1
|
Owen MD, Kennedy MG, Quilang RC, Scott EM, Forbes K. The role of microRNAs in pregnancies complicated by maternal diabetes. Clin Sci (Lond) 2024; 138:1179-1207. [PMID: 39289953 PMCID: PMC11409017 DOI: 10.1042/cs20230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
With the global prevalence of diabetes increasing, more people of reproductive age are experiencing hyperglycaemic pregnancies. Maternal Type 1 (T1DM) or Type 2 (T2DM) diabetes mellitus, and gestational diabetes mellitus (GDM) are associated with maternal cardiovascular and metabolic complications. Pregnancies complicated by maternal diabetes also increase the risk of short- and long-term health complications for the offspring, including altered fetal growth and the onset of T2DM and cardiometabolic diseases throughout life. Despite advanced methods for improving maternal glucose control, the prevalence of adverse maternal and offspring outcomes associated with maternal diabetes remains high. The placenta is a key organ at the maternal-fetal interface that regulates fetal growth and development. In pregnancies complicated by maternal diabetes, altered placental development and function has been linked to adverse outcomes in both mother and fetus. Emerging evidence suggests that microRNAs (miRNAs) are key molecules involved in mediating these changes. In this review, we describe the role of miRNAs in normal pregnancy and discuss how miRNA dysregulation in the placenta and maternal circulation is associated with suboptimal placental development and pregnancy outcomes in individuals with maternal diabetes. We also discuss evidence demonstrating that miRNA dysregulation may affect the long-term health of mothers and their offspring. As such, miRNAs are potential candidates as biomarkers and therapeutic targets in diabetic pregnancies at risk of adverse outcomes.
Collapse
Affiliation(s)
- Manon D Owen
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Margeurite G Kennedy
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Anthony Nolan Research Institute, Royal Free Hospital, Hampstead, London, U.K
- UCL Cancer Institute, Royal Free Campus, London, U.K
| | - Rachel C Quilang
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Eleanor M Scott
- Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| |
Collapse
|
2
|
Chen Y, Wu WJ, Xing LW, Zhang XJ, Wang J, Xia XY, Zhao R, Zhao R. Investigating the role of mitochondrial DNA D-loop variants, haplotypes, and copy number in polycystic ovary syndrome: implications for clinical phenotypes in the Chinese population. Front Endocrinol (Lausanne) 2023; 14:1206995. [PMID: 37745710 PMCID: PMC10512090 DOI: 10.3389/fendo.2023.1206995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/11/2023] [Indexed: 09/26/2023] Open
Abstract
Background The presence of genetic variations in mitochondrial DNA (mtDNA) has been associated with a diverse array of diseases. The objective of this study was to examine the correlations between mtDNA D-loop, its haplotypes, and polycystic ovary syndrome (PCOS) in the Chinese population, and the associations between mtDNA D-loop and symptoms of PCOS. The study also sought to determine whether the mtDNA copy number in Chinese patients with PCOS differed from that of individuals in the control group. Methods Infertile individuals who only had tubal or male factor treatment were the focus of research by The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). mtDNA haplotypes were categorized using polymorphic D-loop sites. mtDNA D-loop, PCOS features, and mtDNA haplotypes were analyzed using R software to determine the strength of the association between the three. There are certain DNA haplotypes linked to PCOS. Microdroplet digital polymerase chain reaction (PCR) was used to determine the mtDNA copy number in a convenience sample of 168 PCOS patients and 83 controls. Results Among the research group, the majority of D-loop mutations were infrequent (frequency< 1%), with only 45 variants displaying a minimum allele frequency (MAF) of 5% or higher. No association was found between polymorphism loci in PCOS patients and body mass index (BMI). Noteworthy, C194T, 1A200G, 523delAC, and C16234T showed positive correlations with elevated LH/FSH levels. Additionally, specific polymorphic loci G207A, 16036GGins, and 16049Gins within the D-loop region of mtDNA potentially exerted a protective role in PCOS development. Conversely, no statistical significance was observed in the expression levels of C16291T and T489C. Chinese women with mtDNA haplotype A15 exhibited a decreased risk of developing PCOS. Moreover, a significant difference in mtDNA copy number was detected, with controls averaging 25.87 (21.84, 34.81), while PCOS patients had a mean of 129.91 (99.38, 168.63). Conclusion Certain mtDNA D-loop mutations and haplotypes appear to confer protection against PCOS in Chinese women. In addition, elevated mtDNA copy number may serve as an indicator during early stages of PCOS.
