1
|
Zhang K, Li C, Feng X, Zhang N, Gao X, Lv G, Shen J, Wu P, Lv J, Sun J. Integrated cell metabolomics and network pharmacology approach deciphers the anti-testosterone deficiency mechanisms of Bushen Zhuanggu Tang. J Pharm Biomed Anal 2024; 239:115919. [PMID: 38134707 DOI: 10.1016/j.jpba.2023.115919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Testicular dysfunction is distinguished by a deficiency in testosterone levels, which can be attributed to the occurrence of oxidative stress injury in Leydig cells. The empirical prescription known as Bushen Zhuanggu Tang, developed by a highly experienced traditional Chinese medicine practitioner with six decades of clinical expertize, aligns with the traditional Chinese medicine principle of "kidney governing bone". Researchers have demonstrated that the administration of BSZGT can effectively enhance testosterone production. The objective of this study is to investigate the potential anti-testicular dysfunction effects of BSZGT and elucidate its underlying mechanism in an in vitro setting. Specifically, the impact of oxidative stress induced by H2O2 on the activity and testosterone levels of Leydig cells (TM3) was examined. Furthermore, the utilization of UPLC-QE-Qrbitrap-MS enabled the identification of the involvement of BSZGT in various metabolic pathways, including arginine biosynthesis, amino acyl-tRNA biosynthesis, Alanine, aspartate and glutamine metabolism, and Citrate Cycle, through the modulation of 25 distinct metabolites. Additionally, a network pharmacological analysis was conducted to investigate the pivotal protein targets associated with the therapeutic effects of BSZGT. The findings demonstrate the identification of six key proteins (CYP19A1, CYP1B1, ALOX5, ARG1, XDH, and MPO) that play a significant role in augmenting testicular function through their involvement in the ovarian steroid production pathway. In summary, our study presents a comprehensive research methodology that combines cell metabonomics and network pharmacology to enhance the discovery of new therapeutic agents for TD.
Collapse
Affiliation(s)
- Kaiyue Zhang
- Jilin Institute of Ginseng Science, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Chunnan Li
- Jilin Institute of Ginseng Science, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Xueqin Feng
- Jilin Institute of Ginseng Science, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Nanxi Zhang
- Jilin Institute of Ginseng Science, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Xiaochen Gao
- Jilin Institute of Ginseng Science, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Guangfu Lv
- Jilin Institute of Ginseng Science, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Jiaming Shen
- Jilin Institute of Ginseng Science, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Peitong Wu
- Jilin Institute of Ginseng Science, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Jingwei Lv
- Jilin Institute of Ginseng Science, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| | - Jiaming Sun
- Jilin Institute of Ginseng Science, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| |
Collapse
|
2
|
Amerio A, Magnani L, Arduino G, Fesce F, de Filippis R, Parise A, Costanza A, Nguyen KD, Saverino D, De Berardis D, Aguglia A, Escelsior A, Serafini G, De Fazio P, Amore M. Immunomodulatory Effects of Clozapine: More Than Just a Side Effect in Schizophrenia. Curr Neuropharmacol 2024; 22:1233-1247. [PMID: 38031778 PMCID: PMC10964093 DOI: 10.2174/1570159x22666231128101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 12/01/2023] Open
Abstract
Recent evidence suggests a possible relationship between the immune system and schizophrenia spectrum disorders (SSDs), as neuroinflammation appears to play a role in major psychiatric conditions. Neuroinflammation is as a broad concept representing a physiological protective response to infection or injury, but in some cases, especially if chronic, it may represent an expression of maladaptive processes, potentially driving to clinical dysfunction and neurodegeneration. Several studies are concurrently highlighting the importance of microglia, the resident immune cells of the central nervous system, in a huge number of neurodegenerative diseases, including multiple sclerosis, Alzheimer's and Parkinson's diseases, as well as SSDs. A more fundamental phenomenon of maladaptive coupling of microglia may contribute to the genesis of dysfunctional brain inflammation involved in SSDs, from the onset of their neurophenomenological evolution. Clozapine and other antipsychotic drugs seem to express a provable immunomodulant effect and a more specific action on microglia, while neuroactive steroids and nonsteroidal anti-inflammatory drugs may reduce some SSDs symptoms in add-on therapy. Given these theoretical premises, this article aims to summarize and interpret the available scientific evidence about psychotropic and anti-inflammatory drugs that could express an immunomodulant activity on microglia.
Collapse
Affiliation(s)
- Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI),
Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Magnani
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI),
Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Gabriele Arduino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI),
Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Fabio Fesce
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI),
Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Renato de Filippis
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Alberto Parise
- Department of Geriatric-Rehabilitation,, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandra Costanza
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Psychiatry, Faculty of Biomedical Sciences, University of Italian Switzerland (USI) Lugano, Switzerland
| | - Khoa D. Nguyen
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA, USA
- Tranquis Therapeutics, Palo Alto, CA, USA
| | - Daniele Saverino
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine (DiMeS), Section of Human Anatomy, University of Genoa, Genoa, Italy
| | - Domenico De Berardis
- NHS, Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, Hospital “G. Mazzini”, Teramo, Italy
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI),
Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Escelsior
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI),
Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI),
Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Pasquale De Fazio
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI),
Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
3
|
Liu Y, Yang W, Xue J, Chen J, Liu S, Zhang S, Zhang X, Gu X, Dong Y, Qiu P. Neuroinflammation: The central enabler of postoperative cognitive dysfunction. Biomed Pharmacother 2023; 167:115582. [PMID: 37748409 DOI: 10.1016/j.biopha.2023.115582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
The proportion of advanced age patients undergoing surgical procedures is on the rise owing to advancements in surgical and anesthesia technologies as well as an overall aging population. As a complication of anesthesia and surgery, older patients frequently suffer from postoperative cognitive dysfunction (POCD), which may persist for weeks, months or even longer. POCD is a complex pathological process involving multiple pathogenic factors, and its mechanism is yet unclear. Potential theories include inflammation, deposition of pathogenic proteins, imbalance of neurotransmitters, and chronic stress. The identification, prevention, and treatment of POCD are still in the exploratory stages owing to the absence of standardized diagnostic criteria. Undoubtedly, comprehending the development of POCD remains crucial in overcoming the illness. Neuroinflammation is the leading hypothesis and a crucial component of the pathological network of POCD and may have complex interactions with other mechanisms. In this review, we discuss the possible ways in which surgery and anesthesia cause neuroinflammation and investigate the connection between neuroinflammation and the development of POCD. Understanding these mechanisms may likely ensure that future treatment options of POCD are more effective.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Juntong Chen
- Zhejiang University School of Medicine, Hangzhou 311121, Zhejiang province, China
| | - Shiqing Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Shijie Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiaohui Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China.
