1
|
Angelini G, Russo S, Carli F, Infelise P, Panunzi S, Bertuzzi A, Caristo ME, Lembo E, Calce R, Bornstein SR, Gastaldelli A, Mingrone G. Dodecanedioic acid prevents and reverses metabolic-associated liver disease and obesity and ameliorates liver fibrosis in a rodent model of diet-induced obesity. FASEB J 2024; 38:e70202. [PMID: 39600104 PMCID: PMC11599784 DOI: 10.1096/fj.202402108r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Dodecanedioic acid (DC12) is a dicarboxylic acid present in protective polymers of fruit and leaves. We explored the effects of DC12 on metabolic dysfunction-associated steatohepatitis (MASH) and obesity. DC12 supplementation (100 mg/kg/day) was added to a high-fat diet (HFD) for 8 weeks in rodents to assess its impact on obesity and MASH prevention. Rats given DC12 experienced significant reductions of weight gain, liver and visceral fat weight, and improved glucose tolerance and insulin sensitivity. Liver histology showed protection against diet-induced MASH, with reduced steatosis, hepatocyte ballooning, and fibrosis. For weight-loss and MASH reversion, rats were fed HFD for 14 weeks, followed by 6 weeks with or without DC12. DC12 supplementation (100 mg/kg/day) led to a significant reduction of weight gain and liver weight. DC12 induced white adipose tissue beiging and reduced adiposity with a decrease of visceral fat. It also improved glucose tolerance, insulin sensitivity, and reduced hepatic gluconeogenic gene expression. Liver histology revealed a significant reduction in steatosis, hepatocyte ballooning, and inflammation as well as fibrosis, indicating MASH reversal. DC12 reduced hepatic lipogenesis enzymes as well as de novo lipogenesis measured by deuterated water and increased fatty acid β-oxidation. Plasma lipid profile showed lower triglycerides and phosphatidylcholines in the DC12 group. Notably, DC12 decreased mINDY expression, the cell membrane Na+-coupled citrate transporter, reducing citrate uptake and de-novo lipogenesis, linking its effects to improved lipid metabolism and reduced steatosis. We found that during the hepatic first pass, half of the DC12 ingested with water was taken up by the liver. The concentration of DC12 in the portal vein falls within the range identified in vitro as sufficient to inhibit citrate transport in hepatocytes.
Collapse
Affiliation(s)
- Giulia Angelini
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Sara Russo
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Fabrizia Carli
- Cardiometabolic Risk LaboratoryInstitute of Clinical Physiology (IFC), National Research Council (CNR)PisaItaly
| | - Patrizia Infelise
- Cardiometabolic Risk LaboratoryInstitute of Clinical Physiology (IFC), National Research Council (CNR)PisaItaly
| | - Simona Panunzi
- CNR‐IASI, Laboratorio di Biomatematica, Consiglio Nazionale delle RicercheIstituto di Analisi dei Sistemi ed InformaticaRomeItaly
| | - Alessandro Bertuzzi
- CNR‐IASI, Consiglio Nazionale delle RicercheIstituto di Analisi dei Sistemi ed Informatica, Laboratorio di BiomatematicaRomeItaly
| | - Maria Emiliana Caristo
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
| | - Erminia Lembo
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Roberta Calce
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Stefan R. Bornstein
- Department of Medicine IIIUniversitätsklinikum Carl Gustav Carus an der Technischen Universität DresdenDresdenGermany
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonUK
| | - Amalia Gastaldelli
- Cardiometabolic Risk LaboratoryInstitute of Clinical Physiology (IFC), National Research Council (CNR)PisaItaly
| | - Geltrude Mingrone
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonUK
| |
Collapse
|
2
|
Castagneto-Gissey L, Bornstein SR, Mingrone G. Dicarboxylic acids counteract the metabolic effects of a Western diet by boosting energy expenditure. J Clin Invest 2024; 134:e181978. [PMID: 38959440 PMCID: PMC11178524 DOI: 10.1172/jci181978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Obesity has reached pandemic proportion not only in the West but also in other countries around the world; it is now one of the leading causes of death worldwide. A Western diet is rich in saturated fats and provides more calories than necessary, contributing to the rise of the obesity rate. It also promotes the development of liver steatosis, insulin resistance, hyperglycemia, and hyperlipidemia. In this issue of the JCI, Goetzman and colleagues describe the effects of consuming dicarboxylic acids (DAs) as an alternative source of dietary fat. The 12-carbon dicarboxylic acid (DC12) was administered to mice at 20% of their daily caloric intake for nine weeks in place of triglycerides. Notably, the change in diet increased the metabolic rate, reduced body fat, reduced liver fat, and improved glucose tolerance. These findings highlight DAs as useful energy nutrients for combatting obesity and treating various metabolic disorders.
Collapse
Affiliation(s)
| | - Stefan R. Bornstein
- Department of Medicine III, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, United Kingdom
| | - Geltrude Mingrone
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, United Kingdom
- Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
3
|
Goetzman ES, Zhang BB, Zhang Y, Bharathi SS, Bons J, Rose J, Shah S, Solo KJ, Schmidt AV, Richert AC, Mullett SJ, Gelhaus SL, Rao KS, Shiva SS, Pfister KE, Silva Barbosa A, Sims-Lucas S, Dobrowolski SF, Schilling B. Dietary dicarboxylic acids provide a non-storable alternative fat source that protects mice against obesity. J Clin Invest 2024; 134:e174186. [PMID: 38687608 PMCID: PMC11178532 DOI: 10.1172/jci174186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Dicarboxylic fatty acids are generated in the liver and kidney in a minor pathway called fatty acid ω-oxidation. The effects of consuming dicarboxylic fatty acids as an alternative source of dietary fat have not been explored. Here, we fed dodecanedioic acid, a 12-carbon dicarboxylic (DC12), to mice at 20% of daily caloric intake for nine weeks. DC12 increased metabolic rate, reduced body fat, reduced liver fat, and improved glucose tolerance. We observed DC12-specific breakdown products in liver, kidney, muscle, heart, and brain, indicating that oral DC12 escaped first-pass liver metabolism and was utilized by many tissues. In tissues expressing the "a" isoform of acyl-CoA oxidase-1 (ACOX1), a key peroxisomal fatty acid oxidation enzyme, DC12 was chain shortened to the TCA cycle intermediate succinyl-CoA. In tissues with low peroxisomal fatty acid oxidation capacity, DC12 was oxidized by mitochondria. In vitro, DC12 was catabolized even by adipose tissue and was not stored intracellularly. We conclude that DC12 and other dicarboxylic acids may be useful for combatting obesity and for treating metabolic disorders.
