1
|
Exogenous Ketone Supplements in Athletic Contexts: Past, Present, and Future. Sports Med 2022; 52:25-67. [PMID: 36214993 PMCID: PMC9734240 DOI: 10.1007/s40279-022-01756-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2022] [Indexed: 12/15/2022]
Abstract
The ketone bodies acetoacetate (AcAc) and β-hydroxybutyrate (βHB) have pleiotropic effects in multiple organs including brain, heart, and skeletal muscle by serving as an alternative substrate for energy provision, and by modulating inflammation, oxidative stress, catabolic processes, and gene expression. Of particular relevance to athletes are the metabolic actions of ketone bodies to alter substrate utilisation through attenuating glucose utilisation in peripheral tissues, anti-lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. There has been long-standing interest in the development of ingestible forms of ketone bodies that has recently resulted in the commercial availability of exogenous ketone supplements (EKS). These supplements in the form of ketone salts and ketone esters, in addition to ketogenic compounds such as 1,3-butanediol and medium chain triglycerides, facilitate an acute transient increase in circulating AcAc and βHB concentrations, which has been termed 'acute nutritional ketosis' or 'intermittent exogenous ketosis'. Some studies have suggested beneficial effects of EKS to endurance performance, recovery, and overreaching, although many studies have failed to observe benefits of acute nutritional ketosis on performance or recovery. The present review explores the rationale and historical development of EKS, the mechanistic basis for their proposed effects, both positive and negative, and evidence to date for their effects on exercise performance and recovery outcomes before concluding with a discussion of methodological considerations and future directions in this field.
Collapse
|
2
|
McCarthy DG, Bostad W, Powley FJ, Little JP, Richards DL, Gibala MJ. Increased cardiorespiratory stress during submaximal cycling after ketone monoester ingestion in endurance-trained adults. Appl Physiol Nutr Metab 2021; 46:986-993. [PMID: 33646860 DOI: 10.1139/apnm-2020-0999] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is growing interest in the effect of exogenous ketone body supplementation on exercise responses and performance. The limited studies to date have yielded equivocal data, likely due in part to differences in dosing strategy, increase in blood ketones, and participant training status. Using a randomized, double-blind, counterbalanced design, we examined the effect of ingesting a ketone monoester (KE) supplement (600 mg/kg body mass) or flavour-matched placebo in endurance-trained adults (n = 10 males, n = 9 females; V̇O2peak = 57 ± 8 mL/kg/min). Participants performed a 30-min cycling bout at ventilatory threshold intensity (71 ± 3% V̇O2peak), followed 15 min later by a 3 kJ/kg body mass time-trial. KE versus placebo ingestion increased plasma β-hydroxybutyrate concentration before exercise (3.9 ± 1.0 vs 0.2 ± 0.3 mM, p < 0.0001, dz = 3.4), ventilation (77 ± 17 vs 71 ± 15 L/min, p < 0.0001, dz = 1.3) and heart rate (155 ± 11 vs 150 ± 11 beats/min, p < 0.001, dz = 1.2) during exercise, and rating of perceived exertion at the end of exercise (15.4 ± 1.6 vs 14.5 ± 1.2, p < 0.01, dz = 0.85). Plasma β-hydroxybutyrate concentration remained higher after KE vs placebo ingestion before the time-trial (3.5 ± 1.0 vs 0.3 ± 0.2 mM, p < 0.0001, dz = 3.1), but performance was not different (KE: 16:25 ± 2:50 vs placebo: 16:06 ± 2:40 min:s, p = 0.20; dz = 0.31). We conclude that acute ingestion of a relatively large KE bolus dose increased markers of cardiorespiratory stress during submaximal exercise in endurance-trained participants. Novelty: Limited studies have yielded equivocal data regarding exercise responses after acute ketone body supplementation. Using a randomized, double-blind, placebo-controlled, counterbalanced design, we found that ingestion of a large bolus dose of a commercial ketone monoester supplement increased markers of cardiorespiratory stress during cycling at ventilatory threshold intensity in endurance-trained adults.
