1
|
Rodríguez-Santiago Y, Terrazas-Valdés LI, Nava-Castro KE, Del Río-Araiza VH, Garay-Canales CA, Morales-Montor J. Sexual dimorphism of colorectal cancer in humans and colorectal tumors in a murine model. Front Oncol 2024; 14:1398175. [PMID: 39165688 PMCID: PMC11333323 DOI: 10.3389/fonc.2024.1398175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction In colorectal cancer, men exhibit a higher incidence than women, and there is a disturbance in the levels of sex steroids in serum in patients with this disease. Consistently, in animals, males have greater tumor growth than females in diverse models. Nevertheless, the role of sex steroids is not well established. For that, we analyzed the effect of the principal gonadal sex steroids in both sexes. We determined sex as a statistically risk factor for colorectal cancer with data obtained from GLOBOCAN database. Methods To induce colorectal tumors, we used the gold standard chemical method of azoxymethane and dextran sulphate of sodium. To evaluate the role of sex steroids, we gonadectomized independent males and female animals, reconstituting and substituting them with 17β estradiol and dihydrotestosterone. Finally, we determined, in vitro, the proliferation of a human cell line exposed to 17β estradiol, testosterone, or dihydrotestosterone. Sex, as a risk factor for colorectal cancer, showed a statistically significant susceptibility of men over 50 years old. Results In vivo, males develop a greater number of tumors and with a larger size than females. In males, orchiectomy prevents tumor growth, whereas in females, ovariectomy promotes the development of neoplasms. DHT acts as a protumoral agent in both sexes. 17β estradiol reduces tumor growth in females but enhances it in males, showing a dimorphic effect. In vitro studies reveal that estradiol decreases the proliferation of the HCT-116 colon cancer cell line, while testosterone boosts proliferation in these cells. Interestingly, dihydrotestosterone does not influence proliferation.
Collapse
Affiliation(s)
- Yair Rodríguez-Santiago
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Luis Ignacio Terrazas-Valdés
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Iztacala, Tlanepantla, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Iztacala, Tlanepantla, Mexico
| | - Karen Elizabeth Nava-Castro
- Laboratorio de Genotoxicología y Medicina Ambientales, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Víctor Hugo Del Río-Araiza
- Laboratorio de Interacciones Endocrinoinmunitarias en Enfermedades Parasitarias, Facultad de Medicina Veterinaria y Zootecnia, Departamento de Parasitología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Claudia Angélica Garay-Canales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| |
Collapse
|
2
|
Rodríguez-Santiago Y, Garay-Canales CA, Nava-Castro KE, Morales-Montor J. Sexual dimorphism in colorectal cancer: molecular mechanisms and treatment strategies. Biol Sex Differ 2024; 15:48. [PMID: 38867310 PMCID: PMC11170921 DOI: 10.1186/s13293-024-00623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024] Open
Abstract
INTRODUCTION Sexual dimorphism significantly influences cancer incidence and prognosis. Notably, females exhibit a lower risk and favorable prognosis for non-reproductive cancers compared to males, a pattern observable beyond the scope of risk behaviors such as alcohol consumption and smoking. Colorectal cancer, ranking third in global prevalence and second in mortality, disproportionately affects men. Sex steroid hormones, particularly estrogens and androgens, play crucial roles in cancer progression, considering epidemiological in vivo and in vitro, in general estrogens imparting a protective effect in females and androgens correlating with an increasing risk of colorectal cancer development. MAIN BODY The hormonal impact on immune response is mediated by receptor interactions, resulting in heightened inflammation, modulation of NF-kB, and fostering an environment conducive to cancer progression and metastasis. These molecules also influence the enteric nervous system, that is a pivotal in neuromodulator release and intestinal neuron stimulation, also contributes to cancer development, as evidenced by nerve infiltration into tumors. Microbiota diversity further intersects with immune, hormonal, and neural mechanisms, influencing colorectal cancer dynamics. A comprehensive understanding of hormonal influences on colorectal cancer progression, coupled with the complex interplay between immune responses, microbiota diversity and neurotransmitter imbalances, underpins the development of more targeted and effective therapies. CONCLUSIONS Estrogens mitigate colorectal cancer risk by modulating anti-tumor immune responses, enhancing microbial diversity, and curbing the pro-tumor actions of the sympathetic and enteric nervous systems. Conversely, androgens escalate tumor growth by dampening anti-tumor immune activity, reducing microbial diversity, and facilitating the release of tumor-promoting factors by the nervous system. These findings hold significant potential for the strategic purposing of drugs to fine-tune the extensive impacts of sex hormones within the tumor microenvironment, promising advancements in colorectal cancer therapies.
Collapse
Affiliation(s)
- Yair Rodríguez-Santiago
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D, 1er piso, Circuito de Posgrados, Ciudad Universitaria, Ciudad de México, 04510, México
| | - Claudia Angelica Garay-Canales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, México
| | - Karen Elizabeth Nava-Castro
- Grupo de Biología y Química Atmosféricas, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, 04510, México
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, México.
| |
Collapse
|
3
|
Abstract
Eryptosis is a regulated cell death (RCD) of mature erythrocytes initially described as a counterpart of apoptosis for enucleated cells. However, over the recent years, a growing number of studies have emphasized certain differences between both cell death modalities. In this review paper, we underline the hallmarks of eryptosis and apoptosis and highlight resemblances and dissimilarities between both RCDs. We summarize and critically discuss differences in the impact of caspase-3, Ca2+ signaling, ROS signaling pathways, opposing roles of casein kinase 1α, protein kinase C, Janus kinase 3, cyclin-dependent kinase 4, and AMP-activated protein kinase to highlight a certain degree of divergence between apoptosis and eryptosis. This review emphasizes the crucial importance of further studies that focus on deepening our knowledge of cell death machinery and identifying novel differences between cell death of nucleated and enucleated cells. This might provide evidence that erythrocytes can be defined as viable entities capable of programmed cell destruction. Additionally, the revealed cell type-specific patterns in cell death can facilitate the development of cell death-modulating therapeutic agents.
