1
|
Yu S, Yu H, Wang J, Liu H, Guo J, Wang S, Mei C, Zan L. LEP inhibits intramuscular adipogenesis through the AMPK signaling pathway in vitro. FASEB J 2024; 38:e23836. [PMID: 39044640 DOI: 10.1096/fj.202400590rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Leptin can indirectly regulate fatty-acid metabolism and synthesis in muscle in vivo and directly in incubated muscle ex vivo. In addition, non-synonymous mutations in the bovine leptin gene (LEP) are associated with carcass intramuscular fat (IMF) content. However, the effects of LEP on lipid synthesis of adipocytes have not been clearly studied at the cellular level. Therefore, this study focused on bovine primary intramuscular preadipocytes to investigate the effects of LEP on the proliferation and differentiation of intramuscular preadipocytes, as well as its regulatory mechanism in lipid synthesis. The results showed that both the LEP and leptin receptor gene (LEPR) were highly expressed in IMF tissues, and their mRNA expression levels were positively correlated at different developmental stages of intramuscular preadipocytes. The overexpression of LEP inhibited the proliferation and differentiation of intramuscular preadipocytes, while interference with LEP had the opposite effect. Additionally, LEP significantly promoted the phosphorylation level of AMPKα by promoting the protein expression of CAMKK2. Meanwhile, rescue experiments showed that the increasing effect of AMPK inhibitors on the number of intramuscular preadipocytes was significantly weakened by the overexpression of LEP. Furthermore, the overexpression of LEP could weaken the promoting effect of AMPK inhibitor on triglyceride content and droplet accumulation, and prevent the upregulation of adipogenic protein expression (SREBF1, FABP4, FASN, and ACCα) caused by AMPK inhibitor. Taken together, LEP acted on the AMPK signaling pathway by regulating the protein expression of CAMKK2, thereby downregulating the expression of proliferation-related and adipogenic-related genes and proteins, ultimately reducing intramuscular adipogenesis.
Collapse
Affiliation(s)
- Shengchen Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hengwei Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haibing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Sihu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
- National Beef Cattle Improvement Center, Yangling, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- National Beef Cattle Improvement Center, Yangling, China
| |
Collapse
|
2
|
Hou X, Zhang R, Yang M, Niu N, Zong W, Yang L, Li H, Hou R, Wang X, Wang L, Liu X, Shi L, Zhao F, Wang L, Zhang L. Characteristics of Transcriptome and Metabolome Concerning Intramuscular Fat Content in Beijing Black Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15874-15883. [PMID: 37847170 DOI: 10.1021/acs.jafc.3c02669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
To study the characteristics of genes and metabolites related to intramuscular fat (IMF) content with less influence by breed background and individual differences, the skeletal muscle samples from 40 Beijing black pigs with either high or low IMF content were used to perform transcriptome and metabolome analyses. About 99 genes (twofold-change) were differentially expressed. Up-regulated genes in the high IMF pigs were mainly related to fat metabolism. The key genes in charge of IMF deposition are ADIPOQ, CIDEC, CYP4B1, DGAT2, LEP, OPRL1, PLIN1, SCD, and THRSP. KLHL40, TRAFD1, and HSPA6 were novel candidate genes for the IMF trait due to their high abundances. In the low IMF pigs, the differentially expressed genes involved in virus resistance were up-regulated. About 16 and 18 differential metabolites (1.5 fold-change) were obtained in the positive and negative modes, respectively. Pigs with low IMF had weaker fatty acid oxidation due to the down-regulation of various carnitines. Differentially expressed genes were more important in determining IMF deposition than differential metabolites because relatively few differential metabolites were obtained, and they were merely the products under the physiological status of diverged IMF content. This study provided valuable information for further studies on IMF deposition.
Collapse
Affiliation(s)
- Xinhua Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Run Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Man Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Naiqi Niu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Wencheng Zong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Liyu Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Huihui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Renda Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaoqing Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ligang Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xin Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lijun Shi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fuping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lixian Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Longchao Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
3
|
Ahn JS, Son GH, Kwon EG, Chung KY, Jang SS, Kim UH, Song JY, Lee HJ, Park BK. Intramuscular fat formation in fetuses and the effect of increased protein intake during pregnancy in Hanwoo cattle. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:818-837. [PMID: 37970512 PMCID: PMC10640954 DOI: 10.5187/jast.2023.e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 11/17/2023]
Abstract
Understanding adipocyte development in fetus during bovine pregnancy is important for strengthening fattening technology. Additionally, nutritional level of dams during pregnancy has the potential to improve offspring growth and fat development. The purpose of this study is to evaluate the intramuscular adipocyte development and expression level of related genes in bovine fetus, and the effect of increased crude protein (CP) intake during pregnancy on the growth performance and carcass characteristics of male offspring. Eighty six pregnant Hanwoo cows (average body weight, 551.5 ± 51.3 kg, age 5.29 ± 0.61 y) were used. Fetuses were collected at 90, 180 and 270 d of gestation from 18 pregnant Hanwoo cows. The remaining 68 pregnant cows were randomly assigned to 2 feeding groups. The control (CON) group was provided the standard protein diet (n = 34), and treatment (TRT) group was provided a diet with a 5% increase in CP intake (n = 34). Male offspring were divided into two groups according to protein treatment of the pregnant cows: CON male offspring (CON-O) and TRT male offspring (TRT-O). Intramuscular adipocytes were found in the fetal skeletal muscle after 180 days of gestation. Male calf's birth weight increased in the TRT group compared to that in the CON group (p < 0.002). The final body weight (p < 0.003) and average daily gain (p < 0.019) of male offspring were significantly higher in TRT-O than in CON-O. The feed conversion ratio was also improved by 10.5% in TRT-O compared to that in CON-O (p < 0.026). Carcass weight was significantly higher in the TRT-O group than that in the CON-O group (p < 0.003), and back fat was thicker in the TRT-O group (p = 0.07). The gross receipts and net income were higher in TRT-O than in CON-O (p < 0.04). Thus, fetal intramuscular fat can be formed from the mid-gestation period, and increased CP intake during pregnancy can increase net income by improving the growth and carcass weight of male offspring rather than intramuscular fat.
Collapse
Affiliation(s)
- Jun Sang Ahn
- Hanwoo Research Institute, National
Institute of Animal Science, RDA, Pyeongchang 25340,
Korea
| | - Gi Hwal Son
- Department of Animal Science, Kangwon
National University, Chunchoen 24341, Korea
| | - Eung Gi Kwon
- Department of Animal Science, Kangwon
National University, Chunchoen 24341, Korea
| | - Ki Yong Chung
- Department of Beef Science, Korea National
College of Agriculture and Fisheries, Jeonju 54874,
Korea
| | - Sun Sik Jang
- Hanwoo Research Institute, National
Institute of Animal Science, RDA, Pyeongchang 25340,
Korea
| | - Ui Hyung Kim
- Department of Animal Science, Kangwon
National University, Chunchoen 24341, Korea
| | | | - Hyun Jeong Lee
- Hanwoo Research Institute, National
Institute of Animal Science, RDA, Pyeongchang 25340,
Korea
| | - Byung Ki Park
- Department of Animal Science, Kangwon
National University, Chunchoen 24341, Korea
| |
Collapse
|
4
|
Lin C, Dong Z, Song J, Wang S, Yang Y, Li H, Feng Z, Pei Y. Differences in histomorphology and expression of key lipid regulated genes of four adipose tissues from Tibetan pigs. PeerJ 2023; 11:e14556. [PMID: 36643642 PMCID: PMC9835692 DOI: 10.7717/peerj.14556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/21/2022] [Indexed: 01/11/2023] Open
Abstract
Tibetan pigs, an indigenous pig breed in China, have high overall fat deposition and flavorful and tasty meat. They are thus good models for studying adipogenesis. Few studies have been conducted focusing on expression of lipid regulated genes in different adipose tissues of Tibetan pigs. Therefore, we compared the difference of histomorphology and expression level of lipid regulated genes through qPCR and western blot in subcutaneous fat, perirenal fat, omental adipose tissue, and inguinal fat of Tibetan pigs. Our results showed that the area of subcutaneous adipocytes in Tibetan pigs was smaller, while the other three adipose tissues (perirenal fat, greater omentum fat, inguinal fat) had cell areas of similar size. The gene expression of FABP4, FASN, FABP3, and ME1 in subcutaneous fat was significantly higher than that in perirenal fat. Furthermore, the protein expression of FABP4 was significantly lower in subcutaneous fat than in perirenal fat (p < 0.05), and the expression of FASN was higher in greater omentum fat than in subcutaneous fat (p = 0.084). The difference in adipocyte cell size and expression of lipid-regulated genes in adipose tissues from the various parts of the pig body is likely due to the different cellular lipid metabolic processes. Specially, FABP4 and FASN may be involved in the regulation of fat deposition in different adipose tissues of Tibetan pigs.
Collapse
Affiliation(s)
- Chenghong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zexia Dong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jia Song
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
5
|
Molinero E, Pena RN, Estany J, Ros‐Freixedes R. Identification of a missense variant in the porcine AGPAT gene family associated with intramuscular fat content through whole-genome sequencing. Anim Genet 2022; 53:782-793. [PMID: 36108237 PMCID: PMC9826064 DOI: 10.1111/age.13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
The 1-acylglycerol-3-phosphate O-acyltransferases (AGPATs) are enzymes that catalyze the conversion of lysophosphatidic acid to phosphatidic acid, which is a precursor of triacylglycerol, the main fat reservoir in mammals. We used whole-genome sequencing of 205 pigs to identify 6639 genetic variants in the porcine AGPAT gene family. Of these, 166 common variants in the AGPAT5 gene had significant associations with fat content and composition traits. We preselected a missense single nucleotide polymorphism in exon 6 of AGPAT5 (rs196952262, A>G) for validation of its associations in 1034 pigs from the same Duroc line. The A allele showed a positive additive effect for intramuscular fat content (+1.12% ± 0.21, p < 0.001, for gluteus medius and +0.89% ± 0.33, p < 0.01, for longissimus). We also observed significant associations with fatty acid composition that were, at least in part, independent of the increased intramuscular fat. The A allele resulted in more monounsaturated fatty acids (+0.34% ± 0.15, p < 0.05, for longissimus) and a greater monounsaturated/polyunsaturated fatty acids ratio (+0.11 ± 0.04, p < 0.01, for gluteus medius and +0.13 ± 0.05, p < 0.05, for longissimus). The effect of the AGPAT5 variant on intramuscular fat was more noticeable in fatter pigs, and AGPAT5 interacts with other genes that affect overall fatness such as LEPR. AGPAT5 was the most expressed gene of the AGPAT family in pig skeletal muscle. This variant can be used as a marker in assisted selection for modulating pig fat deposition and fatty acid content.
