1
|
Pepin ME, Koentges C, Pfeil K, Gollmer J, Kersting S, Wiese S, Hoffmann MM, Odening KE, von zur Mühlen C, Diehl P, Stachon P, Wolf D, Wende AR, Bode C, Zirlik A, Bugger H. Dysregulation of the Mitochondrial Proteome Occurs in Mice Lacking Adiponectin Receptor 1. Front Endocrinol (Lausanne) 2019; 10:872. [PMID: 31920982 PMCID: PMC6923683 DOI: 10.3389/fendo.2019.00872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022] Open
Abstract
Decreased serum adiponectin levels in type 2 diabetes has been linked to the onset of mitochondrial dysfunction in diabetic complications by impairing AMPK-SIRT1-PGC-1α signaling via impaired adiponectin receptor 1 (AdipoR1) signaling. Here, we aimed to characterize the previously undefined role of disrupted AdipoR1 signaling on the mitochondrial protein composition of cardiac, renal, and hepatic tissues as three organs principally associated with diabetic complications. Comparative proteomics were performed in mitochondria isolated from the heart, kidneys and liver of Adipor1 -/- mice. A total of 790, 1,573, and 1,833 proteins were identified in cardiac, renal and hepatic mitochondria, respectively. While 121, 98, and 78 proteins were differentially regulated in cardiac, renal, and hepatic tissue of Adipor1-/- mice, respectively; only 15 proteins were regulated in the same direction across all investigated tissues. Enrichment analysis of differentially expressed proteins revealed disproportionate representation of proteins involved in oxidative phosphorylation conserved across tissue types. Curated pathway analysis identified HNF4, NRF1, LONP, RICTOR, SURF1, insulin receptor, and PGC-1α as candidate upstream regulators. In high fat-fed non-transgenic mice with obesity and insulin resistance, AdipoR1 gene expression was markedly reduced in heart (-70%), kidney (-80%), and liver (-90%) (all P < 0.05) as compared to low fat-fed mice. NRF1 was the only upstream regulator downregulated both in Adipor1-/- mice and in high fat-fed mice, suggesting common mechanisms of regulation. Thus, AdipoR1 signaling regulates mitochondrial protein composition across all investigated tissues in a functionally conserved, yet molecularly distinct, manner. The biological significance and potential implications of impaired AdipoR1 signaling are discussed.
Collapse
Affiliation(s)
- Mark E. Pepin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christoph Koentges
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
| | - Katharina Pfeil
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Johannes Gollmer
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Sophia Kersting
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany
| | - Michael M. Hoffmann
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Katja E. Odening
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constantin von zur Mühlen
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Diehl
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Stachon
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Adam R. Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christoph Bode
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
- Division of Cardiology, Medical University of Graz, Graz, Austria
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiko Bugger
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
- Division of Cardiology, Medical University of Graz, Graz, Austria
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Heiko Bugger
| |
Collapse
|
2
|
Horton DM, Saint DA, Owens JA, Gatford KL, Kind KL. Use of the hyperinsulinemic euglycemic clamp to assess insulin sensitivity in guinea pigs: dose response, partitioned glucose metabolism, and species comparisons. Am J Physiol Regul Integr Comp Physiol 2017; 313:R19-R28. [PMID: 28438760 DOI: 10.1152/ajpregu.00028.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/06/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022]
Abstract
The guinea pig is an alternate small animal model for the study of metabolism, including insulin sensitivity. However, only one study to date has reported the use of the hyperinsulinemic euglycemic clamp in anesthetized animals in this species, and the dose response has not been reported. We therefore characterized the dose-response curve for whole body glucose uptake using recombinant human insulin in the adult guinea pig. Interspecies comparisons with published data showed species differences in maximal whole body responses (guinea pig ≈ human < rat < mouse) and the insulin concentrations at which half-maximal insulin responses occurred (guinea pig > human ≈ rat > mouse). In subsequent studies, we used concomitant d-[3-3H]glucose infusion to characterize insulin sensitivities of whole body glucose uptake, utilization, production, storage, and glycolysis in young adult guinea pigs at human insulin doses that produced approximately half-maximal (7.5 mU·min-1·kg-1) and near-maximal whole body responses (30 mU·min-1·kg-1). Although human insulin infusion increased rates of glucose utilization (up to 68%) and storage and, at high concentrations, increased rates of glycolysis in females, glucose production was only partially suppressed (~23%), even at high insulin doses. Fasting glucose, metabolic clearance of insulin, and rates of glucose utilization, storage, and production during insulin stimulation were higher in female than in male guinea pigs (P < 0.05), but insulin sensitivity of these and whole body glucose uptake did not differ between sexes. This study establishes a method for measuring partitioned glucose metabolism in chronically catheterized conscious guinea pigs, allowing studies of regulation of insulin sensitivity in this species.