Collapse
Affiliation(s)
- Anton Tkachenko
- 1st Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
4
|
Yang WJ, Han FH, Gu YP, Qu H, Liu J, Shen JH, Leng Y. TGR5 agonist inhibits intestinal epithelial cell apoptosis via cAMP/PKA/c-FLIP/JNK signaling pathway and ameliorates dextran sulfate sodium-induced ulcerative colitis. Acta Pharmacol Sin 2023; 44:1649-1664. [PMID: 36997665 PMCID: PMC10374578 DOI: 10.1038/s41401-023-01081-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Excessive apoptosis of intestinal epithelial cell (IEC) is a crucial cause of disrupted epithelium homeostasis, leading to the pathogenesis of ulcerative colitis (UC). The regulation of Takeda G protein-coupled receptor-5 (TGR5) in IEC apoptosis and the underlying molecular mechanisms remained unclear, and the direct evidence from selective TGR5 agonists for the treatment of UC is also lacking. Here, we synthesized a potent and selective TGR5 agonist OM8 with high distribution in intestinal tract and investigated its effect on IEC apoptosis and UC treatment. We showed that OM8 potently activated hTGR5 and mTGR5 with EC50 values of 202 ± 55 nM and 74 ± 17 nM, respectively. After oral administration, a large amount of OM8 was maintained in intestinal tract with very low absorption into the blood. In DSS-induced colitis mice, oral administration of OM8 alleviated colitis symptoms, pathological changes and impaired tight junction proteins expression. In addition to enhancing intestinal stem cell (ISC) proliferation and differentiation, OM8 administration significantly reduced the rate of apoptotic cells in colonic epithelium in colitis mice. The direct inhibition by OM8 on IEC apoptosis was further demonstrated in HT-29 and Caco-2 cells in vitro. In HT-29 cells, we demonstrated that silencing TGR5, inhibition of adenylate cyclase or protein kinase A (PKA) all blocked the suppression of JNK phosphorylation induced by OM8, thus abolished its antagonizing effect against TNF-α induced apoptosis, suggesting that the inhibition by OM8 on IEC apoptosis was mediated via activation of TGR5 and cAMP/PKA signaling pathway. Further studies showed that OM8 upregulated cellular FLICE-inhibitory protein (c-FLIP) expression in a TGR5-dependent manner in HT-29 cells. Knockdown of c-FLIP blocked the inhibition by OM8 on TNF-α induced JNK phosphorylation and apoptosis, suggesting that c-FLIP was indispensable for the suppression of OM8 on IEC apoptosis induced by OM8. In conclusion, our study demonstrated a new mechanism of TGR5 agonist on inhibiting IEC apoptosis via cAMP/PKA/c-FLIP/JNK signaling pathway in vitro, and highlighted the value of TGR5 agonist as a novel therapeutic strategy for the treatment of UC.
Collapse
Affiliation(s)
- Wen-Ji Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang-Hui Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi-Pei Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian-Hua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Li X, Zhang M, Zhou G, Xie Z, Wang Y, Han J, Li L, Wu Q, Zhang S. Role of Rho GTPases in inflammatory bowel disease. Cell Death Dis 2023; 9:24. [PMID: 36690621 PMCID: PMC9871048 DOI: 10.1038/s41420-023-01329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Rat sarcoma virus homolog (Rho) guanosine triphosphatases (GTPases) function as "molecular switch" in cellular signaling regulation processes and are associated with the pathogenesis of inflammatory bowel disease (IBD). This chronic intestinal tract inflammation primarily encompasses two diseases: Crohn's disease and ulcerative colitis. The pathogenesis of IBD is complex and considered to include four main factors and their interactions: genetics, intestinal microbiota, immune system, and environment. Recently, several novel pathogenic components have been identified. In addition, potential therapies for IBD targeting Rho GTPases have emerged and proven to be clinically effective. This review mainly focuses on Rho GTPases and their possible mechanisms in IBD pathogenesis. The therapeutic possibility of Rho GTPases is also discussed.
Collapse
Affiliation(s)
- Xiaoling Li
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Mudan Zhang
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Gaoshi Zhou
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Zhuo Xie
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Ying Wang
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Jing Han
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Li Li
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Qirui Wu
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Shenghong Zhang
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
6
|
Kim KI, Kim SM, Lee YY, Lee Y, Kim CD, Yoon TJ. Pitavastatin Induces Apoptosis of Cutaneous Squamous Cell Carcinoma Cells through Geranylgeranyl Pyrophosphate-Dependent c-Jun N-Terminal Kinase Activation. Ann Dermatol 2023; 35:116-123. [PMID: 37041705 PMCID: PMC10112368 DOI: 10.5021/ad.22.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Pitavastatin is a cholesterol-lowering drug and is widely used clinically. In addition to this effect, pitavastatin has shown the potential to induce apoptosis in cutaneous squamous cell carcinoma (SCC) cells. OBJECTIVE The purpose of this study is to investigate the effects and possible action mechanisms of pitavastatin. METHODS SCC cells (SCC12 and SCC13 cells) were treated with pitavastatin, and induction of apoptosis was confirmed by Western blot. To examine whether pitavastatin-induced apoptosis is related to a decrease in the amount of intermediate mediators in the cholesterol synthesis pathway, the changes in pitavastatin-induced apoptosis after supplementation with mevalonate, squalene, geranylgeranyl pyrophosphate (GGPP) and dolichol were investigated. RESULTS Pitavastatin dose-dependently induced apoptosis of cutaneous SCC cells, but the viability of normal keratinocytes was not affected by pitavastatin at the same concentrations. In supplementation experiments, pitavastatin-induced apoptosis was inhibited by the addition of mevalonate or downstream metabolite GGPP. As a result of examining the effect on intracellular signaling, pitavastatin decreased Yes1 associated transcriptional regulator and Ras homolog family member A and increased Rac family small GTPase 1 and c-Jun N-terminal kinase (JNK) activity. All these effects of pitavastatin on signaling molecules were restored when supplemented with either mevalonate or GGPP. Furthermore, pitavastatin-induced apoptosis of cutaneous SCC cells was inhibited by a JNK inhibitor. CONCLUSION These results suggest that pitavastatin induces apoptosis of cutaneous SCC cells through GGPP-dependent JNK activation.
Collapse
Affiliation(s)
- Kyung-Il Kim
- Department of Dermatology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Dermatology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Seung-Mee Kim
- Department of Dermatology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
| | - Young-Yoon Lee
- Department of Dermatology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Chang-Deok Kim
- Department of Dermatology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Tae-Jin Yoon
- Department of Dermatology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Korea
- Gyeongsang Institute of Health Sciences, Jinju, Korea
| |
Collapse
|
7
|
Clostridioides difficile toxin B alone and with pro-inflammatory cytokines induces apoptosis in enteric glial cells by activating three different signalling pathways mediated by caspases, calpains and cathepsin B. Cell Mol Life Sci 2022; 79:442. [PMID: 35864342 PMCID: PMC9304068 DOI: 10.1007/s00018-022-04459-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 11/03/2022]
Abstract
Clostridioides difficile infection (CDI) causes nosocomial/antibiotic-associated gastrointestinal diseases with dramatically increasing global incidence and mortality rates. The main C. difficile virulence factors, toxins A and B (TcdA/TcdB), cause cytopathic/cytotoxic effects and inflammation. We demonstrated that TcdB induces caspase-dependent, mitochondria-independent enteric glial cell (EGC) apoptosis that is enhanced by the pro-inflammatory cytokines TNF-α and IFN-γ (CKs) by increasing caspase-3/7/9 and PARP activation. Because this cytotoxic synergism is important for CDI pathogenesis, we investigated the apoptotic pathways involved in TcdB- and TcdB + CK-induced apoptosis indepth. EGCs were pre-treated with the inhibitors BAF or Q-VD-OPh (pan-caspase), Z-DEVD-fmk (caspase-3/7), Z-IETD-fmk (caspase-8), PD150606 (calpains), and CA-074Me (cathepsin B) 1 h before TcdB exposure, while CKs were given 1.5 h after TcdB exposure, and assays were performed at 24 h. TcdB and TcdB + CKs induced apoptosis through three signalling pathways activated by calpains, caspases and cathepsins, which all are involved both in induction and execution apoptotic signalling under both conditions but to different degrees in TcdB and TcdB + CKs especially as regards to signal transduction mediated by these proteases towards downstream effects (apoptosis). Calpain activation by Ca2+ influx is the first pro-apoptotic event in TcdB- and TcdB + CK-induced EGC apoptosis and causes caspase-3, caspase-7 and PARP activation. PARP is also directly activated by calpains which are responsible of about 75% of apoptosis in TcdB and 62% in TcdB + CK which is both effector caspase-dependent and -independent. Initiator caspase-8 activation mediated by TcdB contributes to caspase-3/caspase-7 and PARP activation and is responsible of about 28% of apoptosis in both conditions. Caspase-3/caspase-7 activation is weakly responsible of apoptosis, indeed we found that it mediates 27% of apoptosis only in TcdB. Cathepsin B contributes to triggering pro-apoptotic signal and is responsible in both conditions of about 35% of apoptosis by a caspase-independent manner, and seems to regulate the caspase-3 and caspase-7 cleaved fragment levels, highlighting the complex interaction between these cysteine protease families activated during TcdB-induced apoptosis. Further a relevant difference between TcdB- and TcdB + CK-induced apoptosis is that TcdB-induced apoptosis increased slowly reaching at 72 h the value of 18.7%, while TcdB + CK-induced apoptosis increased strongly reaching at 72 h the value of 60.6%. Apoptotic signalling activation by TcdB + CKs is enriched by TNF-α-induced NF-κB signalling, inhibition of JNK activation and activation of AKT. In conclusion, the ability of C. difficile to activate three apoptotic pathways represents an important strategy to overcome resistance against its cytotoxic activity.