Collapse
Affiliation(s)
- Eduard Molinero
- Department of Animal ScienceUniversity of Lleida‐Agrotecnio‐CERCA CenterLleidaCataloniaSpain
| | - Ramona N. Pena
- Department of Animal ScienceUniversity of Lleida‐Agrotecnio‐CERCA CenterLleidaCataloniaSpain
| | - Joan Estany
- Department of Animal ScienceUniversity of Lleida‐Agrotecnio‐CERCA CenterLleidaCataloniaSpain
| | - Roger Ros‐Freixedes
- Department of Animal ScienceUniversity of Lleida‐Agrotecnio‐CERCA CenterLleidaCataloniaSpain
| |
Collapse
|
6
|
Wang X, Liang C, Li A, Cheng G, Long F, Khan R, Wang J, Zhang Y, Wu S, Wang Y, Qiu J, Mei C, Yang W, Zan L. RNA-Seq and lipidomics reveal different adipogenic processes between bovine perirenal and intramuscular adipocytes. Adipocyte 2022; 11:448-462. [PMID: 35941812 PMCID: PMC9367662 DOI: 10.1080/21623945.2022.2106051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adipogenesis involves complex interactions between transcription and metabolic signalling. Exploration of the developmental characteristics of intramuscular adipocyte will provide targets for enhancing beef cattle marbling without increasing obesity. Few reports have compared bovine perirenal and intramuscular adipocyte transcriptomes using the combined analysis of transcriptomes and lipid metabolism to explore differences in adipogenic characteristics. We identified perirenal preadipocytes (PRA) and intramuscular preadipocytes (IMA) in Qinchuan cattle. We found that IMA were highly prolific in the early stages of adipogenesis, while PRA shows a stronger adipogenic ability in the terminal differentiation. Bovine perirenal and intramuscular adipocytes were detected through the combined analysis of the transcriptome and metabolome. More triglyceride was found to be upregulated in perirenal adipocytes; however, more types and amounts of unsaturated fatty acids were detected in intramuscular adipocytes, including eicosapentaenoic acid (20:5 n-3; EPA) and docosahexaenoic acid (22:6 n-3; DHA). Furthermore, differentially expressed genes in perirenal and intramuscular adipocytes were positively correlated with the eicosanoid, phosphatidylcholine (PC), phosphatidyl ethanolamine (PE), and sphingomyelin contents. Associated differential metabolic pathways included the glycerolipid and glycerophospholipid metabolisms. Our research findings provide a basis for the screening of key metabolic pathways or genes and metabolites involved in intramuscular fat production in cattle.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Feng Long
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rajwali Khan
- Department of Livestock Management, the University of Agriculture, Peshawar, Pakistan
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Zhang
- Longri Breeding Farm of Sichuan Province, Sichuan, Chengdu, China
| | - Sen Wu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Qinghai, Xining, China
| | - Yujuan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ju Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Yousuf S, Li A, Feng H, Lui T, Huang W, Zhang X, Xie L, Miao X. Genome-Wide Expression Profiling and Networking Reveals an Imperative Role of IMF-Associated Novel CircRNAs as ceRNA in Pigs. Cells 2022; 11:2638. [PMID: 36078046 PMCID: PMC9454643 DOI: 10.3390/cells11172638] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Intramuscular fat (IMF) deposition is a biological process that has a strong impact on the nutritional and sensorial properties of meat, with relevant consequences on human health. Pork loins determine the effects of marbling on the sensory attributes and meat quality properties, which differ among various pig breeds. This study explores the crosstalk of non-coding RNAs with mRNAs and analyzes the potential pathogenic role of IMF-associated competing endogenous RNA (ceRNA) in IMF tissues, which offer a framework for the functional validation of key/potential genes. A high-throughput whole-genome transcriptome analysis of IMF tissues from longissimus dorsi muscles of Large White (D_JN) and Laiwu (L_JN) pigs resulted in the identification of 283 differentially expressed circRNAs (DECs), including two key circRNAs (circRNA-23437, circRNA-08840) with potential binding sites for multiple miRNAs regulating the whole network. The potential ceRNA mechanism identified the DEC target miRNAs-mRNAs involved in lipid metabolism, fat deposition, meat quality, and metabolic syndrome via the circRNA-miRNA-mRNA network, concluding that ssc-mir-370 is the most important target miRNA shared by both key circRNAs. TGM2, SLC5A6, ECI1, FASN, PER1, SLC25A34, SOD1, and COL5A3 were identified as hub genes through an intensive protein-protein interaction (PPI) network analysis of target genes acquired from the ceRNA regulatory network. Functional enrichments, pathway examinations, and qRT-PCR analyses infer their implications in fat/cholesterol metabolism, insulin secretion, and fatty acid biosynthesis. Here, circRNAs and miRNA sequencing accompanied by computational techniques were performed to analyze their expressions in IMF tissues from the longissimus dorsi muscles of two pig breeds. Their target gene evolutionary trajectories, expression profiling, functional enrichments, subcellular localizations, and structural advances with high-throughput protein modeling, following genomic organizations, will provide new insights into the underlying molecular mechanisms of adipocyte differentiation and IMF deposition and a much-needed qualitative framework for future research to improve meat quality and its role as a biomarker to treat lipid metabolic syndromes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiangyang Miao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Bykov A, Tuchin V, Meglinski I. Multiplexed spatially-focused localization of light in adipose biological tissues. Sci Rep 2022; 12:9711. [PMID: 35690671 PMCID: PMC9188595 DOI: 10.1038/s41598-022-14350-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Last decades the effects of localization and focusing of light in turbid randomly inhomogeneous tissue-like scattering medium have been attracting a particular attention. Weak localization of light in disordered and weakly ordered biological tissue, polarization memory effect, correlations in transmission matrices, focusing light by wavefronts shaping have been widely exploited. Here, we represent an experimentally observed and theoretically confirmed new type of spatial localization of light within biological tissues. General description of the observed phenomenon based on Monte Carlo ray tracing model is provided. We find that innate body arrangements of individual adipocytes can act as a cascade of quasi-ordered microscale lenses confining propagation of light within adipose tissues similar to lens lightguides. The observed spatially-resolved longitudinal multi-focusing of light within disordered adipose biological tissues can naturally lead greater spatial control and enhance light-tissue interactions.
Collapse
Affiliation(s)
- Alexander Bykov
- Opto-Electronics and Measurement Techniques, University of Oulu, Oulu, Finland.
| | - Valery Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, Russia.,Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia.,Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
| | - Igor Meglinski
- Opto-Electronics and Measurement Techniques, University of Oulu, Oulu, Finland.,Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia.,Institute of Clinical Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| |
Collapse
|
9
|
Guo Q, Huang L, Bai H, Wang Z, Bi Y, Chen G, Jiang Y, Chang G. Genome-Wide Association Study of Potential Meat Quality Trait Loci in Ducks. Genes (Basel) 2022; 13:986. [PMID: 35741748 PMCID: PMC9222319 DOI: 10.3390/genes13060986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
With continuously increasing living standards and health requirements of consumers, meat quality is becoming an important consideration while buying meat products. To date, no genome-wide association study (GWAS) for copy number variants (CNVs) and single nucleotide polymorphisms (SNPs) has been conducted to reveal the genetic effects on meat quality in ducks. This study analyzed the phenotypic correlation and heritability of fat, water, collagen, and protein content of duck breast muscle. To identify the candidate variants for meat quality, we performed a GWAS using 273 ducks from an F2 population. The results of the SNP GWAS showed that the BARHL2, COPS7B, and CCDC50 genes were associated with fat content; BLM, WDR76, and EOMES with water content; CAMTA1, FGD5, GRM7, and RAPGEF5 with collagen production; and RIMS2, HNRNPU, and SPTBN1 with protein content. Additionally, 3, 7, 1, and 3 CNVs were associated with fat, water, collagen, and protein content, respectively, in duck breast muscle. The genes identified in this study can serve as markers for meat quality. Furthermore, our findings may help devise effective breeding plans and selection strategies to improve meat quality.
Collapse
Affiliation(s)
- Qixin Guo
- College of Animal Science, Technology of Yangzhou University, Yangzhou 225009, China; (Q.G.); (L.H.); (Z.W.); (Y.B.); (Y.J.)
| | - Lan Huang
- College of Animal Science, Technology of Yangzhou University, Yangzhou 225009, China; (Q.G.); (L.H.); (Z.W.); (Y.B.); (Y.J.)
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (H.B.); (G.C.)
| | - Zhixiu Wang
- College of Animal Science, Technology of Yangzhou University, Yangzhou 225009, China; (Q.G.); (L.H.); (Z.W.); (Y.B.); (Y.J.)
| | - Yulin Bi
- College of Animal Science, Technology of Yangzhou University, Yangzhou 225009, China; (Q.G.); (L.H.); (Z.W.); (Y.B.); (Y.J.)
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (H.B.); (G.C.)
| | - Yong Jiang
- College of Animal Science, Technology of Yangzhou University, Yangzhou 225009, China; (Q.G.); (L.H.); (Z.W.); (Y.B.); (Y.J.)
| | - Guobin Chang
- College of Animal Science, Technology of Yangzhou University, Yangzhou 225009, China; (Q.G.); (L.H.); (Z.W.); (Y.B.); (Y.J.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (H.B.); (G.C.)
| |
Collapse
|
10
|
Zappaterra M, Catillo G, Fiego DPL, Minelli G, Padalino B, Davoli R. Genetic parameters and analysis of factors affecting variations between backfat and Semimembranosus muscle fatty acid composition in heavy pigs. Meat Sci 2022; 188:108775. [DOI: 10.1016/j.meatsci.2022.108775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
|
11
|
Verge-Mèrida G, Barroeta AC, Guardiola F, Verdú M, Balart M, Font-I-Furnols M, Solà-Oriol D. Crude and acid oils from olive pomace as alternative fat sources in growing-finishing pigs. Animal 2021; 15:100389. [PMID: 34844189 DOI: 10.1016/j.animal.2021.100389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022] Open
Abstract
The inclusion of crude and acid oils from olive pomace can lead to more unsaturated meat products and, especially in the case of olive pomace acid oil, achieve a more economically and environmentally sustainable swine production. The objective of this trial was to study the effect of dietary supplementation with crude and acid oils from olive pomace, which are rich in monounsaturated fatty acids (FAs) and have differing free FA content, on growth performance, digestibility, carcass parameters and FA profile of Longissimus muscle (LM) and backfat in growing-finishing pigs compared to the conventional crude palm oil. A total of 224 male and female pigs [(Landrace × Large White) × Duroc] were randomly distributed into 48 pens according to initial BW (58.7 ± 9.71 kg, mean ± SD) and sex. Four experimental treatments were randomly assigned (n = 12 pens/treatment; 4-5 pigs/pen) for the growing (0-42 days) and finishing (40-62 days) phases. Treatments consisted of a basal diet supplemented with 5% (as-fed basis) palm oil (PO), olive pomace oil (O), olive pomace acid oil (OA) or a mixture (M) of PO and OA at 50/50. No differences were found in the growth performance results between PO, O or M, but animals fed OA showed a lower gain to feed ratio than M (P = 0.008). No differences were found in apparent ileal digestibility among treatments, however, animals fed O and OA showed the highest values of total FA apparent total tract digestibility, while those fed PO had the lowest values, and M had intermediate values (P < 0.001). No differences were observed in carcass composition among treatments. In relation to backfat and the LM FA profile, O and OA treatments led to a higher unsaturated FA to saturated FA ratio and a lower content in saturated FA than PO. Moreover, O showed a higher intramuscular fat (IMF) content in LM than PO (P = 0.037). It is concluded that olive pomace oil is an interesting alternative fat source that can be included at 5% in growing-finishing pig diets, leading to meat products with more IMF, rich in monounsaturated FA, reaching high FA digestibility values and good pig performance parameters. Alternatively, olive pomace acid oil blended with conventional palm oil did not negatively impact fat utilisation nor performance. Including these fat by-products reduced feeding costs and led to a more efficient and environmentally sustainable production.
Collapse
Affiliation(s)
- G Verge-Mèrida
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - A C Barroeta
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - F Guardiola
- Nutrition, Food Science and Gastronomy Dept. INSA-XIA, Universitat de Barcelona, 08921 Santa Coloma de Gramenet, Spain
| | - M Verdú
- Department of Animal Nutrition and Feed Industry, bonÀrea Agrupa, 25210 Guissona, Spain
| | - M Balart
- Department of Animal Nutrition and Feed Industry, bonÀrea Agrupa, 25210 Guissona, Spain
| | | | - D Solà-Oriol
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
12
|
Kumari R, Irudayam MJ, Al Abdallah Q, Jones TL, Mims TS, Puchowicz MA, Pierre JF, Brown CW. SMAD2 and SMAD3 differentially regulate adiposity and the growth of subcutaneous white adipose tissue. FASEB J 2021; 35:e22018. [PMID: 34731499 DOI: 10.1096/fj.202101244r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 11/11/2022]
Abstract
Adipose tissue is the primary site of energy storage, playing important roles in health. While adipose research largely focuses on obesity, fat also has other critical functions, producing adipocytokines and contributing to normal nutrient metabolism, which in turn play important roles in satiety and total energy homeostasis. SMAD2/3 proteins are downstream mediators of activin signaling, which regulate critical preadipocyte and mature adipocyte functions. Smad2 global knockout mice exhibit embryonic lethality, whereas global loss of Smad3 protects mice against diet-induced obesity. The direct contributions of Smad2 and Smad3 in adipose tissues, however, are unknown. Here, we sought to determine the primary effects of adipocyte-selective reduction of Smad2 or Smad3 on diet-induced adiposity using Smad2 or Smad3 "floxed" mice intercrossed with Adiponectin-Cre mice. Additionally, we examined visceral and subcutaneous preadipocyte differentiation efficiency in vitro. Almost all wild type subcutaneous preadipocytes differentiated into mature adipocytes. In contrast, visceral preadipocytes differentiated poorly. Exogenous activin A suppressed differentiation of preadipocytes from both depots. Smad2 conditional knockout (Smad2cKO) mice did not exhibit significant effects on weight gain, irrespective of diet, whereas Smad3 conditional knockout (Smad3cKO) male mice displayed a trend of reduced body weight on high-fat diet. On both diets, Smad3cKO mice displayed an adipose depot-selective phenotype, with a significant reduction in subcutaneous fat mass but not visceral fat mass. Our data suggest that Smad3 is an important contributor to the maintenance of subcutaneous white adipose tissue in a sex-selective fashion. These findings have implications for understanding SMAD-mediated, depot selective regulation of adipocyte growth and differentiation.