Collapse
Affiliation(s)
- Eric S. Goetzman
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bob B. Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yuxun Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sivakama S. Bharathi
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joanna Bons
- The Buck Institute for Research on Aging, Novato, California, USA
| | - Jacob Rose
- The Buck Institute for Research on Aging, Novato, California, USA
| | - Samah Shah
- The Buck Institute for Research on Aging, Novato, California, USA
| | - Keaton J. Solo
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alexandra V. Schmidt
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adam C. Richert
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Steven J. Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stacy L. Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Krithika S. Rao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute and
| | - Sruti S. Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute and
| | - Katherine E. Pfister
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anne Silva Barbosa
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sunder Sims-Lucas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Steven F. Dobrowolski
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Birgit Schilling
- The Buck Institute for Research on Aging, Novato, California, USA
| |
Collapse
|
4
|
Ranea-Robles P, Houten SM. The biochemistry and physiology of long-chain dicarboxylic acid metabolism. Biochem J 2023; 480:607-627. [PMID: 37140888 PMCID: PMC10214252 DOI: 10.1042/bcj20230041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
Mitochondrial β-oxidation is the most prominent pathway for fatty acid oxidation but alternative oxidative metabolism exists. Fatty acid ω-oxidation is one of these pathways and forms dicarboxylic acids as products. These dicarboxylic acids are metabolized through peroxisomal β-oxidation representing an alternative pathway, which could potentially limit the toxic effects of fatty acid accumulation. Although dicarboxylic acid metabolism is highly active in liver and kidney, its role in physiology has not been explored in depth. In this review, we summarize the biochemical mechanism of the formation and degradation of dicarboxylic acids through ω- and β-oxidation, respectively. We will discuss the role of dicarboxylic acids in different (patho)physiological states with a particular focus on the role of the intermediates and products generated through peroxisomal β-oxidation. This review is expected to increase the understanding of dicarboxylic acid metabolism and spark future research.
Collapse
Affiliation(s)
- Pablo Ranea-Robles
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| |
Collapse
|
5
|
Yu G, Wang J, Liu Y, Luo T, Meng X, Zhang R, Huang B, Sun Y, Zhang J. Metabolic perturbations in pregnant rats exposed to low-dose perfluorooctanesulfonic acid: An integrated multi-omics analysis. ENVIRONMENT INTERNATIONAL 2023; 173:107851. [PMID: 36863164 DOI: 10.1016/j.envint.2023.107851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Emerging epidemiological evidence has linked per- and polyfluoroalkyl substances (PFAS) exposure could be linked to the disturbance of gestational glucolipid metabolism, but the toxicological mechanism is unclear, especially when the exposure is at a low level. This study examined the glucolipid metabolic changes in pregnant rats treated with relatively low dose perfluorooctanesulfonic acid (PFOS) through oral gavage during pregnancy [gestational day (GD): 1-18]. We explored the molecular mechanisms underlying the metabolic perturbation. Oral glucose tolerance test (OGTT) and biochemical tests were performed to assess the glucose homeostasis and serum lipid profiles in pregnant Sprague-Dawley (SD) rats randomly assigned to starch, 0.03 and 0.3 mg/kg·bw·d groups. Transcriptome sequencing combined with non-targeted metabolomic assays were further performed to identify differentially altered genes and metabolites in the liver of maternal rats, and to determine their correlation with the maternal metabolic phenotypes. Results of transcriptome showed that differentially expressed genes at 0.03 and 0.3 mg/kg·bw·d PFOS exposure were related to several metabolic pathways, such as peroxisome proliferator-activated receptors (PPARs) signaling, ovarian steroid synthesis, arachidonic acid metabolism, insulin resistance, cholesterol metabolism, unsaturated fatty acid synthesis, bile acid secretion. The untargeted metabolomics identified 164 and 158 differential metabolites in 0.03 and 0.3 mg/kg·bw·d exposure groups, respectively under negative ion mode of Electrospray Ionization (ESI-), which could be enriched in metabolic pathways such as α-linolenic acid metabolism, glycolysis/gluconeogenesis, glycerolipid metabolism, glucagon signaling pathway, glycine, serine and threonine metabolism. Co-enrichment analysis indicated that PFOS exposure may disturb the metabolism pathways of glycerolipid, glycolysis/gluconeogenesis, linoleic acid, steroid biosynthesis, glycine, serine and threonine. The key involved genes included down-regulated Ppp1r3c and Abcd2, and up-regulated Ogdhland Ppp1r3g, and the key metabolites such as increased glycerol 3-phosphate and lactosylceramide were further identified. Both of them were significantly associated with maternal fasting blood glucose (FBG) level. Our findings may provide mechanistic clues for clarifying metabolic toxicity of PFOS in human, especially for susceptible population such as pregnant women.