| | - Youjing Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
4
|
Servin-Barthet C, Martínez-García M, Pretus C, Paternina-Die M, Soler A, Khymenets O, Pozo ÓJ, Leuner B, Vilarroya O, Carmona S. The transition to motherhood: linking hormones, brain and behaviour. Nat Rev Neurosci 2023; 24:605-619. [PMID: 37612425 DOI: 10.1038/s41583-023-00733-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
We are witnessing a stark increase in scientific interest in the neurobiological processes associated with pregnancy and maternity. Convergent evidence suggests that around the time of labour, first-time mothers experience a specific pattern of neuroanatomical changes that are associated with maternal behaviour. Here we provide an overview of the human neurobiological adaptations of motherhood, focusing on the interplay between pregnancy-related steroid and peptide hormones, and neuroplasticity in the brain. We discuss which brain plasticity mechanisms might underlie the structural changes detected by MRI, which hormonal systems are likely to contribute to such neuroanatomical changes and how these brain mechanisms may be linked to maternal behaviour. This Review offers an overarching framework that can serve as a roadmap for future investigations.
Collapse
Affiliation(s)
- Camila Servin-Barthet
- Unitat de Recerca en Neurociència Cognitiva, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Magdalena Martínez-García
- Instituto de Investigación Sanitaria Gregorio Marañon, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Clara Pretus
- Hospital del Mar Research Institute, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de els Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Paternina-Die
- Instituto de Investigación Sanitaria Gregorio Marañon, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Soler
- Unitat de Recerca en Neurociència Cognitiva, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | | | - Óscar J Pozo
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Benedetta Leuner
- Psychology Department, The Ohio State University, Columbus, OH, USA
| | - Oscar Vilarroya
- Unitat de Recerca en Neurociència Cognitiva, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Hospital del Mar Research Institute, Barcelona, Spain.
| | - Susana Carmona
- Instituto de Investigación Sanitaria Gregorio Marañon, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Ozhogin IV, Pugachev AD, Makarova NI, Belanova AA, Kozlenko AS, Rostovtseva IA, Zolotukhin PV, Demidov OP, El-Sewify IM, Borodkin GS, Metelitsa AV, Lukyanov BS. Novel Indoline Spiropyrans Based on Human Hormones β-Estradiol and Estrone: Synthesis, Structure, Chromogenic and Cytotoxic Properties. Molecules 2023; 28:molecules28093866. [PMID: 37175276 PMCID: PMC10179760 DOI: 10.3390/molecules28093866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The introduction of a switchable function into the structure of a bioactive compound can endow it with unique capabilities for regulating biological activity under the influence of various types of external stimuli, which makes such hybrid compounds promising objects for photopharmacology, targeted drug delivery and bio-imaging. This work is devoted to the synthesis and study of new spirocyclic derivatives of important human hormones-β-estradiol and estrone-possessing a wide range of biological activities. The obtained hybrid compounds represent an indoline spiropyrans family, a widely known class of organic photochromic compounds. The structure of the compounds was confirmed by 1H and 13C NMR, IR, HRMS and single-crystal X-ray analysis. The intermolecular interactions in the crystals of spiropyran (3) were defined by Hirshfeld surfaces and 2D fingerprint plots, which were successfully acquired from CrystalExplorer (v21.5). All target hybrids demonstrated pronounced activity in the visible region of the spectrum. The mechanisms of thermal isomerization processes of spiropyrans and their protonated merocyanine forms were studied by DFT methods, which revealed the energetic advantage of the protonation process with the formation of a β-cisoid CCCH conformer at the first stage and its further isomerization to more stable β-transoid forms. The proposed mechanism of acidochromic transformation was confirmed by the additional NMR study data that allowed for the detecting of the intermediate CCCH isomer. The study of the short-term cytotoxicity of new spirocyclic derivatives of estrogens and their 2-formyl-precursors was performed on the HeLa cell model. The precursors and spiropyrans differed in toxicity, suggesting their variable applicability in novel anti-cancer technologies.
Collapse
Affiliation(s)
- Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Artem D Pugachev
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Nadezhda I Makarova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Anna A Belanova
- Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Anastasia S Kozlenko
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Irina A Rostovtseva
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Peter V Zolotukhin
- Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Oleg P Demidov
- Faculty of Chemistry and Pharmacy, North-Caucasus Federal University, 1 Pushkina Str., 355000 Stavropol, Russia
| | - Islam M El-Sewify
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Gennady S Borodkin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Anatoly V Metelitsa
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| |
Collapse
|
6
|
Gonadal hormone trigger the dynamic microglial alterations through Traf6/TAK1 axis that correlate with depressive behaviors. J Psychiatr Res 2022; 152:128-138. [PMID: 35724494 DOI: 10.1016/j.jpsychires.2022.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/15/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022]
Abstract
Gonadal hormone deficiency is associated with the development of depression, but what mediates this association is unclear. To test the possibility that it reflects neuroimmune and neuroinflammatory processes, we analyzed how gonadal hormone deficiency and replacement affect microglial activation and inflammatory response during the development of depressive symptomatology in gonadectomized male mice. Testosterone level and the ratio of testosterone to estradiol in the serum and brain tissue of mice exposed to 3-35 days of chronic unpredictable stress were much lower than in control animals. Gonadal hormone sustained deficiency in gonadectomized mice and subsequent led to acute inflammation at day 7 following castration. Activating microglia in mice exposed to 7 days of castration subsequently suppressed the proliferation of microglia, such that their numbers in hippocampus and cortex were lower than the numbers in sham-operated mice after 30 days of castration. Here, we showed that gonadal hormone deficiency induces Traf6-mediated microglia activation, a type of inflammatory mediator. Microglia treated in this way for long time showed down-regulation of activation markers, abnormal morphology and depressive-like behaviors. Restoration and maintenance of a fixed ratio of testosterone to estradiol significantly suppressed microglial activation, neuronal necroptosis, dramatically inducing hippocampal neurogenesis and reducing depressive behaviors via the suppression of Traf6/TAK1 pathway. These findings suggest that activated or immunoreactive microglia contribute to gonadal hormone deficiency-induced depression, as well as testosterone and estradiol exert synergistic anti-depressant effects via suppressing microglial activaton in gonadectomized male mice, possibly through Traf6 signaling.
