiation therapy AGHDA scores were significantly worse than in controls (9.1 ± 1.5, p = 0.02) and SNOT-22 (Sino-Nasal Outcome Test) scores were also significantly worse (15.8 ± 2.0 vs. 23.2 ± 3.5, p = 0.04). However, AGHDA scores in patients without history of radiation and on "physiological" dose of hydrocortisone were similar to those in controls (5.1 ± 0.9 vs. 7.3 ± 1.3, p = 0.17). CONCLUSIONS Replacement with hydrocortisone doses not exceeding 20 mg/day and avoidance of radiation therapy was accompanied by normal QoL in patients not replaced with GH. Thus, we suggest that the decreased QoL in hypopituitary patients may not be due to GH deficiency per se, but rather to high hydrocortisone doses and to aftereffects of cranial radiation.
Collapse
Affiliation(s)
- Adnan Ajmal
- Division of Metabolism, Endocrinology and Diabetes, Department of Medicine, University of Michigan, 24 Frank Lloyd Wright Drive, G-1500, Ann Arbor, MI, 48106, USA
| | - Erin McKean
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Stephen Sullivan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Ariel Barkan
- Division of Metabolism, Endocrinology and Diabetes, Department of Medicine, University of Michigan, 24 Frank Lloyd Wright Drive, G-1500, Ann Arbor, MI, 48106, USA.
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Sharma R, Luong Q, Sharma VM, Harberson M, Harper B, Colborn A, Berryman DE, Jessen N, Jørgensen JOL, Kopchick JJ, Puri V, Lee KY. Growth hormone controls lipolysis by regulation of FSP27 expression. J Endocrinol 2018; 239:289-301. [PMID: 30400015 PMCID: PMC6226059 DOI: 10.1530/joe-18-0282] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/24/2018] [Indexed: 01/10/2023]
Abstract
Growth hormone (GH) has long been known to stimulate lipolysis and insulin resistance; however, the molecular mechanisms underlying these effects are unknown. In the present study, we demonstrate that GH acutely induces lipolysis in cultured adipocytes. This effect is secondary to the reduced expression of a negative regulator of lipolysis, fat-specific protein 27 (FSP27; aka Cidec) at both the mRNA and protein levels. These effects are mimicked in vivo as transgenic overexpression of GH leads to a reduction of FSP27 expression. Mechanistically, we show GH modulation of FSP27 expression is mediated through activation of both MEK/ERK- and STAT5-dependent intracellular signaling. These two molecular pathways interact to differentially manipulate peroxisome proliferator-activated receptor gamma activity (PPARγ) on the FSP27 promoter. Furthermore, overexpression of FSP27 is sufficient to fully suppress GH-induced lipolysis and insulin resistance in cultured adipocytes. Taken together, these data decipher a molecular mechanism by which GH acutely regulates lipolysis and insulin resistance in adipocytes.
Collapse
Affiliation(s)
- Rita Sharma
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
| | - Quyen Luong
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
| | - Vishva M. Sharma
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
| | - Mitchell Harberson
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
| | - Brian Harper
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
| | - Andrew Colborn
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
| | - Darlene E. Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
| | - Niels Jessen
- Research Laboratory for Biochemical Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Denmark
| | - Jens Otto Lunde Jørgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Medical Research Laboratory, Aarhus University, Aarhus, Denmark
| | - John J. Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
- Edison Biotechnology Institute, Ohio University, Athens, OH
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
| | - Kevin Y. Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
| |
Collapse
|
7
|
Tan HY, Steyn FJ, Huang L, Cowley M, Veldhuis JD, Chen C. Hyperphagia in male melanocortin 4 receptor deficient mice promotes growth independently of growth hormone. J Physiol 2016; 594:7309-7326. [PMID: 27558671 DOI: 10.1113/jp272770] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Loss of function of the melanocortin 4 receptor (MC4R) results in hyperphagia, obesity and increased growth. Despite knowing that MC4Rs control food intake, we are yet to understand why defects in the function of the MC4R receptor contribute to rapid linear growth. We show that hyperphagia following germline loss of MC4R in male mice promotes growth while suppressing the growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis. We propose that hyperinsulinaemia promotes growth while suppressing the GH-IGF-1 axis. It is argued that physiological responses essential to maintain energy flux override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. ABSTRACT Defects in melanocortin-4-receptor (MC4R) signalling result in hyperphagia, obesity and increased growth. Clinical observations suggest that loss of MC4R function may enhance growth hormone (GH)-mediated growth, although this remains untested. Using male mice with germline loss of the MC4R, we assessed pulsatile GH release and insulin-like growth factor-1 (IGF-1) production and/or release relative to pubertal growth. We demonstrate