Collapse
Affiliation(s)
- Dane M Horton
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; and
| | - David A Saint
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; and
| | - Julie A Owens
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; and
| | - Kathryn L Gatford
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; and
| | - Karen L Kind
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia; .,School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Kim JT, Yang SM, Lee KH. The effects of an insulin-glucose-potassium (IGK) pretreatment on the bupivacaine cardiotoxicity. Korean J Anesthesiol 2013; 64:47-53. [PMID: 23372886 PMCID: PMC3558649 DOI: 10.4097/kjae.2013.64.1.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/13/2012] [Accepted: 10/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study is to evaluate the effect of an IGK pretreatment on the cardiotoxicity of bupivacaine. METHODS Twenty-one anesthetized mongrel dogs were randomly divided into the following three groups: the control group (CG, n = 7), the treatment group (TG, n = 7) and the pretreatment group (PTG, n = 7). For the 30 min of pretreatment period, CG and TG received normal saline, while PTG received an IV bolus of insulin 2 U/kg, followed by an IGK infusion (2 U/kg/hr of insulin, 0.5-1.5 g/kg/hr of glucose, 1-2 mEq/kg/hr of KCl). The bupivacaine infusion was started at the rate of 0.5 mg/kg/min in all groups after the pretreatment period. CG received normal saline only. In TG, insulin (2 U/kg) was injected simultaneously with bupivacaine infusion, followed by the IGK infusion as with PTG. The hemodynamic variables and the time duration to reach the mean arterial pressure (MAP) of 60 mmHg were compared. RESULTS The bupivacaine infusion decreased the cardiac index, MAP, and heart rate in all three groups. Although insulin concentration was higher in TG than in PTG during bupivacaine infusion, the hemodynamic variables in PTG decreased at the slowest rate. The time taken to reach MAP of 60 mmHg in PTG, TG, and CG was 51.4 ± 8.5, 36.4 ± 9.6, and 27.1 ± 8.7 min, respectively (P < 0.05). CONCLUSIONS IGK delays the bupivacaine-induced cardiac depression. However, a pretreatment with IGK is more effective in delaying the bupivacaine-induced hypotension than simultaneous administration, regardless of insulin concentration.
