1
|
Kawana Y, Imai J, Morizawa YM, Ikoma Y, Kohata M, Komamura H, Sato T, Izumi T, Yamamoto J, Endo A, Sugawara H, Kubo H, Hosaka S, Munakata Y, Asai Y, Kodama S, Takahashi K, Kaneko K, Sawada S, Yamada T, Ito A, Niizuma K, Tominaga T, Yamanaka A, Matsui K, Katagiri H. Optogenetic stimulation of vagal nerves for enhanced glucose-stimulated insulin secretion and β cell proliferation. Nat Biomed Eng 2024; 8:808-822. [PMID: 37945752 PMCID: PMC11310082 DOI: 10.1038/s41551-023-01113-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/26/2023] [Indexed: 11/12/2023]
Abstract
The enhancement of insulin secretion and of the proliferation of pancreatic β cells are promising therapeutic options for diabetes. Signals from the vagal nerve regulate both processes, yet the effectiveness of stimulating the nerve is unclear, owing to a lack of techniques for doing it so selectively and prolongedly. Here we report two optogenetic methods for vagal-nerve stimulation that led to enhanced glucose-stimulated insulin secretion and to β cell proliferation in mice expressing choline acetyltransferase-channelrhodopsin 2. One method involves subdiaphragmatic implantation of an optical fibre for the photostimulation of cholinergic neurons expressing a blue-light-sensitive opsin. The other method, which suppressed streptozotocin-induced hyperglycaemia in the mice, involves the selective activation of vagal fibres by placing blue-light-emitting lanthanide microparticles in the pancreatic ducts of opsin-expressing mice, followed by near-infrared illumination. The two methods show that signals from the vagal nerve, especially from nerve fibres innervating the pancreas, are sufficient to regulate insulin secretion and β cell proliferation.
Collapse
Affiliation(s)
- Yohei Kawana
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yosuke M Morizawa
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Yoko Ikoma
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Masato Kohata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Komamura
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshihiro Sato
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junpei Yamamoto
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Endo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroto Sugawara
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haremaru Kubo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Yuichiro Munakata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichiro Asai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Ito
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Janssen JAMJL. Hyperinsulinemia and Its Pivotal Role in Aging, Obesity, Type 2 Diabetes, Cardiovascular Disease and Cancer. Int J Mol Sci 2021; 22:ijms22157797. [PMID: 34360563 PMCID: PMC8345990 DOI: 10.3390/ijms22157797] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023] Open
Abstract
For many years, the dogma has been that insulin resistance precedes the development of hyperinsulinemia. However, recent data suggest a reverse order and place hyperinsulinemia mechanistically upstream of insulin resistance. Genetic background, consumption of the “modern” Western diet and over-nutrition may increase insulin secretion, decrease insulin pulses and/or reduce hepatic insulin clearance, thereby causing hyperinsulinemia. Hyperinsulinemia disturbs the balance of the insulin–GH–IGF axis and shifts the insulin : GH ratio towards insulin and away from GH. This insulin–GH shift promotes energy storage and lipid synthesis and hinders lipid breakdown, resulting in obesity due to higher fat accumulation and lower energy expenditure. Hyperinsulinemia is an important etiological factor in the development of metabolic syndrome, type 2 diabetes, cardiovascular disease, cancer and premature mortality. It has been further hypothesized that nutritionally driven insulin exposure controls the rate of mammalian aging. Interventions that normalize/reduce plasma insulin concentrations might play a key role in the prevention and treatment of age-related decline, obesity, type 2 diabetes, cardiovascular disease and cancer. Caloric restriction, increasing hepatic insulin clearance and maximizing insulin sensitivity are at present the three main strategies available for managing hyperinsulinemia. This may slow down age-related physiological decline and prevent age-related diseases. Drugs that reduce insulin (hyper) secretion, normalize pulsatile insulin secretion and/or increase hepatic insulin clearance may also have the potential to prevent or delay the progression of hyperinsulinemia-mediated diseases. Future research should focus on new strategies to minimize hyperinsulinemia at an early stage, aiming at successfully preventing and treating hyperinsulinemia-mediated diseases.