Collapse
|
8
|
Chen X, Zhu W, Xu R, Shen X, Fu Y, Cheng J, Liu L, Jiang H. Geranylgeraniol Restores Zoledronic Acid-Induced Efferocytosis Inhibition in Bisphosphonate-Related Osteonecrosis of the Jaw. Front Cell Dev Biol 2021; 9:770899. [PMID: 34805177 PMCID: PMC8595285 DOI: 10.3389/fcell.2021.770899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a severe side effect of long-term administration of bisphosphonates such as zoledronic acid (ZA), but its pathogenesis remains unclear. Impairment of the clearance of apoptotic cells (termed “efferocytosis”) by ZA may be associated with the pathogenesis of BRONJ. The aim of this study was to investigate whether ZA might inhibit macrophage efferocytosis and promote osteocytic apoptosis, and the underlying mechanisms responsible for the disturbing balance between clean and generation of osteocytic apoptosis. We found that ZA significantly promoted the apoptosis of osteocyte and pre-osteoblast via BRONJ mouse models and in vitro MC3T3-E1 but also inhibited the efferocytosis of macrophage on apoptotic cells. Moreover, supplement with geranylgeraniol (GGOH), a substrate analog for geranylgeranylation of Rac1, could restore Rac1 homeostasis and rescue macrophage efferocytosis. GGOH partially inhibits MC3T3-E1 apoptosis induced by ZA via downregulation of Rac1/JNK pathway. We also examined the Rac1 distribution and activation conditions in bone marrow-derived macrophages (BMDMs) and MC3T3-E1 under ZA treatment, and we found that ZA impaired Rac1 migration to BMDM membrane, leading to round appearance with less pseudopodia and efferocytosis inhibition. Moreover, ZA simultaneously activated Rac1, causing overexpression of P-JNK and cleaved caspase 3 in MC3T3-E1. Finally, the systemic administration of GGOH decreased the osteocytic apoptosis and improved the bone healing of the extraction sockets in BRONJ mouse models. Taken together, our findings provided a new insight and experimental basis for the application of GGOH in the treatment of BRONJ.
Collapse
Affiliation(s)
- Xin Chen
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Stomatology, Jiangyin People's Hospital, Wuxi, China
| | - Weiwen Zhu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Rongyao Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Shen
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yu Fu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Cheng
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Laikui Liu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Hongbing Jiang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Qiao W, Li D, Shi Q, Wang H, Wang H, Guo J. miR-224-5p protects dental pulp stem cells from apoptosis by targeting Rac1. Exp Ther Med 2019; 19:9-18. [PMID: 31897093 PMCID: PMC6923752 DOI: 10.3892/etm.2019.8213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/12/2019] [Indexed: 12/27/2022] Open
Abstract
Dental pulp stem cells (DPSCs) are reported to be enriched in stem/progenitor cells, however to the best of our knowledge they have yet to be well documented and characterized. In the present study, in order to characterize DPSCs and the effect of microRNAs (miRs/miRNAs) on DPSC properties, a miRNA array was performed between dental periodontal ligament cells (DPLCs) and DPSCs. The results revealed that miR-224-5p (miR-224) was highly expressed in the DPSCs compared with that in the DPLCs. The transfection of DPSCs with an miR-224 inhibitor impaired cell viability. In addition, miR-224 inhibition significantly promoted cell apoptosis in DPSCscompared with the NC group. In silico analysis and a dual-luciferase reporter assay demonstrated that miR-224 targets the 3′-untranslated region of the Rac family small GTPase 1 (Rac1) gene. miR-224 downregulation resulted in the increased expression of Rac1 in DPSCs compared with DPLCs. Furthermore, miR-224 inhibition caused augmented mitogen-activated protein kinase 8, caspase-3, caspase-9 and Fas ligand expression in DPSC, which may be recovered by Rac1 silencing with transfection with short hairpin RNA-Rac1. Furthermore, Annexin V-fluorescein isothiocyanate/propidium iodide flow cytometry indicated that the silencing of Rac1 restored the pro-apoptotic DPSC cell number with miR-224 transfection. Therefore, the results of the present study suggested miR-224 in DPSC serves an important function in protecting cells against apoptosis by downregulating Rac1 expression, and also identified miR-224 as a novel miRNA in regulating the features of DPSC.
Collapse
Affiliation(s)
- Wenlan Qiao
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dong Li
- Department of Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qing Shi
- Department of Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Huanhuan Wang
- Department of Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hao Wang
- Department of Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jing Guo
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
10
|
Feng Y, Ma M, Zhang X, Liu D, Wang L, Qian C, Wei G, Zhu B. Characterization of small GTPase Rac1 and its interaction with PAK1 in crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2019; 87:178-183. [PMID: 30639478 DOI: 10.1016/j.fsi.2019.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Ras-related C3 botulinum toxin substrate 1 (Rac1) participates in many biological processes. In this study, a Rac1 gene was identified in the crayfish Procambarus clarkii with an open reading frame of 579 bp that encoded 192 amino acids. This predicted 21.4 kDa protein was highly homologous to those in other invertebrates. Real-time PCR analysis revealed that Pc-Rac1 was expressed in all examined tissues with the highest expression level in hemocytes. The transcriptional expression level of Pc-Rac1 was significantly upregulated in hemocytes and hepatopancreas after lipopolysaccharide (LPS) or polyinosinic: polycytidylic acid (poly I: C) induction. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis suggested that a recombinant Pc-Rac1 protein was successfully expressed in E. coli. Far-western blot analysis demonstrated that Rac1 can interact with the PBD domain of p21-activated kinase 1 (PAK1). RNA interference of Pc-Rac1 affected the mRNA expression levels of immune-related genes lectin, Toll, crustin, TNF, ALF and cactus. These results suggest that Pc-Rac1 is involved in the innate immune responses in P. clarkii.