Collapse
Affiliation(s)
- Jin-Tae Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Korea
| | | | | |
Collapse
|
4
|
Hitomi H, Kaifu K, Fujita Y, Sofue T, Nakano D, Moriwaki K, Hara T, Kiyomoto H, Kohno M, Kobori H, Nishiyama A. Angiotensin II shifts insulin signaling into vascular remodeling from glucose metabolism in vascular smooth muscle cells. Am J Hypertens 2011; 24:1149-55. [PMID: 21716329 DOI: 10.1038/ajh.2011.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND To clarify the role of angiotensin II (Ang II) in insulin-induced arteriosclerosis, we examined the effects of Ang II on insulin-induced mitogen-activated protein (MAP) kinase activation and cellular hypertrophy in rat vascular smooth muscle cells (VSMCs). METHODS Phosphorylated MAP kinases were detected with western blot analysis. Cellular hypertrophy and glucose uptake were evaluated from incorporation of [(3)H]-labeled-leucine and -deoxy-D-glucose, respectively. Cell sizes were measured by Coulter counter. RESULTS While Ang II (100 nmol/l, 18 h) augmented cellular hypertrophy by insulin (10 nmol/l, 24 h), insulin alone did not affect hypertrophy without Ang II pretreatment. Insulin increased p38MAP kinase and c-Jun N-terminal kinase (JNK) phosphorylation; in the presence of Ang II, p38MAP kinase, and JNK were further activated by insulin. Treatment of a p38MAP kinase inhibitor, SB203580 (10 µmol/l), and a JNK inhibitor, SP600125 (20 µmol/l), abrogated the [(3)H]-leucine incorporation by insulin in the presence of Ang II. Both the Ang II receptor blocker, RNH-6270 (100 nmol/l), and an antioxidant, ebselen (40 µmol/l), inhibited vascular cell hypertrophy. Specific depletion of insulin receptor substrate-1 with small interfering RNA increased [(3)H]-leucine incorporation by insulin (10 nmol/l, 24 h); pretreatment with Ang II attenuated insulin (10 nmol/l, 30 min)-induced glucose uptake. CONCLUSIONS Ang II attenuates insulin-stimulated glucose uptake and enhances vascular cell hypertrophy via oxidative stress- and MAP kinase-mediated pathways in VSMCs. Ang II may also cause insulin signaling to diverge from glucose metabolism into vascular remodeling, affecting insulin-induced arteriosclerosis in hypertension.
Collapse
|
5
|
Ogihara N, Kawamura W, Kasuga K, Hayashi Y, Arakawa H, Kikuchi M. Characterization of the portal signal during 24-h glucose delivery in unrestrained, conscious rats. Am J Physiol Endocrinol Metab 2004; 286:E932-40. [PMID: 14709421 DOI: 10.1152/ajpendo.00511.2002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To characterize the "portal signal" during physiological glucose delivery, liver glycogen was measured in unrestrained rats during portal (Po) and peripheral (Pe) constant-rate infusion, with minimal differences in hepatic glucose load (HGL) and portal insulin between the delivery routes. Hepatic blood flows were measured by Doppler flowmetry during open surgery. Changes in hepatic glucose, portal insulin, glucagon, lactate, and free fatty acid concentrations were generally similar in either delivery except for glucagon at 4 h. Hepatic glycogen, however, increased continuously in Po and was higher than Pe at 8 and 24 h, although it decreased to the level of Pe upon the removal of Po at 8 h. There was a near-linear relationship between hepatic glycogen and HGL in either delivery, with the slope being twice as high in Po and the intercepts converging to basal HGL. The hepatic response to Po did not alter upon 80% replacement by Pe. These results suggest that negative arterial-portal glucose gradients increase the rate of hepatic glycogen synthesis against the incremental HGL in an all-or-nothing mode.
Collapse
Affiliation(s)
- N Ogihara