Collapse
Affiliation(s)
- Roshan Kumari
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Maria Johnson Irudayam
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Qusai Al Abdallah
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Tamekia L Jones
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Memphis, Tennessee, USA
| | - Tahliyah S Mims
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Michelle A Puchowicz
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Joseph F Pierre
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Chester W Brown
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| |
Collapse
|
13
|
Yang Y, Cheng Z, Zhang W, Hei W, Lu C, Cai C, Zhao Y, Gao P, Guo X, Cao G, Li B. GOT1 regulates adipocyte differentiation by altering NADPH content. Anim Biosci 2021; 35:155-165. [PMID: 34474530 PMCID: PMC8738948 DOI: 10.5713/ab.21.0174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Objective This study was performed to examine whether the porcine glutamic-oxaloacetic transaminase 1 (GOT1) gene has important functions in regulating adipocyte differentiation. Methods Porcine GOT1 knockout and overexpression vectors were constructed and transfected into the mouse adipogenic 3T3-L1 cells. Lipid droplets levels were measured after 8 days of differentiation. The mechanisms through which GOT1 participated in lipid deposition were examined by measuring the expression of malate dehydrogenase 1 (MDH1) and malic enzyme (ME1) and the cellular nicotinamide adenine dinucleotide phosphate (NADPH) content. Results GOT1 knockout significantly decreased lipid deposition in the 3T3-L1 cells (p< 0.01), whereas GOT1 overexpression significantly increased lipid accumulation (p<0.01). At the same time, GOT1 knockout significantly decreased the NADPH content and the expression of MDH1 and ME1 in the 3T3-L1 cells. Overexpression of GOT1 significantly increased the NADPH content and the expression of MDH1 and ME1, suggesting that GOT1 regulated adipocyte differentiation by altering the NADPH content. Conclusion The results preliminarily revealed the effector mechanisms of GOT1 in regulating adipose differentiation. Thus, a theoretical basis is provided for improving the quality of pork and studies on diseases associated with lipid metabolism.
Collapse
Affiliation(s)
- Yang Yang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Zhimin Cheng
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China.,Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Wanfeng Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Wei Hei
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Yan Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
14
|
Liu J, Wang L, Chen W, Li J, Shan T. CRTC3 Regulates the Lipid Metabolism and Adipogenic Differentiation of Porcine Intramuscular and Subcutaneous Adipocytes by Activating the Calcium Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7243-7255. [PMID: 34142819 DOI: 10.1021/acs.jafc.1c02021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fat deposition, especially the intramuscular (IM) fat deposition, is directly associated with meat quality. The cyclic adenosine monophosphate (cAMP)-responsive element binding-protein (CREB)-regulated transcription coactivator 3 (CRTC3) plays an important role in energy metabolism and various biological processes. The expression of porcine CRTC3 in skeletal muscle is positively associated with intramuscular fat deposition and possesses the capacity to control the intramuscular (IM) adipocyte morphology. However, the metabolic effects and transcriptional mechanism of CRTC3 in porcine intramuscular (IM) adipocytes as well as the regulatory mechanism of CRTC3 on porcine adipocyte differentiation have not been studied. Here, we utilized metabolomics and RNA sequencing (RNA-seq) to determine the metabolic and transcriptome profiles of CRTC3-overexpressing IM adipocytes. Moreover, the effect and regulation mechanism of CRTC3 on porcine IM and subcutaneous (SC) adipocyte differentiation were also studied. Our results showed that CRTC3 overexpression dramatically altered the metabolites in IM adipocytes. Glycerophospholipid (GP) metabolism and related genes were significantly changed in CRTC3-overexpressing IM adipocytes. Moreover, we demonstrated that CRTC3 overexpression promotes adipogenic differentiation by upregulating the Ca2+-cAMP signaling pathway in IM and SC adipocytes. We showed alterations in metabolites and in the expression of genes involved in lipid metabolism in CRTC3-overexpressing adipocytes and demonstrated the regulatory mechanism of CRTC3 on the adipogenic differentiation of porcine adipocytes. These results provide new insights into the regulatory roles of CRTC3 in porcine adipocytes, which could be an important target to regulate fat deposition in animals.
Collapse
Affiliation(s)
- Jiaqi Liu
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, 310058 Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 310058 Hangzhou, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, 310058 Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 310058 Hangzhou, China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, 310058 Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 310058 Hangzhou, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, 310058 Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 310058 Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, 310058 Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 310058 Hangzhou, China
| |
Collapse
|
15
|
San J, Du Y, Wu G, Xu R, Yang J, Hu J. Transcriptome analysis identifies signaling pathways related to meat quality in broiler chickens - the extracellular matrix (ECM) receptor interaction signaling pathway. Poult Sci 2021; 100:101135. [PMID: 33940279 PMCID: PMC8105667 DOI: 10.1016/j.psj.2021.101135] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/07/2022] Open
Abstract
Meat quality characteristics, including juiciness, flavor, and tenderness, can be mostly attributed to the total muscle fat content, intramuscular fat (IMF), and the composition of its fatty acids, which are regulated by the balance between lipid uptake, transport, synthesis, and subsequent metabolism, involving many genes and pathways. However, the detailed molecular mechanisms remain unclear. The purpose of this study was to identify the key signaling pathways related to chicken meat quality, and to provide help for improving chicken meat quality. The present study reports the RNA-sequencing analysis of pectorales and crureus of the Zhuanghe dagu chicken and the Arbor Acres Broiler chicken (AA chicken). We identified certain differentially expressed genes that affect IMF deposition, such as EHHADH, TECRL, NDUFAB1, PCCB, and HIBCH, which were upregulated in Zhuanghe dagu chicken , and GCDH, TPI1, ABHD13, PSMC1, MYST2, and FBXO11, which were upregulated in AA chickens. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes indicated that the extracellular matrix (ECM)–receptor interaction pathway is co-enriched in both tissues, and forms a sub-pathway of other enriched pathways. Intriguingly, the ECM–receptor interaction pathway genes are regulated differently in different gene pools. Collagens, which are main ECM constituents, and laminin and integrin β1 transmembrane receptors were significantly downregulated in both tissues of the AA chicken. The results showed that the ECM-receptor interaction pathway affect the quality of chicken meat by affecting the metabolism of intramuscular adipocytes. Further investigation of this signaling pathway will be helpful to the improvement of chicken meat quality.
Collapse
Affiliation(s)
- Jishuang San
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang China
| | - Yanting Du
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang China
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang China
| | - Rifeng Xu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang China
| | - Jiancheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang China.
| | - Jianmin Hu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang China
| |
Collapse
|
16
|
Liu H, Wei W, Lin W, Yu W, Luo W, Niu Y, Zhang L, Chen J. miR-32-5p Regulates Lipid Accumulation in Intramuscular Fat of Erhualian Pigs by Suppressing KLF3. Lipids 2020; 56:279-287. [PMID: 33305404 DOI: 10.1002/lipd.12294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/20/2023]
Abstract
Intramuscular fat (IMF) and subcutaneous fat (SCF) are important traits affecting the economics of the pork industry, in which less SCF and more IMF content is desirable. However, the mechanisms that regulate IMF and SCF content are not clear yet. In this study, we demonstrate that KLF3 (Krüppel-like factor 3) was negatively correlated with IMF content in the longissimus dorsi muscle of Erhualian pigs. In addition, the expression level of KLF3 was significantly higher in IMF than SCF. Overexpression and knockdown experiments revealed that KLF3 could suppress adipocyte differentiation in vitro by downregulating adipogenic markers, including PPARG, C/EBPA, and FABP4. Luciferase activity analysis proved that miR-32-5p was able to suppress KLF3. Notably, miR-32-5p level was negatively correlated to KLF3 mRNA level in both IMF and SCF tissues. The same relationship was proved in samples with different IMF content. Further studies showed that miR-32-5p could promote adipocyte differentiation via inhibiting KLF3. Our results suggest that the miR-32-5p-KLF3 pathway is involved in the regulation of differential fat deposition of IMF and SCF tissues.
Collapse
Affiliation(s)
- Hongcheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang, Nanjing, 210095, China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang, Nanjing, 210095, China
| | - Weimin Lin
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang, Nanjing, 210095, China
| | - Wensai Yu
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang, Nanjing, 210095, China
| | - Wu Luo
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang, Nanjing, 210095, China
| | - Yingfang Niu
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang, Nanjing, 210095, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang, Nanjing, 210095, China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang, Nanjing, 210095, China
| |
Collapse
|
17
|
Xu Z, Zhou Y, Nong Q, You W, Wang L, Wang Y, Shan T. LKB1 Differently Regulates Adipogenesis in Intramuscular and Subcutaneous Adipocytes through Metabolic and Cytokine-Related Signaling Pathways. Cells 2020; 9:cells9122599. [PMID: 33291665 PMCID: PMC7761942 DOI: 10.3390/cells9122599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Liver kinase B1 (LKB1) plays important and various roles in the differentiation and lipid metabolism of adipocytes. However, the current knowledge of the respective roles of LKB1 in subcutaneous fat (SCF) and intramuscular fat (IMF) adipocytes remains unclear. This study aimed to discover the different regulatory mechanisms of LKB1 in SCF and IMF adipocytes. We found that LKB1 overexpression inhibited adipogenesis in both SCF and IMF adipocytes, and SCF adipocytes were more sensitive to regulation by LKB1. Transcriptomics results showed that IMF adipocytes had many more differentially expressed genes (DEGs) than SCF adipocytes. Pathway analysis of the shared and distinct DEGs revealed that the main adipogenesis mechanism was similar between SCF and IMF adipocytes upon LKB1 overexpression, while regulatory and metabolic signaling pathways, such as MAPK, PPAR signaling pathways, were differently regulated by LKB1. Several cytokine-related pathways were only enriched in LKB1-overexpressing IMF adipocytes. Our study reveals different regulators and signaling pathways between SCF and IMF adipocytes under LKB1 overexpression, which may be potential targets to differentially control SCF and IMF deposition and improve our understanding of the regulatory mechanisms of IMF deposition.
Collapse
Affiliation(s)
- Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.X.); (Y.Z.); (Q.N.); (W.Y.); (L.W.); (Y.W.)
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.X.); (Y.Z.); (Q.N.); (W.Y.); (L.W.); (Y.W.)
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Qiuyun Nong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.X.); (Y.Z.); (Q.N.); (W.Y.); (L.W.); (Y.W.)
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.X.); (Y.Z.); (Q.N.); (W.Y.); (L.W.); (Y.W.)
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.X.); (Y.Z.); (Q.N.); (W.Y.); (L.W.); (Y.W.)
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.X.); (Y.Z.); (Q.N.); (W.Y.); (L.W.); (Y.W.)
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.X.); (Y.Z.); (Q.N.); (W.Y.); (L.W.); (Y.W.)