Collapse
|
7
|
Zhang Y, Ogola BO, Iyer L, Karamyan VT, Thekkumkara T. Estrogen Metabolite 2-Methoxyestradiol Attenuates Blood Pressure in Hypertensive Rats by Downregulating Angiotensin Type 1 Receptor. Front Physiol 2022; 13:876777. [PMID: 35586713 PMCID: PMC9108484 DOI: 10.3389/fphys.2022.876777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
The therapeutic potential of 2-Methoxyestradiol (2ME2) is evident in cardiovascular disease. Our laboratory has previously demonstrated the mechanism involved in the 2ME2 regulation of angiotensin type 1 receptor (AT1R) in vitro. However, 2ME2 regulation of angiotensin receptors and its effects on blood pressure (BP) and resting heart rate (RHR) are uncertain. In this study, male and female Wistar-Kyoto (WKY) rats infused with angiotensin II (65 ng/min) and male spontaneously hypertensive rats (SHR) were surgically implanted with telemetric probes to continuously assess arterial BP and RHR. In both male and female WKY rats, 2ME2 treatment (20 mg/kg/day for 2 weeks) resulted in a significant reduction of Ang II-induced systolic, diastolic, and mean arterial BP. Moreover, significant weight loss and RHR were indicated in all groups. In a separate set of experiments, prolonged 2ME2 exposure in male SHR (20 mg/kg/day for 5 weeks) displayed a significant reduction in diastolic and mean arterial BP along with RHR. We also found downregulation of angiotensin receptors and angiotensinogen (AGT) in the kidney and liver and a reduction of plasma Ang II levels. Collectively, we demonstrate that 2ME2 attenuated BP and RHR in hypertensive rats involves downregulation of angiotensin receptors and body weight loss.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Benard O. Ogola
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
- *Correspondence: Benard O. Ogola,
| | - Laxmi Iyer
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Vardan T. Karamyan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Thomas Thekkumkara
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| |
Collapse
|
8
|
Guo J, Mo J, Qi Q, Peng J, Qi G, Kanerva M, Iwata H, Li Q. Prediction of adverse effects of effluents containing phenolic compounds in the Ba River on the ovary of fish (Hemiculter leucisculus) using transcriptomic and metabolomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149554. [PMID: 34467927 DOI: 10.1016/j.scitotenv.2021.149554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The aim of this work was to evaluate the endocrine disrupting effects on the ovarian development of sharpbelly (Hemiculter leucisculus) caused by effluents containing phenolic compounds. This was achieved using integrated transcriptomic and metabolomic analyses, along with histopathological examinations. Sharpbelly, an indigenous freshwater fish widely distributed in East Asia, were collected by pole fishing from three sampling sites in the Ba River. These sampling sites include a mid-stream site near a wastewater outfall and a reference site located upstream and a far field comparison site located downstream. In sharpbelly collected near the wastewater discharge, the oocyte development was activated, compared to the other two sites. Histopathological alterations in the fish ovaries were likely due to the upregulated steroid hormone biosynthesis process, as suggested by the differentially expressed genes (e.g., hsd3b, hsd17b1) and differentially accumulated metabolites (e.g., pregnenolone). Additionally, under the stress of effluents containing phenolic compounds, genes related to the signaling pathways for oxidative phosphorylation and leukocyte transendothelial migration were dysregulated, suggesting the potential induction of inflammation and several ovarian diseases. Overall, these findings suggest that effluents containing phenolic compounds influence ovary development and reproductive function of female sharpbelly. Whether there is any resulting dysfunction of folliculogenesis, abnormality of ovulation, production of premature eggs and/or potential induction of ovarian cancers remains to be determined by further studies, for a better evaluation on effluents containing phenolic compounds to the fish fertility and the health of their offspring, and even the stability of the wild fish population. Notably, the integration of transcriptomics and metabolomics can complement the routine chemical analysis to comprehensively monitor the effects of wastewater treatment plant effluents on the health of wild fish.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiezhang Mo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR, China
| | - Qianju Qi
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jianglin Peng
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Guizeng Qi
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Mirella Kanerva
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Ehime prefecture, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Ehime prefecture, Japan
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
9
|
Haque A, Drasites KP, Cox A, Capone M, Myatich AI, Shams R, Matzelle D, Garner DP, Bredikhin M, Shields DC, Vertegel A, Banik NL. Protective Effects of Estrogen via Nanoparticle Delivery to Attenuate Myelin Loss and Neuronal Death after Spinal Cord Injury. Neurochem Res 2021; 46:2979-2990. [PMID: 34269965 DOI: 10.1007/s11064-021-03401-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022]
Abstract
Spinal cord injury (SCI) is associated with devastating neurological deficits affecting more than 11,000 Americans each year. Although several therapeutic agents have been proposed and tested, no FDA-approved pharmacotherapy is available for SCI treatment. We have recently demonstrated that estrogen (E2) acts as an antioxidant and anti-inflammatory agent, attenuating gliosis in SCI. We have also demonstrated that nanoparticle-mediated focal delivery of E2 to the injured spinal cord decreases lesion size, reactive gliosis, and glial scar formation. The current study tested in vitro effects of E2 on reactive oxygen species (ROS) and calpain activity in microglia, astroglia, macrophages, and fibroblasts, which are believed to participate in the inflammatory events and glial scar formation after SCI. E2 treatment decreased ROS production and calpain activity in these glial cells, macrophages, and fibroblast cells in vitro. This study also tested the efficacy of fast- and slow-release nanoparticle-E2 constructs in a rat model of SCI. Focal delivery of E2 via nanoparticles increased tissue distribution of E2 over time, attenuated cell death, and improved myelin preservation in injured spinal cord. Specifically, the fast-release nanoparticle-E2 construct reduced the Bax/Bcl-2 ratio in injured spinal cord tissues, and the slow-release nanoparticle-E2 construct prevented gliosis and penumbral demyelination distal to the lesion site. These data suggest this novel E2 delivery strategy to the lesion site may decrease inflammation and improve functional outcomes following SCI.