Collapse
Affiliation(s)
- Yang Chen
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Wei-jia Wu
- Department of Scientific Research, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Li-wei Xing
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiao-juan Zhang
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Jing Wang
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Xiao-yan Xia
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Rui Zhao
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Rong Zhao
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
3
|
Cabrera AR, Deaver JW, Lim S, Morena da Silva F, Schrems ER, Saling LW, Tsitkanou S, Rosa-Caldwell ME, Wiggs MP, Washington TA, Greene NP. Females display relatively preserved muscle quality compared with males during the onset and early stages of C26-induced cancer cachexia. J Appl Physiol (1985) 2023; 135:655-672. [PMID: 37535708 PMCID: PMC10642509 DOI: 10.1152/japplphysiol.00196.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
Cancer cachexia is clinically defined by involuntary weight loss >5% in <6 mo, primarily affecting skeletal muscle. Here, we aimed to identify sex differences in the onset of colorectal cancer cachexia with specific consideration to skeletal muscle contractile and metabolic functions. Eight-weeks old BALB/c mice (69 males, 59 females) received subcutaneous C26 allografts or PBS vehicle. Tumors were developed for 10-, 15-, 20-, or 25 days. Muscles and organs were collected, in vivo muscle contractility, protein synthesis rate, mitochondrial function, and protein turnover markers were assessed. One-way ANOVA within sex and trend analysis between sexes were performed, P < 0.05. Gastrocnemius and tibialis anterior (TA) muscles became atrophic in male mice at 25 days, whereas female mice exhibited no significant differences in muscle weights at endpoints despite presenting hallmarks of cancer cachexia (fat loss, hepatosplenomegaly). We observed lowered muscle contractility and protein synthesis concomitantly to muscle mass decay in males, with higher proteolytic markers in muscles of both sexes. mRNA of Opa1 was lower in TA, whereas Bnip3 was higher in gastrocnemius after 25 days in male mice, with no significant effect in female mice. Our data suggest relative protections to skeletal muscle in females compared with males despite other canonical signs of cancer cachexia and increased protein degradation markers; suggesting we should place onus upon nonmuscle tissues during early stages of cancer cachexia in females. We noted potential protective mechanisms relating to skeletal muscle contractile and mitochondrial functions. Our findings underline possible heterogeneity in onset of cancer cachexia between biological sexes, suggesting the need for sex-specific approaches to treat cancer cachexia.NEW & NOTEWORTHY Our study demonstrates biological-sex differences in phenotypic characteristics of cancer cachexia between male and female mice, whereby females display many common characteristics of cachexia (gonadal fat loss and hepatosplenomegaly), protein synthesis markers alterations, and common catabolic markers in skeletal muscle despite relatively preserved muscle mass in early-stage cachexia compared with males. Mechanisms of cancer cachexia appear to differ between sexes. Data suggest need to place onus of early cancer cachexia detection and treatment on nonmuscle tissues in females.