Collapse
Affiliation(s)
- Joseph A M J L Janssen
- Department of internal Medicine, Division of Endocrinology, Erasmus Medical Center, 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
3
|
Sordi CCD, Lemos MDP, Marocolo M, Chriguer RS, Mendes EL, Mota GRD, Barbosa Neto O. Exercise training reverse autonomic dysfunction and hypertension in rats fed with high-fat diet. MOTRIZ: REVISTA DE EDUCACAO FISICA 2017. [DOI: 10.1590/s1980-6574201700040004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Thorens B. Neural regulation of pancreatic islet cell mass and function. Diabetes Obes Metab 2014; 16 Suppl 1:87-95. [PMID: 25200301 DOI: 10.1111/dom.12346] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/15/2014] [Indexed: 12/24/2022]
Abstract
Intracellular glucose signalling pathways control the secretion of glucagon and insulin by pancreatic islet α- and β-cells, respectively. However, glucose also indirectly controls the secretion of these hormones through regulation of the autonomic nervous system that richly innervates this endocrine organ. Both parasympathetic and sympathetic nervous systems also impact endocrine pancreas postnatal development and plasticity in adult animals. Defects in these autonomic regulations impair β-cell mass expansion during the weaning period and β-cell mass adaptation in adult life. Both branches of the autonomic nervous system also regulate glucagon secretion. In type 2 diabetes, impaired glucose-dependent autonomic activity causes the loss of cephalic and first phases of insulin secretion, and impaired suppression of glucagon secretion in the postabsorptive phase; in diabetic patients treated with insulin, it causes a progressive failure of hypoglycaemia to trigger the secretion of glucagon and other counterregulatory hormones. Therefore, identification of the glucose-sensing cells that control the autonomic innervation of the endocrine pancreatic and insulin and glucagon secretion is an important goal of research. This is required for a better understanding of the physiological control of glucose homeostasis and its deregulation in diabetes. This review will discuss recent advances in this field of investigation.
Collapse
Affiliation(s)
- B Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Epigenetic changes in hypothalamic appetite regulatory genes may underlie the developmental programming for obesity in rat neonates subjected to a high-carbohydrate dietary modification. J Dev Orig Health Dis 2014; 4:479-90. [PMID: 24924227 DOI: 10.1017/s2040174413000238] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Earlier, we showed that rearing of newborn rats on a high-carbohydrate (HC) milk formula resulted in the onset of hyperinsulinemia, its persistence in the post-weaning period and adult-onset obesity. DNA methylation of CpG dinucleotides in the proximal promoter region and modifications in the N-terminal tail of histone 3 associated with the neuropeptide Y (Npy) and pro-opiomelanocortin (Pomc) genes were investigated to decipher the molecular mechanisms supporting the development of obesity in HC females. Although there were no differences in the methylation status of CpG dinucleotides in the proximal promoter region of the Pomc gene, altered methylation of specific CpG dinucleotides proximal to the transcription start site was observed for the Npy gene in the hypothalami of 16- and 100-day-old HC rats compared with their methylation status in mother-fed (MF) rats. Investigation of histone tail modifications on hypothalamic chromatin extracts from 16-day-old rats indicated decreased acetylation of lysine 9 in histone 3 (H3K9) for the Pomc gene and increased acetylation for the same residue for the Npy gene, without changes in histone methylation (H3K9) in both genes in HC rats. These findings are consistent with the changes in the levels of Npy and Pomc mRNAs in the hypothalami of HC rats compared with MF animals. Our results suggest that epigenetic modifications could contribute to the altered gene expression of the Npy and Pomc genes in the hypothalami of HC rats and could be a mechanism leading to hyperphagia and the development of obesity in adult female HC rats.