Collapse
Affiliation(s)
- Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| | - Kelsey P Drasites
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.,Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA.,Department of Health and Human Performance, The Citadel, 171 Moultrie St, Charleston, SC, 29409, USA
| | - April Cox
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA
| | - Mollie Capone
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.,Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA
| | - Ali I Myatich
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.,Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA.,Department of Health and Human Performance, The Citadel, 171 Moultrie St, Charleston, SC, 29409, USA
| | - Ramsha Shams
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.,Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA.,Department of Health and Human Performance, The Citadel, 171 Moultrie St, Charleston, SC, 29409, USA
| | - Denise Matzelle
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA.,Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA
| | - Dena P Garner
- Department of Health and Human Performance, The Citadel, 171 Moultrie St, Charleston, SC, 29409, USA
| | | | - Donald C Shields
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA
| | - Alexey Vertegel
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Naren L Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA. .,Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA. .,Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA. .,Department of Neurosurgery and Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA.
| |
Collapse
|
10
|
Sun MR, Kang YY, Duan YT, Liu HM. Concise synthesis of 2-methoxyestradiol through C(sp 2)-H methoxylation. Steroids 2020; 162:108697. [PMID: 32682814 DOI: 10.1016/j.steroids.2020.108697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/11/2020] [Indexed: 11/28/2022]
Abstract
An efficient and concise synthesis of 2-methoxyestradiol (4) from 17β-estradiol (1) has been achieved in three synthetic steps with a 63.3% overall yield. The key step was the palladium-catalyzed direct C(sp2)-H methoxylation of 2-aryloxypyridines. Using 2-pyridyloxyl as the directing group, Pd(OAc)2 as the catalyst, PhI(OAc)2 as the oxidant and methanol as both the methoxylation reagent and solvent, the methoxy group could be handily installed at the 2-position of 3-(2-pyridoxy) estradiol (2). Subsequently, the pyridyl group could be easily removed by nucleophilic substitution with a methoxy anion after being oxidized to a pyridyl N-oxide by m-chloroperoxybenzoic acid, delivering the target product 2-methoxyestradiol (4) in quantitative yield. In contrast, when the pyridyl directing group was removed by the TfOMe-NaOMe/MeOH system as reported in the literature, TfOMe inevitably methylated the 17-OH of 2-methoxy-3-(2-pyridoxy) estradiol (3). In effect, we have fortuitously found a new method to cleave the pyridyl directing group, which is highly suitable for substrates bearing hydroxy groups.
Collapse
Affiliation(s)
- Mo-Ran Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Ying-Ying Kang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| | - Hong-Min Liu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, China.
| |
Collapse
|
11
|
2-Methoxyestradiol Attenuates Angiotensin II-Induced Hypertension, Cardiovascular Remodeling, and Renal Injury. J Cardiovasc Pharmacol 2020; 73:165-177. [PMID: 30839510 DOI: 10.1097/fjc.0000000000000649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Estradiol may antagonize the adverse cardiovascular effects of angiotensin II (Ang II). We investigated the effects of 2-methoxyestradiol (2-ME), a nonestrogenic estradiol metabolite, on Ang II-induced cardiovascular and renal injury in male rats. First, we determined the effects of 2-ME on Ang II-induced acute changes in blood pressure, renal hemodynamics, and excretory function. Next, we investigated the effects of 2-ME and 2-hydroxyestardiol (2-HE) on hypertension and cardiovascular and renal injury induced by chronic infusion of Ang II. Furthermore, the effects of 2-ME on blood pressure and cardiovascular remodeling in the constricted aorta (CA) rat model and on isoproterenol-induced (ISO) cardiac hypertrophy and fibrosis were examined. 2-ME had no effects on Ang II-induced acute changes in blood pressure, renal hemodynamics, or glomerular filtration rate. Both 2-ME and 2-HE reduced hypertension, cardiac hypertrophy, proteinuria, and mesangial expansion induced by chronic Ang II infusions. In CA rats, 2-ME attenuated cardiac hypertrophy and fibrosis and reduced elevated blood pressure above the constriction. Notably, 2-ME reduced both pressure-dependent (above constriction) and pressure-independent (below constriction) vascular remodeling. 2-ME had no effects on ISO-induced renin release yet reduced ISO-induced cardiac hypertrophy and fibrosis. This study shows that 2-ME protects against cardiovascular and renal injury due to chronic activation of the renin-angiotensin system. This study reports for the first time that in vivo 2-ME reduces trophic (pressure-independent) effects of Ang II and related cardiac and vascular remodeling.
Collapse
|
12
|
Singh P, Song CY, Dutta SR, Gonzalez FJ, Malik KU. Central CYP1B1 (Cytochrome P450 1B1)-Estradiol Metabolite 2-Methoxyestradiol Protects From Hypertension and Neuroinflammation in Female Mice. Hypertension 2020; 75:1054-1062. [PMID: 32148125 PMCID: PMC7098446 DOI: 10.1161/hypertensionaha.119.14548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is available in the text. Previously, we showed that peripheral administration of 2-ME (2-methoxyestradiol), a CYP1B1 (cytochrome P450 1B1)-catechol-O-methyltransferase (COMT) generated metabolite of E2 (17β-Estradiol), protects against angiotensin II-induced hypertension in female mice. The demonstration that central E2 inhibits angiotensin II-induced hypertension, together with the expression of CYP1B1 in the brain, led us to hypothesize that E2-CYP1B1 generated metabolite 2-ME in the brain mediates its protective action against angiotensin II-induced hypertension in female mice. To test this hypothesis, we examined the effect of intracerebroventricularly (ICV) administered E2 in ovariectomized (OVX)-wild-type (Cyp1b1+/+) and OVX-Cyp1b1−/− mice on the action of systemic angiotensin II. ICV-E2 attenuated the angiotensin II-induced increase in mean arterial blood pressure, impairment of baroreflex sensitivity, and sympathetic activity in OVX-Cyp1b1+/+ but not in ICV-injected short interfering (si)RNA-COMT or OVX-Cyp1b1−/− mice. ICV-2-ME attenuated the angiotensin II-induced increase in blood pressure in OVX-Cyp1b1−/− mice; this effect was inhibited by ICV-siRNA estrogen receptor-α (ERα) and G protein-coupled estrogen receptor 1 (GPER1). ICV-E2 in OVX-Cyp1b1+/+ but not in OVX-Cyp1b1−/− mice and 2-ME in the OVX-Cyp1b1−/− inhibited angiotensin II-induced increase in reactive oxygen species production in the subfornical organ and paraventricular nucleus, activation of microglia and astrocyte, and neuroinflammation in paraventricular nucleus. Furthermore, central CYP1B1 gene disruption in Cyp1b1+/+ mice by ICV-adenovirus-GFP (green fluorescence protein)-CYP1B1-short hairpin (sh)RNA elevated, while reconstitution by adenovirus-GFP-CYP1B1-DNA in the paraventricular nucleus but not in subfornical organ in Cyp1b1−/− mice attenuated the angiotensin II-induced increase in systolic blood pressure. These data suggest that E2-CYP1B1-COMT generated metabolite 2-ME, most likely in the paraventricular nucleus via estrogen receptor-α and GPER1, protects against angiotensin II-induced hypertension and neuroinflammation in female mice.