Collapse
Affiliation(s)
- Ana Regina Cabrera
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - J William Deaver
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Eleanor R Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Landen W Saling
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Stavroula Tsitkanou
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Megan E Rosa-Caldwell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Michael P Wiggs
- Department of Health, Human Performance and Recreation, Baylor University, Waco, Texas, United States
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
4
|
Dinesen S, El-Faitarouni A, Frisk NLS, Sørensen AE, Dalgaard LT. Circulating microRNA as Biomarkers for Gestational Diabetes Mellitus-A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:6186. [PMID: 37047159 PMCID: PMC10094234 DOI: 10.3390/ijms24076186] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a severe pregnancy complication for both the woman and the child. Women who suffer from GDM have a greater risk of developing Type 2 diabetes mellitus (T2DM) later in life. Identification of any potential biomarkers for the early prediction of gestational diabetes can help prevent the disease in women with a high risk. Studies show microRNA (miRNA) as a potential biomarker for the early discovery of GDM, but there is a lack of clarity as to which miRNAs are consistently altered in GDM. This study aimed to perform a systematic review and meta-analysis to investigate miRNAs associated with GDM by comparing GDM cases with normoglycemic controls. The systematic review was performed according to PRISMA guidelines with searches in PubMed, Web of Science, and ScienceDirect. The primary search resulted in a total of 849 articles, which were screened according to the prior established inclusion and exclusion criteria. Following the screening of articles, the review was based on the inclusion of 35 full-text articles, which were evaluated for risk of bias and estimates of quality, after which data were extracted and relative values for miRNAs were calculated. A meta-analysis was performed for the miRNA species investigated in three or more studies: MiR-29a, miR-330, miR-134, miR-132, miR-16, miR-223, miR-155, miR-122, miR-17, miR-103, miR-125, miR-210, and miR-222. While some miRNAs showed considerable between-study variability, miR-29a, miR-330, miR-134, miR-16, miR-223, and miR-17 showed significant overall upregulation in GDM, while circulating levels of miR-132 and miR-155 were decreased among GDM patients, suggesting further studies of these as biomarkers for early GDM discovery.
Collapse
Affiliation(s)
- Sofie Dinesen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Alisar El-Faitarouni
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | | | - Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Roskilde Hospital, Region Zealand, 4000 Roskilde, Denmark
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| |
Collapse
|
5
|
Influence of mTOR-regulated anabolic pathways on equine skeletal muscle health. J Equine Vet Sci 2023; 124:104281. [PMID: 36905972 DOI: 10.1016/j.jevs.2023.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Skeletal muscle is a highly dynamic organ that is essential for locomotion as well as endocrine regulation in all populations of horses. However, despite the importance of adequate muscle development and maintenance, the mechanisms underlying protein anabolism in horses on different diets, exercise programs, and at different life stages remain obscure. Mechanistic target of rapamycin (mTOR) is a key component of the protein synthesis pathway and is regulated by biological factors such as insulin and amino acid availability. Providing a diet ample in vital amino acids, such as leucine and glutamine, is essential in activating sensory pathways that recruit mTOR to the lysosome and assist in the translation of important downstream targets. When the diet is well balanced, mitochondrial biogenesis and protein synthesis are activated in response to increased exercise bouts in the performing athlete. It is important to note that the mTOR kinase pathways are multi-faceted and very complex, with several binding partners and targets that lead to specific functions in protein turnover of the cell, and ultimately, the capacity to maintain or grow muscle mass. Further, these pathways are likely altered across the lifespan, with an emphasis of growth in young horses while decreases in musculature with aged horses appears to be attributable to degradation or other regulators of protein synthesis rather than alterations in the mTOR pathway. Previous work has begun to pinpoint ways in which the mTOR pathway is influenced by diet, exercise, and age; however, future research is warranted to quantify the functional outcomes related to changes in mTOR. Promisingly, this could provide direction on appropriate management techniques to support skeletal muscle growth and maximize athletic potential in differing equine populations.
Collapse
|
6
|
Li M, Zhang N, Li J, Ji M, Zhao T, An J, Cai C, Yang Y, Gao P, Cao G, Guo X, Li B. CircRNA Profiling of Skeletal Muscle in Two Pig Breeds Reveals CircIGF1R Regulates Myoblast Differentiation via miR-16. Int J Mol Sci 2023; 24:ijms24043779. [PMID: 36835196 PMCID: PMC9965117 DOI: 10.3390/ijms24043779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Muscle development is closely related to meat quality and production. CircRNAs, with a closed-ring structure, have been identified as a key regulator of muscle development. However, the roles and mechanisms of circRNAs in myogenesis are largely unknown. Hence, in order to unravel the functions of circRNAs in myogenesis, the present study explored circRNA profiling in skeletal muscle between Mashen and Large White pigs. The results showed that a total of 362 circRNAs, which included circIGF1R, were differentially expressed between the two pig breeds. Functional assays showed that circIGF1R promoted myoblast differentiation of porcine skeletal muscle satellite cells (SMSCs), while it had no effect on cell proliferation. In consideration of circRNA acting as a miRNA sponge, dual-luciferase reporter and RIP assays were performed and the results showed that circIGF1R could bind miR-16. Furthermore, the rescue experiments showed that circIGF1R could counteract the inhibitory effect of miR-16 on cell myoblast differentiation. Thus, circIGF1R may regulate myogenesis by acting as a miR-16 sponge. In conclusion, this study successfully screened candidate circRNAs involved in the regulation of porcine myogenesis and demonstrated that circIGF1R promotes myoblast differentiation via miR-16, which lays a theoretical foundation for understanding the role and mechanism of circRNAs in regulating porcine myoblast differentiation.
