1
|
Ni R, Li Z, Li L, Peng D, Ming Y, Li L, Liu Y. Rethinking glutamine metabolism and the regulation of glutamine addiction by oncogenes in cancer. Front Oncol 2023; 13:1143798. [PMID: 36959802 PMCID: PMC10029103 DOI: 10.3389/fonc.2023.1143798] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Glutamine, the most abundant non-essential amino acid in human blood, is crucial for cancer cell growth and cancer progression. Glutamine mainly functions as a carbon and nitrogen source for biosynthesis, energy metabolism, and redox homeostasis maintenance in cancer cells. Dysregulated glutamine metabolism is a notable metabolic characteristic of cancer cells. Some carcinogen-driven cancers exhibit a marked dependence on glutamine, also known as glutamine addiction, which has rendered the glutamine metabolic pathway a breakpoint in cancer therapeutics. However, some cancer cells can adapt to the glutamine unavailability by reprogramming metabolism, thus limiting the success of this therapeutic approach. Given the complexity of metabolic networks and the limited impact of inhibiting glutamine metabolism alone, the combination of glutamine metabolism inhibition and other therapeutic methods may outperform corresponding monotherapies in the treatment of cancers. This review summarizes the uptake, transport, and metabolic characteristics of glutamine, as well as the regulation of glutamine dependence by some important oncogenes in various cancers to emphasize the therapeutic potential of targeting glutamine metabolism. Furthermore, we discuss a glutamine metabolic pathway, the glutaminase II pathway, that has been substantially overlooked. Finally, we discuss the applicability of polytherapeutic strategies targeting glutamine metabolism to provide a new perspective on cancer therapeutics.
Collapse
Affiliation(s)
- Rui Ni
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziwei Li
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Li
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Peng
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Ming
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Li
- Department of pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Lin Li, ; Yao Liu,
| | - Yao Liu
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Lin Li, ; Yao Liu,
| |
Collapse
|
2
|
Vanweert F, Schrauwen P, Phielix E. Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes. Nutr Diabetes 2022; 12:35. [PMID: 35931683 PMCID: PMC9356071 DOI: 10.1038/s41387-022-00213-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
Branched-chain amino acid (BCAA) catabolism has been considered to have an emerging role in the pathogenesis of metabolic disturbances in obesity and type 2 diabetes (T2D). Several studies showed elevated plasma BCAA levels in humans with insulin resistance and patients with T2D, although the underlying reason is unknown. Dysfunctional BCAA catabolism could theoretically be an underlying factor. In vitro and animal work collectively show that modulation of the BCAA catabolic pathway alters key metabolic processes affecting glucose homeostasis, although an integrated understanding of tissue-specific BCAA catabolism remains largely unknown, especially in humans. Proof-of-concept studies in rodents -and to a lesser extent in humans – strongly suggest that enhancing BCAA catabolism improves glucose homeostasis in metabolic disorders, such as obesity and T2D. In this review, we discuss several hypothesized mechanistic links between BCAA catabolism and insulin resistance and overview current available tools to modulate BCAA catabolism in vivo. Furthermore, this review considers whether enhancing BCAA catabolism forms a potential future treatment strategy to promote metabolic health in insulin resistance and T2D.
Collapse
Affiliation(s)
- Froukje Vanweert
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Perinatal supplementation of 4-phenylbutyrate and glutamine attenuates endoplasmic reticulum stress and improves colonic epithelial barrier function in rats born with intrauterine growth restriction. J Nutr Biochem 2018; 55:104-112. [DOI: 10.1016/j.jnutbio.2017.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|
4
|
A randomized trial to study the comparative efficacy of phenylbutyrate and benzoate on nitrogen excretion and ureagenesis in healthy volunteers. Genet Med 2017; 20:708-716. [PMID: 29693650 PMCID: PMC5924481 DOI: 10.1038/gim.2017.167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Benzoate and phenylbutyrate are widely used in the treatment of urea cycle disorders, but detailed studies on pharmacokinetics and comparative efficacy on nitrogen excretion are lacking. METHODS We conducted a randomized, three-arm, crossover trial in healthy volunteers to study pharmacokinetics and comparative efficacy of phenylbutyrate (NaPB; 7.15 g•m-2BSA•day-1), benzoate (NaBz; 5.5 g•m-2BSA•day-1), and a combination of two medications (MIX arm; 3.575 g NaPB and 2.75 g NaBz•m-2BSA•day-1) on nitrogen excretion. Stable isotopes were used to study effects on urea production and dietary nitrogen disposal. RESULTS The conjugation efficacy for both phenylbutyrate and benzoate was 65%; conjugation was superior at the lower dose used in the MIX arm. Whereas NaPB and MIX treatments were more effective at excreting nitrogen than NaBz, nitrogen excretion as a drug conjugate was similar between phenylbutyrate and MIX arms. Nitrogen excreted per USD was higher with combination therapy compared with NaPB. CONCLUSION Phenylbutyrate was more effective than benzoate at disposing nitrogen. Increasing phenylbutyrate dose may not result in higher nitrogen excretion due to decreased conjugation efficiency at higher doses. Combinatorial therapy with phenylbutyrate and benzoate has the potential to significantly decrease treatment cost without compromising the nitrogen disposal efficacy.