Collapse
Affiliation(s)
- Purnima Singh
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., K.U.M.)
| | - Chi Young Song
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., K.U.M.)
| | - Shubha Ranjan Dutta
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., K.U.M.)
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Kafait U Malik
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., K.U.M.)
| |
Collapse
|
13
|
Notas G, Kampa M, Castanas E. G Protein-Coupled Estrogen Receptor in Immune Cells and Its Role in Immune-Related Diseases. Front Endocrinol (Lausanne) 2020; 11:579420. [PMID: 33133022 PMCID: PMC7564022 DOI: 10.3389/fendo.2020.579420] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022] Open
Abstract
G protein-coupled estrogen receptor 1 (GPER1), is a functional estrogen receptor involved in estrogen related actions on several systems including processes of the nervous, reproductive, metabolic, cardiovascular, and immune system. Regarding the latter, GPER is expressed in peripheral B and T lymphocytes as well as in monocytes, eosinophils, and neutrophils. Several studies have implicated GPER in immune-mediated diseases like multiple sclerosis, Parkinson's disease, and atherosclerosis-related inflammation, while a recent report suggests that its deletion could be responsible for a form of familial immunodeficiency. It has also been suggested that it is a key regulator of immune-mediated events in breast, pancreatic, prostate, and hepatocellular cancer as well as in melanoma. GPER has been also reported to interact with classic ER-alpha or its splice variants in order to modify immune functions. This review aims to present current knowledge relating GPER to immune functions, the cellular and signaling pathways involved, as well as the potential clinical implications of GPER modulation in immune-related diseases.
Collapse
|
14
|
Tofovic SP, Jackson EK. Estradiol Metabolism: Crossroads in Pulmonary Arterial Hypertension. Int J Mol Sci 2019; 21:ijms21010116. [PMID: 31877978 PMCID: PMC6982327 DOI: 10.3390/ijms21010116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a debilitating and progressive disease that predominantly develops in women. Over the past 15 years, cumulating evidence has pointed toward dysregulated metabolism of sex hormones in animal models and patients with PAH. 17β-estradiol (E2) is metabolized at positions C2, C4, and C16, which leads to the formation of metabolites with different biological/estrogenic activity. Since the first report that 2-methoxyestradiol, a major non-estrogenic metabolite of E2, attenuates the development and progression of experimental pulmonary hypertension (PH), it has become increasingly clear that E2, E2 precursors, and E2 metabolites exhibit both protective and detrimental effects in PH. Furthermore, both experimental and clinical data suggest that E2 has divergent effects in the pulmonary vasculature versus right ventricle (estrogen paradox in PAH). The estrogen paradox is of significant clinical relevance for understanding the development, progression, and prognosis of PAH. This review updates experimental and clinical findings and provides insights into: (1) the potential impacts that pathways of estradiol metabolism (EMet) may have in PAH; (2) the beneficial and adverse effects of estrogens and their precursors/metabolites in experimental PH and human PAH; (3) the co-morbidities and pathological conditions that may alter EMet and influence the development/progression of PAH; (4) the relevance of the intracrinology of sex hormones to vascular remodeling in PAH; and (5) the advantages/disadvantages of different approaches to modulate EMet in PAH. Finally, we propose the three-tier-estrogen effects in PAH concept, which may offer reconciliation of the opposing effects of E2 in PAH and may provide a better understanding of the complex mechanisms by which EMet affects the pulmonary circulation–right ventricular interaction in PAH.
Collapse
Affiliation(s)
- Stevan P. Tofovic
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, BST E1240, 200 Lothrop Street, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine, 100 Technology Drive, PA 15219, USA;
- Correspondence: ; Tel.: +1-412-648-3363
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine, 100 Technology Drive, PA 15219, USA;
| |
Collapse
|
15
|
Yilmaz C, Karali K, Fodelianaki G, Gravanis A, Chavakis T, Charalampopoulos I, Alexaki VI. Neurosteroids as regulators of neuroinflammation. Front Neuroendocrinol 2019; 55:100788. [PMID: 31513776 DOI: 10.1016/j.yfrne.2019.100788] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/12/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is a physiological protective response in the context of infection and injury. However, neuroinflammation, especially if chronic, may also drive neurodegeneration. Neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and traumatic brain injury (TBI), display inflammatory activation of microglia and astrocytes. Intriguingly, the central nervous system (CNS) is a highly steroidogenic environment synthesizing steroids de novo, as well as metabolizing steroids deriving from the circulation. Neurosteroid synthesis can be substantially affected by neuroinflammation, while, in turn, several steroids, such as 17β-estradiol, dehydroepiandrosterone (DHEA) and allopregnanolone, can regulate neuroinflammatory responses. Here, we review the role of neurosteroids in neuroinflammation in the context of MS, AD, PD and TBI and describe underlying molecular mechanisms. Moreover, we introduce the concept that synthetic neurosteroid analogues could be potentially utilized for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Canelif Yilmaz
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Kanelina Karali
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Georgia Fodelianaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.
| |
Collapse
|
16
|
Ba MY, Xia LW, Li HL, Wang YG, Chu YN, Zhao Q, Hu CP, He XT, Li TX, Liang KY, Zhang YH, Yang L, Xie WH, Yang H, Sun MR. Concise synthesis of 2-methoxyestradiol from 17β-estradiol through the C(sp 2)-H hydroxylation. Steroids 2019; 146:99-103. [PMID: 30951759 DOI: 10.1016/j.steroids.2019.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/08/2019] [Accepted: 03/28/2019] [Indexed: 01/28/2023]
Abstract
A four-step route for the synthesis of 2-methoxyestradiol (5) starting from 17β-estradiol (1) has been achieved with a 51% overall yield. The key step was the ruthenium-catalyzed ortho-C(sp2)-H bond hydroxylation of aryl carbamates. Using dimethyl carbamate as the directing group, [RuCl2(p-cymene)]2 as the catalyst, PhI(OAc)2 as the oxidant and trifluoroacetate/trifluoroacetic anhydride (1:1) as the co-solvent, the hydroxyl group could be singly installed at the 2-position of 3-dimethylcarbamoyloxyestradiol (2) with 65% yield. Subsequent methylation of hydroxy and removal of dimethyl carbamate afforded 2-methoxyestradiol (5).