Collapse
|
6
|
Impaired muscarinic type 3 (M3) receptor/PKC and PKA pathways in islets from MSG-obese rats. Mol Biol Rep 2013; 40:4521-8. [DOI: 10.1007/s11033-013-2546-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
|
7
|
Srinivasan M, Mahmood S, Patel MS. Metabolic programming effects initiated in the suckling period predisposing for adult-onset obesity cannot be reversed by calorie restriction. Am J Physiol Endocrinol Metab 2013; 304:E486-94. [PMID: 23249696 PMCID: PMC3602662 DOI: 10.1152/ajpendo.00519.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neonatal rats reared on high-carbohydrate (HC) milk formula developed chronic hyperinsulinemia and adult-onset obesity due to programming of islets and the hypothalamic energy circuitry. In this study, calorie restriction by pair-feeding was imposed on HC male rats (HC/PF) to normalize food intake similar to that of mother-fed (MF) rats from weaning until postnatal day 140. A group of HC/PF rats was switched over to ad libitum feeding (HC/PF/AL) from days 90 to 140. Pair-feeding reduced body weight gains and serum insulin and leptin levels in HC/PF rats compared with HC rats, but these parameters were restored to HC levels in the HC/PF/AL rats after ad libitum feeding. Interestingly, the heightened insulin secretory response of isolated islets from adult HC/PF and HC/PF/ AL rats to glucose, acetylcholine, and oxymetazoline were not significantly different from the responses of islets from HC rats. Similarly, the expression of neuropeptide Y and proopiomelanocortin in the hypothalamus was not significantly different among HC, HC/PF, and HC/PF/AL rats. Expression of the leptin receptor in the hypothalami from the HC, HC/PF, and HC/PF/AL rats mirrored that of serum leptin, whereas suppressor of cytokine signaling 3 (Socs3) expression remained high in these three groups. The results indicate that, although calorie restriction resulted in reduction in body weight gain and normalized the serum hormonal pattern, the programed predisposition for the hypersecretory capacity of islets and the hypothalamic hyperphagic response in the HC rats could not be permanently overcome by the pair-feeding imposed on HC rats.
Collapse
Affiliation(s)
- Malathi Srinivasan
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
8
|
Rinaldi W, Ribeiro TADS, Marques AS, Fabricio GS, Tófolo LP, Gomes RM, Mendes FCV, Mathias PCDF. Efeito da redução de ninhada sobre as respostas autonômicas e metabólicas de ratos Wistar. REV NUTR 2012. [DOI: 10.1590/s1415-52732012000300002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJETIVO: Este estudo investigou o perfil lipídico e a atividade elétrica dos nervos parassimpático (vago superior) e simpático (localizado na região esplâncnica) de ratos obesos oriundos de ninhada reduzida. MÉTODOS: Foram pesquisados dois grupos distintos, com 12 animas cada um: ninhada padrão, padronizado em nove filhotes por ninhada, e ninhada reduzida, três filhotes por ninhada. O consumo de ração e peso corporal foi acompanhado do desmame até o final do protocolo experimental. Aos 90 dias de idade, os animais foram anestesiados com (Thiopental®) e submetidos ao registro da atividade elétrica dos nervos simpático (vago) e parassimpático (da região esplâncnica); em seguida, foram sacrificados e retiradas e pesadas as gorduras retroperitoneal e periepididimal. Amostras de sangue foram coletadas para dosagens de glicemia, insulinemia, colesterol total, triglicerídeos e lipoproteína de alta densidade colesterol. RESULTADOS: Os ratos de ninhada reduzida apresentaram aumento da ingestão alimentar, peso corporal e tecido adiposo branco, quadros de hiperglicemia, hiperinsulinemia e hipercolesterolemia, aumento dos triglicérides e redução do lipoproteína de alta densidade colesterol. CONCLUSÃO: Quanto à atividade do nervo vago, os ratos ninhada reduzida apresentaram um aumento significativo em relação aos ratos ninhada padrão, e mesmo não havendo diferença na atividade simpática, o modelo ninhada reduzida mostrou-se eficaz para indução da obesidade, dislipidemia, hipercolesterolemia, hiperinsulinemia, hiperglicemia e desequilíbrio autonômico em roedores.
