1
|
Mikhael E, Slim R, El Helou S, Amer L, Khanfour M, Yaghi C. Sertraline-Induced Hypoglycemia in Drug-Induced Liver Injury. Hosp Pharm 2024; 59:529-531. [PMID: 39318743 PMCID: PMC11418709 DOI: 10.1177/00185787241242767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Sertraline, a selective serotonin reuptake inhibitor, is a medication recommended as a third line treatment of cholestatic liver injury pruritis. We report a case of a young male who developed liver injury secondary to self-administration of anabolic steroids and who complained of persistent pruritis leading to a treatment by sertraline. Two days later, the patient was admitted to the hospital with a severe hypoglycemia, while the liver function tests were in amelioration. Clinical and biological evaluation were in favor of sertraline-induced hypoglycemia, a side effect rarely reported in non-diabetic patients, and in the context of hepatic injury.
Collapse
Affiliation(s)
- Elio Mikhael
- Saint Joseph University of Beirut, Gastroenterology department, Beirut, Lebanon
| | - Rita Slim
- Saint Joseph University of Beirut, Gastroenterology department, Beirut, Lebanon
| | - Santa El Helou
- Saint Joseph University of Beirut, Gastroenterology department, Beirut, Lebanon
| | - Lamis Amer
- Saint Joseph University of Beirut, Gastroenterology department, Beirut, Lebanon
| | - Melissa Khanfour
- Saint Joseph University of Beirut, Gastroenterology department, Beirut, Lebanon
| | - César Yaghi
- Saint Joseph University of Beirut, Gastroenterology department, Beirut, Lebanon
| |
Collapse
|
2
|
Milenkovic D, Capel F, Combaret L, Comte B, Dardevet D, Evrard B, Guillet C, Monfoulet LE, Pinel A, Polakof S, Pujos-Guillot E, Rémond D, Wittrant Y, Savary-Auzeloux I. Targeting the gut to prevent and counteract metabolic disorders and pathologies during aging. Crit Rev Food Sci Nutr 2022; 63:11185-11210. [PMID: 35730212 DOI: 10.1080/10408398.2022.2089870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Impairment of gut function is one of the explanatory mechanisms of health status decline in elderly population. These impairments involve a decline in gut digestive physiology, metabolism and immune status, and associated to that, changes in composition and function of the microbiota it harbors. Continuous deteriorations are generally associated with the development of systemic dysregulations and ultimately pathologies that can worsen the initial health status of individuals. All these alterations observed at the gut level can then constitute a wide range of potential targets for development of nutritional strategies that can impact gut tissue or associated microbiota pattern. This can be key, in a preventive manner, to limit gut functionality decline, or in a curative way to help maintaining optimum nutrients bioavailability in a context on increased requirements, as frequently observed in pathological situations. The aim of this review is to give an overview on the alterations that can occur in the gut during aging and lead to the development of altered function in other tissues and organs, ultimately leading to the development of pathologies. Subsequently is discussed how nutritional strategies that target gut tissue and gut microbiota can help to avoid or delay the occurrence of aging-related pathologies.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Frédéric Capel
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Lydie Combaret
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Blandine Comte
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Dominique Dardevet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Bertrand Evrard
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Christelle Guillet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | | - Alexandre Pinel
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Sergio Polakof
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Estelle Pujos-Guillot
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Didier Rémond
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Yohann Wittrant
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | |
Collapse
|
3
|