Collapse
Affiliation(s)
- Yuanyuan Feng
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Maolin Ma
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaojiao Zhang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Die Liu
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Lei Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Cen Qian
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Guoqing Wei
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Baojian Zhu
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
11
|
Xie W, Zhang W, Sun M, Lu C, Shen Y. Deacetylmycoepoxydiene is an agonist of Rac1, and simultaneously induces autophagy and apoptosis. Appl Microbiol Biotechnol 2018; 102:5965-5975. [DOI: 10.1007/s00253-018-9058-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/25/2022]
|
12
|
Wu N, Ren D, Li S, Ma W, Hu S, Jin Y, Xiao S. RCC2 over-expression in tumor cells alters apoptosis and drug sensitivity by regulating Rac1 activation. BMC Cancer 2018; 18:67. [PMID: 29321004 PMCID: PMC5763756 DOI: 10.1186/s12885-017-3908-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022] Open
Abstract
Background Small GTP binding protein Rac1 is a component of NADPH oxidases and is essential for superoxide-induced cell death. Rac1 is activated by guanine nucleotide exchange factors (GEFs), and this activation can be blocked by regulator of chromosome condensation 2 (RCC2), which binds the switch regions of Rac1 to prevent access from GEFs. Methods Three cancer cell lines with up- or down-regulation of RCC2 were used to evaluate cell proliferation, apoptosis, Rac1 signaling and sensitivity to a group of nine chemotherapeutic drugs. RCC2 expression in lung cancer and ovarian cancer were studied using immunochemistry stain of tumor tissue arrays. Results Forced RCC2 expression in tumor cells blocked spontaneous- or Staurosporine (STS)-induced apoptosis. In contrast, RCC2 knock down in these cells resulted in increased apoptosis to STS treatment. The protective activity of RCC2 on apoptosis was revoked by a constitutively activated Rac1, confirming a role of RCC2 in apoptosis by regulating Rac1. In an immunohistochemistry evaluation of tissue microarray, RCC2 was over-expressed in 88.3% of primary lung cancer and 65.2% of ovarian cancer as compared to non-neoplastic lung and ovarian tissues, respectively. Because chemotherapeutic drugs can kill tumor cells by activating Rac1/JNK pathway, we suspect that tumors with RCC2 overexpression would be more resistant to these drugs. Tumor cells with forced RCC2 expression indeed had significant difference in drug sensitivity compared to parental cells using a panel of common chemotherapeutic drugs. Conclusions RCC2 regulates apoptosis by blocking Rac1 signaling. RCC2 expression in tumor can be a useful marker for predicting chemotherapeutic response.
Collapse
Affiliation(s)
- Nan Wu
- Department of Medical Genetics, Harbin Medical University, Harbin, China
| | - Dong Ren
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Su Li
- Department of Medical Genetics, Harbin Medical University, Harbin, China
| | - Wenli Ma
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shaoyan Hu
- Children's Hospital of Soochow University, Suzhou, China
| | - Yan Jin
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Rac Attack: Modulation of the Small GTPase Rac in Inflammatory Bowel Disease and Thiopurine Therapy. Mol Diagn Ther 2017; 20:551-557. [PMID: 27604084 PMCID: PMC5107185 DOI: 10.1007/s40291-016-0232-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The incidence and prevalence of inflammatory bowel disease (IBD) are increasing. Although the etiology of IBD is unknown, it is thought that genetically susceptible individuals display an inappropriate inflammatory response to commensal microbes, resulting in intestinal tissue damage. Key proteins involved in regulating the immune response, and thus in inflammation, are the small triphosphate-binding protein Rac and its regulatory network. Recent data suggest these proteins to be involved in (dys)regulation of the characteristic inflammatory processes in IBD. Moreover, Rac-gene variants have been identified as susceptibility risk factors for IBD, and Rac1 GTPase signaling has been shown to be strongly suppressed in non-inflamed mucosa compared with inflamed colonic mucosa in IBD. In addition, first-line immunosuppressive treatment for IBD includes thiopurine therapy, and its immunosuppressive effect is primarily ascribed to Rac1 suppression. In this review, we focus on Rac modification and its potential role in the development of IBD, Rac as the molecular therapeutic target in current thiopurine therapy, and the modulation of the Rac signal transduction pathway as a promising novel therapeutic strategy.
Collapse
|
14
|
Zamani P, Matbou Riahi M, Momtazi-Borojeni AA, Jamialahmadi K. Gankyrin: a novel promising therapeutic target for hepatocellular carcinoma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1301-1313. [PMID: 29025272 DOI: 10.1080/21691401.2017.1388250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is known as fifth common malignancies and third common cause of cancer-related death worldwide. The identification of various mechanisms which are involved in hepatocarcinogenesis contributes in finding a variety of cellular and molecular targets for HCC diagnosis, prevention and therapy. Among various identified targets in HCC pathogenesis, Gankyrin is a crucial oncoprotein that is up-regulated in HCC and plays a pivotal role in the initiation and progression of the HCC. Oncogenic role of Gankyrin has been found to stem from inhibition of two ubiquitous tumour suppressor proteins, retinoblastoma protein (pRb) and P53, and also modulation of several vital cellular signalling pathways including Wnt/β-Catenin, NF-κB, STAT3/Akt, IL-1β/IRAK-1 and RhoA/ROCK. As a result, Gankyrin can be considered as a potential candidate for diagnosis and treatment of HCC. In this review, we summarized the physiological function and the significant role of Gankyrin as an important therapeutic target in HCC.