Collapse
Affiliation(s)
- Meng-Yu Ba
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Li-Wen Xia
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Hong-Liang Li
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Ying-Ge Wang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Ya-Nan Chu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Qing Zhao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Chao-Ping Hu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Xiao-Tong He
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Tian-Xiao Li
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Kai-Yue Liang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Ya-Han Zhang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Liu Yang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Hao Xie
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Hua Yang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Mo-Ran Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China.
| |
Collapse
|
17
|
El-Bakoush A, Olajide OA. Formononetin inhibits neuroinflammation and increases estrogen receptor beta (ERβ) protein expression in BV2 microglia. Int Immunopharmacol 2018; 61:325-337. [PMID: 29913427 DOI: 10.1016/j.intimp.2018.06.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 11/15/2022]
Abstract
Formononetin is a bioactive non-steroidal polyphenol found in a variety of plants. In this study we evaluated the effects of formononetin on neuroinflammation in LPS-stimulated BV2 microglia. Results showed that formononetin significantly reduced the production of TNF-α, IL-6 and IL-1β, nitrite and PGE2, as well as protein levels of iNOS and COX-2. Reporter gene assays showed that formononetin produced inhibition of NF-κB luciferase activity in HEK293 cells stimulated with TNF-α. Immunoblotting experiments revealed an inhibition of IKKα phosphorylation, with the resultant attenuation of phosphorylation and degradation of IκBα following LPS stimulation. Formononetin also produced an inhibition of nuclear translocation and DNA binding by NF-κB following LPS stimulation. RNAi experiments showed that transfection of BV2 microglia with ERβ siRNA resulted in the loss of anti-inflammatory action of formononetin. MTT assay and MAP2 immunoreactivity experiments showed that formononetin produced significant neuroprotective activity by preventing BV2 microglia conditioned media-induced toxicity to HT22 neurons. Investigations on the effect of formononetin on MCF7 breast cancer cells revealed that, while the compound significantly increased ER-luciferase activity, its effects on proliferation were modest. This study has established that formononetin inhibits neuroinflammation by targeting NF-κB signalling pathway in BV2 microglia, possibly through mechanisms involving ERβ. Formononetin appears to modulate ERβ in MCF7 breast cancer cells with limited proliferative effect. Formononetin could therefore serve as a chemical scaffold for the development of novel compounds which have selective neuroprotective actions in the brain.
Collapse
Affiliation(s)
- Abdelmeniem El-Bakoush
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, United Kingdom
| | - Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, United Kingdom.
| |
Collapse
|
18
|
Sadaie MR, Farhoudi M, Zamanlu M, Aghamohammadzadeh N, Amouzegar A, Rosenbaum RE, Thomas GA. What does the research say about androgen use and cerebrovascular events? Ther Adv Drug Saf 2018; 9:439-455. [PMID: 30364888 DOI: 10.1177/2042098618773318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 03/29/2018] [Indexed: 12/21/2022] Open
Abstract
Many studies have investigated the benefits of androgen therapy and neurosteroids in aging men, while concerns remain about the potential associations of exogenous steroids and incidents of cerebrovascular events and ischemic stroke (IS). Testosterone is neuroprotective, neurotrophic and a potent stimulator of neuroplasticity. These benefits are mediated primarily through conversion of a small amount of testosterone to estradiol by the catalytic activity of estrogen synthetase (aromatase cytochrome P450 enzyme). New studies suggest that abnormal serum levels of the nonaromatized potent metabolite of testosterone, either high or low dihydrotestosterone (DHT), is a risk factor for stroke. Associations between pharmacologic androgen use and the incidence of IS are questionable, because a significant portion of testosterone is converted to DHT. There is also insufficient evidence to reject a causal relationship between the pro-testosterone adrenal androgens and incidence of IS. Moreover, vascular intima-media thickness, which is a predictor of stroke and myocardial symptoms, has correlations with sex hormones. Current diagnostic and treatment criteria for androgen therapy for cerebrovascular complications are unclear. Confounding variables, including genetic and metabolic alterations of the key enzymes of steroidogenesis, ought to be considered. Information extracted from pharmacogenetic testing may aid in expounding the protective-destructive properties of neurosteroids, as well as the prognosis of androgen therapy, in particular their cerebrovascular outcomes. This investigative review article addresses relevant findings of the clinical and experimental investigations of androgen therapy, emphasizes the significance of genetic testing of androgen responsiveness towards individualized therapy in post-IS injuries as well as identifying pertinent questions.
Collapse
Affiliation(s)
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masumeh Zamanlu
- Neurosciences Research Center (NSRC), Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Aghamohammadzadeh
- Department of Endocrinology, Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atieh Amouzegar
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Gary A Thomas
- Penn State Hershey Neurology, Penn State University, PA, USA
| |
Collapse
|
19
|
Liu D, Wang J, Xu Y. Clinical Significance of Low 2-Methoxyestradiol Levels in Serum and Tissue of Recurrent Juvenile-Onset Laryngeal Papillomatosis. Otolaryngol Head Neck Surg 2017; 158:566-570. [PMID: 29110580 DOI: 10.1177/0194599817740578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective We aim to explore the correlation between serum and tissue 2-methoxyestradiol (2-ME-2) levels and recurrence of juvenile-onset respiratory papillomatosis (JORRP). Study Design Retrospective cohort studies. Settings Laboratory of Otolaryngology, Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University. Subjects and Methods Sixty-four patients diagnosed with JORRP in our department from January 2007 to December 2012 were enrolled. Patients were divided into recurrence and nonrecurrence groups, with 32 patients in each group. ELISA detected the concentration of 2-ME-2 in serum and tissue samples collected during the first surgical procedure. Mann-Whitney analysis, receiver operating characteristic curves, logistic regression model, and Kaplan-Meier method were used for data processing. Results There was no difference in the serum 2-ME-2 concentration between the groups ( P = .237), while the tissue 2-ME-2 concentration of the recurrent group was significantly lower than that of the nonrecurrence group ( P = .0001). When the area under the curve was 0.752, the cutoff value of tissue 2-ME-2 at 670.02 pg/mL yielded the highest predictive sensitivity (71.9%) and specificity (71.9%). Regrouped by this cutoff point, patients with a lower tissue 2-ME-2 level (n = 26) had shorter disease-free survival and a higher recurrence odds ratio than patients with a higher tissue 2-ME-2 level (n = 38; P = .0408, odds ratio = 7.667). Conclusion A low tissue 2-ME-2 level is associated with a higher recurrence rate of JORRP. Tissue 2-ME-2 may be an effective target for JORRP treatment and a convenient measure for recurrence monitoring.