Dennis RL, McMunn KA, Cheng HW, Marchant-Forde JN, Lay DC. Serotonin's role in piglet mortality and thriftiness. J Anim Sci 2015; 92:4888-96. [PMID: 25349339 DOI: 10.2527/jas.2014-7835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Improving piglet survivability rates is of high priority for swine production as well as for piglet well-being. Dysfunction in the serotonin (5-HT) system has been associated with growth deficiencies, infant mortalities, or failure to thrive in human infants. The aim of this research was to determine if a relationship exists between infant mortality and failure to thrive (or unthriftiness), and umbilical 5-HT concentration in piglets. Umbilical blood was collected from a total of 60 piglets from 15 litters for analysis of 5-HT and tryptophan (Trp; the AA precursor to 5-HT) concentrations. Behavior was scan sampled for the first 2 days after birth. Brain samples were also taken at 8 h after birth from healthy and unthrifty piglets (n = 4/group). The raphe nucleus was dissected out and analyzed for 5-HT and dopamine concentrations as well as their major metabolites 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA), respectively. Data were analyzed by ANOVA. Piglets that died within 48 h of birth (n = 14) had significantly lower umbilical blood 5-HT concentrations at the time of their birth compared to their healthy counterparts (n = 46, P = 0.003). However, no difference in Trp was detected (P 0.38). Time spent under the heat lamp and sleeping were positively correlated with umbilical 5-HT levels (P = 0.004 and P = 0.02, respectively), while inactivity had a negative correlation with 5-HT levels (P = 0.04). In the raphe nucleus, the center for brain 5-HT biosynthesis, unthrifty piglets had a greater concentration of 5-HIAA (P = 0.02) and a trend for higher concentrations of 5-HT (P = 0.07) compared with healthy piglets. Dopamine levels did not differ between thrifty and unthrifty piglets (P = 0.45); however, its metabolite HVA tended to be greater in unthrifty piglets (P = 0.05). Our results show evidence of serotonergic dysfunction, at both the central and peripheral levels, accompanying early piglet mortalities. These data suggest a possible route for intervention, via the 5-HT system, to improve piglet survivability. However, further research is required to validate this hypothesis.
Collapse
Affiliation(s)
- R L Dennis
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907
| | - K A McMunn
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907
| | - H W Cheng
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907
| | - J N Marchant-Forde
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907
| | - D C Lay
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907
| |
Collapse
|
4
|
Kurhe Y, Mahesh R, Gupta D, Devadoss T. QCM-4, a serotonergic type 3 receptor modulator attenuates depression co-morbid with obesity in mice: An approach based on behavioral and biochemical investigations. Eur J Pharmacol 2014; 740:611-8. [DOI: 10.1016/j.ejphar.2014.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/14/2014] [Accepted: 06/17/2014] [Indexed: 12/22/2022]
|
5
|
Edgerton DS, An Z, Johnson KMS, Farmer T, Farmer B, Neal D, Cherrington AD. Effects of intraportal exenatide on hepatic glucose metabolism in the conscious dog. Am J Physiol Endocrinol Metab 2013; 305:E132-9. [PMID: 23673158 PMCID: PMC3725568 DOI: 10.1152/ajpendo.00160.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Incretins improve glucose metabolism through multiple mechanisms. It remains unclear whether direct hepatic effects are an important part of exenatide's (Ex-4) acute action. Therefore, the objective of this study was to determine the effect of intraportal delivery of Ex-4 on hepatic glucose production and uptake. Fasted conscious dogs were studied during a hyperglycemic clamp in which glucose was infused into the hepatic portal vein. At the same time, portal saline (control; n = 8) or exenatide was infused at low (0.3 pmol·kg⁻¹·min⁻¹, Ex-4-low; n = 5) or high (0.9 pmol·kg⁻¹·min⁻¹, Ex-4-high; n = 8) rates. Arterial plasma glucose levels were maintained at 160 mg/dl during the experimental period. This required a greater rate of glucose infusion in the Ex-4-high group (1.5 ± 0.4, 2.0 ± 0.7, and 3.7 ± 0.7 mg·kg⁻¹·min⁻¹ between 30 and 240 min in the control, Ex-4-low, and Ex-4-high groups, respectively). Plasma insulin levels were elevated by Ex-4 (arterial: 4,745 ± 428, 5,710 ± 355, and 7,262 ± 1,053 μU/ml; hepatic sinusoidal: 14,679 ± 1,700, 15,341 ± 2,208, and 20,445 ± 4,020 μU/ml, 240 min, area under the curve), whereas the suppression of glucagon was nearly maximal in all groups. Although glucose utilization was greater during Ex-4 infusion (5.92 ± 0.53, 6.41 ± 0.57, and 8.12 ± 0.54 mg·kg⁻¹·min⁻¹), when indices of hepatic, muscle, and whole body glucose uptake were expressed relative to circulating insulin concentrations, there was no indication of insulin-independent effects of Ex-4. Thus, this study does not support the notion that Ex-4 generates acute changes in hepatic glucose metabolism through direct effects on the liver.