Collapse
|
5
|
Abstract
Glutamine, reviewed extensively in the last century, is a key substrate for the splanchnic bed in the whole body and is a nutrient of particular interest in gastrointestinal research. A marked decrease in the plasma glutamine concentration has recently been observed in neonates and adults during acute illness and stress. Although some studies in newborns have shown parenteral and enteral supplementation with glutamine to be of benefit (by decreasing proteolysis and activating the immune system), clinical trials have not demonstrated prolonged advantages such as reductions in mortality or risk of infections in adults. In addition, glutamine is not able to combat the muscle wasting associated with disease or age-related sarcopenia. Oral glutamine supplementation initiated before advanced age in rats increases gut mass and improves the villus height of mucosa, thereby preventing the gut atrophy encountered in advanced age. Enterocytes from very old rats continuously metabolize glutamine into citrulline, which allowed, for the first time, the use of citrulline as a noninvasive marker of intestinal atrophy induced by advanced age.
Collapse
Affiliation(s)
- Dominique Meynial-Denis
- D. Meynial-Denis is with the Unit of Human Nutrition (UNH), French National Institute for Agricultural Research (INRA), Joint Research Unit (UMR) 1019, Center for Research in Human Nutrition (CRNH) Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
6
|
Matoori S, Leroux JC. Recent advances in the treatment of hyperammonemia. Adv Drug Deliv Rev 2015; 90:55-68. [PMID: 25895618 DOI: 10.1016/j.addr.2015.04.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/30/2015] [Accepted: 04/13/2015] [Indexed: 02/07/2023]
Abstract
Ammonia is a neurotoxic agent that is primarily generated in the intestine and detoxified in the liver. Toxic increases in systemic ammonia levels predominantly result from an inherited or acquired impairment in hepatic detoxification and lead to potentially life-threatening neuropsychiatric symptoms. Inborn deficiencies in ammonia detoxification mainly affect the urea cycle, an endogenous metabolic removal system in the liver. Hepatic encephalopathy, on the other hand, is a hyperammonemia-related complication secondary to acquired liver function impairment. A range of therapeutic options is available to target either ammonia generation and absorption or ammonia removal. Therapies for hepatic encephalopathy decrease intestinal ammonia production and uptake. Treatments for urea cycle disorders eliminate ammoniagenic amino acids through metabolic transformation, preventing ammonia generation. Therapeutic approaches removing ammonia activate the urea cycle or the second essential endogenous ammonia detoxification system, glutamine synthesis. Recent advances in treating hyperammonemia include using synergistic combination treatments, broadening the indication of orphan drugs, and developing novel approaches to regenerate functional liver tissue. This manuscript reviews the various pharmacological treatments of hyperammonemia and focuses on biopharmaceutical and drug delivery issues.
Collapse
|
7
|
Burrage LC, Jain M, Gandolfo L, Lee BH, Nagamani SCS. Sodium phenylbutyrate decreases plasma branched-chain amino acids in patients with urea cycle disorders. Mol Genet Metab 2014; 113:131-5. [PMID: 25042691 PMCID: PMC4177960 DOI: 10.1016/j.ymgme.2014.06.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 12/18/2022]
Abstract
Sodium phenylbutyrate (NaPBA) is a commonly used medication for the treatment of patients with urea cycle disorders (UCDs). Previous reports involving small numbers of patients with UCDs have shown that NaPBA treatment can result in lower plasma levels of the branched-chain amino acids (BCAA) but this has not been studied systematically. From a large cohort of patients (n=553) with UCDs enrolled in the Longitudinal Study of Urea Cycle Disorders, a collaborative multicenter study of the Urea Cycle Disorders Consortium, we evaluated whether treatment with NaPBA leads to a decrease in plasma BCAA levels. Our analysis shows that NaPBA use independently affects the plasma BCAA levels even after accounting for multiple confounding covariates. Moreover, NaPBA use increases the risk for BCAA deficiency. This effect of NaPBA seems specific to plasma BCAA levels, as levels of other essential amino acids are not altered by its use. Our study, in an unselected population of UCD subjects, is the largest to analyze the effects of NaPBA on BCAA metabolism and potentially has significant clinical implications. Our results indicate that plasma BCAA levels should to be monitored in patients treated with NaPBA since patients taking the medication are at increased risk for BCAA deficiency. On a broader scale, these findings could open avenues to explore NaPBA as a therapy in maple syrup urine disease and other common complex disorders with dysregulation of BCAA metabolism.