- Department of Endocrinology and Metabolism, Institute for Adult Diseases, Asahi Life Foundation, 1-6-1, Marunouchi, Chiyoda-ku, Tokyo, 100-0005, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Igawa K, Mugavero M, Shiota M, Neal DW, Cherrington AD. Insulin sensitively controls the glucagon response to mild hypoglycemia in the dog. Diabetes 2002; 51:3033-42. [PMID: 12351444 DOI: 10.2337/diabetes.51.10.3033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the present study, we examined how the arterial insulin level alters the alpha-cell response to a fall in plasma glucose in the conscious overnight fasted dog. Each study consisted of an equilibration (-140 to -40 min), a control (-40 to 0 min), and a test period (0 to 180 min), during which BAY R 3401 (10 mg/kg), a glycogen phosphorylase inhibitor, was administered orally to decrease glucose output in each of four groups (n = 5). In group 1, saline was infused. In group 2, insulin was infused peripherally (3.6 pmol. kg(- 1). min(-1)), and the arterial plasma glucose level was clamped to the level seen in group 1. In group 3, saline was infused, and euglycemia was maintained. In group 4, insulin (3.6 pmol. kg(-1). min(-1)) was given, and euglycemia was maintained by glucose infusion. In group 1, drug administration decreased the arterial plasma glucose level (mmol/l) from 5.8 +/- 0.2 (basal) to 5.2 +/- 0.3 and 4.4 +/- 0.3 by 30 and 90 min, respectively (P < 0.01). Arterial plasma insulin levels (pmol/l) and the hepatic portal-arterial difference in plasma insulin (pmol/l) decreased (P < 0.01) from 78 +/- 18 and 90 +/- 24 to 24 +/- 6 and 12 +/- 6 over the first 30 min of the test period. The arterial glucagon levels (ng/l) and the hepatic portal-arterial difference in plasma glucagon (ng/l) rose from 43 +/- 5 and 5 +/- 2 to 51 +/- 5 and 10 +/- 5 by 30 min (P < 0.05) and to 79 +/- 16 and 31 +/- 15 (P < 0.05) by 90 min, respectively. In group 2, in response to insulin infusion, arterial insulin (pmol/l) was elevated from 48 +/- 6 to 132 +/- 6 to an average of 156 +/- 6. The hepatic portal-arterial difference in plasma insulin was eliminated, indicating a complete inhibition of endogenous insulin release. The arterial glucagon level (ng/l) and the hepatic portal-arterial difference in plasma glucagon (ng/l) did not rise significantly (40 +/- 5 and 7 +/- 4 at basal, 44 +/- 4 and 9 +/- 4 at 90 min, and 44 +/- 8 and 15 +/- 7 at 180 min). In group 3, when euglycemia was maintained, the insulin and glucagon levels and the hepatic portal-arterial difference remained constant. In group 4, the arterial plasma glucose level remained basal (5.9 +/- 1.1 mmol/l) throughout, whereas insulin infusion increased the arterial insulin level to an average of 138 +/- 6 pmol/l. The hepatic portal-arterial difference in plasma insulin was again eliminated. Arterial glucagon level (ng/l) and the hepatic portal-arterial difference in plasma glucagon (ng/l) did not change significantly (43 +/- 2 and 9 +/- 2 at basal, 39 +/- 3 and 9 +/- 2 at 90 min, and 37 +/- 3 and 7 +/- 2 at 180 min). Thus, a difference of approximately 120 pmol/l in arterial insulin completely abolished the response of the alpha-cell to mild hypoglycemia.
Collapse
Affiliation(s)
- Kayano Igawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
7
|
Flattem N, Igawa K, Shiota M, Emshwiller MG, Neal DW, Cherrington AD. Alpha- and beta-cell responses to small changes in plasma glucose in the conscious dog. Diabetes 2001; 50:367-75. [PMID: 11272149 DOI: 10.2337/diabetes.50.2.367] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The responses of the pancreatic alpha- and beta-cells to small changes in glucose were examined in overnight-fasted conscious dogs. Each study consisted of an equilibration (-140 to -40 min), a control (-40 to 0 min), and a test period (0 to 180 min), during which BAY R3401 (10 mg/kg), a glycogen phosphorylase inhibitor, was administered orally, either alone to create mild hypoglycemia or with peripheral glucose infusion to maintain euglycemia or create mild hyperglycemia. Drug administration in the hypoglycemic group decreased net hepatic glucose output (NHGO) from 8.9 +/- 1.7 (basal) to 6.0 +/- 1.7 and 5.8 +/- 1.0 pmol x kg(-1) x min(-1) by 30 and 90 min. As a result, the arterial plasma glucose level decreased from 5.8 +/- 