Collapse
Affiliation(s)
- Dale S Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
RATIONALE Past research on the association of antidepressant medication use with glycemic control abnormalities has produced mixed results. OBJECTIVE To examine the association of antidepressant use with glycemic control abnormalities and screen-positive diabetes in a representative population sample of US adults without a diagnosis of diabetes. METHODS Using data from adult participants of the National Health and Nutrition Examination Survey (NHANES, 2005-2010), the association of antidepressant use with continuous measures of HbA1c, fasting blood sugar, 2-h oral glucose tolerance test, insulin sensitivity and screen-positive diabetes according to HbA1c, fasting blood sugar and 2-h oral glucose tolerance test were assessed. RESULTS Antidepressant use was not associated with increased levels of HbA1c, fasting blood sugar, 2-h oral glucose tolerance test, reduced insulin sensitivity or increased prevalence of screen-positive diabetes. Results were mostly consistent across sociodemographic groups and across different lengths of exposure, different classes of antidepressants and levels of body mass index. CONCLUSIONS In this representative population sample, antidepressant use was not associated with an increased risk of abnormalities in glycemic control or undetected diabetes. Positive findings from past research may be attributable to detection bias, in that individuals prescribed antidepressants may be more likely to be tested and diagnosed with diabetes.
Collapse
|
7
|
Winnick JJ, Ramnanan CJ, Saraswathi V, Roop J, Scott M, Jacobson P, Jung P, Basu R, Cherrington AD, Edgerton DS. Effects of 11β-hydroxysteroid dehydrogenase-1 inhibition on hepatic glycogenolysis and gluconeogenesis. Am J Physiol Endocrinol Metab 2013; 304:E747-56. [PMID: 23403942 PMCID: PMC3625750 DOI: 10.1152/ajpendo.00639.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine the effect of prolonged 11β-hydroxysteroid dehydrogenase-1 (11β-HSD1) inhibition on basal and hormone-stimulated glucose metabolism in fasted conscious dogs. For 7 days prior to study, either an 11β-HSD1 inhibitor (HSD1-I; n = 6) or placebo (PBO; n = 6) was administered. After the basal period, a 4-h metabolic challenge followed, where glucagon (3×-basal), epinephrine (5×-basal), and insulin (2×-basal) concentrations were increased. Hepatic glucose fluxes did not differ between groups during the basal period. In response to the metabolic challenge, hepatic glucose production was stimulated in PBO, resulting in hyperglycemia such that exogenous glucose was required in HSD-I (P < 0.05) to match the glycemia between groups. Net hepatic glucose output and endogenous glucose production were decreased by 11β-HSD1 inhibition (P < 0.05) due to a reduction in net hepatic glycogenolysis (P < 0.05), with no effect on gluconeogenic flux compared with PBO. In addition, glucose utilization (P < 0.05) and the suppression of lipolysis were increased (P < 0.05) in HSD-I compared with PBO. These data suggest that inhibition of 11β-HSD1 may be of therapeutic value in the treatment of diseases characterized by insulin resistance and excessive hepatic glucose production.