Collapse
Affiliation(s)
- Devin G McCarthy
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - William Bostad
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Fiona J Powley
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Jonathan P Little
- School of Health and Exercise Sciences, The University of British Columbia Okanagan, Kelowna, BC, Canada
| | | | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
3
|
Abstract
Fat and carbohydrate are important fuels for aerobic exercise and there can be reciprocal shifts in the proportions of carbohydrate and fat that are oxidized. The interaction between carbohydrate and fatty acid oxidation is dependent on the intracellular and extracellular metabolic environments. The availability of substrate, both from inside and outside of the muscle, and exercise intensity and duration will affect these environments. The ability of increasing fat provision to downregulate carbohydrate metabolism in the heart, diaphragm and peripheral skeletal muscle has been well studied. However, the regulation of fat metabolism in human skeletal muscle during exercise in the face of increasing carbohydrate availability and exercise intensity has not been well studied until recently. Research in the past 10 years has demonstrated that the regulation of fat metabolism is complex and involves many sites of control, including the transport of fat into the muscle cell, the binding and transport of fat in the cytoplasm, the regulation of intramuscular triacylglycerol synthesis and breakdown, and the transport of fat into the mitochondria. The discovery of proteins that assist in transporting fat across the plasma and mitochondrial membranes, the ability of these proteins to translocate to the membranes during exercise, and the new roles of adipose triglyceride lipase and hormone-sensitive lipase in regulating skeletal muscle lipolysis are examples of recent discoveries. This information has led to the proposal of mechanisms to explain the downregulation of fat metabolism that occurs in the face of increasing carbohydrate availability and when moving from moderate to intense aerobic exercise.
Collapse
|
4
|
BAX inhibitor-1 enhances cancer metastasis by altering glucose metabolism and activating the sodium-hydrogen exchanger: the alteration of mitochondrial function. Oncogene 2010; 29:2130-41. [PMID: 20118983 DOI: 10.1038/onc.2009.491] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The anti-apoptotic protein, BAX inhibitor-1 (BI-1), has a role in cancer/tumor progression. BI-1-overexpressing HT1080 and B16F10 cells produced higher lung weights and tumor volumes after injection into the tail veins of mice. Transfection of BI-1 siRNA into cells before injection blocked lung metastasis. in vitro, the overexpression of BI-1 increased cell mobility and invasiveness, with highly increased glucose consumption and cytosolic accumulation of lactate and pyruvate, but decreased mitochondrial O(2) consumption and ATP production. Glucose metabolism-associated extracellular pH also decreased as cells excreted more H(+), and sodium hydrogen exchanger (NHE) activity increased, probably as a homeostatic mechanism for intracellular pH. These alterations activated MMP 2/9 and cell mobility and invasiveness, which were reversed by the NHE inhibitor, 5-(N-ethyl-N-isopropyl) amiloride (EIPA), suggesting a role for NHE in cancer metastasis. In both in vitro and in vivo experiments, C-terminal deleted (CDeltaBI-1) cells showed similar results to control cells, suggesting that the C-terminal motif is required for BI-1-associated alterations of glucose metabolism, NHE activation and cancer metastasis. These findings strongly suggest that BI-1 reduces extracellular pH and regulates metastasis by altering glucose metabolism and activating NHE, with the C-terminal tail having a pivotal role in these processes.
Collapse
|
5
|
Trenell MI, Stevenson E, Stockmann K, Brand-Miller J. Effect of high and low glycaemic index recovery diets on intramuscular lipid oxidation during aerobic exercise. Br J Nutr 2008; 99:326-32. [PMID: 17697427 DOI: 10.1017/s0007114507798963] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intramyocellular lipid (IMCL) and plasma NEFA are important skeletal muscle fuel sources. By raising blood insulin concentrations, carbohydrate ingestion inhibits lypolysis and reduces circulating NEFA. We hypothesised that differences in the postprandial glycaemic and insulin response to carbohydrates (i.e. glycaemic index; GI) could alter NEFA availability and IMCL use during subsequent exercise. Endurance-trained individuals (n 7) cycled for 90 min at 70 % V˙O2peak and then consumed either high GI (HGI) or low GI (LGI) meals over the following 12 h. The following day after an overnight fast, the 90 min cycle was repeated. IMCL content of the vastus lateralis was quantified using magnetic resonance spectroscopy before and after exercise. Blood samples were collected at 15 min intervals throughout exercise and analysed for NEFA, glycerol, glucose, insulin, and lactate. Substrate oxidation was calculated from expired air samples. The 90 min cycle resulted in >2-fold greater reduction in IMCL in the HGI trial (3·5 (sem 1·0) mm/kg wet weight) than the LGI trial (1·6 (sem 0·3) mm/kg wet weight, P < 0·05). During exercise, NEFA availability was reduced in the HGI trial compared to the LGI trial (area under curve 2·36 (sem 0·14) mEq/l per h v. 3·14 (sem 0·28) mEq/l per h, P < 0·05 respectively). No other differences were significant. The findings suggest that HGI carbohydrates reduce NEFA availability during exercise and increase reliance on IMCL as a substrate source during moderate intensity exercise.