Collapse
Affiliation(s)
- Parvin Zamani
- a Department of Medical Biotechnology , Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Maryam Matbou Riahi
- a Department of Medical Biotechnology , Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amir Abbas Momtazi-Borojeni
- b Nanotechnology Research Center, Bu-Ali Research Institute , Mashhad University of Medical Sciences , Mashhad , Iran.,c Department of Medical Biotechnology , Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Khadijeh Jamialahmadi
- a Department of Medical Biotechnology , Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran.,d Biotechnology Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
15
|
Zou L, Wang X, Jiang L, Wang S, Xiong X, Yang H, Gao W, Gong M, Hu CAA, Yin Y. Molecular cloning, characterization and expression analysis of Frizzled 6 in the small intestine of pigs (Sus scrofa). PLoS One 2017; 12:e0179421. [PMID: 28614361 PMCID: PMC5470702 DOI: 10.1371/journal.pone.0179421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 05/30/2017] [Indexed: 11/18/2022] Open
Abstract
Frizzled 6 (FZD6) encodes an integral membrane protein that functions in multiple signal transduction pathways, for example, as a receptor in Wnt/planar cell polarity (PCP) signaling pathway for polarized cell migration and organ morphogenesis. Mutations in FZD6 have been identified in a variety of tumors. In this study, the full-length cDNA of Sus scrofa FZD6 (Sfz6) was cloned and characterized. Nucleotide sequence analysis demonstrates that the Sfz6 gene encodes the 712 amino-acid (aa) protein with seven transmembrane domain. Tissue distribution analysis showed that Sfz6 mRNA is ubiquitously expressed in various tissues, being highest in kidney, moderate in jejunum, ileum, colon, liver, and spleen. However, FZD6 protein is highly expressed in the heart and there was no significant difference in other tissues. The relative abundance and localization of FZD6 protein in jejunum along the crypt-villus axis was determined by Western blot and immunohistochemical localization. The results show that in the jejunum, FZD6 protein is highly expressed in the villus and less in the crypt cells. Cellular proliferation and viability assays indicate that knockdown of FZD6 with small interfering RNAs (siRNA) significantly reduced the cell viability of the intestinal porcine enterocyte cells (IPEC-J2). Furthermore, qPCR and Western blot analysis revealed that expressions of ras-related C3 botulinum toxin substrate 1 (Rac1); ras homolog gene family member A (RhoA) and c-Jun N-terminal kinase 1 (JNK1), some components of PCP signaling pathway were upregulated (P < 0.05) by knockdown of FZD6 in IPEC-J2 cells. In conclusion, these results showed that FZD6 abundance in the villus was higher than that in crypt cells and knockdown of FZD6 induces PCP signal pathway components expression in IPEC-J2 cells. Our findings provide the foundation for further investigation into porcine FZD6 gene.
Collapse
Affiliation(s)
- Lijun Zou
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China.,Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.,Laboratory of Basic Biology, Hunan First Normal College, Changsha, Hunan, China
| | - Xiaocheng Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Liping Jiang
- School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shengping Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Xia Xiong
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Huansheng Yang
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wei Gao
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Min Gong
- Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Chien-An A Hu
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yulong Yin
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China.,Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
16
|
Hamouda N, Sano T, Oikawa Y, Ozaki T, Shimakawa M, Matsumoto K, Amagase K, Higuchi K, Kato S. Apoptosis, Dysbiosis and Expression of Inflammatory Cytokines are Sequential Events in the Development of 5-Fluorouracil-Induced Intestinal Mucositis in Mice. Basic Clin Pharmacol Toxicol 2017; 121:159-168. [PMID: 28374966 DOI: 10.1111/bcpt.12793] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/29/2017] [Indexed: 12/26/2022]
Abstract
The chemotherapeutic agent 5-fluorouracil (5-FU) causes intestinal mucositis with severe diarrhoea, but the pathogenesis is not fully understood. In this study, we investigated the pathogenic effects of 5-FU in mice, focusing on apoptosis, enterobacteria and inflammatory cytokines. Repeated administration of 5-FU caused severe intestinal mucositis on day 6, accompanied by diarrhoea and body-weight loss. TNF-α expression increased 1 day after exposure to the drug, and spiked a second time on day 4, at which point myeloperoxidase activity and IL-1β expression also increased. Apoptotic cells were observed in intestinal crypts only on day 1. 5-FU also induced dysbiosis, notably decreasing the abundance of intestinal Firmicutes while increasing the abundance of Bacteroidetes and Verrucomicrobia. Twice-daily co-administration of oral antibiotics significantly reduced the severity of intestinal mucositis and dysbiosis, and blocked the increase in myeloperoxidase activity and cytokine expression on day 6, without affecting apoptosis and TNF-α up-regulation on day 1. In cultured colonic epithelial cells, exposure to 5-FU also up-regulated TNF-α expression. Collectively, the data suggest that crypt apoptosis, dysbiosis and expression of inflammatory cytokines are sequential events in the development of intestinal mucositis after exposure to 5-FU. In particular, 5-FU appears to directly induce apoptosis via TNF-α and to suppress intestinal cell proliferation, thereby resulting in degradation of the epithelial barrier, as well as in secondary inflammation mediated by inflammatory cytokines.
Collapse
Affiliation(s)
- Nahla Hamouda
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tatsushi Sano
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan.,Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Yosuke Oikawa
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe, Hyogo, Japan
| | - Toru Ozaki
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe, Hyogo, Japan
| | - Masaki Shimakawa
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe, Hyogo, Japan
| | - Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kikuko Amagase
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kazuhide Higuchi
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
17
|
Singh DP, Borse SP, Nivsarkar M. Clinical importance of nonsteroidal anti-inflammatory drug enteropathy: the relevance of tumor necrosis factor as a promising target. Transl Res 2016; 175:76-91. [PMID: 27083387 DOI: 10.1016/j.trsl.2016.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/13/2022]
Abstract
The pathogenesis of nonsteroidal anti-inflammatory drug (NSAID) enteropathy is still unclear, and consequently, there is no approved therapeutic strategy for ameliorating such damage. On the other hand, molecular treatment strategies targeting tumor necrosis factor (TNF) exerts beneficial effects on NSAID-induced intestinal lesions in rodents and rheumatoid arthritis patients. Thus, TNF appears to be a potential therapeutic target for both the prevention and treatment of NSAID enteropathy. However, the causative relationship between TNF and NSAID enteropathy is largely unknown. Currently approved anti-TNF agents are highly expensive and exhibit numerous side effects. Hence, in this review, the pivotal role of TNF in NSAID enteropathy has been summarized and plant-derived polyphenols have been suggested as useful alternative anti-TNF agents because of their ability to suppress TNF activated inflammatory pathways both in vitro and in vivo.
Collapse
Affiliation(s)
- Devendra Pratap Singh
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej, Ahmedabad, Gujarat, India; Registered Ph.D Scholar (External) at Institute of Pharmacy, NIRMA University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, India
| | - Swapnil P Borse
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej, Ahmedabad, Gujarat, India; Registered Ph.D Scholar (External) at Institute of Pharmacy, NIRMA University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, India
| | - Manish Nivsarkar
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej, Ahmedabad, Gujarat, India.
| |
Collapse
|
18
|
Dervishi E, Lam TH, Dunn SM, Zwierzchowski G, Saleem F, Wishart DS, Ametaj BN. Recombinant mouse prion protein alone or in combination with lipopolysaccharide alters expression of innate immunity genes in the colon of mice. Prion 2016; 9:59-73. [PMID: 25695140 DOI: 10.1080/19336896.2015.1019694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objectives of this study were to test whether recombinant mouse (mo)PrP alone or in combination with LPS or under simulated endotoxemia would affect expression of genes related to host inflammatory and antimicrobial responses. To test our hypotheses colon tissues were collected from 16 male mice (FVB/N strain) and mounted in an Ussing chamber. Application of moPrP to the mucosal side of the colon affected genes related to TLR- and NLR- signaling and antimicrobial responses. When LPS was added on the mucosal side of the colon, genes related to TLR, Nlrp3 inflammasome, and iron transport proteins were over-expressed. Addition of LPS to the serosal side of the colon up-regulated genes related to TLR- and NLR-signaling, Nlrp3 inflammasome, and a chemokine. Treatment with both moPrP and LPS to the mucosal side of the colon upregulated genes associated with TLR, downstream signal transduction (DST), inflammatory response, attraction of dendritic cells to the site of inflammation, and the JNK-apoptosis pathway. Administration of moPrP to the mucosal side and LPS to the serosal side of the colon affected genes related to TLR- and NLR-signaling, DST, apoptosis, inflammatory response, cytokines, chemokines, and antimicrobial peptides. Overall this study suggests a potential role for moPrP as an endogenous 'danger signal' associated with activation of colon genes related to innate immunity and antibacterial responses.