Collapse
Affiliation(s)
- Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mahim Jain
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Howard Hughes Medical Institute, Houston, TX, USA
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Abstract
The metabolic adaptations that support oncogenic growth can also render cancer cells dependent on certain nutrients. Along with the Warburg effect, increased utilization of glutamine is one of the metabolic hallmarks of the transformed state. Glutamine catabolism is positively regulated by multiple oncogenic signals, including those transmitted by the Rho family of GTPases and by c-Myc. The recent identification of mechanistically distinct inhibitors of glutaminase, which can selectively block cellular transformation, has revived interest in the possibility of targeting glutamine metabolism in cancer therapy. Here, we outline the regulation and roles of glutamine metabolism within cancer cells and discuss possible strategies for, and the consequences of, impacting these processes therapeutically.
Collapse
|
9
|
Marini JC, Lanpher BC, Scaglia F, O'Brien WE, Sun Q, Garlick PJ, Jahoor F, Lee B. Phenylbutyrate improves nitrogen disposal via an alternative pathway without eliciting an increase in protein breakdown and catabolism in control and ornithine transcarbamylase-deficient patients. Am J Clin Nutr 2011; 93:1248-54. [PMID: 21490144 PMCID: PMC3095500 DOI: 10.3945/ajcn.110.009043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Phenylbutyrate is a drug used in patients with urea cycle disorder to elicit alternative pathways for nitrogen disposal. However, phenylbutyrate administration decreases plasma branched-chain amino acid (BCAA) concentrations, and previous research suggests that phenylbutyrate administration may increase leucine oxidation, which would indicate increased protein degradation and net protein loss. OBJECTIVE We investigated the effects of phenylbutyrate administration on whole-body protein metabolism, glutamine, leucine, and urea kinetics in healthy and ornithine transcarbamylase-deficient (OTCD) subjects and the possible benefits of BCAA supplementation during phenylbutyrate therapy. DESIGN Seven healthy control and 7 partial-OTCD subjects received either phenylbutyrate or no treatment in a crossover design. In addition, the partial-OTCD and 3 null-OTCD subjects received phenylbutyrate and phenylbutyrate plus BCAA supplementation. A multitracer protocol was used to determine the whole-body fluxes of urea and amino acids of interest. RESULTS Phenylbutyrate administration reduced ureagenesis by ≈15% without affecting the fluxes of leucine, tyrosine, phenylalanine, or glutamine and the oxidation of leucine or phenylalanine. The transfer of (15)N from glutamine to urea was reduced by 35%. However, a reduction in plasma concentrations of BCAAs due to phenylbutyrate treatment was observed. BCAA supplementation did not alter the respective baseline fluxes. CONCLUSIONS Prolonged phenylbutyrate administration reduced ureagenesis and the transfer of (15)N from glutamine to urea without parallel reductions in glutamine flux and concentration. There were no changes in total-body protein breakdown and amino acid catabolism, which suggests that phenylbutyrate can be used to dispose of nitrogen effectively without adverse effects on body protein economy.
Collapse
Affiliation(s)
- Juan C Marini
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Shelton LM, Huysentruyt LC, Seyfried TN. Glutamine targeting inhibits systemic metastasis in the VM-M3 murine tumor model. Int J Cancer 2010; 127:2478-85. [PMID: 20473919 DOI: 10.1002/ijc.25431] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metastatic cancer is a major cause of morbidity and mortality. Current therapeutic options consist of chemotherapy, radiation or targeted therapies. However, these therapies are often toxic, effective over a small range of cancer types or result in drug resistance. Therefore, a more global, less toxic strategy for the management of metastatic cancer is required. Although most cancers display increased glucose metabolism, glutamine is also a major energy substrate for many cancers. We evaluated the antimetastatic potential of 6-diazo-5-oxo-L-norleucine (DON), a glutamine analog, using the new VM mouse model of systemic metastasis. We found that primary tumor growth was ∼20-fold less in DON-treated mice than in untreated control mice. We also found that DON treatment inhibited metastasis to liver, lung and kidney as detected by bioluminescence imaging and histology. Our findings provide proof of concept that metabolic therapies targeting glutamine metabolism can manage systemic metastatic cancer.