Collapse
|
7
|
Jones RG, Dimet-Wiley A, Haghani A, da Silva FM, Brightwell CR, Lim S, Khadgi S, Wen Y, Dungan CM, Brooke RT, Greene NP, Peterson CA, McCarthy JJ, Horvath S, Watowich SJ, Fry CS, Murach KA. A molecular signature defining exercise adaptation with ageing and in vivo partial reprogramming in skeletal muscle. J Physiol 2023; 601:763-782. [PMID: 36533424 PMCID: PMC9987218 DOI: 10.1113/jp283836] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Exercise promotes functional improvements in aged tissues, but the extent to which it simulates partial molecular reprogramming is unknown. Using transcriptome profiling from (1) a skeletal muscle-specific in vivo Oct3/4, Klf4, Sox2 and Myc (OKSM) reprogramming-factor expression murine model; (2) an in vivo inducible muscle-specific Myc induction murine model; (3) a translatable high-volume hypertrophic exercise training approach in aged mice; and (4) human exercise muscle biopsies, we collectively defined exercise-induced genes that are common to partial reprogramming. Late-life exercise training lowered murine DNA methylation age according to several contemporary muscle-specific clocks. A comparison of the murine soleus transcriptome after late-life exercise training to the soleus transcriptome after OKSM induction revealed an overlapping signature that included higher JunB and Sun1. Also, within this signature, downregulation of specific mitochondrial and muscle-enriched genes was conserved in skeletal muscle of long-term exercise-trained humans; among these was muscle-specific Abra/Stars. Myc is the OKSM factor most induced by exercise in muscle and was elevated following exercise training in aged mice. A pulse of MYC rewired the global soleus muscle methylome, and the transcriptome after a MYC pulse partially recapitulated OKSM induction. A common signature also emerged in the murine MYC-controlled and exercise adaptation transcriptomes, including lower muscle-specific Melusin and reactive oxygen species-associated Romo1. With Myc, OKSM and exercise training in mice, as well habitual exercise in humans, the complex I accessory subunit Ndufb11 was lower; low Ndufb11 is linked to longevity in rodents. Collectively, exercise shares similarities with genetic in vivo partial reprogramming. KEY POINTS: Advances in the last decade related to cellular epigenetic reprogramming (e.g. DNA methylome remodelling) toward a pluripotent state via the Yamanaka transcription factors Oct3/4, Klf4, Sox2 and Myc (OKSM) provide a window into potential mechanisms for combatting the deleterious effects of cellular ageing. Using global gene expression analysis, we compared the effects of in vivo OKSM-mediated partial reprogramming in skeletal muscle fibres of mice to the effects of late-life murine exercise training in muscle. Myc is the Yamanaka factor most induced by exercise in skeletal muscle, and so we compared the MYC-controlled transcriptome in muscle to Yamanaka factor-mediated and exercise adaptation mRNA landscapes in mice and humans. A single pulse of MYC is sufficient to remodel the muscle methylome. We identify partial reprogramming-associated genes that are innately altered by exercise training and conserved in humans, and propose that MYC contributes to some of these responses.