early-onset suppression of GH release in rapidly growing MC4R deficient (MC4RKO) mice, confirming that increased linear growth in MC4RKO mice does not occur in response to enhanced activation of the GH-IGF-1 axis. The progressive suppression of GH release in MC4RKO mice occurred alongside increased adiposity and the progressive worsening of hyperphagia-associated hyperinsulinaemia. We next prevented hyperphagia in MC4RKO mice through restricting calorie intake in these mice to match that of wild-type (WT) littermates. Pair feeding of MC4RKO mice did not prevent increased adiposity, but attenuated hyperinsulinaemia, recovered GH release, and normalized linear growth rate to that seen in pair-fed WT littermate controls. We conclude that the suppression of GH release in MC4RKO mice occurs independently of increased adipose mass, and is a consequence of hyperphagia-associated hyperinsulinaemia. It is proposed that physiological responses essential to maintain energy flux (hyperinsulinaemia and the suppression of GH release) override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. Implications of these findings are likely to extend beyond individuals with defects in MC4R signalling, encompassing physiological changes central to mechanisms of growth and energy homeostasis universal to hyperphagia-associated childhood-onset obesity.
Collapse
Affiliation(s)
- H Y Tan
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - F J Steyn
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia.,The University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - L Huang
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - M Cowley
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - J D Veldhuis
- Department of Medicine, Endocrine Research Unit, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, MN, USA
| | - C Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Steyn FJ, Tolle V, Chen C, Epelbaum J. Neuroendocrine Regulation of Growth Hormone Secretion. Compr Physiol 2016; 6:687-735. [PMID: 27065166 DOI: 10.1002/cphy.c150002] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article reviews the main findings that emerged in the intervening years since the previous volume on hormonal control of growth in the section on the endocrine system of the Handbook of Physiology concerning the intra- and extrahypothalamic neuronal networks connecting growth hormone releasing hormone (GHRH) and somatostatin hypophysiotropic neurons and the integration between regulators of food intake/metabolism and GH release. Among these findings, the discovery of ghrelin still raises many unanswered questions. One important event was the application of deconvolution analysis to the pulsatile patterns of GH secretion in different mammalian species, including Man, according to gender, hormonal environment and ageing. Concerning this last phenomenon, a great body of evidence now supports the role of an attenuation of the GHRH/GH/Insulin-like growth factor-1 (IGF-1) axis in the control of mammalian aging.
Collapse
Affiliation(s)
- Frederik J Steyn
- University of Queensland Centre for Clinical Research and the School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Virginie Tolle
- Unité Mixte de Recherche en Santé 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Jacques Epelbaum
- University of Queensland Centre for Clinical Research and the School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Murray PG, Higham CE, Clayton PE. 60 YEARS OF NEUROENDOCRINOLOGY: The hypothalamo-GH axis: the past 60 years. J Endocrinol 2015; 226:T123-40. [PMID: 26040485 DOI: 10.1530/joe-15-0120] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 12/19/2022]
Abstract
At the time of the publication of Geoffrey Harris's monograph on 'Neural control of the pituitary gland' 60 years ago, the pituitary was recognised to produce a growth factor, and extracts administered to children with hypopituitarism could accelerate growth. Since then our understanding of the neuroendocrinology of the GH axis has included identification of the key central components of the GH axis: GH-releasing hormone and somatostatin (SST) in the 1970s and 1980s and ghrelin in the 1990s. Characterisation of the physiological control of the axis was significantly advanced by frequent blood sampling studies in the 1980s and 1990s; the pulsatile pattern of GH secretion and the factors that influenced the frequency and amplitude of the pulses have been defined. Over the same time, spontaneously occurring and targeted mutations in the GH axis in rodents combined with the recognition of genetic causes of familial hypopituitarism demonstrated the key factors controlling pituitary development. As the understanding of the control of GH secretion advanced, developments of treatments for GH axis disorders have evolved. Administration of pituitary-derived human GH was followed by the introduction of recombinant human GH in the 1980s, and, more recently, by long-acting GH preparations. For GH excess disorders, dopamine agonists were used first followed by SST analogues, and in 2005 the GH receptor blocker pegvisomant was introduced. This review will cover the evolution of these discoveries and build a picture of our current understanding of the hypothalamo-GH axis.