Collapse
Affiliation(s)
- Danling Liu
- 1 Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiadong Wang
- 1 Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Xu
- 1 Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Semenova S, Rozov S, Panula P. Distribution, properties, and inhibitor sensitivity of zebrafish catechol-O-methyl transferases (COMT). Biochem Pharmacol 2017; 145:147-157. [PMID: 28844929 DOI: 10.1016/j.bcp.2017.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/14/2017] [Indexed: 12/24/2022]
Abstract
Catechol-O-methyltransferase (COMT; EC 2.1.1.6) is an enzyme with multiple functions in vertebrates. COMT methylates and thus inactivates catecholamine neurotransmitters and metabolizes xenobiotic catechols. Gene polymorphism rs4680 that influences the enzymatic activity of COMT affects cognition and behavior in humans. The zebrafish is widely used as an experimental animal in many areas of biomedical research, but most aspects of COMT function in this species have remained uncharacterized. We hypothesized that both comt genes play essential roles in zebrafish. Both comt-a and comt-b were widely expressed in zebrafish tissues, but their relative abundance varied considerably. Homogenates of zebrafish organs, including the brain, showed enzymatic COMT activity that was the highest in the liver and kidney. Treatment of larval zebrafish with the COMT inhibitor Ro41-0960 shifted the balance of catecholamine metabolic pathways towards increased oxidative metabolism. Whole-body concentrations of dioxyphenylacetic acid (DOPAC), a product of dopamine oxidation, were increased in the inhibitor-treated larvae, although the dopamine levels were unchanged. Thus, COMT is likely to participate in the processing of catecholamine neurotransmitters in the zebrafish, but the inhibition of COMT in larval fish is compensated efficiently and does not have pronounced effects on dopamine levels.
Collapse
Affiliation(s)
- Svetlana Semenova
- Department of Anatomy and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Stanislav Rozov
- Department of Anatomy and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
21
|
Raghava N, Das BC, Ray SK. Neuroprotective effects of estrogen in CNS injuries: insights from animal models. ACTA ACUST UNITED AC 2017; 6:15-29. [PMID: 28845391 PMCID: PMC5567743 DOI: 10.2147/nan.s105134] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among the estrogens that are biosynthesized in the human body, 17β-estradiol (estradiol or E2) is the most common and the best estrogen for neuroprotection in animal models of the central nervous system (CNS) injuries such as spinal cord injury (SCI), traumatic brain injury (TBI), and ischemic brain injury (IBI). These CNS injuries are not only serious health problems, but also enormous economic burden on the patients, their families, and the society at large. Studies from animal models of these CNS injuries provide insights into the multiple neuroprotective mechanisms of E2 and also suggest the possibility of translating the therapeutic efficacy of E2 in the treatment SCI, TBI, and IBI in humans in the near future. The pathophysiology of these injuries includes loss of motor function in the limbs, arms and their extremities, cognitive deficit, and many other serious consequences including life-threatening paralysis, infection, and even death. The potential application of E2 therapy to treat the CNS injuries may become a trend as the results are showing significant therapeutic benefits of E2 for neuroprotection when administered into the animal models of SCI, TBI, and IBI. This article describes the plausible mechanisms how E2 works with or without the involvement of estrogen receptors and provides an overview of the known neuroprotective effects of E2 in these three CNS injuries in different animal models. Because activation of estrogen receptors has profound implications in maintaining and also affecting normal physiology, there are notable impediments in translating E2 therapy to the clinics for neuroprotection in CNS injuries in humans. While E2 may not yet be the sole molecule for the treatment of CNS injuries due to the controversies surrounding it, the neuroprotective effects of its metabolite and derivative or combination of E2 with another therapeutic agent are showing significant impacts in animal models that can potentially shape the new treatment strategies for these CNS injuries in humans.
Collapse
Affiliation(s)
- Narayan Raghava
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Bhaskar C Das
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
22
|
Devoto L, Henríquez S, Kohen P, Strauss JF. The significance of estradiol metabolites in human corpus luteum physiology. Steroids 2017; 123:50-54. [PMID: 28502859 DOI: 10.1016/j.steroids.2017.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/21/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022]
Abstract
The human corpus luteum (CL) is a temporary endocrine gland derived from the ovulated follicle. Its formation and limited lifespan is critical for steroid hormone production required to support menstrual cyclicity, endometrial receptivity for successful implantation, and the maintenance of early pregnancy. Endocrine and paracrine-autocrine molecular mechanisms associated with progesterone production throughout the luteal phase are critical for the development, maintenance, regression, and rescue by hCG which sustains CL function into early pregnancy. However, the signaling systems driving the regression of the primate corpus luteum in non-conception cycles are not well understood. Recently, there has been interest in the functional roles of estradiol metabolites (EMs), mostly in estrogen-producing tissues. The human CL produces a number of EMs, and it has been postulated that the EMs acting via paracrine-autocrine pathways affect angiogenesis or LH-mediated events. The present review describes advances in understanding the role of EMs in the functional lifespan and regression of the human CL in non-conception cycles.
Collapse
Affiliation(s)
- Luigi Devoto
- Institute for Maternal and Child Research (IDIMI), Chile; Department of Obstetrics and Gynecology, Faculty of Medicine, San Borja-Arriaran Clinical Hospital, University of Chile, Santiago, Chile.
| | | | - Paulina Kohen
- Institute for Maternal and Child Research (IDIMI), Chile
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
23
|
Pingili AK, Davidge KN, Thirunavukkarasu S, Khan NS, Katsurada A, Majid DSA, Gonzalez FJ, Navar LG, Malik KU. 2-Methoxyestradiol Reduces Angiotensin II-Induced Hypertension and Renal Dysfunction in Ovariectomized Female and Intact Male Mice. Hypertension 2017; 69:1104-1112. [PMID: 28416584 PMCID: PMC5426976 DOI: 10.1161/hypertensionaha.117.09175] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/16/2017] [Accepted: 03/03/2017] [Indexed: 12/15/2022]
Abstract
Cytochrome P450 1B1 protects against angiotensin II (Ang II)-induced hypertension and associated cardiovascular changes in female mice, most likely via production of 2-methoxyestradiol. This study was conducted to determine whether 2-methoxyestradiol ameliorates Ang II-induced hypertension, renal dysfunction, and end-organ damage in intact Cyp1b1-/-, ovariectomized female, and Cyp1b1+/+ male mice. Ang II or vehicle was infused for 2 weeks and administered concurrently with 2-methoxyestradiol. Mice were placed in metabolic cages on day 12 of Ang II infusion for urine collection for 24 hours. 2-Methoxyestradiol reduced Ang II-induced increases in systolic blood pressure, water consumption, urine output, and proteinuria in intact female Cyp1b1-/- and ovariectomized mice. 2-Methoxyestradiol also reduced Ang II-induced increase in blood pressure, water intake, urine output, and proteinuria in Cyp1b1+/+ male mice. Treatment with 2-methoxyestradiol attenuated Ang II-induced end-organ damage in intact Cyp1b1-/- and ovariectomized Cyp1b1+/+ and Cyp1b1-/- female mice and Cyp1b1+/+ male mice. 2-Methoxyestradiol mitigated Ang II-induced increase in urinary excretion of angiotensinogen in intact Cyp1b1-/- and ovariectomized Cyp1b1+/+ and Cyp1b1-/- female mice but not in Cyp1b1+/+ male mice. The G protein-coupled estrogen receptor 1 antagonist G-15 failed to alter Ang II-induced increases in blood pressure and renal function in Cyp1b1+/+ female mice. These data suggest that 2-methoxyestradiol reduces Ang II-induced hypertension and associated end-organ damage in intact Cyp1b1-/-, ovariectomized Cyp1b1+/+ and Cyp1b1-/- female mice, and Cyp1b1+/+ male mice independent of G protein-coupled estrogen receptor 1. Therefore, 2-methoxyestradiol could serve as a therapeutic agent for treating hypertension and associated pathogenesis in postmenopausal females, and in males.