Collapse
|
9
|
Impaired sympathoadrenal axis function contributes to enhanced insulin secretion in prediabetic obese rats. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:947917. [PMID: 21860615 PMCID: PMC3157162 DOI: 10.1155/2011/947917] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/13/2011] [Indexed: 12/22/2022]
Abstract
The involvement of sympathoadrenal axis activity in obesity onset was investigated using the experimental model of treating neonatal rats with monosodium L-glutamate. To access general sympathetic nervous system activity, we recorded the firing rates of sympathetic superior cervical ganglion nerves in animals. Catecholamine content and secretion from isolated adrenal medulla were measured. Intravenous glucose tolerance test was performed, and isolated pancreatic islets were stimulated with glucose and adrenergic agonists. The nerve firing rate of obese rats was decreased compared to the rate for lean rats. Basal catecholamine secretion decreased whereas catecholamine secretion induced by carbachol, elevated extracellular potassium, and caffeine in the isolated adrenal medulla were all increased in obese rats compared to control. Both glucose intolerance and hyperinsulinaemia were observed in obese rats. Adrenaline strongly inhibited glucose-induced insulin secretion in obese animals. These findings suggest that low sympathoadrenal activity contributes to impaired glycaemic control in prediabetic obese rats.
Collapse
|
10
|
Angelini N, Rafacho A, Boschero AC, Bosqueiro JR. Involvement of the cholinergic pathway in glucocorticoid-induced hyperinsulinemia in rats. Diabetes Res Clin Pract 2010; 87:184-91. [PMID: 19962776 DOI: 10.1016/j.diabres.2009.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 11/24/2022]
Abstract
AIMS We investigated the contribution of the cholinergic nervous system to dexamethasone-induced insulin resistance and hyperinsulinemia in rats. METHODS Seventy-day-old Wistar male rats were distributed in groups: control (CTL), vagotomized (VAG), and sham operated (SHAM). On the 90th day of life, half of the rats were treated daily with 1mg/kg of dexamethasone for 5 days (CTL DEX, VAG DEX, and SHAM DEX). RESULTS In the presence of 8.3mM glucose plus 100microM carbachol (Cch), isolated islets from CTL DEX secreted significantly more insulin than CTL. Cch-enhancement of secretion was further increased in islets from VAG CTL and VAG DEX than SHAM CTL and SHAM DEX, respectively. In CTL DEX islets, M3R and PLCbeta1 and phosphorylated PKCalpha, but not PKCalpha, protein content was significantly higher compared with each respective control. In islets from VAG DEX, the expression of M3R protein increased significantly compared to VAG CTL and SHAM DEX. Vagotomy per se did not affect insulin resistance, but attenuated fasted and fed insulinemia in VAG DEX, compared with SHAM DEX rats. CONCLUSION These data indicate an important participation of the cholinergic nervous system through muscaric receptors in dexamethasone-induced hyperinsulinemia in rats.