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-0571-8898-2102
| |
Collapse
|
18
|
Wu W, Ji M, Xu K, Zhang D, Yin Y, Huang X, Peng Y, Zhang J. Knockdown of CTRP6 reduces the deposition of intramuscular and subcutaneous fat in pigs via different signaling pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158729. [PMID: 32360289 DOI: 10.1016/j.bbalip.2020.158729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
The regulation of porcine subcutaneous (SC) and intramuscular (IM) fat deposition significantly affects pork quality and the lean meat percentage of the carcass, respectively. The adipokine C1q/tumor necrosis factor-related protein 6 (CTRP6), plays a significant role in regulating animal fat deposition. The purpose of this study was to understand the effects of CTRP6 gene knockdown in IM and SC adipocytes by RNA-seq analysis. A total of 1830 and 2936 differentially expressed genes (DEGs) were identified in SC and IM adipocytes, respectively. 844 were down- and 2092 were upregulated in SC adipocytes, while 648 were down- and 1182 were upregulated in IM adipocytes. Furthermore, 1778 DEGs were detected only in SC adipocytes, 672 DEGs only in IM adipocytes, and 1158 DEGs in both types of adipocytes. GO analysis indicated that DEGs involved in adipocyte differentiation were significantly enriched in both SC and IM adipocytes following treatment with CTRP6-siRNA. Moreover, KEGG pathway enrichment analysis revealed differences of metabolic regulation between IM and SC adipocytes. With CTRP6-silencing, the signaling pathways related to Ras and arachidonic acid metabolism were significantly enriched in IM adipocytes, while four other signaling pathways, encompassing the TNF, MAPK, p53 and adipokine pathway were specifically enriched in SC adipocytes. Interestingly, the effect of CTRP6-siRNA treatment was attenuated by the specific Ras activator ML-097 in IM adipocytes, while the specific p53 activator SJ-172550 had the corresponding effect in SC adipocytes. Altogether, we suggest that CTRP6 may be a differential regulator of the development and metabolism of IM and SC adipose tissues.
Collapse
Affiliation(s)
- Wenjing Wu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Miao Ji
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao, Hebei 066000, China
| | - Ke Xu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao, Hebei 066000, China
| | - Dawei Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yajun Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xin Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao, Hebei 066000, China
| | - Yongjia Peng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
19
|
Xu K, Ji M, Huang X, Peng Y, Wu W, Zhang J. Differential Regulatory Roles of MicroRNAs in Porcine Intramuscular and Subcutaneous Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3954-3962. [PMID: 32146812 DOI: 10.1021/acs.jafc.9b08191] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The deposition of intramuscular (IM) and subcutaneous (SC) fat is an important trait influencing pork quality. Understanding the genetic differences between these two types of adipose tissues is consequently of great importance for pig breeding. Here, we established primary cultures of IM and SC adipocytes from Jiaxing black pigs. The microRNA (miRNA) expression profiles of the two types of adipocytes were obtained by RNA-seq. A total of 741 miRNAs were identified in IM and SC adipocytes, including 155 significant differentially expressed (SDE) miRNAs. According to gene ontology and Kyoto Encyclopedia of Genes analysis, the target genes of the SDE miRNAs were enriched in categories and pathways related to transcriptional regulation, fatty acid biosynthesis, as well as the MAPK and PI3K/Akt pathways. Notably, miR-206 expression was 36-fold higher in IM adipocytes than in SC adipocytes. The overexpression of miR-206 in IM and SC adipocytes decreased cell proliferation and triglyceride accumulation. Luciferase activity assays and quantitative polymerase chain reaction confirmed that miR-206 regulates adipocyte proliferation by targeting STARD7 and inhibits adipogenesis by repressing Krüppel-like factor 4 (KLF4) expression. Accordingly, the effect of miR-206 mimics was attenuated by the overexpression of KLF4 in adipocytes. Taken together, we identified the expression profiles of miRNAs in adipocytes, which revealed that miR-206 acts as a suppressor of adipogenesis.
Collapse
Affiliation(s)
- Ke Xu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Miao Ji
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Xin Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Yongjia Peng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Wenjing Wu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
20
|
Deng K, Ren C, Fan Y, Liu Z, Zhang G, Zhang Y, You P, Wang F. miR-27a is an important adipogenesis regulator associated with differential lipid accumulation between intramuscular and subcutaneous adipose tissues of sheep. Domest Anim Endocrinol 2020; 71:106393. [PMID: 31731253 DOI: 10.1016/j.domaniend.2019.106393] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 08/05/2019] [Accepted: 09/04/2019] [Indexed: 01/15/2023]
Abstract
Micro ribonucleic acids (miRNAs) are crucial regulators for various biological processes. Despite important function in the proliferation and differentiation of preadipocytes, miRNA studies are limited in regional differences in adipogenesis. Here, we show that miR-27a plays an important role in regulating differential lipid accumulation between intramuscular (IM) and subcutaneous (SC) adipose tissues in sheep. Invivo, we observed that miR-27a expression in IM adipose tissue is more abundant than in SC adipose tissue. However, the expression of Peroxisome Proliferator-Activated Receptor Gamma (PPARG) and retinoid X receptor alpha (RXR alpha) in IM adipose tissue was significantly lower than that in SC adipose tissue. In the ovine preadipocyte differentiation model, we found that the expression of miR-27a was significantly decreased in differentiated ovine adipocytes. Overexpression of miR-27a significantly downregulated the expression of PPARG and RXR alpha and suppressed the accumulation of triglyceride but promoted the proliferation of ovine preadipocytes. Whereas, inhibition of miR-27a suppressed preadipocyte proliferation but enhanced PPARG and RXR alpha expression and lipid droplet formation. In addition, dual-luciferase activity assays showed that RXR alpha was a direct target of miR-27a. Thus, miR-27a enhances ovine preadipocytes proliferation and inhibits ovine preadipocytes differentiation through regulating the expression of target RXR alpha. Collectively, our study demonstrates the functional importance of miR-27a in ovine adipogenesis and provides novel insights into exploring regional differences in adipogenesis.
Collapse
Affiliation(s)
- K Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - C Ren
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Y Fan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Z Liu
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - G Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Y Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - P You
- Portal Agri-Industries Co, Ltd, Xingdian Street, Pikou District, Nanjing, Jiangsu, China
| | - F Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, Jiangsu, China; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
21
|
Hudson NJ, Reverter A, Griffiths WJ, Yutuc E, Wang Y, Jeanes A, McWilliam S, Pethick DW, Greenwood PL. Gene expression identifies metabolic and functional differences between intramuscular and subcutaneous adipocytes in cattle. BMC Genomics 2020; 21:77. [PMID: 31992204 PMCID: PMC6986065 DOI: 10.1186/s12864-020-6505-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/17/2020] [Indexed: 01/22/2023] Open
Abstract
Background This study used a genome-wide screen of gene expression to better understand the metabolic and functional differences between commercially valuable intramuscular fat (IMF) and commercially wasteful subcutaneous (SC) fat depots in Bos taurus beef cattle. Results We confirmed many findings previously made at the biochemical level and made new discoveries. The fundamental lipogenic machinery, such as ACACA and FASN encoding the rate limiting Acetyl CoA carboxylase and Fatty Acid synthase were expressed at 1.6–1.8 fold lower levels in IMF, consistent with previous findings. The FA elongation pathway including the rate limiting ELOVL6 was also coordinately downregulated in IMF compared to SC as expected. A 2-fold lower expression in IMF of ACSS2 encoding Acetyl Coenzyme A synthetase is consistent with utilisation of less acetate for lipogenesis in IMF compared to SC as previously determined using radioisotope incorporation. Reduced saturation of fat in the SC depot is reflected by 2.4 fold higher expression of the SCD gene encoding the Δ9 desaturase enzyme. Surprisingly, CH25H encoding the cholesterol 25 hydroxylase enzyme was ~ 36 fold upregulated in IMF compared to SC. Moreover, its expression in whole muscle tissue appears representative of the proportional representation of bovine marbling adipocytes. This suite of observations prompted quantification of a set of oxysterols (oxidised forms of cholesterol) in the plasma of 8 cattle exhibiting varying IMF. Using Liquid Chromatography-Mass Spectrometry (LC-MS) we found the levels of several oxysterols were significantly associated with multiple marbling measurements across the musculature, but (with just one exception) no other carcass phenotypes. Conclusions These data build on our molecular understanding of ruminant fat depot biology and suggest oxysterols represent a promising circulating biomarker for cattle marbling.
Collapse
Affiliation(s)
- Nicholas J Hudson
- School of Agriculture and Food Sciences, University of Queensland, Gatton, QLD, Australia.
| | - Antonio Reverter
- Agriculture, Commonwealth Science and Industrial Research Organisation, 306 Carmody Road, Brisbane, QLD, Australia
| | - William J Griffiths
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Eylan Yutuc
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Yuqin Wang
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Angela Jeanes
- Institute for Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Sean McWilliam
- Agriculture, Commonwealth Science and Industrial Research Organisation, 306 Carmody Road, Brisbane, QLD, Australia
| | - David W Pethick
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Paul L Greenwood
- New South Wales Department of Primary Industries, Armidale Livestock Industries Centre, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
22
|
Association of Twelve Candidate Gene Polymorphisms with the Intramuscular Fat Content and Average Backfat Thickness of Chinese Suhuai Pigs. Animals (Basel) 2019; 9:ani9110858. [PMID: 31652864 PMCID: PMC6912197 DOI: 10.3390/ani9110858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Appropriate intramuscular fat content (IFC) is the goal of consumers and the direction that breeders must pursue. However, it is difficult to improve the IFC but not average backfat thickness (ABT) by traditional breeding methods, and pigs must be slaughtered to accurately measure IFC. Marker-assisted selection (MAS) provides an economic and efficient method to improve the IFC in pigs. Our research indicated that the FABP3 (rs1110770079) single nucleotide polymorphism (SNP) could be a candidate gene associated with IFC (but not ABT), and IFC could be improved by selecting the individuals with a favorable genotype (GG) of FABP3 (rs1110770079) SNP for pig breeding. Abstract The present study aimed to identify the molecular markers for genes that influence intramuscular fat content (IFC), but not average backfat thickness (ABT). A total of 330 Suhuai pigs were slaughtered, and measurements of IFC and ABT were obtained. Phenotypic and genetic correlations between IFC and ABT were calculated. Thirteen single nucleotide polymorphisms (SNPs) among 12 candidate genes for IFC were analyzed, including FABP3, LIPE, IGF1, IGF2, LEP, LEPR, MC4R, PHKG1, RETN, RYR1, SCD, and UBE3C. Associations of the evaluated SNPs with IFCIFC and ABT were performed. Our results showed that the means of IFC and ABT were 1.99 ± 0.03 % and 26.68 ± 0.28 mm, respectively. The coefficients of variation (CVs) of IFC and ABT were 31.21% and 19.36%, respectively. The phenotypic and genetic correlations between IFC and ABT were moderate. Only the FABP3 (rs1110770079) was associated with IFC (p < 0.05) but not with ABT. Besides, there was a tendency for associations of RYR1 (rs344435545) and SCD (rs80912566) with IFC (p < 0.1). Our results indicated that the FABP3 (rs1110770079) SNP could be used as a marker to improve IFC without changing ABT in the Suhuai pig breeding system.
Collapse
|
23
|
Zhang M, Li F, Ma XF, Li WT, Jiang RR, Han RL, Li GX, Wang YB, Li ZY, Tian YD, Kang XT, Sun GR. Identification of differentially expressed genes and pathways between intramuscular and abdominal fat-derived preadipocyte differentiation of chickens in vitro. BMC Genomics 2019; 20:743. [PMID: 31615399 PMCID: PMC6794883 DOI: 10.1186/s12864-019-6116-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The distribution and deposition of fat tissue in different parts of the body are the key factors affecting the carcass quality and meat flavour of chickens. Intramuscular fat (IMF) content is an important factor associated with meat quality, while abdominal fat (AbF) is regarded as one of the main factors affecting poultry slaughter efficiency. To investigate the differentially expressed genes (DEGs) and molecular regulatory mechanisms related to adipogenic differentiation between IMF- and AbF-derived preadipocytes, we analysed the mRNA expression profiles in preadipocytes (0d, Pre-) and adipocytes (10d, Ad-) from IMF and AbF of Gushi chickens. RESULTS AbF-derived preadipocytes exhibited a higher adipogenic differentiation ability (96.4% + 0.6) than IMF-derived preadipocytes (86.0% + 0.4) (p < 0.01). By Ribo-Zero RNA sequencing, we obtained 4403 (2055 upregulated and 2348 downregulated) and 4693 (2797 upregulated and 1896 downregulated) DEGs between preadipocytes and adipocytes in the IMF and Ad groups, respectively. For IMF-derived preadipocyte differentiation, pathways related to the PPAR signalling pathway, ECM-receptor interaction and focal adhesion pathway were significantly enriched. For AbF-derived preadipocyte differentiation, the steroid biosynthesis pathways, calcium signaling pathway and ECM-receptor interaction pathway were significantly enriched. A large number of DEGs related to lipid metabolism, fatty acid metabolism and preadipocyte differentiation, such as PPARG, ACSBG2, FABP4, FASN, APOA1 and INSIG1, were identified in our study. CONCLUSION This study revealed large transcriptomic differences between IMF- and AbF-derived preadipocyte differentiation. A large number of DEGs and transcription factors that were closely related to fatty acid metabolism, lipid metabolism and preadipocyte differentiation were identified in the present study. Additionally, the microenvironment of IMF- and AbF-derived preadipocyte may play a significant role in adipogenic differentiation. This study provides valuable evidence to understand the molecular mechanisms underlying adipogenesis and fat deposition in chickens.