Collapse
Affiliation(s)
- J. J. Winnick
- 1Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - C. J. Ramnanan
- 2Department of Cellular and Molecular Medicine, University of Ottawa School of Medicine, Ottawa, Ontario, Canada;
| | - V. Saraswathi
- 3Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska;
| | - J. Roop
- 1Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - M. Scott
- 1Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - P. Jacobson
- 4Abbott Laboratories, Chicago, Illinois; and
| | - P. Jung
- 4Abbott Laboratories, Chicago, Illinois; and
| | - R. Basu
- 5Department of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - A. D. Cherrington
- 1Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - D. S. Edgerton
- 1Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee;
| |
Collapse
|
8
|
Ramnanan CJ, Kraft G, Smith MS, Farmer B, Neal D, Williams PE, Lautz M, Farmer T, Donahue EP, Cherrington AD, Edgerton DS. Interaction between the central and peripheral effects of insulin in controlling hepatic glucose metabolism in the conscious dog. Diabetes 2013; 62:74-84. [PMID: 23011594 PMCID: PMC3526039 DOI: 10.2337/db12-0148] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The importance of hypothalamic insulin action to the regulation of hepatic glucose metabolism in the presence of a normal liver/brain insulin ratio (3:1) is unknown. Thus, we assessed the role of central insulin action in the response of the liver to normal physiologic hyperinsulinemia over 4 h. Using a pancreatic clamp, hepatic portal vein insulin delivery was increased three- or eightfold in the conscious dog. Insulin action was studied in the presence or absence of intracerebroventricularly mediated blockade of hypothalamic insulin action. Euglycemia was maintained, and glucagon was clamped at basal. Both the molecular and metabolic aspects of insulin action were assessed. Blockade of hypothalamic insulin signaling did not alter the insulin-mediated suppression of hepatic gluconeogenic gene transcription but blunted the induction of glucokinase gene transcription and completely blocked the inhibition of glycogen synthase kinase-3β gene transcription. Thus, central and peripheral insulin action combined to control some, but not other, hepatic enzyme programs. Nevertheless, inhibition of hypothalamic insulin action did not alter the effects of the hormone on hepatic glucose flux (production or uptake). These data indicate that brain insulin action is not a determinant of the rapid (<4 h) inhibition of hepatic glucose metabolism caused by normal physiologic hyperinsulinemia in this large animal model.
Collapse
Affiliation(s)
- Christopher J. Ramnanan
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
- Medical College of Georgia at Georgia Health Sciences University, Department of Cellular Biology and Anatomy, Augusta, Georgia
| | - Guillaume Kraft
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
| | - Marta S. Smith
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
| | - Ben Farmer
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
| | - Doss Neal
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
| | - Phillip E. Williams
- Vanderbilt University School of Medicine, Division of Surgical Research, Nashville, Tennessee
| | - Margaret Lautz
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
| | - Tiffany Farmer
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
| | - E. Patrick Donahue
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
| | - Alan D. Cherrington
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
| | - Dale S. Edgerton
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
- Corresponding author: Dale S. Edgerton,
| |
Collapse
|
9
|
Coelho WS, Da Silva D, Marinho-Carvalho MM, Sola-Penna M. Serotonin modulates hepatic 6-phosphofructo-1-kinase in an insulin synergistic manner. Int J Biochem Cell Biol 2012; 44:150-7. [DOI: 10.1016/j.biocel.2011.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/24/2011] [Accepted: 10/14/2011] [Indexed: 01/20/2023]
|
10
|
Pachmerhiwala R, Bhide N, Straiko M, Gudelsky GA. Role of serotonin and/or norepinephrine in the MDMA-induced increase in extracellular glucose and glycogenolysis in the rat brain. Eur J Pharmacol 2010; 644:67-72. [PMID: 20633550 PMCID: PMC2944403 DOI: 10.1016/j.ejphar.2010.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 07/03/2010] [Accepted: 07/06/2010] [Indexed: 02/08/2023]
Abstract