Collapse
Affiliation(s)
- Ronald G. Jones
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | | | - Amin Haghani
- University of California Los Angeles, Department of Human Genetics, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Francielly Morena da Silva
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Camille R. Brightwell
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Seongkyun Lim
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Sabin Khadgi
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Yuan Wen
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
| | - Cory M. Dungan
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
| | | | - Nicholas P. Greene
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| | - Charlotte A. Peterson
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
| | - John J. McCarthy
- Altos Labs, San Diego, CA, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
| | - Steve Horvath
- University of California Los Angeles, Department of Human Genetics, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Stanley J. Watowich
- Ridgeline Therapeutics, Houston, TX, USA
- University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Galveston, TX, USA
| | - Christopher S. Fry
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Kevin A. Murach
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| |
Collapse
|
8
|
Dinesen S, El-Faitarouni A, Dalgaard LT. Circulating microRNAs associated with gestational diabetes mellitus: useful biomarkers? J Endocrinol 2023; 256:JOE-22-0170. [PMID: 36346274 DOI: 10.1530/joe-22-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022]
Abstract
Different types of small non-coding RNAs, especially miRNAs, may be found in the circulation, either protein-bound or enclosed in extracellular vesicles. During gestation, and particularly during gestational diabetes mellitus (GDM), the levels of several miRNAs are altered. Worldwide the incidence of GDM is increasing, in part driven by the current obesity epidemic. This is a point of public health concern because offspring of women with GDM frequently suffer from short- and long-term complications of maternal GDM. This has prompted the investigation of whether levels of specific miRNA species, detected early in gestation, may be used as diagnostic or prognostic markers for the development of GDM. Here, we summarize the mechanisms of RNA secretion and review circulating miRNAs associated with GDM. Several miRNAs are associated with GDM: miR-29a-3p and miR-29b-3p are generally upregulated in GDM pregnancies, also when measured prior to the development of GDM, while miR-16-5p is consistently upregulated in GDM pregnancies, especially in late gestation. miR-330-3p in circulation is increased in late gestation GDM women, especially in those with poor insulin secretion. miR-17-5p, miR-19a/b-3p, miR-223-3p, miR-155-5p, miR-125-a/b-5p, miR-210-3p and miR-132 are also associated with GDM, but less so and with more contradictory results reported. There could be a publication bias as miRNAs identified early are investigated the most, suggesting that it is likely that additional, more recently detected miRNAs could also be associated with GDM. Thus, circulating miRNAs show potential as biomarkers of GDM diagnosis or prognosis, especially multiple miRNAs containing prediction algorithms show promise, but further studies are needed.
Collapse
Affiliation(s)
- Sofie Dinesen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde, Denmark
| | - Alisar El-Faitarouni
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde, Denmark
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde, Denmark
| |
Collapse
|
9
|
Li C, Wang D, Jiang Z, Gao Y, Sun L, Li R, Chen M, Lin C, Liu D. Non-coding RNAs in diabetes mellitus and diabetic cardiovascular disease. Front Endocrinol (Lausanne) 2022; 13:961802. [PMID: 36147580 PMCID: PMC9487522 DOI: 10.3389/fendo.2022.961802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
More than 10% of the world's population already suffers from varying degrees of diabetes mellitus (DM), but there is still no cure for the disease. Cardiovascular disease (CVD) is one of the most common and dangerous of the many health complications that can be brought on by DM, and has become the leading cause of death in people with diabetes. While research on DM and associated CVD is advancing, the specific mechanisms of their development are still unclear. Given the threat of DM and CVD to humans, the search for new predictive markers and therapeutic ideas is imminent. Non-coding RNAs (ncRNAs) have been a popular subject of research in recent years. Although they do not encode proteins, they play an important role in living organisms, and they can cause disease when their expression is abnormal. Numerous studies have observed aberrant ncRNAs in patients with DM complications, suggesting that they may play an important role in the development of DM and CVD and could potentially act as biomarkers for diagnosis. There is additional evidence that treatment with existing drugs for DM, such as metformin, alters ncRNA expression levels, suggesting that regulation of ncRNA expression may be a key mechanism in future DM treatment. In this review, we assess the role of ncRNAs in the development of DM and CVD, as well as the evidence for ncRNAs as potential therapeutic targets, and make use of bioinformatics to analyze differential ncRNAs with potential functions in DM.
Collapse
Affiliation(s)
- Chengshun Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Minqi Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dianfeng Liu,
| |
Collapse
|