Collapse
Affiliation(s)
- Guoqi Yu
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jinguo Wang
- School of Public Health, Guilin Medical University, Guilin 541001, China
| | - Yongjie Liu
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Tingyu Luo
- School of Public Health, Guilin Medical University, Guilin 541001, China
| | - Xi Meng
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ruiyuan Zhang
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Bo Huang
- School of Public Health, Guilin Medical University, Guilin 541001, China
| | - Yan Sun
- School of Public Health, Guilin Medical University, Guilin 541001, China.
| | - Jun Zhang
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
6
|
Duan J, Chen L, Hong R, Li Y, Huang J. Efficient crystallization process of dodecanedioic acid by a pneumatically agitated crystallizer. Prep Biochem Biotechnol 2023; 53:1004-1011. [PMID: 36651905 DOI: 10.1080/10826068.2022.2164593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dodecanedioic acid (DC12) is mainly prepared via microbial synthesis in industrial production, however, the refined products have many drawbacks, such as low purity, poor crystal size distribution (CSD), and heavily agglomerated character, to name a few. Therefore, the refining process is a crucial step in DC12 preparation by microbial production. In this study, a novel pneumatically agitated crystallizer for DC12 refinery by gassing crystallization was developed. A batch cooling crystallization process was developed, providing the final crystal in 82.0% yield and purity increment to 99.20% at the end of crystallization process. Optimized conditions were determined as the initial supersaturation ratio of 300:3000 (g/mL) and gassing air flow rate of 4 L/min with solution preparation temperature of 85 °C. The crystal products with significantly better morphology characteristics than the starting crude feedstocks, including crystal uniformity and color brightness, were harvested. These obtained results indicated that the pneumatically agitated crystallizer-based crystallization process without any mechanical agitation was a robust and economically feasible technique. To our knowledge, this is also the first DC12 crystallization process with sole gassing agitation for unseeded batch cooling crystallization.
Collapse
Affiliation(s)
- Jiulong Duan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Li Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Rui Hong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yanjun Li
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jin Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
7
|
Chen H, Tang N, Ye Q, Yu X, Yang R, Cheng H, Zhang G, Zhou X. Alternation of the gut microbiota in metabolically healthy obesity: An integrated multiomics analysis. Front Cell Infect Microbiol 2022; 12:1012028. [PMID: 36389176 PMCID: PMC9663839 DOI: 10.3389/fcimb.2022.1012028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/18/2022] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Although the gut microbiota may be involved in obesity onset and progression, the exact association of the gut microbiota in metabolically healthy obesity (MHO) remains largely unknown. METHODS An integrated paired-sample metagenomic analysis was conducted to investigate the gut microbial network and biomarkers of microbial species from the MHO and healthy non-obese subjects in the GMrepo database. Further explorations were performed in the MHO mice model using a multiomics analysis to detect changes in the composition and function of the intestinal microbiome and associated metabolites. RESULTS In the human study, 314 matched metagenomic data were qualified for the final analysis. We identified seven significantly changed species possibly involved in MHO pathogenesis (MHO-enriched: Bacteroides vulgatus, Megamonas sp; MHO-depleted: Butyrivibrio crossotus, Faecalibacterium prausnitzii, Bacteroides cellulosilyticus; Eubacterium siraeum; Bacteroides massiliensis). In the murine study, we found 79 significantly-changed species which may have possible associations with the MHO phenotype. The depletion of Bacteroides cellulosilyticus was commonly recognized in the human and murine MHO phenotype. Consistent with the metagenomic data, liquid chromatography-mass spectrometry (LC/MS) revealed significantly changed gut metabolites, which may promote MHO pathogenesis by altering the amino acids and lipid metabolic pathways. In the microbe-metabolites interaction analysis, we identified certain fatty acids (Dodecanedioic acid, Arachidic Acid, Mevalonic acid, etc.) that were significantly correlated with the MHO-enriched or depleted species. CONCLUSION This study provides insights into identifying specific microbes and metabolites that may involve in the development of obesity without metabolic disorders. Future modalities for MHO intervention may be further validated by targeting these bacteria and metabolites.
Collapse
Affiliation(s)
- Han Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Nana Tang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Qiang Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xin Yu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Ruoyun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Hong Cheng
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xiaoying Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Tekin S, Bir LS, Avci E, Şenol H, Tekin I, Çınkır U. Comparison of Serum Mitochondrial Open Reading Frame of the 12S rRNA-c (MOTS-c) Levels in Patients With Multiple Sclerosis and Healthy Controls. Cureus 2022; 14:e26981. [PMID: 35989823 PMCID: PMC9385168 DOI: 10.7759/cureus.26981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Background Multiple sclerosis (MS) is a major global problem, and as its pathogenesis is understood more clearly, therapeutic options expand accordingly. The mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) is a novel mitochondria-derived protein acting on metabolic homeostasis. In this study, we aimed to investigate the role of serum MOTS-c in the pathophysiology of the disease in MS patients and to discuss the mechanism of MOTS-c. Methodology In total, 43 patients diagnosed with relapsing-remitting MS and 41 healthy controls were enrolled in the study. MOTS-c, fasting blood glucose, insulin, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), lipid panel, and body mass index levels were assessed. Results The participants’ MOTS-c levels remained significantly lower than that of the control group, while their fasting blood glucose and HOMA-IR values were higher. The multivariate logistic regression analysis established that increased MOTS-c levels could be a protective factor against the development of MS disease. The area under the receiver operating characteristic curve for MOTS-c was calculated as 0.782 (95% confidence interval = 0.684-0.879, p = 0.0001). Conclusions This study is the first to scrutinize MOTS-c levels in MS patients. We tried to provide clinical evidence that MOTS-c could act as a highly discriminative biomarker between MS patients and control groups, which may hold great promise for future therapeutic options.