Collapse
Affiliation(s)
- Laura M Shelton
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | |
Collapse
|
11
|
Scaglia F. New insights in nutritional management and amino acid supplementation in urea cycle disorders. Mol Genet Metab 2010; 100 Suppl 1:S72-6. [PMID: 20299258 PMCID: PMC4831209 DOI: 10.1016/j.ymgme.2010.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/23/2010] [Indexed: 01/09/2023]
Abstract
Sodium phenylbutyrate is used in the pharmacological treatment of urea cycle disorders to create alternative pathways for nitrogen excretion. The primary metabolite, phenylacetate, conjugates glutamine in the liver and kidney to form phenylacetylglutamine that is readily excreted in the urine. Patients with urea cycle disorders taking sodium phenylbutyrate have a selective reduction in the plasma concentrations of branched chain amino acids despite adequate dietary protein intake. Moreover, this depletion is usually the harbinger of a metabolic crisis. Plasma branched chain amino acids and other essential amino acids were measured in control subjects, untreated ornithine transcarbamylase deficiency females, and treated patients with urea cycle disorders (ornithine transcarbamylase deficiency and argininosuccinate synthetase deficiency) in the absorptive state during the course of stable isotope studies. Branched chain amino acid levels were significantly lower in treated patients with urea cycle disorders when compared to untreated ornithine transcarbamylase deficiency females or control subjects. These results were replicated in control subjects who had low steady-state branched chain amino acid levels when treated with sodium phenylbutyrate. These studies suggested that alternative pathway therapy with sodium phenylbutyrate causes a substantial impact on the metabolism of branched chain amino acids in patients with urea cycle disorders, implying that better titration of protein restriction can be achieved with branched chain amino acid supplementation in these patients who are on alternative pathway therapy.
Collapse
Affiliation(s)
- Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Bachmann C. Interpretation of plasma amino acids in the follow-up of patients: the impact of compartmentation. J Inherit Metab Dis 2008; 31:7-20. [PMID: 18236169 DOI: 10.1007/s10545-007-0772-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 12/07/2007] [Accepted: 12/12/2007] [Indexed: 12/17/2022]
Abstract
Results of plasma or urinary amino acids are used for suspicion, confirmation or exclusion of diagnosis, monitoring of treatment, prevention and prognosis in inborn errors of amino acid metabolism. The concentrations in plasma or whole blood do not necessarily reflect the relevant metabolite concentrations in organs such as the brain or in cell compartments; this is especially the case in disorders that are not solely expressed in liver and/or in those which also affect nonessential amino acids. Basic biochemical knowledge has added much to the understanding of zonation and compartmentation of expressed proteins and metabolites in organs, cells and cell organelles. In this paper, selected old and new biochemical findings in PKU, urea cycle disorders and nonketotic hyperglycinaemia are reviewed; the aim is to show that integrating the knowledge gained in the last decades on enzymes and transporters related to amino acid metabolism allows a more extensive interpretation of biochemical results obtained for diagnosis and follow-up of patients and may help to pose new questions and to avoid pitfalls. The analysis and interpretation of amino acid measurements in physiological fluids should not be restricted to a few amino acids but should encompass the whole quantitative profile and include other pathophysiological markers. This is important if the patient appears not to respond as expected to treatment and is needed when investigating new therapies. We suggest that amino acid imbalance in the relevant compartments caused by over-zealous or protocol-driven treatment that is not adjusted to the individual patient's needs may prolong catabolism and must be corrected.
Collapse
Affiliation(s)
- Claude Bachmann
- Clinical Chemistry, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
13
|
Rougé C, Des Robert C, Robins A, Le Bacquer O, Volteau C, De La Cochetière MF, Darmaun D. Manipulation of citrulline availability in humans. Am J Physiol Gastrointest Liver Physiol 2007; 293:G1061-7. [PMID: 17901164 DOI: 10.1152/ajpgi.00289.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To determine whether circulating citrulline can be manipulated in vivo in humans, and, if so, whether citrulline availability affects the levels of related amino acids, nitric oxide, urinary citrulline, and urea nitrogen, 10 healthy volunteers were studied on 3 separate days: 1) under baseline conditions; 2) after a 24-h treatment with phenylbutyrate (0.36 g.kg(-1).day(-1)), a glutamine "trapping" agent; and 3) during oral L-citrulline supplementation (0.18 g.kg(-1).day(-1)), in randomized order. Plasma, erythrocyte (RBC), and urinary citrulline concentrations were determined by gas chromatography-mass spectrometry at 3-h intervals between 1100 and 2000 on each study day. Regardless of treatment, RBC citrulline was lower than plasma citrulline, with an RBC-to-plasma ratio of 0.60 +/- 0.04, and urinary citrulline excretion accounted for <1% of the citrulline load filtered by kidney. Phenylbutyrate induced an approximately 7% drop in plasma glutamine (P = 0.013), and 18 +/- 14% (P < 0.0001) and 19 +/- 17% (P < 0.01) declines in plasma and urine citrulline, respectively, with no alteration in RBC citrulline. Oral L-citrulline administration was associated with 1) a rise in plasma, urine, and RBC citrulline (39 +/- 4 vs. 225 +/- 44 micromol/l, 0.9 +/- 0.3 vs. 6.2 +/- 3.8 micromol/mmol creatinine, and 23 +/- 1 vs. 52 +/- 9 micromol/l, respectively); and 2) a doubling in plasma arginine level, without altering blood urea or urinary urea nitrogen excretion, and thus enhanced nitrogen balance. We conclude that 1) depletion of glutamine, the main precursor of citrulline, depletes plasma citrulline; 2) oral citrulline can be used to enhance systemic citrulline and arginine availability, because citrulline is bioavailable and very little citrulline is lost in urine; and 3) further studies are warranted to determine the mechanisms by which citrulline may enhance nitrogen balance in vivo in humans.