Collapse
Affiliation(s)
- Michael I Trenell
- Diabetes Research Group & Newcastle Magnetic Resonance Centre, School of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | |
Collapse
|
6
|
Kiilerich K, Birk JB, Damsgaard R, Wojtaszewski JFP, Pilegaard H. Regulation of PDH in human arm and leg muscles at rest and during intense exercise. Am J Physiol Endocrinol Metab 2008; 294:E36-42. [PMID: 17957032 DOI: 10.1152/ajpendo.00352.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test the hypothesis that pyruvate dehydrogenase (PDH) is differentially regulated in specific human muscles, regulation of PDH was examined in triceps, deltoid, and vastus lateralis at rest and during intense exercise. To elicit considerable glycogen use, subjects performed 30 min of exhaustive arm cycling on two occasions and leg cycling exercise on a third day. Muscle biopsies were obtained from deltoid or triceps on the arm exercise days and from vastus lateralis on the leg cycling day. Resting PDH protein content and phosphorylation on PDH-E1 alpha sites 1 and 2 were higher (P < or = 0.05) in vastus lateralis than in triceps and deltoid as was the activity of oxidative enzymes. Net muscle glycogen utilization was similar in vastus lateralis and triceps ( approximately 50%) but less in deltoid (likely reflecting less recruitment of deltoid), while muscle lactate accumulation was approximately 55% higher (P < or = 0.05) in triceps than vastus lateralis. Exercise induced (P < or = 0.05) dephosphorylation of both PDH-E1 alpha site 1 and site 2 in all three muscles, but it was more pronounced at PDH-E1 alpha site 1 in triceps than in vastus lateralis (P < or = 0.05). The increase in activity of the active form of PDH (PDHa) after 10 min of exercise was more marked in vastus lateralis ( approximately 246%) than in triceps ( approximately 160%), but when it was related to total PDH-E1 alpha protein content, no difference was evident. In conclusion, PDH protein content seems to be related to metabolic enzyme profile, rather than myosin heavy chain composition, and less PDH capacity in triceps is a likely contributing factor to higher lactate accumulation in triceps than in vastus lateralis.
Collapse
Affiliation(s)
- Kristian Kiilerich
- Copenhagen Muscle Research Center, August Krogh Bldg., University of Copenhagen, 2100 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
7
|
Hansson O, Donsmark M, Ling C, Nevsten P, Danfelter M, Andersen JL, Galbo H, Holm C. Transcriptome and proteome analysis of soleus muscle of hormone-sensitive lipase-null mice. J Lipid Res 2005; 46:2614-23. [PMID: 16199803 DOI: 10.1194/jlr.m500028-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hormone-sensitive lipase (HSL), a key enzyme in fatty acid mobilization in adipocytes, has been demonstrated also in skeletal muscle. To gain further insight into the role and importance of HSL in skeletal muscle, a transcriptome analysis of soleus muscle of HSL-null mice was performed. A total of 161 transcripts were found to be differentially expressed. Increased mRNA levels of fructose-1,6-bisphosphatase, fructose-2,6-bisphosphatase, and phosphorylase kinase gamma1A suggest a higher glycogen flux in soleus muscle of HSL-null mice. An observed increase in the utilization of glycogen stores supports this finding. Moreover, an increased amount of intramyocellular lipid droplets, observed by transmission electron microscopy, suggests decreased mobilization of lipid stores in HSL-null mice. To complement the transcriptome data, protein expression analysis was performed. Five spots were found to be differentially expressed: pyruvate dehydrogenase E1alpha, creatine kinase (CK), ankyrin-repeat domain 2, glyceraldehyde-3-phosphate dehydrogenase, and one protein yet to be identified. The increased protein level of CK indicates creatine phosphate degradation to be of increased importance in HSL-null mice. The results of this study suggest that in the absence of HSL, a metabolic switch from reliance on lipid to carbohydrate energy substrates takes place, supporting an important role of HSL in soleus muscle lipid metabolism.