Collapse
|
9
|
Guo Y, Zhu G, Wang F, Zhang H, Chen X, Mao Y, Lv Y, Xia F, Jin Y, Ding G, Yu J. Distinct Serum and Fecal Metabolite Profiles Linking With Gut Microbiome in Older Adults With Frailty. Front Med (Lausanne) 2022; 9:827174. [PMID: 35479954 PMCID: PMC9035822 DOI: 10.3389/fmed.2022.827174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/10/2022] [Indexed: 12/16/2022] Open
Abstract
Frailty is a critical aging-related syndrome but the underlying metabolic mechanism remains poorly understood. The aim of this study was to identify novel biomarkers and reveal potential mechanisms of frailty based on the integrated analysis of metabolome and gut microbiome. In this study, twenty subjects consisted of five middle-aged adults and fifteen older adults, of which fifteen older subjects were divided into three groups: non-frail, pre-frail, and frail, with five subjects in each group. The presence of frailty, pre-frailty, or non-frailty was established according to the physical frailty phenotype (PFP). We applied non-targeted metabolomics to serum and feces samples and used 16S rDNA gene sequencing to detect the fecal microbiome. The associations between metabolites and gut microbiota were analyzed by the Spearman’s correlation analysis. Serum metabolic shifts in frailty mainly included fatty acids and derivatives, carbohydrates, and monosaccharides. Most of the metabolites belonging to these classes increased in the serum of frail older adults. Propylparaben was found to gradually decrease in non-frail, pre-frail, and frail older adults. Distinct changes in fecal metabolite profiles and gut microbiota were also found among middle-aged adults, non-frail and frail older subjects. The relative abundance of Faecalibacteriu, Roseburia, and Fusicatenibacter decreased while the abundance of Parabacteroides and Bacteroides increased in frailty. The above altered microbes were associated with the changed serum metabolites in frailty, which included dodecanedioic acid, D-ribose, D-(-)-mannitol, creatine and indole, and their related fecal metabolites. The changed microbiome and related metabolites may be used as the biomarkers of frailty and is worthy of further mechanistic studies.
Collapse
Affiliation(s)
- Yan Guo
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurology, Yancheng City No. 1 People’s Hospital, Yancheng, China
| | - Guoqin Zhu
- Division of Geriatric Gastroenterology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengliang Wang
- Department of Breast Surgery, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing, China
| | - Haoyu Zhang
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Human Biology Undergraduate, University of Toronto, Toronto, ON, Canada
| | - Xin Chen
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Mao
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifan Lv
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan Xia
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Jin
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoxian Ding
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Guoxian Ding,
| | - Jing Yu
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jing Yu,
| |
Collapse
|
10
|
Metabolic Outcomes of Anaplerotic Dodecanedioic Acid Supplementation in Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Deficient Fibroblasts. Metabolites 2021; 11:metabo11080538. [PMID: 34436479 PMCID: PMC8412092 DOI: 10.3390/metabo11080538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD, OMIM 609575) is associated with energy deficiency and mitochondrial dysfunction and may lead to rhabdomyolysis and cardiomyopathy. Under physiological conditions, there is a fine balance between the utilization of different carbon nutrients to maintain the Krebs cycle. The maintenance of steady pools of Krebs cycle intermediates is critical formitochondrial energy homeostasis especially in high-energy demanding organs such as muscle and heart. Even-chain dicarboxylic acids are established as alternative energy carbon sources that replenish the Krebs cycle by bypassing a defective β-oxidation pathway. Despite this, even-chain dicarboxylic acids are eliminated in the urine of VLCAD-affected individuals. In this study, we explore dodecanedioic acid (C12; DODA) supplementation and investigate its metabolic effect on Krebs cycle intermediates, glucose uptake, and acylcarnitine profiles in VLCAD-deficient fibroblasts. Our findings indicate that DODA supplementation replenishes the Krebs cycle by increasing the succinate pool, attenuates glycolytic flux, and reduces levels of toxic very long-chain acylcarnitines.
Collapse
|
11
|
Kim SJ, Miller B, Mehta HH, Xiao J, Wan J, Arpawong TE, Yen K, Cohen P. The mitochondrial-derived peptide MOTS-c is a regulator of plasma metabolites and enhances insulin sensitivity. Physiol Rep 2020; 7:e14171. [PMID: 31293078 PMCID: PMC6640593 DOI: 10.14814/phy2.14171] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
MOTS‐c is an exercise mimetic and improves insulin sensitivity in aged and diet‐induced obese mice. Although plasma markers are good markers for the metabolic condition, whether MOTS‐c changes plasma markers in diet‐induced obese mice has not been examined. Here, we used an unbiased metabolomics approach to examine the effect of MOTS‐c on plasma markers of metabolic dysfunction. We found that three pathways – sphingolipid metabolism, monoacylglycerol metabolism, and dicarboxylate metabolism – were reduced in MOTS‐c–injected mice. Interestingly, these pathways are upregulated in obese and T2D models. MOTS‐c improves insulin sensitivity and increases beta‐oxidation to prevent fat accumulation in DIO mice through these pathways. These results provide us a better understanding of the mechanism of how MOTS‐c improves insulin sensitivity and reduces the body weight and fatty liver and opens a new venue for further study.
Collapse
Affiliation(s)
- Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Thalida E Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| |
Collapse
|
12
|
Bharathi SS, Zhang Y, Gong Z, Muzumdar R, Goetzman ES. Role of mitochondrial acyl-CoA dehydrogenases in the metabolism of dicarboxylic fatty acids. Biochem Biophys Res Commun 2020; 527:162-166. [PMID: 32446361 DOI: 10.1016/j.bbrc.2020.04.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
Dicarboxylic fatty acids, taken as a nutritional supplement or produced endogenously via omega oxidation of monocarboxylic fatty acids, may have therapeutic potential for rare inborn errors of metabolism as well as common metabolic diseases such as type 2 diabetes. Breakdown of dicarboxylic acids yields acetyl-CoA and succinyl-CoA as products, the latter of which is anaplerotic for the TCA cycle. However, little is known about the metabolic pathways responsible for degradation of dicarboxylic acids. Here, we demonstrated with whole-cell fatty acid oxidation assays that both mitochondria and peroxisomes contribute to dicarboxylic acid degradation. Several mitochondrial acyl-CoA dehydrogenases were tested for activity against dicarboxylyl-CoAs. Medium-chain acyl-CoA dehydrogenase (MCAD) exhibited activity with both six and 12 carbon dicarboxylyl-CoAs, and the capacity for dehydrogenation of these substrates was significantly reduced in MCAD knockout mouse liver. However, when dicarboxylic acids were fed to normal mice, the expression of MCAD did not change, while expression of peroxisomal fatty acid oxidation enzymes was greatly upregulated. In conclusion, mitochondrial fatty acid oxidation, and in particular MCAD, contributes to dicarboxylic acid degradation, but feeding dicarboxylic acids induces only the peroxisomal pathway.