Collapse
Affiliation(s)
- Elda Dervishi
- a Department of Agricultural, Food and Nutritional Science ; University of Alberta , Edmonton , AB , Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Hu MY, Shen YB, Xu XY, Yu HY, Zhang M, Dang YF, Li JL. Identification, characterization and immunological analysis of Ras related C3 botulinum toxin substrate 1 (Rac1) from grass carp Ctenopharyngodon idella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:20-31. [PMID: 26315145 DOI: 10.1016/j.dci.2015.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 06/04/2023]
Abstract
Rac1, a Rho GTPase, serves critical immunological functions in mammals. Here, a Rac1 homolog (gcRac1) was identified in grass carp (Ctenopharyngodon idella). The full-length 2023-base pair gcRac1 cDNA contained a 579-bp open reading frame encoding a 192-residue protein, including a conserved RHO domain and nuclear localization signal. The gcRac1 protein shares high identity with other Rac1 counterparts and phylogenetically clustered with Danio rerio Rac1. The gcRac1 transcript showed wide tissue distribution and was inducible by Aeromonas hydrophila in vivo and in vitro; its expression also fluctuated with LPS or flagellin stimulation in vitro. With gcRac1 over-expression, gcPAK1, gcIL1-β, gcTNF-α and gcIFN were basically up-regulated by A. hydrophila and bacterial PAMPs induction, while gcRac1 knockdown decreased these transcripts after A. hydrophila challenge. Over-expression of gcRac1 reduced, while its suppression facilitated, bacterial invasion. Moreover, gcRac1 could activate NF-κB signaling. These findings implicate the vital role of gcRac1 in grass carp innate immunity.
Collapse
Affiliation(s)
- Mo-Yan Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, PR China
| | - Yu-Bang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, PR China
| | - Xiao-Yan Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, PR China
| | - Hong-Yan Yu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, PR China
| | - Meng Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, PR China
| | - Yun-Fei Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, PR China
| | - Jia-Le Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, PR China; E-Institute of Shanghai Universities, Shanghai Ocean University, 999 Huchenghuan Road, 201306, Shanghai, PR China.
| |
Collapse
|
20
|
Lee T, Lee E, Arrollo D, Lucas PC, Parameswaran N. Non-Hematopoietic β-Arrestin1 Confers Protection Against Experimental Colitis. J Cell Physiol 2015; 231:992-1000. [PMID: 26479868 DOI: 10.1002/jcp.25216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/15/2015] [Indexed: 12/26/2022]
Abstract
β-Arrestins are multifunctional scaffolding proteins that modulate G protein-coupled receptor (GPCR)-dependent and -independent cell signaling pathways in various types of cells. We recently demonstrated that β-arrestin1 (β-arr1) deficiency strikingly attenuates dextran sodium sulfate (DSS)-induced colitis in mice. Since DSS-induced colitis is in part dependent on gut epithelial injury, we examined the role of β-arr1 in intestinal epithelial cells (IECs) using a colon epithelial cell line, SW480 cells. Surprisingly, we found that knockdown of β-arr1 in SW480 cells enhanced epithelial cell death via a caspase-3-dependent process. To understand the in vivo relevance and potential cell type-specific role of β-arr1 in colitis development, we generated bone marrow chimeras with β-arr1 deficiency in either the hematopoietic or non-hematopoietic compartment. Reconstituted chimeric mice were then subjected to DSS-induced colitis. Similar to our previous findings, β-arr1 deficiency in the hematopoietic compartment protected mice from DSS-induced colitis. However, consistent with the role of β-arr1 in epithelial apoptosis in vitro, non-hematopoietic β-arr1 deficiency led to an exacerbated colitis phenotype. To further understand signaling mechanisms, we examined the effect of β-arr1 on TNF-α-mediated NFκB and MAPK pathways. Our results demonstrate that β-arr1 has a critical role in modulating ERK, JNK and p38 MAPK pathways mediated by TNF-α in IECs. Together, our results show that β-arr1-dependent signaling in hematopoietic and non-hematopoietic cells differentially regulates colitis pathogenesis and further demonstrates that β-arr1 in epithelial cells inhibits TNF-α-induced cell death pathways.
Collapse
Affiliation(s)
- Taehyung Lee
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Eunhee Lee
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - David Arrollo
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Peter C Lucas
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
21
|
Tu Z, Wang Q, Cui T, Wang J, Ran H, Bao H, Lu J, Wang B, Lydon JP, DeMayo F, Zhang S, Kong S, Wu X, Wang H. Uterine RAC1 via Pak1-ERM signaling directs normal luminal epithelial integrity conducive to on-time embryo implantation in mice. Cell Death Differ 2015; 23:169-81. [PMID: 26184908 DOI: 10.1038/cdd.2015.98] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 06/05/2015] [Accepted: 06/12/2015] [Indexed: 12/18/2022] Open
Abstract
Successful embryo implantation requires functional luminal epithelia to establish uterine receptivity and blastocyst-uterine adhesion. During the configuration of uterine receptivity from prereceptive phase, the luminal epithelium undergoes dynamic membrane reorganization and depolarization. This timely regulated epithelial membrane maturation and precisely maintained epithelial integrity are critical for embryo implantation in both humans and mice. However, it remained largely unexplored with respect to potential signaling cascades governing this functional epithelial transformation prior to implantation. Using multiple genetic and cellular approaches combined with uterine conditional Rac1 deletion mouse model, we demonstrated herein that Rac1, a small GTPase, is spatiotemporally expressed in the periimplantation uterus, and uterine depletion of Rac1 induces premature decrease of epithelial apical-basal polarity and defective junction remodeling, leading to disrupted uterine receptivity and implantation failure. Further investigations identified Pak1-ERM as a downstream signaling cascade upon Rac1 activation in the luminal epithelium necessary for uterine receptivity. In addition, we also demonstrated that Rac1 via P38 MAPK signaling ensures timely epithelial apoptotic death at postimplantation. Besides uncovering a potentially important molecule machinery governing uterine luminal integrity for embryo implantation, our finding has high clinical relevance, because Rac1 is essential for normal endometrial functions in women.