Collapse
Affiliation(s)
- Ola Hansson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Roepstorff C, Halberg N, Hillig T, Saha AK, Ruderman NB, Wojtaszewski JFP, Richter EA, Kiens B. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Am J Physiol Endocrinol Metab 2005; 288:E133-42. [PMID: 15383373 DOI: 10.1152/ajpendo.00379.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular mechanisms regulating fat oxidation were investigated in human skeletal muscle during exercise. Eight young, healthy, moderately trained men performed bicycle exercise (60 min, 65% peak O2 consumption) on two occasions, where they ingested either 1) a high-carbohydrate diet (H-CHO) or 2) a low-carbohydrate diet (L-CHO) before exercise to alter muscle glycogen content as well as to induce, respectively, low and high rates of fat oxidation. Leg fat oxidation was 122% higher during exercise in L-CHO than in H-CHO (P < 0.001). In keeping with this, the activity of alpha2-AMP-activated protein kinase (alpha2-AMPK) was increased twice as much in L-CHO as in H-CHO (P < 0.01) at 60 min of exercise. However, acetyl-CoA carboxylase (ACC)beta Ser221 phosphorylation was increased to the same extent (6-fold) under the two conditions. The concentration of malonyl-CoA was reduced 13% by exercise in both conditions (P < 0.05). Pyruvate dehydrogenase activity was higher during exercise in H-CHO than in L-CHO (P < 0.01). In H-CHO only, the concentrations of acetyl-CoA and acetylcarnitine were increased (P < 0.001), and the concentration of free carnitine was decreased (P < 0.01), by exercise. The data suggest that a decrease in the concentration of malonyl-CoA, secondary to alpha2-AMPK activation and ACC inhibition (by phosphorylation), contributes to the increase in fat oxidation observed at the onset of exercise regardless of muscle glycogen levels. They also suggest that, with high muscle glycogen, the availability of free carnitine may limit fat oxidation during exercise, due to its increased use for acetylcarnitine formation.
Collapse
Affiliation(s)
- Carsten Roepstorff
- The Copenhagen Muscle Research Centre, Department of Human Physiology, Institute of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Type 2 diabetes is a complex disorder with diminished insulin secretion and insulin action contributing to the hyperglycemia and wide range of metabolic defects that underlie the disease. The contribution of glucose metabolic pathways per se in the pathogenesis of the disease remains unclear. The cellular fate of glucose begins with glucose transport and phosphorylation. Subsequent pathways of glucose utilization include aerobic and anaerobic glycolysis, glycogen formation, and conversion to other intermediates in the hexose phosphate or hexosamine biosynthesis pathways. Abnormalities in each pathway may occur in diabetic subjects; however, it is unclear whether perturbations in these may lead to diabetes or are a consequence of the multiple metabolic abnormalities found in the disease. This review is focused on the cellular fate of glucose and relevance to human type 2 diabetes.
Collapse
Affiliation(s)
- Clara Bouché
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
10
|
O'Neill M, Watt MJ, Heigenhauser GJF, Spriet LL. Effects of reduced free fatty acid availability on hormone-sensitive lipase activity in human skeletal muscle during aerobic exercise. J Appl Physiol (1985) 2004; 97:1938-45. [PMID: 15208282 DOI: 10.1152/japplphysiol.01135.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of intramuscular triacylglycerol (IMTG); however, its regulation in skeletal muscle is poorly understood. To examine the effects of reduced free fatty acid (FFA) availability on HSL activity in skeletal muscle during aerobic exercise, 11 trained men exercised at 55% maximal O2 uptake for 40 min after the ingestion of nicotinic acid (NA) or nothing (control). Muscle biopsies were taken at rest and 5, 20, and 40 min of exercise. Plasma FFA were suppressed (P < 0.05) in NA during exercise ( approximately 0.40 +/- 0.04 vs. approximately 0.07 +/- 0.01 mM). The respiratory exchange ratio (RER) was increased throughout exercise (0.020 + 0.008) after NA ingestion. However, the provision of energy from fat oxidation only decreased from 33% of the total in the control trial to 26% in the NA trial, suggesting increased IMTG oxidation in the NA trial. Mean HSL activity was 2.25 + 0.15 mmol x kg dry mass(-1) x min(-1) at rest and increased (P < 0.05) to 2.94 +/- 0.20 mmol x kg dry mass(-1) x min(-1) at 5 min in control. Contrary to the hypothesis, mean HSL was not activated to a greater extent in the NA trial during exercise (2.20 + 0.28 at rest to 2.88 + 0.21 mmol x kg dry mass(-1) x min(-1) at 5 min). No further HSL increases were observed at 20 or 40 min in both trials. There was variability in the response to NA ingestion, as some subjects experienced a large increase in RER and decrease in fat oxidation, whereas other subjects experienced no shift in RER and maintained fat oxidation despite the reduced FFA availability in the NA trial. However, even in these subjects, HSL activity was not further increased during the NA trial. In conclusion, reduced plasma FFA availability accompanied by increased epinephrine concentration did not further activate HSL beyond exercise alone.