Collapse
Affiliation(s)
- Sivakama S Bharathi
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Yuxun Zhang
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Zhenwei Gong
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Radhika Muzumdar
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Eric S Goetzman
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
13
|
Moore HB, Culp-Hill R, Reisz JA, Lawson PJ, Sauaia A, Schulick RD, Del Chiaro M, Nydam TL, Moore EE, Hansen KC, D'Alessandro A. The metabolic time line of pancreatic cancer: Opportunities to improve early detection of adenocarcinoma. Am J Surg 2019; 218:1206-1212. [PMID: 31514959 DOI: 10.1016/j.amjsurg.2019.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/30/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND A reliable biomarker to detect pancreatic ductal adenocarcinoma (PDAC) continues to be elusive. With employing metabolomics we hypothesize that a broader analysis of systemic blood can differentiate different stages of PDAC. METHODS Patients undergoing pancreatic resection had plasma samples grouped by diagnosis and assayed with mass spectrometry. 10 per group [neuroendocrine (PNET), intraductal papillary mucinous neoplasm (IPMN), localized PDAC, locally advanced PDAC, and metastatic] were analyzed to assess if metabolites could delineation different stages of adenocarcinoma. RESULTS Of the 215 metabolites measured, four had a stronger correlation to disease burden than CA19-9. However, none of these metabolites differentiated stepwise progression in malignancy. Principal component analysis identified five metabolic components. Each cancer cohort was characterized by a unique combination of components, two components were predictors of PDCA stages. CONCLUSIONS Enhanced metabolomic analysis identified metabolic pathways that may assist in differentiating PDCA stages that do not occur in a linear stepwise progression.
Collapse
Affiliation(s)
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado, USA
| | - Julia A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado, USA
| | | | - Angela Sauaia
- School of Public Health, University of Colorado, USA
| | | | | | | | - Ernest E Moore
- Department of Surgery, Denver Health Medical Center, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, USA
| |
Collapse
|
14
|
Viltard M, Durand S, Pérez-Lanzón M, Aprahamian F, Lefevre D, Leroy C, Madeo F, Kroemer G, Friedlander G. The metabolomic signature of extreme longevity: naked mole rats versus mice. Aging (Albany NY) 2019; 11:4783-4800. [PMID: 31346149 PMCID: PMC6682510 DOI: 10.18632/aging.102116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 04/11/2023]
Abstract
The naked mole-rat (Heterocephalus glaber) is characterized by a more than tenfold higher life expectancy compared to another rodent species of the same size, namely, the laboratory mouse (Mus musculus). We used mass spectrometric metabolomics to analyze circulating plasma metabolites in both species at different ages. Interspecies differences were much more pronounced than age-associated alterations in the metabolome. Such interspecies divergences affected multiple metabolic pathways involving amino, bile and fatty acids as well as monosaccharides and nucleotides. The most intriguing metabolites were those that had previously been linked to pro-health and antiaging effects in mice and that were significantly increased in the long-lived rodent compared to its short-lived counterpart. This pattern applies to α-tocopherol (also known as vitamin E) and polyamines (in particular cadaverine, N8-acetylspermidine and N1,N8-diacetylspermidine), all of which were more abundant in naked mole-rats than in mice. Moreover, the age-associated decline in spermidine and N1-acetylspermidine levels observed in mice did not occur, or is even reversed (in the case of N1-acetylspermidine) in naked mole-rats. In short, the present metabolomics analysis provides a series of testable hypotheses to explain the exceptional longevity of naked mole-rats.
Collapse
Affiliation(s)
- Mélanie Viltard
- Fondation pour la Recherche en Physiologie, Brussels, Belgium
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Maria Pérez-Lanzón
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Fanny Aprahamian
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Deborah Lefevre
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Christine Leroy
- INSERM UMR_S1151 CNRS UMR8253 Institut Necker-Enfants Malades (INEM), Paris, France
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Gérard Friedlander
- INSERM UMR_S1151 CNRS UMR8253 Institut Necker-Enfants Malades (INEM), Paris, France
- Service de Physiologie et Explorations Fonctionnelles, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université de Paris - Paris Descartes, Faculté de Médecine, Paris, France
| |
Collapse
|
15
|
Cao W, Wang Y, Luo J, Yin J, Wan Y. Improving α, ω-dodecanedioic acid productivity from n-dodecane and hydrolysate of Candida cells by membrane integrated repeated batch fermentation. BIORESOURCE TECHNOLOGY 2018; 260:9-15. [PMID: 29604565 DOI: 10.1016/j.biortech.2018.03.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study is to develop an effective production process for α, ω-dodecanedioic acid (DC12) biosynthesis using n-dodecane and hydrolysate of Candida cells as substrates by membrane integrated repeated batch fermentation. Cells and n-dodecane were simultaneously recycled during the filtration of fermentation broth (FB) with a 150 kDa ceramic membrane under a cross-flow velocity of 4 m/s and a trans-membrane pressure of 0.2 MPa, and it was also revealed that the cells in the broth could alleviate the membrane fouling during the FB filtration. Moreover, the hydrolysate of the collected cells could be successfully used as a nitrogen source to replace 50% yeast extract for decreasing the DC12 production cost. With repeated-batch culture in a membrane bioreactor, the maximal DC12 productivity could be enhanced by 57.8% compared with the batch culture, meanwhile n-dodecane and cells could be recovered and used for the next fermentation cycle.