Collapse
Affiliation(s)
- Z Tu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,University of the Chinese Academy of Sciences, Beijing 100039, PR China
| | - Q Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - T Cui
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,University of the Chinese Academy of Sciences, Beijing 100039, PR China
| | - J Wang
- Department of Pharmacology, Zhejiang University, Hangzhou 310058, PR China
| | - H Ran
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100039, PR China
| | - H Bao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100039, PR China
| | - J Lu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - B Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - J P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - F DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - S Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - S Kong
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - X Wu
- Department of Pharmacology, Zhejiang University, Hangzhou 310058, PR China
| | - H Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
22
|
Wang Z, Tang B, Tang F, Li Y, Zhang G, Zhong L, Dong C, He S. Protection of rat intestinal epithelial cells from ischemia/reperfusion injury by (D-Ala2, D-Leu5)-enkephalin through inhibition of the MKK7-JNK signaling pathway. Mol Med Rep 2015; 12:4079-4088. [PMID: 26126577 PMCID: PMC4526098 DOI: 10.3892/mmr.2015.3991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 04/10/2015] [Indexed: 12/13/2022] Open
Abstract
Previous studies have demonstrated that (D‑Ala2, D‑Leu5)‑enkephalin (DADLE) protects rats from hepatic ischemia/reperfusion (I/R) injury. In the present study, DADLE was also observed to alleviate IR‑induced intestinal epithelial cell injury in rats by inhibiting mitogen‑activated protein kinase kinase 7 (MKK7)‑c‑Jun N‑terminal kinase (JNK) pathway signaling. To investigate the protective effect of DADLE on hypoxia/reoxygenation injury in rat intestinal epithelial cells, rat intestinal epithelial cells were treated with different concentrations of DADLE, following which the cell survival rate was determined using a tetrazolium (MTT) colorimetric assay, and apoptosis was determined using flow cytometry. To confirm whether the protective effect of DADLE was due to its effect on MKK7‑JNK signaling, the phosphorylation levels of MKK7 and JNK were analyzed using western blot analysis following treatment with different concentrations of DADLE. The results demonstrated that, following treatment with DADLE, the survival rate of the rat intestinal cells subjected to I/R‑induced injury increased significantly and the apoptotic rate decreased in a concentration‑dependent manner. In addition, the levels of phosphorylated MKK7 and JNK decreased in a concentration‑dependent manner following treatment with DADLE. Silencing the gene expression of MKK7 using small interfering RNA prior to DADLE treatment resulted in a reduction in the protective effects of DADLE on the rat intestinal epithelial cells subjected to I/R injury. Collectively, the results of the present study demonstrated that the protective effects of DADLE in I/R injury in rat intestinal cells occurred through inhibition of the MKK7‑JNK pathway.
Collapse
Affiliation(s)
- Zhenran Wang
- Department of Gastrointestinal Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - Bo Tang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - Fang Tang
- Department of Pathology, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - Yang Li
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - Guangyu Zhang
- Department of Gastrointestinal Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - Li Zhong
- Department of Gastrointestinal Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - Chencheng Dong
- Department of Gastrointestinal Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - Songqing He
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|
23
|
Mitochondrial Membrane Potential and Nuclear and Gene Expression Changes During Human Disc Cell Apoptosis: In Vitro and In Vivo Annulus Findings. Spine (Phila Pa 1976) 2015; 40:876-82. [PMID: 25909354 DOI: 10.1097/brs.0000000000000936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A study using cultured human annulus cells and human annular tissue. OBJECTIVE To further explore and define mitochondrial mechanisms related to disc cell apoptosis in vitro and in vivo. SUMMARY OF BACKGROUND DATA Mitochondrial-dependent intrinsic signaling pathways are a well-recognized component of apoptosis (programmed cell death). Disc cell apoptosis is important because it is a major mechanism by which cell numbers decrease during disc degeneration. Our objective was to further explore and define mitochondrial mechanisms related to disc cell apoptosis. METHODS High-content screening techniques were used to study nuclear morphology and mitochondrial membrane potentials in cultured annulus cells. Gene expression in annulus tissue was studied with microarray analysis. RESULTS Cultured cells showed significantly increased nuclear size (an indicator of apoptosis) with increasing Thompson grade (P < 0.00001 by analysis of variance). A significant negative correlation for mitochondrial potential (which results from the difference in electrical potential generated by the electrochemical gradient across the inner membrane of the mitochondrion) versus Thompson grade was identified in cultured human annulus cells in control conditions (r = 0.356, P < 0.0001). When exposed to the K ionophore valinomycin at sublethal levels to induce apoptosis, a significant reduction in mitochondrial potential was identified versus nontreated cells. Gene expression patterns in more degenerated Thompson grade III, IV, and V discs versus healthier grade I and II discs showed significant upregulation of a number of genes with well-recognized apoptosis roles in mitochondrial potential decline (ITM2B, beta-2-microglobulin, and cathepsin B, DAP, GAS1, and PDCD5) and TNF-α associations (cathepsin B, RAC1, and PPT1). CONCLUSION Data presented here show the in vivo expression of apoptosis-related genes associated with the loss of mitochondrial membrane integrity and decreased mitochondrial membrane potential with increasing Thompson scores. These data, which mimic our novel, direct cell-based in vitro findings, stress the importance of mitochondrial changes related to apoptosis and TNF-α during human disc degeneration. LEVEL OF EVIDENCE N/A.
Collapse
|
24
|
Zhao X, Fu J, Xu A, Yu L, Zhu J, Dai R, Su B, Luo T, Li N, Qin W, Wang B, Jiang J, Li S, Chen Y, Wang H. Gankyrin drives malignant transformation of chronic liver damage-mediated fibrosis via the Rac1/JNK pathway. Cell Death Dis 2015; 6:e1751. [PMID: 25950481 PMCID: PMC4669699 DOI: 10.1038/cddis.2015.120] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/17/2015] [Accepted: 03/24/2015] [Indexed: 02/07/2023]
Abstract
Hepatocarcinogenesis is a complex process involving chronic liver injury, inflammation, unregulated wound healing, subsequent fibrosis and carcinogenesis. To decipher the molecular mechanism underlying transition from chronic liver injury to dysplasia, we investigated the oncogenic role of gankyrin (PSMD10 or p28GANK) during malignant transformation in a transgenic mouse model. Here, we find that gankyrin increased in patients with cirrhosis. In addition to more severe liver fibrosis and tumorigenesis after DEN plus CCl4 treatment, hepatocyte-specific gankyrin-overexpressing mice (gankyrinhep) exhibited malignant transformation from liver fibrosis to tumors even under single CCl4 administration, whereas wild-type mice merely experienced fibrosis. Consistently, enhanced hepatic injury, severe inflammation and strengthened compensatory proliferation occurred in gankyrinhep mice during CCl4 performance. This correlated with augmented expressions of cell cycle-related genes and abnormal activation of Rac1/c-jun N-terminal kinase (JNK). Pharmacological inhibition of the Rac1/JNK pathway attenuated hepatic fibrosis and prevented CCl4-induced carcinogenesis in gankyrinhep mice. Together, these findings suggest that gankyrin promotes liver fibrosis/cirrhosis progression into hepatocarcinoma relying on a persistent liver injury and inflammatory microenvironment. Blockade of Rac1/JNK activation impeded gankyrin-mediated hepatocytic malignant transformation, indicating the combined inhibition of gankyrin and Rac1/JNK as a potential prevention mechanism for cirrhosis transition.