Collapse
Affiliation(s)
- P G Murray
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK
| | - C E Higham
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK
| | - P E Clayton
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK
| |
Collapse
|
10
|
Steyn FJ. Nutrient Sensing Overrides Somatostatin and Growth Hormone-Releasing Hormone to Control Pulsatile Growth Hormone Release. J Neuroendocrinol 2015; 27:577-87. [PMID: 25808924 DOI: 10.1111/jne.12278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/07/2015] [Accepted: 03/07/2015] [Indexed: 12/14/2022]
Abstract
Pharmacological studies reveal that interactions between hypothalamic inhibitory somatostatin and stimulatory growth hormone-releasing hormone (GHRH) govern pulsatile GH release. However, in vivo analysis of somatostatin and GHRH release into the pituitary portal vasculature and peripheral GH output demonstrates that the withdrawal of somatostatin or the appearance of GHRH into pituitary portal blood does not reliably dictate GH release. Consequently, additional intermediates acting at the level of the hypothalamus and within the anterior pituitary gland are likely to contribute to the release of GH, entraining GH secretory patterns to meet physiological demand. The identification and validation of the actions of such intermediates is particularly important, given that the pattern of GH release defines several of the physiological actions of GH. This review highlights the actions of neuropeptide Y in regulating GH release. It is acknowledged that pulsatile GH release may not occur selectively in response to hypothalamic control of pituitary function. As such, interactions between somatotroph networks, the median eminence and pituitary microvasculature and blood flow, and the emerging role of tanycytes and pericytes as critical regulators of pulsatility are considered. It is argued that collective interactions between the hypothalamus, the median eminence and pituitary vasculature, and structural components within the pituitary gland dictate somatotroph function and thereby pulsatile GH release. These interactions may override hypothalamic somatostatin and GHRH-mediated GH release, and modify pulsatile GH release relative to the peripheral glucose supply, and thereby physiological demand.
Collapse
Affiliation(s)
- F J Steyn
- The University of Queensland Centre for Clinical Research and The School of Biomedical Sciences, University of Queensland, Herston, 4029, Australia
| |
Collapse
|
11
|
Steyn FJ, Xie TY, Huang L, Ngo ST, Veldhuis JD, Waters MJ, Chen C. Increased adiposity and insulin correlates with the progressive suppression of pulsatile GH secretion during weight gain. J Endocrinol 2013; 218:233-44. [PMID: 23708999 DOI: 10.1530/joe-13-0084] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pathological changes associated with obesity are thought to contribute to GH deficiency. However, recent observations suggest that impaired GH secretion relative to excess calorie consumption contributes to progressive weight gain and thus may contribute to the development of obesity. To clarify this association between adiposity and GH secretion, we investigated the relationship between pulsatile GH secretion and body weight; epididymal fat mass; and circulating levels of leptin, insulin, non-esterified free fatty acids (NEFAs), and glucose. Data were obtained from male mice maintained on a standard or high-fat diet. We confirm the suppression of pulsatile GH secretion following dietary-induced weight gain. Correlation analyses reveal an inverse relationship between measures of pulsatile GH secretion, body weight, and epididymal fat mass. Moreover, we demonstrate an inverse relationship between measures of pulsatile GH secretion and circulating levels of leptin and insulin. The secretion of GH did not change relative to circulating levels of NEFAs or glucose. We conclude that impaired pulsatile GH secretion in the mouse occurs alongside progressive weight gain and thus precedes the development of obesity. Moreover, data illustrate key interactions between GH secretion and circulating levels of insulin and reflect the potential physiological role of GH in modulation of insulin-induced lipogenesis throughout positive energy balance.
Collapse
Affiliation(s)
- F J Steyn
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|