Collapse
Affiliation(s)
- Weifeng Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yujue Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Junxiang Yin
- China National Center for Biotechnology Development, Beijing 100036, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Cao W, Wang Y, Luo J, Yin J, Wan Y. Simultaneous decolorization and deproteinization of α,ω-dodecanedioic acid fermentation broth by integrated ultrafiltration and adsorption treatments. Bioprocess Biosyst Eng 2018; 41:1271-1281. [PMID: 29767339 DOI: 10.1007/s00449-018-1955-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/08/2018] [Indexed: 01/28/2023]
Abstract
α,ω-Dicarboxylic acids (DC) are versatile chemical intermediates with different chain length. For biosynthesis of DC, to obtain the highly pure product via crystallization, it is required to remove pigments and proteins in fermentation broth. However, a trade-off between decolorization/deproteinization ratio and DC recovery during the purification process was found, which impeded DC production by fermentation. When ultrafiltration (UF) was applied to treat α,ω-dodecanedioic acid (DC12) broth, 93.4% of DC12 recovery, 80.5% of decolorization ratio and 61.7% of deproteinization ratio were achieved by a PES 3 membrane. However, the membrane technology could not effectively retain the pigments or proteins with low molecular weight when a high DC12 permeation was required. Meanwhile, the selected activated charcoal or macroporous resins were not good adsorbents for the present system. Furthermore, an integrated process for decolorization and deproteinization was developed. After filtration with PES3 membrane, an activated charcoal was used to remove the small proteins and pigments in the UF permeate. As a result, 91.4% of DC12 recovery, 94.7% of decolorization ratio and 84.8% of deproteinization ratio were obtained by such two-stage strategy. These results would serve as a valuable guide for process design and practical operation in subsequent industrial application.
Collapse
Affiliation(s)
- Weifeng Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Yujue Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Junxiang Yin
- China National Center for Biotechnology Development, Beijing, 100036, People's Republic of China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
17
|
Cao W, Wang Y, Luo J, Yin J, Wan Y. Role of oxygen supply in α, ω-dodecanedioic acid biosynthesis from n-dodecane by Candida viswanathii ipe-1: Effect of stirring speed and aeration. Eng Life Sci 2017; 18:196-203. [PMID: 32624898 DOI: 10.1002/elsc.201700142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/12/2017] [Accepted: 11/20/2017] [Indexed: 01/30/2023] Open
Abstract
α, ω-Dodecanedioic acid (DC12) usually serves as a monomer of polyamides or some special nylons. During the biosynthesis, oxygenation cascaded in conversion of hydrophobic n-dodecane to DC12, while the oxidation of n-dodecane took place in the intracellular space. Therefore, it was important to investigate the role of oxygen supply on the cell growth and DC12 biosynthesis. It was found that stirring speed and aeration influenced the dissolved oxygen (DO) concentration which in turn affected cell growth as well as DC12 biosynthesis. However, the effect of culture redox potential (Orp) level on DC12 biosynthesis was more significant than that of DO level. For DC12 biosynthesis, the first step was to form the emulsion droplets through the interaction of n-dodecane and the cell. When the stirring speed was enhanced, slits in the surface layer of the emulsion droplets would be increased. Thus, the substances transportation by water through the slits would be intensified, leading to an enhanced DC12 production. Compared with the batch culture at a lower stirring speed (400 rpm) without culture redox potential (Orp) control, the DC12 concentration was increased by 5 times up to 201.3 g/L with Orp controlled above 0 mV at a higher stirring speed (800 rpm).
Collapse
Affiliation(s)
- Weifeng Cao
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing P. R. China
| | - Yujue Wang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing P. R. China.,University of the Chinese Academy of Sciences Chinese Academy of Sciences Beijing P. R. China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing P. R. China.,University of the Chinese Academy of Sciences Chinese Academy of Sciences Beijing P. R. China
| | - Junxiang Yin
- China National Center for Biotechnology Development Beijing P. R. China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing P. R. China.,University of the Chinese Academy of Sciences Chinese Academy of Sciences Beijing P. R. China
| |
Collapse
|
18
|
Cao W, Liu B, Luo J, Yin J, Wan Y. α, ω-Dodecanedioic acid production by Candida viswanathii ipe-1 with co-utilization of wheat straw hydrolysates and n-dodecane. BIORESOURCE TECHNOLOGY 2017; 243:179-187. [PMID: 28662387 DOI: 10.1016/j.biortech.2017.06.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Candida viswanathii ipe-1 was used to produce α, ω-dodecanedioic acid (DC12), which showed capability to ferment xylose and glucose simultaneously, while arabinose utilization was less efficient. A low concentration of furfural enhanced cell growth, and the addition of 4.0g/L sodium acetate largely increased DC12 production. It indicated that detoxification of the wheat straw hydrolysates was not necessary for the biosynthesis of DC12. Based on the promising features of our strain, an efficient process was developed to produce DC12 from co-utilization of wheat straw hydrolysates and n-dodecane. Using this process, 129.7g/L DC12 with a corresponding productivity of 1.13g·L-1·h-1 could be produced, which was increased by 40.0% compared with a sole carbon of glucose. The improved DC12 yield by the co-utilization of wheat straw hydrolysates and n-dodecane using C. viswanathii ipe-1 demonstrates the great potential of using biomass as a feedstock in the production of DC12.