Collapse
Affiliation(s)
- Meng Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.,The First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Fang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Xiang-Fei Ma
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Wen-Ting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Rui-Rui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Rui-Li Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Guo-Xi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Yan-Bin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Zi-Yi Li
- The First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Ya-Dong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Xiang-Tao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Gui-Rong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.
| |
Collapse
|
24
|
Review: Enhancing intramuscular fat development via targeting fibro-adipogenic progenitor cells in meat animals. Animal 2019; 14:312-321. [PMID: 31581971 DOI: 10.1017/s175173111900209x] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the livestock industry, subcutaneous and visceral fat pads are considered as wastes, while intramuscular fat or marbling fat is essential for improving flavor and palatability of meat. Thus, strategies for optimizing fat deposition are needed. Intramuscular adipocytes provide sites for lipid deposition and marbling formation. In the present article, we addressed the origin and markers of intramuscular adipocyte progenitors - fibro-adipogenic progenitors (FAPs), as well as the latest progresses in mechanisms regulating the proliferation and differentiation of intramuscular FAPs. Finally, by targeting intramuscular FAPs, possible nutritional manipulations to improve marbling fat deposition are discussed. Despite recent progresses, the properties and regulation of intramuscular FAPs in livestock remain poorly understood and deserve further investigation.
Collapse
|
25
|
Wu W, Zhang D, Yin Y, Ji M, Xu K, Huang X, Peng Y, Zhang J. Comprehensive transcriptomic view of the role of the LGALS12 gene in porcine subcutaneous and intramuscular adipocytes. BMC Genomics 2019; 20:509. [PMID: 31215398 PMCID: PMC6582507 DOI: 10.1186/s12864-019-5891-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background Livestock production aims to provide meats of high and consistent eating quality. Insufficient intramuscular (IM) fat and excessive subcutaneous (SC) fat are paramount pork quality challenges. IM fat and SC fat, which are modulated by the adipogenesis of IM and SC adipocytes, play key roles in pork quality. Galectin-12 (LGALS12) was proven to be an important regulator of fat deposition in porcine. However, the current knowledge of the transcriptome-wide role of LGALS12 in adipocytes is still limited. This study was aimed to discover the different regulatory mechanisms of LGALS12 in porcine IM and SC adipocyte. Results The siRNA-mediated knockdown of the expression of LGALS12 identified 1075 and 3016 differentially expressed genes (DEGs) in IM and SC adipocytes, respectively. Among these, 585 were up- and 490 were downregulated in the IM adipocytes, while 2186 were up- and 830 were downregulated in the SC adipocytes. Moreover, 418 DGEs were observed only in the IM adipocytes, 2359 DGEs only in the SC adipocytes, and 657 DGEs in both types of adipocytes. According to Gene Ontology (GO) analysis, DEGs in both IM and SC adipocytes were mainly enriched in categories related to lipids or fat cell differentiation. Pathway analysis of the DEGs revealed 88 changed signaling pathways in the IM adipocytes and 86 in the SC adipocytes. The signaling pathways present in only one type of adipocyte were identified from among the top 50 signaling pathways in each type of adipocyte. Four signaling pathways, encompassing PI3K-AKT, cardiac muscle contraction, fatty acid metabolism and Ras, were significantly enriched in the IM adipocytes. On the other hand, four different signaling pathways, encompassing TNF, WNT, cGMP-PKG and NF-kappa B, were greatly enriched in the SC ones. The pathway changes were confirmed by chemical inhibition assays. Conclusions Our data reveals that LGALS12 knockdown alters the expression of numerous genes involved in key biological processes in the development of adipocytes. These observations provide a global view of the role of LGALS12 in porcine IM and SC adipocytes; thus, improving our understanding of the regulatory mechanisms by which this gene acts in fat development. Electronic supplementary material The online version of this article (10.1186/s12864-019-5891-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjing Wu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Dawei Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Yajun Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Miao Ji
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao Hebei, 066000, China
| | - Ke Xu
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao Hebei, 066000, China
| | - Xin Huang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao Hebei, 066000, China
| | - Yongjia Peng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
26
|
Igata M, Islam MA, Tada A, Takagi M, Kober AKMH, Albarracin L, Aso H, Ikeda-Ohtsubo W, Miyazawa K, Yoda K, He F, Takahashi H, Villena J, Kitazawa H. Transcriptome Modifications in Porcine Adipocytes via Toll-Like Receptors Activation. Front Immunol 2019; 10:1180. [PMID: 31191544 PMCID: PMC6549529 DOI: 10.3389/fimmu.2019.01180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
Adipocytes are the most important cell type in adipose tissue playing key roles in immunometabolism. We previously reported that nine members of the Toll-like receptor (TLR) family are expressed in an originally established porcine intramuscular pre-adipocyte (PPI) cell line. However, the ability of TLR ligands to modulate immunometabolic transcriptome modifications in porcine adipocytes has not been elucidated. Herein, we characterized the global transcriptome modifications in porcine intramuscular mature adipocytes (pMA), differentiated from PPI, following stimulation with Pam3csk4, Poly(I:C) or LPS which are ligands for TLR2, TLR3, and TLR4, respectively. Analysis of microarray data identified 530 (218 up, 312 down), 520 (245 up, 275 down), and 525 (239 up, 286 down) differentially expressed genes (DEGs) in pMA following the stimulation with Pam3csk4, Poly(I:C), and LPS, respectively. Gene ontology classification revealed that DEGs are involved in several biological processes including those belonging to immune response and lipid metabolism pathways. Functionally annotated genes were organized into two groups for downstream analysis: immune response related genes (cytokines, chemokines, complement factors, adhesion molecules, and signal transduction), and genes involved with metabolic and endocrine functions (hormones and receptors, growth factors, and lipid biosynthesis). Differential expression analysis revealed that EGR1, NOTCH1, NOS2, TNFAIP3, TRAF3IP1, INSR, CXCR4, PPARA, MAPK10, and C3 are the top 10 commonly altered genes of TLRs induced transcriptional modification of pMA. However, the protein-protein interaction network of DEGs identified EPOR, C3, STAR, CCL2, and SAA2 as the major hub genes, which were also exhibited higher centrality estimates in the Gene-Transcription factor interaction network. Our results provide new insights of transcriptome modifications associated with TLRs activation in porcine adipocytes and identified key regulatory genes that could be used as biomarkers for the evaluation of treatments having immunomodularoty and/or metabolic functional beneficial effects in porcine adipocytes.
Collapse
Affiliation(s)
- Manami Igata
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Md Aminul Islam
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Asuka Tada
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Michihiro Takagi
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - A K M Humayun Kober
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Department of Dairy and Poultry Science, Chittagong Veterinary and Animal Sciences University, Chittangong, Bangladesh
| | - Leonardo Albarracin
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina.,Scientific Computing Laboratory, Computer Science Department, Faculty of Exact Science and Technology, National University of Tucuman, San Miguel de Tucumán, Argentina
| | - Hisashi Aso
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Wakako Ikeda-Ohtsubo
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kenji Miyazawa
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama, Japan
| | - Kazutoyo Yoda
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama, Japan
| | - Fang He
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama, Japan
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Julio Villena
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
27
|
Role of OXCT1 in ovine adipose and preadipocyte differentiation. Biochem Biophys Res Commun 2019; 512:779-785. [PMID: 30928098 DOI: 10.1016/j.bbrc.2019.03.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022]
Abstract
3-oxoacid CoA-transferase 1 (OXCT1) is a key enzyme in ketone body metabolism that is expressed in adipose and other tissues. The present study addressed the function of OXCT1 in adipose tissue from Tan sheep. The 1563 bp ovine OXCT1 coding sequence was cloned from ovine adipose tissue. The OXCT1 protein sequence was highly homologous to OXCT1 from other species. OXCT1 was highly expressed in kidney and at lower levels in small intestine, lung, spleen, heart, stomach, liver, tail adipose, and cartilage, but not in longissimus muscle. OXCT1 was expressed at higher levels in perirenal and tail adipose tissues than in subcutaneous adipose tissue. OXCT1 expression levels increased during the in vitro differentiation of adipocytes, but decreased dramatically at day 8. OXCT1 knockdown in ovine adipocytes promoted lipid accumulation, whereas overexpression did the converse. This study demonstrates that OXCT1 may play a role in adipogenesis and provides new insight on adipose deposition in sheep.
Collapse
|
28
|
Morris EM, Meers GME, Ruegsegger GN, Wankhade UD, Robinson T, Koch LG, Britton SL, Rector RS, Shankar K, Thyfault JP. Intrinsic High Aerobic Capacity in Male Rats Protects Against Diet-Induced Insulin Resistance. Endocrinology 2019; 160:1179-1192. [PMID: 31144719 PMCID: PMC6482035 DOI: 10.1210/en.2019-00118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/02/2019] [Indexed: 01/30/2023]
Abstract
Low aerobic capacity increases the risk for insulin resistance but the mechanisms are unknown. In this study, we tested susceptibility to acute (3-day) high-fat, high-sucrose diet (HFD)-induced insulin resistance in male rats selectively bred for divergent intrinsic aerobic capacity, that is, high-capacity running (HCR) and low-capacity running (LCR) rats. We employed hyperinsulinemic-euglycemic clamps, tracers, and transcriptome sequencing of skeletal muscle to test whether divergence in aerobic capacity impacted insulin resistance through systemic and tissue-specific metabolic adaptations. An HFD evoked decreased insulin sensitivity and insulin signaling in muscle and liver in LCR rats, whereas HCR rats were protected. An HFD led to increased glucose transport in skeletal muscle (twofold) of HCR rats while increasing glucose transport into adipose depots of the LCR rats (twofold). Skeletal muscle transcriptome revealed robust differences in the gene profile of HCR vs LCR on low-fat diet and HFD conditions, including robust differences in specific genes involved in lipid metabolism, adipogenesis, and differentiation. HCR transcriptional adaptations to an acute HFD were more robust than for LCR and included genes driving mitochondrial energy metabolism. In conclusion, intrinsic aerobic capacity robustly impacts systemic and skeletal muscle adaptations to HFD-induced alterations in insulin resistance, an effect that is likely driven by baseline differences in oxidative capacity, gene expression profile, and transcriptional adaptations to an HFD.