Collapse
Affiliation(s)
- Nágela Angelini
- Department of Anatomy, Cellular Biology and Physiology, Institute of Biology, State University of Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|
11
|
|
12
|
Patel MS, Srinivasan M, Laychock SG. Metabolic programming: Role of nutrition in the immediate postnatal life. J Inherit Metab Dis 2009; 32:218-28. [PMID: 19096914 DOI: 10.1007/s10545-008-1033-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/30/2008] [Accepted: 11/06/2008] [Indexed: 01/21/2023]
Abstract
Although genes and dietary habits are generally implicated in the aetiology of the prevailing obesity epidemic, the steep increase in the incidence of obesity within a relatively short span of time suggests that other contributing factors may be at play. The role of nutritional experience during the very early periods of life is increasingly being recognized as contributing to growth and metabolic changes in later life. Epidemiological data and studies from animal models have established a strong correlation between an aberrant intrauterine environment and adult-onset disorders in offspring. The nutritional experience in the immediate postnatal life is another independent factor contributing to the development of metabolic diseases in adulthood. Although studies on the small-litter rat model have shown that overnourishment during the suckling period results in adult-onset metabolic disorders, our studies have shown that a change in the quality of calories-specifically, increased carbohydrate intake by newborn rat pups in the immediate postnatal period-results in chronic hyperinsulinaemia and adult-onset obesity. Several functional alterations in islets and in the hypothalamic energy homeostatic mechanism appear to support this phenotype. Remarkably, female rats that underwent the high-carbohydrate dietary modification as neonates spontaneously transmitted the obesity phenotype to their offspring, thus establishing a vicious generational effect. The high-carbohydrate diet-fed rat model has particular relevance in the context of the current human infant feeding practices: reduction in breast feeding and increase in formula feeding for infants, accompanied by early introduction of carbohydrate-enriched baby foods.
Collapse
Affiliation(s)
- M S Patel
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 140 Farber Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | | | | |
Collapse
|
13
|
des Robert C, Li N, Caicedo R, Frost S, Lane R, Hauser N, Neu J. Metabolic effects of different protein intakes after short term undernutrition in artificially reared infant rats. Early Hum Dev 2009; 85:41-9. [PMID: 18650036 DOI: 10.1016/j.earlhumdev.2008.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 05/08/2008] [Accepted: 06/06/2008] [Indexed: 01/21/2023]
Abstract
BACKGROUND Early postnatal nutrition is involved in metabolic programming. Small for gestational age and premature babies commonly receive insufficient dietary protein during the neonatal period due to nutrition intolerance, whereas high protein formulas are used to achieve catch up growth. Neither the short term, nor the long term effects of such manipulation of protein intake are known. AIM We hypothesized that high or low protein intake during infancy would induce metabolic alterations both during early-life and in adulthood. METHODS Gastrostomized neonatal rat pups received either 50% (P50%), 100% (P100%), or 130% (P130%) of the normal protein content in rat milk from the 7th to the 15th day of life (D7 to D15), when they were either sacrificed or placed with mothers for the long term study. Glucose tolerance tests (GTT) were performed at D230. Long term rats were sacrificed at D250. RESULTS At D15, weight of P50% pups was lower than P100% and P130% pups. Neither liver and kidney mass, nor islet beta-cell areas were altered. Brain weight (adjusted to body weight) was higher in P50% vs. P130% (p<0.05). Insulin/glucose ratio was lower in P50% vs. P130%. Expression of GLUT4 on adipocyte cell membrane and GLUT2 in liver cytosol was significantly enhanced in P50% vs. P130%. Long term, neither GTT results nor body nor organ weights differed between groups. CONCLUSION In neonatal rats, higher protein intakes via the enteral route led to enhanced short term weight gain, insulin resistance, and modified expression of glucose transporters. However, these differences were not sustained.
Collapse
|
14
|
Srinivasan M, Patel MS. Metabolic programming in the immediate postnatal period. Trends Endocrinol Metab 2008; 19:146-52. [PMID: 18329279 DOI: 10.1016/j.tem.2007.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 12/05/2007] [Accepted: 12/14/2007] [Indexed: 11/22/2022]
Abstract
In recent decades, there has been a dramatic increase in the incidence of obesity in all age groups of the population in the USA. In addition to genetics and life style changes, the important role of metabolic programming effects in the etiology of the obesity epidemic is being increasingly recognized. Although the role of a compromised intrauterine environment in fetal metabolic programming is well documented to contribute to the development of adult-onset diseases, vulnerability in the immediate postnatal period to similar conditions has also been shown. Metabolic programming effects induced by altered nutritional experiences in the immediate postnatal period can give rise to long-term consequences in the context of the current obesity epidemic.
Collapse
Affiliation(s)
- Malathi Srinivasan
- Department of Biochemistry, University at Buffalo, The State University of New York, 140 Farber Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | | |
Collapse
|