Collapse
Affiliation(s)
- Weifeng Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Bin Liu
- College of Food Science and Engineering, Qilu University of Technology, Jinan 250353, PR China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Junxiang Yin
- China National Center for Biotechnology Development, Beijing 100036, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
19
|
Cao W, Li H, Luo J, Yin J, Wan Y. High-level productivity of α,ω-dodecanedioic acid with a newly isolated Candida viswanathii strain. ACTA ACUST UNITED AC 2017; 44:1191-1202. [DOI: 10.1007/s10295-017-1948-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022]
Abstract
Abstract
α,ω-Dicarboxylic acids (DC) are versatile chemical intermediates with different chain lengths, which are well-known as polymer building block. In this work, a new strain with high productivity of DC was isolated from oil-contaminated soil. Based on the morphology and phylogenetic analyses of the internal transcribed spacer sequences, it was characterized as Candida viswanathii. It was found that the contribution of carbon flux to the cell growth and DC production from n-dodecane could be regulated by the sucrose and yeast extract concentrations in the medium, and besides the broth pH, a suitable proportioning of sucrose and yeast extract was the key to achieve the optimal transition from cell growth phase to DC production phase. By optimizing culture conditions in a 7.5-L bioreactor, a higher DC productivity of 1.59 g·L−1 h−1 with a corresponding concentration of 181.6 g/L was obtained. After the purification of DC from the culture, the results from gas chromatography–mass spectrometry, infrared spectroscopy and 1H-NMR showed that α,ω-dodecanedioic acid (DC12) was the major product of C. viswanathii ipe-1 using pure n-dodecane as substrate. For the first time, we reported that a high productivity of DC12 could be produced by C. viswanathii.
Collapse
Affiliation(s)
- Weifeng Cao
- 0000000119573309 grid.9227.e State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing People’s Republic of China
| | - Hongbao Li
- 0000000119573309 grid.9227.e State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing People’s Republic of China
- 0000 0004 1805 7347 grid.462323.2 College of Bioscience and Bioengineering Hebei University of Science and Technology 050018 Shijiazhuang People’s Republic of China
| | - Jianquan Luo
- 0000000119573309 grid.9227.e State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing People’s Republic of China
| | - Junxiang Yin
- 0000 0004 0386 1885 grid.433160.3 China National Center for Biotechnology Development 100036 Beijing People’s Republic of China
| | - Yinhua Wan
- 0000000119573309 grid.9227.e State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing People’s Republic of China
| |
Collapse
|
20
|
Yang S, Cao C, Chen S, Hu L, Bao W, Shi H, Zhao X, Sun C. Serum Metabolomics Analysis of Quercetin against Acrylamide-Induced Toxicity in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9237-9245. [PMID: 27933994 DOI: 10.1021/acs.jafc.6b04149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The current study aimed to investigate whether quercetin plays a protective role in acrylamide (AA)-induced toxicity using a metabolomics approach. Rats were randomly divided into groups as follows: control, treated with AA [5 mg/kg body weight (bw)], treated with different dosages of quercetin (10 and 50 mg/kg bw, respectively), and treated with two dosages of quercetin plus AA. After a 16 week treatment, rat serum was collected for metabolomics analysis. Biochemical tests and examination of liver histopathology were further conducted to verify metabolic alterations. Twelve metabolites were identified for which intensities were significantly changed (increased or reduced) as a result of the treatment. These metabolites included isorhamnetin, citric acid, pantothenic acid, isobutyryl-l-carnitine, eicosapentaenoic acid, docosahexaenoic acid, sphingosine 1-phosphate, lysoPC(20:4), lysoPC(22:6), lysoPE(20:3), undecanedioic acid, and dodecanedioic acid. The results indicate that quercetin (50 mg/kg bw) exerts partial protective effects on AA-induced toxicity by reducing oxidative stress, protecting the mitochondria, and regulating lipid metabolism.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University , 150081 Harbin, Heilongjiang, China
| | - Can Cao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University , 150081 Harbin, Heilongjiang, China
| | - Shuai Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University , 150081 Harbin, Heilongjiang, China
| | - Liyan Hu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University , 150081 Harbin, Heilongjiang, China
| | - Wei Bao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University , 150081 Harbin, Heilongjiang, China
| | - Haidan Shi
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University , 150081 Harbin, Heilongjiang, China
| | - Xiujuan Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University , 150081 Harbin, Heilongjiang, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University , 150081 Harbin, Heilongjiang, China
| |
Collapse
|
21
|
Mora-Cubillos X, Tulipani S, Garcia-Aloy M, Bulló M, Tinahones FJ, Andres-Lacueva C. Plasma metabolomic biomarkers of mixed nuts exposure inversely correlate with severity of metabolic syndrome. Mol Nutr Food Res 2015; 59:2480-90. [DOI: 10.1002/mnfr.201500549] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Ximena Mora-Cubillos
- Biomarkers & Nutrimetabolomic Lab; Department of Nutrition and Food Science, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy; University of Barcelona; Barcelona Spain
| | - Sara Tulipani
- Biomarkers & Nutrimetabolomic Lab; Department of Nutrition and Food Science, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy; University of Barcelona; Barcelona Spain
- Biomedical Research Institute (IBIMA); Service of Endocrinology and Nutrition; Málaga Hospital Complex (Virgen de la Victoria), Campus de Teatinos s/n; University of Málaga; Málaga Spain
| | - Mar Garcia-Aloy
- Biomarkers & Nutrimetabolomic Lab; Department of Nutrition and Food Science, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy; University of Barcelona; Barcelona Spain
| | - Mònica Bulló
- Human Nutrition Unit; Faculty of Medicine and Health Sciences; IISPV; Universitat Rovira i Virgili; Reus Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn); Instituto de Salud Carlos III (ISCIII); Madrid Spain
| | - Francisco J Tinahones
- Biomedical Research Institute (IBIMA); Service of Endocrinology and Nutrition; Málaga Hospital Complex (Virgen de la Victoria), Campus de Teatinos s/n; University of Málaga; Málaga Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn); Instituto de Salud Carlos III (ISCIII); Madrid Spain
| | - Cristina Andres-Lacueva
- Biomarkers & Nutrimetabolomic Lab; Department of Nutrition and Food Science, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy; University of Barcelona; Barcelona Spain
| |
Collapse
|
22
|
Yu J, Yuan X, Zeng A. A novel purification process for dodecanedioic acid by molecular distillation. Chin J Chem Eng 2015. [DOI: 10.1016/j.cjche.2014.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Mingrone G, Castagneto-Gissey L, Macé K. Use of dicarboxylic acids in type 2 diabetes. Br J Clin Pharmacol 2013; 75:671-6. [PMID: 22242741 DOI: 10.1111/j.1365-2125.2012.04177.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Even-number, medium-chain dicarboxylic acids (DAs), naturally occurring in higher plants, are a promising alternative energy substrate. Unlike the homologous fatty acids, DAs are soluble in water as salts. They are β-oxidized, providing acetyl-CoA and succinyl-CoA, the latter being an intermediate of the tricarboxylic acid cycle. Sebacic acid and dodecanedioic acid, DAs with 10 and 12 carbon atoms respectively, provide 6.6 and 7.2 kcal g⁻¹ each; therefore, their energy density is intermediate between glucose and fatty acids. Dicarboxylic acids have been proved to be safe in both experimental animals and humans, and their use has recently been proposed in diabetes. Studies in animals and humans with type 2 diabetes showed that oral administration of sebacic acid improved glycaemic control, probably by enhancing insulin sensitivity, and reduced hepatic gluconeogenesis and glucose output. Moreover, dodecanedioic acid intake reduced muscle fatigue during exercise in subjects with type 2 diabetes, suggesting an improvement of energy utilization and 'metabolic flexibility'. In this article, we review the natural sources of DAs, their fate in animals and humans and their effect in improving glucose metabolism in type 2 diabetes.