Collapse
Affiliation(s)
- Carole Rougé
- UMR 1280, Physiologie des Adaptations Nutritionnelles, Centre de Recherche en Nutrition Humaine, Hotel-Dieu Hospital, Nantes Cedex 1, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Ammerpohl O, Trauzold A, Schniewind B, Griep U, Pilarsky C, Grutzmann R, Saeger HD, Janssen O, Sipos B, Kloppel G, Kalthoff H. Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cells. Br J Cancer 2006; 96:73-81. [PMID: 17164759 PMCID: PMC2360208 DOI: 10.1038/sj.bjc.6603511] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease and one of the cancer entities with the lowest life expectancy. Beside surgical therapy, no effective therapeutic options are available yet. Here, we show that 4-phenylbutyrate (4-PB), a known and well-tolerable inhibitor of histone deacetylases (HDAC), induces up to 70% apoptosis in all cell lines tested (Panc 1, T4M-4, COLO 357, BxPc3). In contrast, it leads to cell cycle arrest in only half of the cell lines tested. This drug increases gap junction communication between adjacent T3M-4 cells in a concentration-dependent manner and efficiently inhibits cellular export mechanisms in Panc 1, T4M-4, COLO 357 and BxPc3 cells. Consequently, in combination with gemcitabine 4-PB shows an overadditive effect on induction of apoptosis in BxPc3 and T3M-4 cells (up to 4.5-fold compared to single drug treatment) with accompanied activation of Caspase 8, BH3 interacting domain death agonist (Bid) and poly (ADP-ribose) polymerase family, member 1 (PARP) cleavage. Although the inhibition of the mitogen-activated protein kinase-pathway has no influence on fulminant induction of apoptosis, the inhibition of the JNK-pathway by SP600125 completely abolishes the overadditive effect induced by the combined application of both drugs, firstly reported by this study.
Collapse
Affiliation(s)
- O Ammerpohl
- Section Molecular Oncology, Clinic for General Surgery and Thoracic Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller Strasse 7, Kiel 24105, Germany
| | - A Trauzold
- Section Molecular Oncology, Clinic for General Surgery and Thoracic Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller Strasse 7, Kiel 24105, Germany
| | - B Schniewind
- Section Molecular Oncology, Clinic for General Surgery and Thoracic Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller Strasse 7, Kiel 24105, Germany
| | - U Griep
- Section Molecular Oncology, Clinic for General Surgery and Thoracic Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller Strasse 7, Kiel 24105, Germany
| | - C Pilarsky
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden 01307, Germany
| | - R Grutzmann
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden 01307, Germany
| | - H-D Saeger
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden 01307, Germany
| | - O Janssen
- Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | - B Sipos
- Institute of Pathology, University Hospital Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | - G Kloppel
- Institute of Pathology, University Hospital Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | - H Kalthoff
- Section Molecular Oncology, Clinic for General Surgery and Thoracic Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller Strasse 7, Kiel 24105, Germany
- E-mail:
| |
Collapse
|
15
|
Le Bacquer O, Mauras N, Welch S, Haymond M, Darmaun D. Acute depletion of plasma glutamine increases leucine oxidation in prednisone-treated humans. Clin Nutr 2006; 26:231-8. [PMID: 17097772 PMCID: PMC1949027 DOI: 10.1016/j.clnu.2006.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 08/26/2006] [Accepted: 09/27/2006] [Indexed: 11/26/2022]
Abstract
BACKGROUND, AIMS & METHODS To determine whether depletion in plasma glutamine worsens the catabolic response to corticosteroids, seven healthy volunteers received oral prednisone for 6 days on two separate occasions, at least 2 weeks apart, and in random order. On the sixth day of each treatment course, they received 5 h intravenous infusions of L-[1-(14)C]-leucine and L-[1-(13)C]-glutamine in the postabsorptive state (1) under baseline conditions (prednisone only day) and (2) after 24h of treatment with phenylbutyrate (prednisone+phenylbutyrate day), a glutamine chelating agent. RESULTS Phenylbutyrate treatment was associated with (1) an approximately 15% decline in plasma glutamine concentration (627+/-39 vs. 530+/-31 micromol l(-1); P<0.05), (2) no change in leucine appearance rate, an index of protein breakdown (124+/-9 vs. 128+/-9 micromol kg(-1) h(-1); NS) nor in non-oxidative leucine disposal, an index of whole body protein synthesis (94+/-9 vs. 91+/-7 micromol kg(-1) h(-1); NS), and (3) a approximately 25% rise in leucine oxidation (30+/-1 vs. 38+/-2 micromol kg(-1) h(-1), P<0.05), despite an approximately 25% decline (P<0.05) in leucine concentration. CONCLUSIONS In a model of mild, stress-induced protein catabolism, depletion of plasma glutamine per se may worsen branched chain amino acid and protein wasting.