Collapse
Affiliation(s)
- E Matthew Morris
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Research Service, Kansas City VA Medical Center, Kansas City, Missouri
| | - Grace M E Meers
- Department of Nutrition and Exercise Physiology, University of Missouri–Columbia, Columbia, Missouri
| | - Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri–Columbia, Columbia, Missouri
| | - Umesh D Wankhade
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Tommy Robinson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Lauren G Koch
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio
| | - Steven L Britton
- Deparment of Anesthesiology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri–Columbia, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Kartik Shankar
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Research Service, Kansas City VA Medical Center, Kansas City, Missouri
| |
Collapse
|
29
|
Wu W, Yin Y, Xu K, Peng Y, Zhang J. Knockdown of LGALS12 inhibits porcine adipocyte adipogenesis via PKA-Erk1/2 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2018; 50:960-967. [PMID: 30165571 DOI: 10.1093/abbs/gmy099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/27/2018] [Indexed: 11/12/2022] Open
Abstract
Increasing intramuscular (IM) fat while concomitantly decreasing subcutaneous (SC) fat content is one major goal of pig breeding. Identifying genes involved in lipid metabolism is critical for this goal. Galectin-12 (LGALS12) has been proven to be an important regulator of fat deposition in mouse models; however, the effect and regulatory mechanisms of LGALS12 on porcine adipogenesis are still unknown. In this study, the effects of LGALS12 on fat deposition were explored with primary culture of porcine SC and IM adipocytes. Analysis of LGALS12 expression across different tissues revealed that LGALS12 was predominantly expressed in adipose tissue. The LGALS12 expression patterns across stages of adipocyte differentiation were also evaluated, with differences observed between SC and IM fat. Small interfering RNA (siRNA) of LGALS12 was designed and transfected into porcine adipocytes derived from SC and IM fat. After transfection, the expression level of LGALS12 was significantly reduced, and the number of lipid droplets was reduced in adipocytes from both SC and IM fat. Simultaneously, the levels of adipogenic markers, including PPARγ and aP2, were decreased, whereas hydrolysis markers, including adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), were increased. Furthermore, the activation of lipolysis signals, such as the phosphorylation of PKA and Erk1/2, were observed with LGALS12 knockdown in terminally differentiated adipocytes from both SC and IM sources. Taken together, these results suggest that LGALS12 knockdown can inhibit adipogenesis of porcine adipocytes by downregulating lipogenic genes and activating the PKA-Erk1/2 signaling pathway.
Collapse
Affiliation(s)
- Wenjing Wu
- College of Biological and Chemical Engineering, Jiaxing University, Jiaxing, China
| | - Yajun Yin
- College of Biological and Chemical Engineering, Jiaxing University, Jiaxing, China
| | - Ke Xu
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yongjia Peng
- College of Biological and Chemical Engineering, Jiaxing University, Jiaxing, China
| | - Jin Zhang
- College of Biological and Chemical Engineering, Jiaxing University, Jiaxing, China
| |
Collapse
|
30
|
miR-130a regulates differential lipid accumulation between intramuscular and subcutaneous adipose tissues of pigs via suppressing PPARG expression. Gene 2017; 636:23-29. [DOI: 10.1016/j.gene.2017.08.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/17/2017] [Accepted: 08/24/2017] [Indexed: 11/17/2022]
|
31
|
Comparative transcriptome analysis reveals potentially novel roles of Homeobox genes in adipose deposition in fat-tailed sheep. Sci Rep 2017; 7:14491. [PMID: 29101335 PMCID: PMC5670210 DOI: 10.1038/s41598-017-14967-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Adipose tissues are phenotypically, metabolically and functionally heterogeneous based on the sites of their deposition. Undesirable fat deposits in the body are often detrimental to animal and human health. To unravel the potential underlying mechanisms governing accumulation of adipose tissues in various regions of the body, i.e., subcutaneous (SAT), visceral (VAT) and tail (TAT), we profiled transcriptomes from Tan sheep, a Chinese indigenous breed with notable fat tail using RNA-seq. Upon comparison, we identified a total of 1,058 differentially expressed genes (DEGs) between the three adipose types (218, 324, and 795 in SAT/VAT, SAT/TAT, and VAT/TAT, respectively), from which several known key players were identified that are involved in lipid metabolic process, Wnt signals, Vitamin A metabolism, and transcriptional regulation of adipocyte differentiation. We also found that many elevated genes in VAT were notably enriched for key biological processes such as cytokine secretion, signaling molecule interaction and immune systems. Several developmental genes including HOXC11, HOXC12 and HOXC13, and adipose-expressed genes in the tail region, such as HOTAIR_2, HOTAIR_3 and SP9 were specially highlighted, indicating their strong associations with tail fat development in fat-tailed sheep. Our results provide new insight into exploring the specific fat deposition in tail, also contribute to the understanding of differences between adipose depots.
Collapse
|
32
|
miR-17-5p Regulates Differential Expression of NCOA3 in Pig Intramuscular and Subcutaneous Adipose Tissue. Lipids 2017; 52:939-949. [PMID: 28921416 DOI: 10.1007/s11745-017-4288-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 08/15/2017] [Indexed: 01/21/2023]
Abstract
Fat distribution affects economic value in pork production. Intramuscular adipose tissue (IMAT) improves meat quality, whereas subcutaneous adipose tissue (SCAT) is usually regarded as waste. In the present study, we analyzed IMAT/SCAT (I/S) ratios in each pig. Individuals selected from a population of 1200 Suhuai pigs were divided into two cohorts; those with high I/S ratios and those with low I/S ratios, and correlations between nuclear Receptor Co-activator 3 (NCOA3), a critical gene involved in regulating fat accumulation, and fat distribution were investigated. The ratio of IMAT NCOA3 to SCAT NCOA3 expression levels (NCOA3I/NCOA3S) was higher in the high I/S group compared with the low I/S group. The NCOA3 expression level in fat tissue was positively correlated with fat deposition. miR-17-5p was identified as a putative regulator of NCOA3 based on bioinformatics prediction analysis followed by gene expression analysis. The miR-17-5pI/miR-17-5pS ratio was negatively correlated with the NCOA3I/NCOA3S ratio. The predicted relationship between miR-17-5p and NCOA3 was further verified by dual luciferase activity assays, qPCR, and western blots. Overexpression of miR-17-5p in intramuscular preadipocytes inhibited NCOA3 expression and reduced preadipocyte differentiation. FABP4 and PPARG expression were also significantly decreased, as was triglyceride content. Meanwhile, knockdown of miR-17-5p significantly increased NCOA3 expression and promoted intramuscular preadipocyte differentiation. Based on these results, we propose that differential expression of NCOA3 in pig intramuscular and subcutaneous adipose tissue is regulated by miR-17-5p.
Collapse
|
33
|
Muscle Conditional Medium Reduces Intramuscular Adipocyte Differentiation and Lipid Accumulation through Regulating Insulin Signaling. Int J Mol Sci 2017; 18:ijms18081799. [PMID: 28825638 PMCID: PMC5578186 DOI: 10.3390/ijms18081799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 12/27/2022] Open
Abstract
Due to the paracrine effects of skeletal muscle, the lipid metabolism of porcine intramuscular (i.m.) preadipocytes was different from that of subcutaneous (s.c.) preadipocytes. To investigate the development of i.m. preadipocytes in vivo, the s.c. preadipocytes were cultured with muscle conditional cultured medium (MCM) for approximating extracellular micro-environment of the i.m. preadipocytes. Insulin signaling plays a fundamental role in porcine adipocyte differentiation. The expression levels of insulin receptor (INSR) and insulin-like growth factor 1 receptor (IGF-1R) in i.m. Preadipocytes were higher than that in s.c. preadipocytes. The effects of MCM on adipocyte differentiation, lipid metabolism and insulin signaling transdution were verified. MCM induced the apoptosis of s.c. preadipocytes but not of s.c. adipocytes. Moreover, MCM inhibited adipocyte differentiation at pre-differentiation and early stages of differentiation, while the expression levels of INSR and IGF-1R were increased. Furthermore, MCM treatment increased adipocyte lipolysis and fatty acid oxidation through induction of genes involved in lipolysis, thermogenesis, and fatty acid oxidation in mitochondria. Consistent with the above, treatment of s.c. adipocytes with MCM upregulated mitochondrial biogenesis. Taken together, MCM can approximate the muscle micro-environment and reduce intramuscular adipocyte differentiation and lipid accumulation via regulating insulin signaling.
Collapse
|
34
|
Wu W, Zhang J, Zhao C, Sun Y, Pang W, Yang G. CTRP6 Regulates Porcine Adipocyte Proliferation and Differentiation by the AdipoR1/MAPK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5512-5522. [PMID: 28535682 DOI: 10.1021/acs.jafc.7b00594] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Intramuscular fat (IMF) and subcutaneous fat (SCF), which are modulated by adipogenesis of intramuscular and subcutaneous adipocytes, play key roles in pork quality. C1q/tumor necrosis factor-related protein 6 (CTRP6), an adipokine, plays an important role in the differentiation of 3T3-L1 cells. However, the effect and regulatory mechanisms of CTRP6 on porcine adipogenesis, and whether CTRP6 has the same effect on intramuscular and subcutaneous adipocytes, are still unknown. Here, we found that CTRP6 significantly inhibited both adipocyte proliferation assessed by proliferative marker expression, but CTRP6 decreased the proliferation rate of intramuscular adipocytes (IM) to a greater extent than subcutaneous adipocytes (SC). Moreover, CTRP6 promoted the activity of the p38 signaling pathway during the proliferation of both cell types. Nevertheless, in subcutaneous adipocytes, CTRP6 also influenced the phosphorylation of extracellular regulated protein kinases1/2 (p-Erk1/2), but not in intramuscular adipocytes. Additionally, during the differentiation of intramuscular and subcutaneous adipocytes, CTRP6 increased adipogenic genes expression and the level of p-p38, while it decreased the activity of p-Erk1/2. Interestingly, the effect of CTRP6 shRNA or CTRP6 recombinant protein was attenuated by U0126 (a special p-Erk inhibitor) or SB203580 (a special p-p38 inhibitor) in adipocytes. By target gene prediction and experimental validation, we demonstrated that CTRP6 may be a target of miR-29a in porcine adipocytes. Moreover, AdipoR1was identified as a receptor of CTRP6 in intramuscular adipocytes, but not in subcutaneous adipocytes. On the basis of the above findings, we suggest that CTRP6 was the target gene of miR-29a, inhibited intramuscular and subcutaneous adipocyte proliferation, but promoted differentiation by the mitogen-activated protein kinase (MAPK) signaling pathway. These findings indicate that CTRP6 played an essentially regulatory role in fat development.
Collapse
Affiliation(s)
- Wenjing Wu
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi 712100, China
- College of Biological and Chemical Engineering, Jiaxing University , Jiaxing, Zhejiang 314000, China
| | - Jin Zhang
- College of Biological and Chemical Engineering, Jiaxing University , Jiaxing, Zhejiang 314000, China
| | - Chen Zhao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi 712100, China
| | - Yunmei Sun
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi 712100, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi 712100, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi 712100, China
| |
Collapse
|
35
|
Chu W, Wei W, Han H, Gao Y, Liu K, Tian Y, Jiang Z, Zhang L, Chen J. Muscle-specific downregulation of GR levels inhibits adipogenesis in porcine intramuscular adipocyte tissue. Sci Rep 2017; 7:510. [PMID: 28360421 PMCID: PMC5428816 DOI: 10.1038/s41598-017-00615-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/06/2017] [Indexed: 12/26/2022] Open
Abstract
Intramuscular adipose is conducive to good pork quality, whereas subcutaneous adipose is considered as waste in pig production. So uncovering the regulation differences between these two adiposes is helpful to tissue-specific control of fat deposition. In this study, we found the sensitivity to glucocorticoids (GCs) was lower in intramuscular adipocytes (IMA) compared with subcutaneous adipocytes (SA). Comparison of glucocorticoid receptor (GR) revealed that IMA had lower GR level which contributed to its reduced GCs sensitivity. Higher methylation levels of GR promotor 1-C and 1-H were detected in IMA compared with SA. GR expression decrease was also found in adipocytes when treated with muscle conditioned medium (MCM) in vitro, which resulted in significant inhibition of adipocytes proliferation and differentiation. Since abundant myostatin (MSTN) was detected in MCM by ELISA assay, we further investigated the effect of this myokine on adipocytes. MSTN treatment suppressed adipocytes GR expression, cell proliferation and differentiation, which mimicked the effects of MCM. The methylation levels of GR promotor 1-C and 1-H were also elevated after MSTN treatment. Our study reveals the role of GR in muscle fiber inhibition on intramuscular adipocytes, and identifies myostatin as a muscle-derived modulator for adipose GR level.