Collapse
Affiliation(s)
- Geltrude Mingrone
- Department of Internal Medicine, Catholic University of Rome, Rome, Italy.
| | | | | |
Collapse
|
24
|
Johnson CH, Patterson AD, Krausz KW, Lanz C, Kang DW, Luecke H, Gonzalez FJ, Idle JR. Radiation metabolomics. 4. UPLC-ESI-QTOFMS-Based metabolomics for urinary biomarker discovery in gamma-irradiated rats. Radiat Res 2011; 175:473-84. [PMID: 21309707 DOI: 10.1667/rr2437.1] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation metabolomics has aided in the identification of a number of biomarkers in cells and mice by ultra-performance liquid chromatography-coupled time-of-flight mass spectrometry (UPLC-ESI-QTOFMS) and in rats by gas chromatography-coupled mass spectrometry (GCMS). These markers have been shown to be both dose- and time-dependent. Here UPLC-ESI-QTOFMS was used to analyze rat urine samples taken from 12 rats over 7 days; they were either sham-irradiated or γ-irradiated with 3 Gy after 4 days of metabolic cage acclimatization. Using multivariate data analysis, nine urinary biomarkers of γ radiation in rats were identified, including a novel mammalian metabolite, N-acetyltaurine. These upregulated urinary biomarkers were confirmed through tandem mass spectrometry and comparisons with authentic standards. They include thymidine, 2'-deoxyuridine, 2'deoxyxanthosine, N(1)-acetylspermidine, N-acetylglucosamine/galactosamine-6-sulfate, N-acetyltaurine, N-hexanoylglycine, taurine and, tentatively, isethionic acid. Of these metabolites, 2'-deoxyuridine and thymidine were previously identified in the rat by GCMS (observed as uridine and thymine) and in the mouse by UPLC-ESI-QTOFMS. 2'Deoxyxanthosine, taurine and N-hexanoylglycine were also seen in the mouse by UPLC-ESI-QTOFMS. These are now unequivocal cross-species biomarkers for ionizing radiation exposure. Downregulated biomarkers were shown to be related to food deprivation and starvation mechanisms. The UPLC-ESI-QTOFMS approach has aided in the advance for finding common biomarkers of ionizing radiation exposure.
Collapse
Affiliation(s)
- Caroline H Johnson
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Iaconelli A, Gastaldelli A, Chiellini C, Gniuli D, Favuzzi A, Binnert C, Macé K, Mingrone G. Effect of oral sebacic Acid on postprandial glycemia, insulinemia, and glucose rate of appearance in type 2 diabetes. Diabetes Care 2010; 33:2327-32. [PMID: 20724647 PMCID: PMC2963488 DOI: 10.2337/dc10-0663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Dicarboxylic acids are natural products with the potential of being an alternate dietary source of energy. We aimed to evaluate the effect of sebacic acid (a 10-carbon dicarboxylic acid; C10) ingestion on postprandial glycemia and glucose rate of appearance (Ra) in healthy and type 2 diabetic subjects. Furthermore, the effect of C10 on insulin-mediated glucose uptake and on GLUT4 expression was assessed in L6 muscle cells in vitro. RESEARCH DESIGN AND METHODS Subjects ingested a mixed meal (50% carbohydrates, 15% proteins, and 35% lipids) containing 0 g (control) or 10 g C10 in addition to the meal or 23 g C10 as a substitute of fats. RESULTS In type 2 diabetic subjects, the incremental glucose area under the curve (AUC) decreased by 42% (P<0.05) and 70% (P<0.05) in the 10 g C10 and 23 g C10 groups, respectively. At the largest amounts used, C10 reduced the glucose AUC in healthy volunteers also. When fats were substituted with 23 g C10, AUC of Ra was significantly reduced on the order of 18% (P<0.05) in both healthy and diabetic subjects. The insulin-dependent glucose uptake by L6 cells was increased in the presence of C10 (38.7±10.3 vs. 11.4±5.4%; P=0.026). This increase was associated with a 1.7-fold raise of GLUT4. CONCLUSIONS Sebacic acid significantly reduced hyperglycemia after a meal in type 2 diabetic subjects. This beneficial effect was associated with a reduction in glucose Ra, probably due to lowered hepatic glucose output and increased peripheral glucose disposal.
Collapse
Affiliation(s)
- Amerigo Iaconelli
- Department of Internal Medicine, Catholic University of Rome, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mingrone G, Castagneto M. Medium-Chain, Even-Numbered Dicarboxylic Acids as Novel Energy Substrates: An Update. Nutr Rev 2006. [DOI: 10.1111/j.1753-4887.2006.tb00175.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|