Collapse
Affiliation(s)
| | - Nelly Mauras
- Division of Endocrinology, Nemours Children’s Clinic, Jacksonville, Florida
| | - Susan Welch
- Division of Endocrinology, Nemours Children’s Clinic, Jacksonville, Florida
| | - Morey Haymond
- USDA Children’s Nutrition Research Center at Baylor College of Medicine, Houston, Texas
| | - Dominique Darmaun
- Division of Endocrinology, Nemours Children’s Clinic, Jacksonville, Florida
- INSERM U.539, Centre de Recherche en Nutrition Humaine, Nantes, France
| |
Collapse
|
16
|
Camacho LH, Olson J, Tong WP, Young CW, Spriggs DR, Malkin MG. Phase I dose escalation clinical trial of phenylbutyrate sodium administered twice daily to patients with advanced solid tumors. Invest New Drugs 2006; 25:131-8. [PMID: 17053987 DOI: 10.1007/s10637-006-9017-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 09/25/2006] [Indexed: 12/11/2022]
Abstract
BACKGROUND Phenylbutyrate (PBA), and its metabolite phenylacetate (PAA), induce growth inhibition and cellular differentiation in multiple tumor models. However, despite their potential anti-cancer properties, several pharmacodynamic aspects remain unknown. METHODS We conducted a dose escalating trial to evaluate twice-daily intravenous PBA infusions for two consecutive weeks (Monday through Friday) every month at five dose levels (60-360 mg/kg/day). Twenty-one patients with the following malignancies were treated: colon carcinoma 4, non-small cell lung carcinoma 4; anaplastic astrocytoma 3, glioblastoma multiforme 3, bladder carcinoma 2, sarcoma 2, and ovarian carcinoma, rectal hemangiopericytoma, and pancreatic carcinoma 1 each. RESULTS Conversion of PBA to PAA and phenylacetylglutamine (PAG) was documented without catabolic saturation. Plasma content of PBA > or =1 mM was documented for only 3 h following each dose at the top two dosages. The therapy was well tolerated overall. Common adverse effects included grade 1 nausea/vomiting, fatigue, and lightheadedness. Dose limiting toxicities were short-term memory loss, sedation, confusion, nausea, and vomiting. Two patients with anaplastic astrocytoma and a patient with glioblastoma remained stable without tumor progression for 5, 7, and 4 months respectively. CONCLUSIONS Administration of PBA in a twice-daily infusion schedule is safe. The maximum tolerated dose is 300 mg/kg/day. Study designs with more convenient treatment schedules and specific molecular correlates may help to further delineate the mechanism of action of this compound. Future studies evaluating PBA's ability to induce histone acetylation and cell differentiation alone or in combination with other anti-neoplastics are recommended.
Collapse
Affiliation(s)
- Luis H Camacho
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, Joan and Sanford I. Weill Medical College of Cornell Medical Center, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
17
|
Meynial-Denis D, Verdier L, Mignon M, Leclerc JN, Bayle G, Darmaun D. Does acute glutamine depletion enhance the response of glutamine synthesis to fasting in muscle in adult and old rats? Clin Nutr 2005; 24:398-406. [PMID: 15896426 DOI: 10.1016/j.clnu.2004.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2004] [Accepted: 12/17/2004] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS In earlier studies, skeletal muscle glutamine synthetase (GS) activity was shown to be enhanced by fasting and glucocorticoids, and inhibited by exogenous glutamine (Gln) supplementation. The current study was designed to determine whether phenylbutyrate (PhiB), a Gln-chelating agent in humans, (1) could trap Gln and produce a decline in plasma Gln in rats, as it does in humans, and (2) if so, whether (Phi)B would further enhance the response of muscle GS activity to fasting in rats. METHODS Adult (6-8 months) and aged (20-21 months) rats were fasted for 5 days and received two doses of 0.5 g(Phi)Bby orogastric route at times 0 and 4 h, and were then sacrificed at 5.5 h. Plasma Gln was measured by enzymatic methods, other amino acids were quantified by amino acid analysis. GS activity was measured in soleus (SO) and tibialis anterior (TA) muscles. RESULTS (Phi)B treatment was associated with: (1) a 20% decline in plasma Gln concentration from 572+/-54 to 424+/-34 micromol/L (P<0.05) and from 476+/-49 to 360+/-80 micromol/L (P<0.05) in fasted adult and old rats, respectively; and (2) a preservation of GS up-regulation by fasting in TA and SO muscles in both adult and aged rats, with TA muscle GS activities of 198+/-65 vs. 203+/-68 ((Phi)B-treated vs. vehicle-treated, NS), and 244+/-81 vs. 274+/-59 (NS) nmol/h/mg protein in adult and aged rats, respectively. CONCLUSION These data suggest that: (1) large doses of (Phi)B deplete plasma Gln in fasted rats, regardless of age, (2) Gln depletion induced by Phi)B does not alter GS activity.