Collapse
Affiliation(s)
- Weiwei Chu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China.,Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, P.R. China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Haiyin Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Ying Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Kaiqing Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Ye Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Zaohang Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| |
Collapse
|
36
|
Chen X, Luo Y, Huang Z, Jia G, Liu G, Zhao H. Role of Phosphotyrosine Interaction Domain Containing 1 in Porcine Intramuscular Preadipocyte Proliferation and Differentiation. Anim Biotechnol 2017; 27:287-94. [PMID: 27565873 DOI: 10.1080/10495398.2016.1184674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphotyrosine interaction domain containing 1 (PID1), a recently identified gene involved in obesity-associated insulin resistance, plays an important role in fat deposition. However, its effect on porcine intramuscular preadipocyte proliferation and differentiation remains poorly understood. In this study, the plasmid pcDNA3.1(+)-pPID1 was transfected into porcine intramuscular preadipocytes with Lipofectamine 3000 reagent to over-express porcine PID1 (pPID1). Over-expression of pPID1 significantly promoted porcine intramuscular preadipocyte proliferation. Expression of pPID1 mRNA was significantly increased upon porcine intramuscular preadipocyte differentiation. Indirect fluorescent immunocytochemistry demonstrated that pPID1 protein was localized predominantly in the nucleus of porcine intramuscular preadipocyte. The mRNA levels of peroxisome proliferators-activated receptor γ, CCAAT/enhancer binding protein α and lipoprotein lipase were significantly increased by pPID1 over-expression. Over-expression of pPID1 also led to an increase in lipid accumulation which was detected by Oil Red O staining, and significantly increased the intramuscular triacylglycerol content. These results indicate that pPID1 may play a role in enhancing porcine intramuscular preadipocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Xiaoling Chen
- a Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu , Sichuan , P. R. China
| | - Yanliu Luo
- a Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu , Sichuan , P. R. China
| | - Zhiqing Huang
- a Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu , Sichuan , P. R. China
| | - Gang Jia
- a Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu , Sichuan , P. R. China
| | - Guangmang Liu
- a Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu , Sichuan , P. R. China
| | - Hua Zhao
- a Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu , Sichuan , P. R. China
| |
Collapse
|
37
|
Chen X, Luo Y, Jia G, Zhao H, Liu G, Huang Z. Role of FIT2 in porcine intramuscular preadipocyte differentiation. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Genetic Marker Discovery in Complex Traits: A Field Example on Fat Content and Composition in Pigs. Int J Mol Sci 2016; 17:ijms17122100. [PMID: 27983643 PMCID: PMC5187900 DOI: 10.3390/ijms17122100] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/11/2022] Open
Abstract
Among the large number of attributes that define pork quality, fat content and composition have attracted the attention of breeders in the recent years due to their interaction with human health and technological and sensorial properties of meat. In livestock species, fat accumulates in different depots following a temporal pattern that is also recognized in humans. Intramuscular fat deposition rate and fatty acid composition change with life. Despite indication that it might be possible to select for intramuscular fat without affecting other fat depots, to date only one depot-specific genetic marker (PCK1 c.2456C>A) has been reported. In contrast, identification of polymorphisms related to fat composition has been more successful. For instance, our group has described a variant in the stearoyl-coA desaturase (SCD) gene that improves the desaturation index of fat without affecting overall fatness or growth. Identification of mutations in candidate genes can be a tedious and costly process. Genome-wide association studies can help in narrowing down the number of candidate genes by highlighting those which contribute most to the genetic variation of the trait. Results from our group and others indicate that fat content and composition are highly polygenic and that very few genes explain more than 5% of the variance of the trait. Moreover, as the complexity of the genome emerges, the role of non-coding genes and regulatory elements cannot be disregarded. Prediction of breeding values from genomic data is discussed in comparison with conventional best linear predictors of breeding values. An example based on real data is given, and the implications in phenotype prediction are discussed in detail. The benefits and limitations of using large SNP sets versus a few very informative markers as predictors of genetic merit of breeding candidates are evaluated using field data as an example.
Collapse
|
39
|
Peng Y, Chen FF, Ge J, Zhu JY, Shi XE, Li X, Yu TY, Chu GY, Yang GS. miR-429 Inhibits Differentiation and Promotes Proliferation in Porcine Preadipocytes. Int J Mol Sci 2016; 17:ijms17122047. [PMID: 27941616 PMCID: PMC5187847 DOI: 10.3390/ijms17122047] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are crucial regulatory molecules for adipogenesis. They contribute to the controlling of proliferation and differentiation of preadipocytes. Previous studies revealed an important role of miR-429 in cell invasion, migration, and apoptosis. Our previous work has shown that the expression of miR-429 in subcutaneous fat can be observed in newly born (3-day-old) Rongchang piglets rather than their adult counterparts (180-day-old). This expression pattern suggests that miR-429 might be functionally related to postnatal adipogenesis. However, we currently lack a mechanistic understanding of miR-429 within the context of preadipocyte differentiation. In this study, we investigated the function of miR-429 in porcine subcutaneous and intramuscular preadipocyte proliferation and differentiation. In our porcine preadipocyte differentiation model, miR-429 expression decreased remarkably upon adipogenic induction. Overexpression of miR-429 notably down-regulated the expression of adipogenic marker genes: PPARγ, aP2, FAS and impaired the triglyceride accumulation, while the expression of lipolytic gene ATGL was not affected. In addition, we observed that miR-429 significantly promoted the proliferation of porcine preadipocytes. We also found that miR-429 could directly bind to the 3′-UTRs of KLF9 and p27, which have been well documented to promote preadipocyte differentiation and repress cell cycle progression. Taken together, our data support a novel role of miR-429 in regulating porcine preadipocyte differentiation and proliferation, and KLF9 and p27 are potent targets of miR-429 during these processes.
Collapse
Affiliation(s)
- Ying Peng
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| | - Fen-Fen Chen
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China.
| | - Jing Ge
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| | - Jia-Yu Zhu
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| | - Xin-E Shi
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| | - Xiao Li
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| | - Tai-Yong Yu
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| | - Gui-Yan Chu
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| | - Gong-She Yang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| |
Collapse
|
40
|
Lim KS, Lee KT, Park JE, Chung WH, Jang GW, Choi BH, Hong KC, Kim TH. Identification of differentially expressed genes in longissimus muscle of pigs with high and low intramuscular fat content using RNA sequencing. Anim Genet 2016; 48:166-174. [DOI: 10.1111/age.12518] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 01/07/2023]
Affiliation(s)
- K. S. Lim
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science; Rural Development Administration; Wanju 565-851 Korea
- College of Life Science and Biotechnology; Korea University; Seoul 136-713 Korea
| | - K. T. Lee
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science; Rural Development Administration; Wanju 565-851 Korea
| | - J. E. Park
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science; Rural Development Administration; Wanju 565-851 Korea
| | - W. H. Chung
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science; Rural Development Administration; Wanju 565-851 Korea
| | - G. W. Jang
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science; Rural Development Administration; Wanju 565-851 Korea
| | - B. H. Choi
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science; Rural Development Administration; Wanju 565-851 Korea
| | - K. C. Hong
- College of Life Science and Biotechnology; Korea University; Seoul 136-713 Korea
| | - T. H. Kim
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science; Rural Development Administration; Wanju 565-851 Korea
| |
Collapse
|
41
|
The adipokine Chemerin induces lipolysis and adipogenesis in bovine intramuscular adipocytes. Mol Cell Biochem 2016; 418:39-48. [DOI: 10.1007/s11010-016-2731-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/26/2016] [Indexed: 11/26/2022]
|
42
|
Kociucka B, Jackowiak H, Kamyczek M, Szydlowski M, Szczerbal I. The relationship between adipocyte size and the transcript levels of SNAP23, BSCL2 and COPA genes in pigs. Meat Sci 2016; 121:12-18. [PMID: 27232380 DOI: 10.1016/j.meatsci.2016.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 12/14/2022]
Abstract
Breed-specific differences in fat tissue accumulation in the pig provide an opportunity to study the genetic background of this process. In the present study three pig breeds, differing in fatness, were analyzed in terms of the size of adipocytes derived from three tissues (subcutaneous, visceral and longissimus dorsi muscle) in relation to transcript levels of genes (SNAP23, BSCL2 and COPA), which encode proteins involved in lipid droplet formation. The analysis of adipocyte size revealed significant effects of breed and tissue and confirmed earlier reports that an elevated backfat thickness in some pig breeds is correlated with a larger adipocyte size. Variability in the transcript abundance of the studied genes among breeds and tissues was observed. We found a positive correlation between the abundance of the SNAP23 transcript and adipocyte diameter. The obtained results indicate that SNAP23 may be considered as an interesting candidate gene involved in adipose tissue growth in the pig.
Collapse
Affiliation(s)
- Beata Kociucka
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Hanna Jackowiak
- Department of Histology and Embryology, Institute of Zoology, Poznan University of Life Sciences, 60-625 Poznan, Poland
| | - Marian Kamyczek
- Pig Hybridization Centre, National Research Institute of Animal Production, 64-122 Pawlowice, Poland
| | - Maciej Szydlowski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, 60-637 Poznan, Poland.
| |
Collapse
|
43
|
Sun WX, Dodson MV, Jiang ZH, Yu SG, Chu WW, Chen J. Myostatin inhibits porcine intramuscular preadipocyte differentiation in vitro. Domest Anim Endocrinol 2016; 55:25-31. [PMID: 26657406 DOI: 10.1016/j.domaniend.2015.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/15/2015] [Accepted: 10/24/2015] [Indexed: 11/22/2022]
Abstract
This study assessed the effect of myostatin on adipogenesis by porcine intramuscular preadipocytes. Intramuscular preadipocytes were isolated from the longissimus dorsi muscle of newborn pigs. Myostatin inhibited intramuscular preadipocyte differentiation in a dose-dependent manner. Myostatin treatment during preadipocyte differentiation significantly (P < 0.05) inhibited the expression of the adipogenic marker genes CCAAT/enhancer-binding protein β, CCAAT/enhancer-binding protein α, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein-1c, fatty acid-binding protein, and adiponectin. Myostatin also significantly (P < 0.05) reduced the release of glycerol and decreased both adipose triglyceride lipase and hormone-sensitive lipase expression in intramuscular adipocytes. Our study suggests that myostatin acts as an extrinsic regulatory factor in regulating intramuscular adipogenesis.
Collapse
Affiliation(s)
- W X Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; College of Public Health, Nantong University, Nantong, 226019, China
| | - M V Dodson
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164-6351, USA
| | - Z H Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164-6351, USA
| | - S G Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - W W Chu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - J Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
44
|
Chen X, Zhou B, Luo Y, Huang Z, Jia G, Liu G, Zhao H. Tissue Distribution of Porcine FTO and Its Effect on Porcine Intramuscular Preadipocytes Proliferation and Differentiation. PLoS One 2016; 11:e0151056. [PMID: 26964098 PMCID: PMC4786207 DOI: 10.1371/journal.pone.0151056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022] Open
Abstract
The fat mass and obesity associated (FTO) gene plays an important role in adipogenesis. However, its function during porcine intramuscular preadipocyte proliferation and differentiation remains poorly understood. In this study, we prepared the antiserum against porcine FTO (pFTO), which was used to determine its subcellular localization and tissue distribution. Our data indicated that pFTO was localized predominantly in the nucleus. Real-time quantitative PCR and western blot analysis showed that pFTO was highly expressed in the lung and subcutaneous adipose tissue. Overexpression of pFTO in porcine intramuscular preadipocytes significantly promoted cell proliferation and lipid deposition. Furthermore, overexpression of pFTO in differentiating porcine intramuscular preadipocytes also significantly increased the mRNA levels of adipocyte differentiation transcription factors peroxisome proliferators-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), lipoprotein lipase (LPL) and fatty acid synthase (FAS). Our findings provide the first functional evidence to reveal a role of pFTO in porcine intramuscular preadipocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- * E-mail: (XC); (ZH)
| | - Bo Zhou
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Yanliu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- * E-mail: (XC); (ZH)
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| |
Collapse
|
45
|
Pires-de-Campos MSM, De Almeida J, Wolf-Nunes V, Souza-Francesconi E, Grassi-Kassisse DM. Ultrasound associated with caffeine increases basal and beta-adrenoceptor response in adipocytes isolated from subcutaneous adipose tissue in pigs. J COSMET LASER THER 2016; 18:116-23. [PMID: 26821226 DOI: 10.3109/14764172.2015.1063659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The topical use of caffeine has been indicated for the lipodystrophies treatment as it promotes increased lipolysis. Ultrasound (US) is often used in cutaneous diseases, esthetic conditions, and as a skin permeation enhancer. OBJECTIVE We investigate the lipolytic response of adipocytes isolated from subcutaneous adipose pigs tissue subjected to treatment with topical application of phonophoresis associated with caffeine. METHOD We treated dorsal regions of pigs (Landrace × Large White, 35 days, 15 kg, n = 6) daily for 15 days with gel, gel + US [3 MHz, continuous, 0.2 Wcm(2), 1 min/cm(2), in total 2 min], gel + caffeine (5%w/w), and gel + caffeine + US. We used a fifth untreated region as control. Twenty-four hours after the last application, we isolated the adipocytes of each treated area and quantified the basal and stimulated lipolytic responses to isoprenaline. The results, in μmol glycerol/10(6)cells/60 min, were analyzed with analysis of variance or ANOVA followed by Newman-Keuls test. The value of p < 0.05 was indicative of statistical difference. RESULTS Only the adipocytes isolated from the area treated with caffeine + US showed increased basal lipolysis (0.76 ± 0.26; p = 0.0276) and maximal isoprenaline stimulation (0.38 ± 0.15, p = 0.0029) compared with the other areas. CONCLUSION The results demonstrate that increased lipolysis of caffeine + US is due to an increase in basal and beta-adrenoceptor response by caffeine, and caffeine's effect is local, avoiding unwanted effects.