0.2 (basal) to 5.2 +/- 0.3 and 4.4 +/- 0.3 mmol/l by 30 and 90 min, respectively (P < 0.01). Arterial plasma insulin levels and the hepatic portal-arterial difference in plasma insulin decreased (P < 0.01) from 78 +/- 18 and 90 +/- 24 to 24 +/- 6 and 12 +/- 12 pmol/l over the first 30 min of the test period and decreased to 18 +/- 6 and 0 pmol/l by 90 min, respectively. The arterial glucagon levels and the hepatic portal-arterial difference in plasma glucagon increased from 43 +/- 5 and 4 +/- 2 to 51 +/- 5 and 10 +/- 5 ng/l by 30 min (P < 0.05) and to 79 +/- 16 and 31 +/- 15 ng/l by 90 min (P < 0.05), respectively. In euglycemic dogs, the arterial plasma glucose level remained at 5.9 +/- 0.1 mmol/l, and the NHGO decreased from 10 +/- 0.6 to -3.3 +/- 0.6 pmol x kg(-1) x min(-1) (180 min). The insulin and glucagon levels and the hepatic portal-arterial differences remained constant. In hyperglycemic dogs, the arterial plasma glucose level increased from 5.9 +/- 0.2 to 6.2 +/- 0.2 mmol/l by 30 min, and the NHGO decreased from 10 +/- 1.7 to 0 pmol x kg(-1) x min(-1) by 30 min. The arterial plasma insulin levels and the hepatic portal-arterial difference in plasma insulin increased from 60 +/- 18 and 78 +/- 24 to 126 +/- 30 and 192 +/- 42 pmol/l by 30 min, after which they averaged 138 +/- 24 and 282 +/- 30 pmol/l, respectively. The arterial plasma glucagon levels and the hepatic portal-arterial difference in plasma glucagon decreased slightly from 41 +/- 7 and 4 +/- 3 to 34 +/- 7 and 3 +/- 2 ng/l during the test period. These data show that the alpha- and beta-cells of the pancreas respond as a coupled unit to very small decreases in the plasma glucose level.
Collapse
Affiliation(s)
- N Flattem
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
8
|
Matsuda M, Mandarino L, DeFronzo RA. Synergistic interaction of magnesium and vanadate on glucose metabolism in diabetic rats. Metabolism 1999; 48:725-31. [PMID: 10381146 DOI: 10.1016/s0026-0495(99)90171-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effect of vanadate (V) alone, magnesium (Mg) alone, and the combination of Mg plus V (MgV) on insulin-mediated glucose disposal and glucose tolerance was investigated in normal and streptozotocin-induced diabetic rats. MgV, magnesium sulfate (MgSO4) and sodium metavanadate (NaV) were added to the drinking water of normal or diabetic rats (approximately 300 g) for 3 weeks. After 3 weeks of V treatment (both MgV and NaV), diabetic rats demonstrated a normal meal tolerance test without any increase in the plasma insulin response. Rats also received a euglycemic insulin clamp (12 mU/kg x min for 120 minutes) with 3-3H-glucose infusion to quantify total body glucose disposal, glycolysis (3H2O production), and glycogen synthesis (total body glucose disposal minus glycolysis). Total glucose disposal was decreased in diabetic versus control rats (29 +/- 2 v 35 +/- 2 mg/kg x min, P < .01) and returned to levels greater than the nondiabetic control values after MgV (41 +/- 2, P < .01). Supersensitivity to insulin was not observed in diabetic rats treated with NaV (34 +/- 1). Glycogen synthesis was increased by both MgV and NaV treatment (23 +/- 21, P < .01 and 18 +/- 1, P < .05 v 14 +/- 2 mg/kg x min) in diabetic rats. A small increase in glycolysis was observed in MgSO4 and MgV rats (18 +/- 1 and 18 +/- 1 v 16 +/- 1, P < .05). NaV alone had no effect on glycolysis. Thus, Mg has a synergistic effect with V to increase muscle glycogen synthesis in diabetic rats. In normal rats, neither MgSO4 nor NaV had any effect on glucose utilization. However, MgV increased glucose disposal to rates that were significantly higher than the rate in untreated control rats (P < .05). Based on these results, MgV is superior to either V alone or Mg alone in improving insulin sensitivity and glycogen synthesis in diabetic rats.
Collapse
Affiliation(s)
- M Matsuda
- Department of Medicine, University of Texas Health Science Center at San Antonio, 78284, USA
| | | | | |
Collapse
|