Collapse
Affiliation(s)
- Dominique Meynial-Denis
- Human Nutrition Research Center at Clermont-Ferrand, and Institut National de la Recherche Agronomique, Nutrition and Protein Metabolism Unit, Theix, 63122 Saint Genès Champanelle, France.
| | | | | | | | | | | |
Collapse
|
18
|
Patterson BW, Horowitz JF, Wu G, Watford M, Coppack SW, Klein S. Regional muscle and adipose tissue amino acid metabolism in lean and obese women. Am J Physiol Endocrinol Metab 2002; 282:E931-6. [PMID: 11882515 DOI: 10.1152/ajpendo.00359.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of obesity on regional skeletal muscle and adipose tissue amino acid metabolism is not known. We evaluated systemic and regional (forearm and abdominal subcutaneous adipose tissue) amino acid metabolism, by use of a combination of stable isotope tracer and arteriovenous balance methods, in five lean women [body mass index (BMI) <25 kg/m(2)] and five women with abdominal obesity (BMI 35.0-39.9 kg/m(2); waist circumference >100 cm) who were matched on fat-free mass (FFM). All subjects were studied at 22 h of fasting to ensure that the subjects were in net protein breakdown during this early phase of starvation. Leucine rate of appearance in plasma (an index of whole body proteolysis), expressed per unit of FFM, was not significantly different between lean and obese groups (2.05 +/- 0.18 and 2.34 +/- 0.04 micromol x kg FFM(-1) x min(-1), respectively). However, the rate of leucine release from forearm and adipose tissues in obese women (24.0 +/- 4.8 and 16.6 +/- 6.5 nmol x 100 g(-1) x min(-1), respectively) was lower than in lean women (66.8 +/- 10.6 and 38.6 +/- 7.0 nmol x 100 g(-1) x min(-1), respectively; P < 0.05). Approximately 5-10% of total whole body leucine release into plasma was derived from adipose tissue in lean and obese women. The results of this study demonstrate that the rate of release of amino acids per unit of forearm and adipose tissue at 22 h of fasting is lower in women with abdominal obesity than in lean women, which may help obese women decrease body protein losses during fasting. In addition, adipose tissue is a quantitatively important site for proteolysis in both lean and obese subjects.
Collapse
Affiliation(s)
- Bruce W Patterson
- Center for Human Nutrition and Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
19
|
Humbert B, Bleis P, Martin L, Dumon H, Darmaun D, Nguyen P. Effects of dietary protein restriction and amino acids deficiency on protein metabolism in dogs. J Anim Physiol Anim Nutr (Berl) 2001; 85:255-62. [PMID: 11686798 DOI: 10.1046/j.1439-0396.2001.00324.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although stable isotope methods have been used to revisit the protein and amino acid requirements of humans in the last two decades, estimates of the minimum protein requirement of the dog have mainly been based on nitrogen balance studies. The aim of this study was: (i) to assess dog protein metabolism using the (13)C-leucine method, and (ii) to test the effects of protein deprivation and amino acid deficiency on protein metabolism. Eight dogs were fed three consecutive diets: (i) a normoprotein regimen [control; 63 g crude protein (CP)/Mcal metabolizable energy (ME)]; (ii) a protein-restricted diet (PR; 32 g CP/Mcal ME); and (iii) a protein-restricted diet that was, in addition, deficient in lysine and tryptophan (D-PR; 31 g CP/Mcal ME). The energy supply was similar for the three diets. The dogs were adapted to each diet for 2 weeks. After a 24 h fasting period, a 3 h infusion of (13)C-bicarbonate was performed, followed by a 3 h continuous infusion of L-[1-(13)C]leucine. Blood and breath samples were collected before and during the last hour of each isotope infusion for determination of plasma (13)C-alpha-ketoisocaproate and breath (13)CO(2) enrichments by mass spectrometry. Rates of protein breakdown, oxidation, and synthesis were calculated from leucine appearance into plasma, oxidation, and non- oxidative disposal, respectively, and expressed in g N/kg body weight (BW)0.75 per day, assuming body protein contains 0.08 g leucine per g protein. Protein breakdown was 3.71 +/- 0.17, 3.29 +/- 0.16 and 2.73 +/- 0.18 (mean +/- SEM) for control, PR, and D-PR, respectively (p < 0.01 D-PR versus control, and p < 0.05 D-PR versus PR). Protein synthesis was 3.08 +/- 0.13, 2.77 +/- 0.13, and 2.15 +/- 0.18 for control, PR and D-PR, respectively (p < 0.001 D-PR versus control, and p < 0.05 D-PR versus PR). Protein oxidation was 0.63 +/- 0.05, 0.53 +/- 0.05 and 0.58 +/- 0.05 for control, PR and D-PR, respectively (p=NS). These data suggest that: (i) the (13)C-leucine method can be used to assess large variations of protein turnover in dogs; (ii) dogs have the capacity to adapt their protein turnover to the level and to the quality of their protein supplies; and (iii) the dog nitrogen requirement for maintenance may be between 0.41 and 0.55 g N/kg BW(0.75) per day.