The acute administration of MDMA has been shown to promote glycogenolysis and increase the extracellular concentration of glucose in the striatum. In the present study the role of serotonergic and/or noradrenergic mechanisms in the MDMA-induced increase in extracellular glucose and glycogenolysis was assessed. The relationship of these responses to the hyperthermia produced by MDMA also was examined. The administration of MDMA (10mg/kg, i.p.) resulted in a significant and sustained increase of 65-100% in the extracellular concentration of glucose in the striatum, as well as in the prefrontal cortex and hippocampus, and a 35% decrease in brain glycogen content. Peripheral blood glucose was modestly increased by 32% after MDMA treatment. Treatment of rats with fluoxetine (10mg/kg, i.p.) significantly attenuated the MDMA-induced increase in extracellular glucose in the striatum but had no effect on MDMA-induced glycogenolysis or hyperthermia. Treatment with prazosin (1mg/kg, i.p.) did not alter the glucose or glycogen responses to MDMA but completely suppressed MDMA-induced hyperthermia. Finally, propranolol (3mg/kg, i.p.) significantly attenuated the MDMA-induced increase in extracellular glucose and glycogenolysis but did not alter MDMA-induced hyperthermia. The present results suggest that MDMA increases extracellular glucose in multiple brain regions, and that this response involves both serotonergic and noradrenergic mechanisms. Furthermore, beta-adrenergic and alpha-adrenergic receptors appear to contribute to MDMA-induced glycogenolysis and hyperthermia, respectively. Finally, hyperthermia, glycogenolysis and elevated extracellular glucose appear to be independent, unrelated responses to acute MDMA administration.
Collapse
MESH Headings
- Animals
- Brain/drug effects
- Brain/metabolism
- Fever/chemically induced
- Fluoxetine/pharmacology
- Glucose/metabolism
- Glycogenolysis/drug effects
- Male
- N-Methyl-3,4-methylenedioxyamphetamine/pharmacology
- Norepinephrine/metabolism
- Prazosin/pharmacology
- Propranolol/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha/drug effects
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Serotonin/metabolism
Collapse
Affiliation(s)
| | - Nirmal Bhide
- James Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Megan Straiko
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267
| | - Gary A. Gudelsky
- James Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267
| |
Collapse
|
11
|
Gramsbergen JB, Cumming P. Serotonin mediates rapid changes of striatal glucose and lactate metabolism after systemic 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) administration in awake rats. Neurochem Int 2007; 51:8-15. [PMID: 17475367 DOI: 10.1016/j.neuint.2007.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 03/07/2007] [Accepted: 03/09/2007] [Indexed: 11/24/2022]
Abstract
The pathway for selective serotonergic toxicity of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") is poorly understood, but has been linked to hyperthermia and disturbed energy metabolism. We investigated the dose-dependency and time-course of MDMA-induced perturbations of cerebral glucose metabolism in freely moving rats using rapid sampling microdialysis (every minute) coupled to flow-injection analysis (FIA) with biosensors for glucose and lactate. Blood samples for analysis of glucose and lactate were taken at 30-45 min intervals before and after drug dosing and body temperature was monitored by telemetry. A single dose of MDMA (2-10-20 mg/kg i.v.) evoked a transient increase of interstitial glucose concentrations in striatum (139-223%) with rapid onset and of less than 2h duration, a concomitant but more prolonged lactate increase (>187%) at the highest MDMA dose and no significant depletions of striatal serotonin. Blood glucose and lactate levels were also transiently elevated (163 and 135%) at the highest MDMA doses. The blood glucose rises were significantly related to brain glucose and brain lactate changes. The metabolic perturbations in striatum and the hyperthermic response (+1.1 degrees C) following systemic MDMA treatment were entirely blocked in p-chlorophenylalanine pre-treated rats, indicating that these effects are mediated by endogenous serotonin.
Collapse
Affiliation(s)
- Jan Bert Gramsbergen
- Anatomy & Neurobiology, Institute of Medical Biology, University of Southern Denmark, Winsløwparken 21, DK-5000 Odense C, Denmark.
| | | |
Collapse
|