Collapse
Affiliation(s)
- Maria Silvia Mariani Pires-de-Campos
- a Laboratory of Stress Study (LABEEST), Department of Structural and Functional Biology , Biology Institute, University of Campinas (UNICAMP) , Campinas , SP , Brazil.,b Physiotherapy, Faculty of Health Sciences (FACIS) University Methodist of Piracicaba (UNIMEP) , Piracicaba , SP , Brazil
| | - Juliana De Almeida
- a Laboratory of Stress Study (LABEEST), Department of Structural and Functional Biology , Biology Institute, University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - Valéria Wolf-Nunes
- a Laboratory of Stress Study (LABEEST), Department of Structural and Functional Biology , Biology Institute, University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - Elaine Souza-Francesconi
- a Laboratory of Stress Study (LABEEST), Department of Structural and Functional Biology , Biology Institute, University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - Dora Maria Grassi-Kassisse
- a Laboratory of Stress Study (LABEEST), Department of Structural and Functional Biology , Biology Institute, University of Campinas (UNICAMP) , Campinas , SP , Brazil
| |
Collapse
|
46
|
Baumgard LH, Hausman GJ, Sanz Fernandez MV. Insulin: pancreatic secretion and adipocyte regulation. Domest Anim Endocrinol 2016; 54:76-84. [PMID: 26521203 DOI: 10.1016/j.domaniend.2015.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 12/19/2022]
Abstract
Insulin is the primary acute anabolic coordinator of nutrient partitioning. Hyperglycemia is the main stimulant of insulin secretion, but other nutrients such as specific amino acids, fatty acids, and ketoacids can potentiate pancreatic insulin release. Incretins are intestinal hormones with insulinotropic activity and are secreted in response to food ingestion, thus integrating diet chemical composition with the regulation of insulin release. In addition, prolactin is required for proper islet development, and it stimulates β-cell proliferation. Counterintuitively, bacterial components appear to signal insulin secretion. In vivo lipopolysaccharide infusion acutely increases circulating insulin, which is paradoxical as endotoxemia is a potent catabolic condition. Insulin is a potent anabolic orchestrator of nutrient partitioning, and this is particularly true in adipocytes. Insulin dictates lipid accretion in a dose-dependent manner during preadipocyte development in adipose tissue-derived stromal vascular cell culture. However, in vivo studies focused on insulin's role in regulating adipose tissue metabolism from growing, and market weight pigs are sometimes inconsistent, and this variability appears to be animal, age and depot dependent. Additionally, porcine adipose tissue synthesizes and secretes a number of adipokines (leptin, adiponectin, and so forth) that directly or indirectly influence insulin action. Therefore, because insulin has an enormous impact on agriculturally important phenotypes, it is critical to have a better understanding of how insulin homeostasis is governed.
Collapse
Affiliation(s)
- L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - G J Hausman
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - M V Sanz Fernandez
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
47
|
Lebret B, Dourmad JY, Mourot J, Pollet PY, Gondret F. Production performance, carcass composition, and adipose tissue traits of heavy pigs: influence of breed and production system. J Anim Sci 2015; 92:3543-56. [PMID: 25074454 DOI: 10.2527/jas.2013-7398] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Both breed and production systems are responsible for production efficiency and quality traits of pork. Effects of breed and production system within breed on growth, body fatness, and adipose tissues traits were assessed in the pure Basque (B, nonselected, local French) and conventional Large White (LW) breeds, reared either in a conventional (C, slatted floor), alternative (A, indoor straw bedding and outdoor area), or extensive (E, free range) system. A total of 100 castrated males were produced in 2 replicates, each involving 50 pigs distributed in 5 treatments based on breed and production system (i.e., BC, BA, BE, LWC, and LWA [10 pigs/group and per replicate]). From 35 kg BW to slaughter at around 145 kg BW, the BC, BA, LWC, and LWA pigs received the same growing and finishing diets, whereas the BE pigs had free access to the natural resources of the E pen and received a standard growing-finishing diet at restricted allowance according to the farming practices of the B pork chain. The B pigs had lower (P < 0.001) ADG and G:F than the LW pigs and were much older (P < 0.001) at slaughter. The LWA pigs had similar ADG but lower (P = 0.03) G:F than the LWC. Within the B breed, the BA had higher (P = 0.04) and the BE lower (P < 0.001) ADG compared with BC pigs. The B pigs had a higher (P < 0.001) carcass dressing an exhibited around 2-fold higher (P < 0.001) back fat proportion, perirenal fat weight and LM lipid content than the LW pigs. Compared with C, the A system decreased (P = 0.04) carcass dressing within LW but did not influence carcass traits within B pigs. The E system decreased (P ≤ 0.05) carcass dressing, back fat proportion, and LM lipid content in BE compared with BC pigs. The B pigs exhibited larger (P < 0.001) adipocytes in both subcutaneous adipose tissue (SCAT) and LM than the LW pigs. Malic enzyme activity was higher in SCAT of B than LW pigs despite their greater fatness, and was higher (P ≤ 0.01) in BA but lower (P < 0.001) in BE than in BC pigs. The B pigs had higher (P < 0.001) MUFA but lower (P ≤ 0.006) SFA and PUFA fatty acid percentages in SCAT than the LW pigs. Compared with C, the A system had scarce influence on FA composition within each breed, whereas the E system led to lower (P = 0.015) SFA and greater (P < 0.001) PUFA in SCAT of the B pigs. Altogether, the E production system can counteract the genetic potential of B pigs for growth rate but also body fatness.
Collapse
Affiliation(s)
- B Lebret
- INRA, UMR1348 PEGASE, F-35590 Saint-Gilles, France Agrocampus Ouest, UMR1348 PEGASE, F-35000 Rennes, France
| | - J Y Dourmad
- INRA, UMR1348 PEGASE, F-35590 Saint-Gilles, France Agrocampus Ouest, UMR1348 PEGASE, F-35000 Rennes, France
| | - J Mourot
- INRA, UMR1348 PEGASE, F-35590 Saint-Gilles, France Agrocampus Ouest, UMR1348 PEGASE, F-35000 Rennes, France
| | - P Y Pollet
- Filière Porc Basque, F-64430 Les Aldudes, France
| | - F Gondret
- INRA, UMR1348 PEGASE, F-35590 Saint-Gilles, France Agrocampus Ouest, UMR1348 PEGASE, F-35000 Rennes, France
| |
Collapse
|
48
|
Laurens C, Louche K, Sengenes C, Coué M, Langin D, Moro C, Bourlier V. Adipogenic progenitors from obese human skeletal muscle give rise to functional white adipocytes that contribute to insulin resistance. Int J Obes (Lond) 2015; 40:497-506. [PMID: 26395744 DOI: 10.1038/ijo.2015.193] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/25/2015] [Accepted: 09/07/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND/OBJECTIVES Recent reports indicate that inter/intramuscular adipose tissue (IMAT), composed by adipocytes underneath the deep fascia of the muscles, is positively correlated with aging, obesity and insulin resistance in humans. However, no molecular/cellular evidence is available to support these interactions. The current study aimed to better characterize human skeletal muscle-derived adipogenic progenitors obtained from obese volunteers and investigate the impact of derived adipocytes on insulin action in primary skeletal muscle cells. METHODS Primary cultured stroma-vascular fraction (SVF) obtained from vastus lateralis muscle biopsies of middle-aged obese subjects was immunoseparated (magnetic beads or flow cytometry). The characteristics and/or metabolic phenotype of CD56(+), CD56(-) and CD56(-)CD15(+) cellular fractions were investigated by complementary approaches (flow cytometry, cytology, quantitative PCR and metabolic assays). The effects of conditioned media from CD56(-)CD15(+) cells differentiated into adipocytes on insulin action and signaling in human primary myotubes was also examined. RESULTS Our data indicate that CD56(+) and CD56(-) cellular fractions isolated from cultured SVF of human muscle contain two distinct committed progenitors: CD56(+) cells (that is, satellite cells) as myogenic progenitors and CD15(+) cells as adipogenic progenitors, respectively. CD56(-)CD15(+)-derived adipocytes display the phenotype and metabolic properties of white adipocytes. Secretions of CD56(-)CD15(+) cells differentiated into functional white adipocytes reduced insulin-mediated non-oxidative glucose disposal (P=0.0002) and insulin signaling. CONCLUSIONS Using in-vitro models, we show for the first time that secretions of skeletal muscle adipocytes are able to impair insulin action and signaling of muscle fibers. This paracrine effect could explain, at least in part, the negative association between high levels of IMAT and insulin sensitivity in obesity and aging.
Collapse
Affiliation(s)
- C Laurens
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - K Louche
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - C Sengenes
- UMR5273 UPS/CNRS/EFS/INSERM U1031, STROMALab, University de Toulouse, Toulouse, France
| | - M Coué
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - D Langin
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France.,Department of Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - C Moro
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - V Bourlier
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| |
Collapse
|
49
|
Humar M, Yun SH. Intracellular microlasers. NATURE PHOTONICS 2015; 9:572-576. [PMID: 26417383 PMCID: PMC4583142 DOI: 10.1038/nphoton.2015.129] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/26/2015] [Indexed: 05/18/2023]
Abstract
Optical microresonators1 which confine light within a small cavity are widely exploited for various applications ranging from the realization of lasers2 and nonlinear devices3, 4, 5 to biochemical and optomechanical sensing6, 7, 8, 9, 10, 11. Here we employ microresonators and suitable optical gain materials inside biological cells to demonstrate various optical functions in vitro including lasing. We explored two distinct types of microresonators: soft and hard, that support whispering-gallery modes (WGM). Soft droplets formed by injecting oil or using natural lipid droplets support intracellular laser action. The laser spectra from oil-droplet microlasers can chart cytoplasmic internal stress (~500 pN/μm2) and its dynamic fluctuations at a sensitivity of 20 pN/μm2 (20 Pa). In a second form, WGMs within phagocytized polystyrene beads of different sizes enable individual tagging of thousands of cells easily and, in principle, a much larger number by multiplexing with different dyes.
Collapse
Affiliation(s)
- Matjaž Humar
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 65 Landsdowne St. UP-5, Cambridge, Massachusetts 02139, USA
- Condensed Matter Department, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Seok Hyun Yun
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 65 Landsdowne St. UP-5, Cambridge, Massachusetts 02139, USA
- Harvard–MIT Health Sciences and Technology, Cambridge, 77 Massachusetts Avenue Cambridge, Massachusetts 02139, USA
- Corresponding author.
| |
Collapse
|
50
|
Clark DL, Bohrer BM, Tavárez MA, Boler DD, Beever JE, Dilger AC. Effects of the porcine IGF2 intron 3-G3072A mutation on carcass cutability, meat quality, and bacon processing1. J Anim Sci 2014; 92:5778-88. [DOI: 10.2527/jas.2014-8283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- D. L. Clark
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - B. M. Bohrer
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - M. A. Tavárez
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - D. D. Boler
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - J. E. Beever
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - A. C. Dilger
- Department of Animal Sciences, University of Illinois, Urbana 61801
| |
Collapse
|