Collapse
Affiliation(s)
- B Humbert
- Laboratory of Nutrition and Endocrinology, National Veterinary School of Nantes, Nantes, France
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
[1,2-(13)C(2)]glutamine and [ring-(2)H(5)]phenylalanine were infused for 7 h into five postabsorptive healthy subjects on two occasions. On one occasion, the tracers were infused intravenously for 3.5 h and then by a nasogastric tube for 3.5 h. The order of infusion was reversed on the other occasion. From the plasma tracer enrichment measurements at plateau during the intravenous and nasogastric infusion periods, we determined that 27 +/- 2% of the enterally delivered phenylalanine and 64 +/- 2% of the glutamine were removed on the first pass by the splanchnic bed. Glutamine flux was 303 +/- 8 micromol. kg(-1). h(-1). Of the enterally delivered [(13)C]glutamine tracer, 73 +/- 2% was recovered as exhaled CO(2) compared with 58 +/- 1% of the intravenously infused tracer. The fraction of the enterally delivered tracer that was oxidized specifically on the first pass by the splanchnic bed was 53 +/- 2%, comprising 83% of the total tracer extracted. From the appearance of (13)C in plasma glucose, we estimated that 7 and 10% of the intravenously and nasogastrically infused glutamine tracers, respectively, were converted to glucose. The results for glutamine flux and first-pass extraction were similar to our previously reported values when a [2-(15)N]glutamine tracer [Matthews DE, Morano MA, and Campbell RG, Am J Physiol Endocrinol Metab 264: E848-E854, 1993] was used. The results of [(13)C]glutamine tracer disposal demonstrate that the major fate of enteral glutamine extraction is for oxidation and that only a minor portion is used for gluconeogenesis.
Collapse
Affiliation(s)
- M Haisch
- Departments of Medicine and Chemistry, University of Vermont, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|
21
|
Jackson NC, Carroll PV, Russell-Jones DL, Sönksen PH, Treacher DF, Umpleby AM. Effects of glutamine supplementation, GH, and IGF-I on glutamine metabolism in critically ill patients. Am J Physiol Endocrinol Metab 2000; 278:E226-33. [PMID: 10662706 DOI: 10.1152/ajpendo.2000.278.2.e226] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During critical illness glutamine deficiency may develop. Glutamine supplementation can restore plasma concentration to normal, but the effect on glutamine metabolism is unknown. The use of growth hormone (GH) and insulin-like growth factor I (IGF-I) to prevent protein catabolism in these patients may exacerbate the glutamine deficiency. We have investigated, in critically ill patients, the effects of 72 h of treatment with standard parenteral nutrition (TPN; n = 6), TPN supplemented with glutamine (TPNGLN; 0.4 g x kg(-1) x day(-1), n = 6), or TPNGLN with combined GH (0.2 IU. kg(-1). day(-1)) and IGF-I (160 microg x kg (-1) x day(-1)) (TPNGLN+GH/IGF-I; n = 5) on glutamine metabolism using [2-(15)N]glutamine. In patients receiving TPNGLN and TPNGLN+GH/IGF-I, plasma glutamine concentration was increased (338 +/- 22 vs. 461 +/- 24 micromol/l, P < 0.001, and 307 +/- 65 vs. 524 +/- 71 micromol/l, P < 0.05, respectively) and glutamine uptake was increased (5.2 +/- 0.5 vs. 7.4 +/- 0.7 micromol x kg(-1) x min(-1), P < 0.05 and 5.2 +/- 1.1 vs. 7.6 +/- 0.8 micromol x kg(-1) x min(-1), P < 0.05). Glutamine production and metabolic clearance rates were not altered by the three treatments. These results suggest that there is an increased requirement for glutamine in critically ill patients. Combined GH/IGF-I treatment with TPNGLN did not have adverse effects on glutamine metabolism.
Collapse
Affiliation(s)
- N C Jackson
- Departments of Diabetes, Endocrinology and Metabolic Medicine, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | | | | | | | | | | |
Collapse
|