Collapse
Affiliation(s)
- Marcus O'Neill
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | | | | |
Collapse
|
11
|
Abstract
Amino acids contained in proteins can be transformed either in glucose precursors or in acetate, the end product of free fatty acid (FFA) oxidation. The dynamics of glucose, FFA, and amino acid competition for entry into the citric acid cycle (tricarboxylic acid [TCA] cycle) are very complex and not fully understood. Conditions where glucose is insufficiently driven to full oxidation are characterized by lowest efficiency in energy production per mole of oxygen consumed. Moreover, acetate provided by oxidation of FFA increases consumption of amino acids as precursors of the oxaloacetate required for condensation with acetate and for maintenance of citrate synthesis. Increased consumption of amino acids in the TCA cycle, if not matched by adequate intake, leads to muscular wasting and cachexia. Therefore, amino acid needs are very complex, and their intake must provide a balanced ratio of glucogenic and ketogenic precursors suitable to trigger entry of glucose to full oxidation and blunt the level of FFA utilization. Optimization of substrate entry into energy production must also be coupled with sufficient availability of amino acids in ratios suitable for maintaining protein synthesis, inhibiting the catabolic drive, and promoting integrity of cellular proteic structures. Alimentary proteins have a content of amino acids that is far from the stoichiometric ratios of essential amino acids required by humans. An amino acid formulation suitable to match energy needs, control carbohydrate and lipid flow into the TCA cycle, and promote protein synthesis in contracting cells is detailed in this article.
Collapse
|
12
|
Spriet LL, Watt MJ. Regulatory mechanisms in the interaction between carbohydrate and lipid oxidation during exercise. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 178:443-52. [PMID: 12864750 DOI: 10.1046/j.1365-201x.2003.01152.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At the onset of exercise, signals from inside and outside the muscle cell increase the availability of carbohydrate (CHO) and fat to provide the fuel required for ATP production. CHO and fat oxidation are the dominant sources of aerobic ATP production and both pathways must be heavily upregulated during exercise to meet the increased energy demand. Within this paradigm, there is room for shifts between the proportion of energy that is provided from CHO and fat. It has long been known that increasing the availability of endogenous or exogenous CHO can increase the oxidation of CHO and decrease the oxidation of fat. The opposite is also true. While descriptive studies documenting these changes are numerous, the mechanisms regulating these shifts in fuel use in the face of constant energy demand have not been thoroughly elucidated. It would be expected, for example, that any fat-induced shift in CHO metabolism would target the enzymes that play key roles in regulating CHO metabolism and oxidation. Inside the muscle these could include glucose uptake (GLUT4) and phosphorylation (hexokinase), glycogenolysis (glycogen phosphorylase), glycolysis (phosphofructokinase) and conversion to acetyl CoA (pyruvate dehydrogenase). The same would be expected for a CHO-induced down regulation of fat metabolism and oxidation and might target transport of long chain fatty acids into the cell (fatty acid translocase CD36), release of fatty acids from intramuscular triacylglycerol (hormone sensitive lipase) and transport into the mitochondria (carnitine palmitoyl transferase complex). This review summarizes the work describing the interaction between CHO and fat metabolism in human skeletal muscle during exercise and presents the theories that may account for CHO/fat interaction during exercise.
Collapse
Affiliation(s)
- L L Spriet
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|