Collapse
Affiliation(s)
- Ajeeth K Pingili
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis (A.K.P., K.N.D., S.T., N.S.K., K.U.M.); Department of Physiology, Hypertension & Renal Center, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Karen N Davidge
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis (A.K.P., K.N.D., S.T., N.S.K., K.U.M.); Department of Physiology, Hypertension & Renal Center, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Shyamala Thirunavukkarasu
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis (A.K.P., K.N.D., S.T., N.S.K., K.U.M.); Department of Physiology, Hypertension & Renal Center, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Nayaab S Khan
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis (A.K.P., K.N.D., S.T., N.S.K., K.U.M.); Department of Physiology, Hypertension & Renal Center, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Akemi Katsurada
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis (A.K.P., K.N.D., S.T., N.S.K., K.U.M.); Department of Physiology, Hypertension & Renal Center, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Dewan S A Majid
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis (A.K.P., K.N.D., S.T., N.S.K., K.U.M.); Department of Physiology, Hypertension & Renal Center, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Frank J Gonzalez
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis (A.K.P., K.N.D., S.T., N.S.K., K.U.M.); Department of Physiology, Hypertension & Renal Center, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - L Gabriel Navar
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis (A.K.P., K.N.D., S.T., N.S.K., K.U.M.); Department of Physiology, Hypertension & Renal Center, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Kafait U Malik
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis (A.K.P., K.N.D., S.T., N.S.K., K.U.M.); Department of Physiology, Hypertension & Renal Center, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.).
| |
Collapse
|
24
|
Tamoxifen Provides Structural and Functional Rescue in Murine Models of Photoreceptor Degeneration. J Neurosci 2017; 37:3294-3310. [PMID: 28235894 DOI: 10.1523/jneurosci.2717-16.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 02/05/2017] [Accepted: 02/08/2017] [Indexed: 12/19/2022] Open
Abstract
Photoreceptor degeneration is a cause of irreversible vision loss in incurable blinding retinal diseases including retinitis pigmentosa (RP) and atrophic age-related macular degeneration. We found in two separate mouse models of photoreceptor degeneration that tamoxifen, a selective estrogen receptor modulator and a drug previously linked with retinal toxicity, paradoxically provided potent neuroprotective effects. In a light-induced degeneration model, tamoxifen prevented onset of photoreceptor apoptosis and atrophy and maintained near-normal levels of electroretinographic responses. Rescue effects were correlated with decreased microglial activation and inflammatory cytokine production in the retina in vivo and a reduction of microglia-mediated toxicity to photoreceptors in vitro, indicating a microglia-mediated mechanism of rescue. Tamoxifen also rescued degeneration in a genetic (Pde6brd10) model of RP, significantly improving retinal structure, electrophysiological responses, and visual behavior. These prominent neuroprotective effects warrant the consideration of tamoxifen as a drug suitable for being repurposed to treat photoreceptor degenerative disease.SIGNIFICANCE STATEMENT Photoreceptor degeneration is a cause of irreversible blindness in a number of retinal diseases such as retinitis pigmentosa (RP) and atrophic age-related macular degeneration. Tamoxifen, a selective estrogen receptor modulator approved for the treatment of breast cancer and previously linked to a low incidence of retinal toxicity, was unexpectedly found to exert marked protective effects against photoreceptor degeneration. Structural and functional protective effects were found for an acute model of light-induced photoreceptor injury and for a genetic model for RP. The mechanism of protection involved the modulation of microglial activation and the production of inflammatory cytokines, highlighting the role of inflammatory mechanisms in photoreceptor degeneration. Tamoxifen may be suitable for clinical study as a potential treatment for diseases involving photoreceptor degeneration.
Collapse
|
25
|
(7R,8S)-Dehydrodiconiferyl Alcohol Suppresses Lipopolysaccharide-Induced Inflammatory Responses in BV2 Microglia by Inhibiting MAPK Signaling. Neurochem Res 2016; 41:1570-7. [PMID: 26961887 DOI: 10.1007/s11064-016-1870-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 01/03/2023]
Abstract
(7R,8S)-Dehydrodiconiferyl alcohol (DDA), a lignan isolated from the dried stems of Clematis armandii, has been found to exert potential anti-inflammatory activity in vitro. In the present study, we investigated the effects and possible mechanisms of DDA on lipopolysaccharide (LPS)-mediated inflammatory response in murine BV2 microglia. Our results revealed that non-toxic concentrations (6.25-25 μM) of DDA markedly suppressed LPS-induced production of nitric oxide, expression of inducible nitric oxide synthase and cyclooxygenase-2, and release of inflammatory factors, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in a concentration dependent manner. In addition, DDA time- and concentration-dependently attenuated LPS-induced phosphorylation of c-Jun N-terminal kinase 1/2 (JNK), but not protein kinase B, p38, or extracellular signal-regulated kinase 1/2. Moreover, DDA significantly suppress LPS-mediated nuclear factor-κB (NF-κB) activation by inhibiting phosphorylation and nuclear translocation of NF-κB p65. Collectively, our results demonstrated that DDA inhibited LPS-stimulated inflammatory response in BV2 cell, at least in part, through inhibition of NF-κB activation and modulation of JNK signaling.
Collapse
|