Collapse
Affiliation(s)
- X Zhao
- 1] Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China [2] International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai 200438, China
| | - J Fu
- 1] International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai 200438, China [2] National Center for Liver Cancer, Shanghai 200438, China
| | - A Xu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai 200438, China
| | - L Yu
- 1] International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai 200438, China [2] National Center for Liver Cancer, Shanghai 200438, China
| | - J Zhu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai 200438, China
| | - R Dai
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai 200438, China
| | - B Su
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai 200438, China
| | - T Luo
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai 200438, China
| | - N Li
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai 200438, China
| | - W Qin
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai 200438, China
| | - B Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai 200438, China
| | - J Jiang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai 200438, China
| | - S Li
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Department of Antomation, Tsinghua University, Beijing 100084, China
| | - Y Chen
- 1] International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai 200438, China [2] National Center for Liver Cancer, Shanghai 200438, China
| | - H Wang
- 1] Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China [2] International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai 200438, China [3] National Center for Liver Cancer, Shanghai 200438, China [4] State Key Laboratory of Oncogenes and Related Genes, Cancer Institute of Renji Hospital, Shanghai Jiaotong University, Shanghai 200032, China
| |
Collapse
|
25
|
Zhao YH, Lv X, Liu YL, Zhao Y, Li Q, Chen YJ, Zhang M. Hydrostatic pressure promotes the proliferation and osteogenic/chondrogenic differentiation of mesenchymal stem cells: The roles of RhoA and Rac1. Stem Cell Res 2015; 14:283-96. [PMID: 25794483 DOI: 10.1016/j.scr.2015.02.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 02/08/2015] [Accepted: 02/18/2015] [Indexed: 01/16/2023] Open
Abstract
Our previous studies have shown that hydrostatic pressure can serve as an active regulator for bone marrow mesenchymal stem cells (BMSCs). The current work further investigates the roles of cytoskeletal regulatory proteins Ras homolog gene family member A (RhoA) and Ras-related C3 botulinum toxin substrate 1 (Rac1) in hydrostatic pressure-related effects on BMSCs. Flow cytometry assays showed that the hydrostatic pressure promoted cell cycle initiation in a RhoA- and Rac1-dependent manner. Furthermore, fluorescence assays confirmed that RhoA played a positive and Rac1 displayed a negative role in the hydrostatic pressure-induced F-actin stress fiber assembly. Western blots suggested that RhoA and Rac1 play central roles in the pressure-inhibited ERK phosphorylation, and Rac1 but not RhoA was involved in the pressure-promoted JNK phosphorylation. Finally, real-time polymerase chain reaction (PCR) experiments showed that pressure promoted the expression of osteogenic marker genes in BMSCs at an early stage of osteogenic differentiation through the up-regulation of RhoA activity. Additionally, the PCR results showed that pressure enhanced the expression of chondrogenic marker genes in BMSCs during chondrogenic differentiation via the up-regulation of Rac1 activity. Collectively, our results suggested that RhoA and Rac1 are critical to the pressure-induced proliferation and differentiation, the stress fiber assembly, and MAPK activation in BMSCs.
Collapse
Affiliation(s)
- Yin-Hua Zhao
- State Key Laboratory of Military Stomatology, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | - Xin Lv
- State Key Laboratory of Military Stomatology, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | - Yan-Li Liu
- State Key Laboratory of Military Stomatology, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | - Ying Zhao
- State Key Laboratory of Military Stomatology, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | - Qiang Li
- State Key Laboratory of Military Stomatology, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | - Yong-Jin Chen
- State Key Laboratory of Military Stomatology, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China.
| | - Min Zhang
- State Key Laboratory of Military Stomatology, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China.
| |
Collapse
|
26
|
Schäker K, Bartsch S, Patry C, Stoll SJ, Hillebrands JL, Wieland T, Kroll J. The bipartite rac1 Guanine nucleotide exchange factor engulfment and cell motility 1/dedicator of cytokinesis 180 (elmo1/dock180) protects endothelial cells from apoptosis in blood vessel development. J Biol Chem 2015; 290:6408-18. [PMID: 25586182 DOI: 10.1074/jbc.m114.633701] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Engulfment and cell motility 1/dedicator of cytokinesis 180 (Elmo1/Dock180) is a bipartite guanine nucleotide exchange factor for the monomeric GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1). Elmo1/Dock180 regulates Rac1 activity in a specific spatiotemporal manner in endothelial cells (ECs) during zebrafish development and acts downstream of the Netrin-1/Unc5-homolog B (Unc5B) signaling cascade. However, mechanistic details on the pathways by which Elmo1/Dock180 regulates endothelial function and vascular development remained elusive. In this study, we aimed to analyze the vascular function of Elmo1 and Dock180 in human ECs and during vascular development in zebrafish embryos. In vitro overexpression of Elmo1 and Dock180 in ECs reduced caspase-3/7 activity and annexin V-positive cell number upon induction of apoptosis. This protective effect of Elmo1 and Dock180 is mediated by activation of Rac1, p21-activated kinase (PAK) and AKT/protein kinase B (AKT) signaling. In zebrafish, Elmo1 and Dock180 overexpression reduced the total apoptotic cell and apoptotic EC number and promoted the formation of blood vessels during embryogenesis. In conclusion, Elmo1 and Dock180 protect ECs from apoptosis by the activation of the Rac1/PAK/AKT signaling cascade in vitro and in vivo. Thus, Elmo1 and Dock180 facilitate blood vessel formation by stabilization of the endothelium during angiogenesis.
Collapse
Affiliation(s)
- Kathrin Schäker
- From the Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM) and Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany, and
| | - Susanne Bartsch
- From the Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM) and
| | - Christian Patry
- From the Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM) and
| | - Sandra J Stoll
- From the Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM) and
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Jens Kroll
- From the Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM) and Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany, and
| |
Collapse
|
27
|
Lin CH, Shih CH, Tseng CC, Yu CC, Tsai YJ, Bien MY, Chen BC. CXCL12 induces connective tissue growth factor expression in human lung fibroblasts through the Rac1/ERK, JNK, and AP-1 pathways. PLoS One 2014; 9:e104746. [PMID: 25121739 PMCID: PMC4133236 DOI: 10.1371/journal.pone.0104746] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/01/2014] [Indexed: 01/31/2023] Open
Abstract
CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Huang Shih
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Chieh Tseng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Chi Yu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Jhih Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mauo-Ying Bien
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
28
|
Chen Y, Wei Y, Liu J, Zhang H. Chemotactic responses of neural stem cells to SDF-1α correlate closely with their differentiation status. J Mol Neurosci 2014; 54:219-33. [PMID: 24659235 DOI: 10.1007/s12031-014-0279-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/27/2014] [Indexed: 12/21/2022]
Abstract
Chemotaxis of neural stem/progenitor cells (NSCs) is regulated by a variety of factors, and much effort has been devoted to the delineation of factors that are involved in NSC migration. However, the relationship between NSC chemotactic migration and differentiation remains uncharacterized. In the present study, by comparing the transfilter migration rate, single-cell migration speed, and directional efficiency of NSCs in stromal cell-derived factor-1 alpha (SDF-1α)-induced Boyden chamber and Dunn chamber chemotaxis assays, we demonstrate that NSCs in varying differentiation stages possess different migratory capacity. Furthermore, F-actin microfilament reorganization upon stimulation varies greatly among separate differentiation states. We show that signaling pathways involved in NSC migration, such as PI3K/Akt and mitogen-activated protein kinase (MAPK) (ERK1/2, JNK, and p38 MAPK) pathways, are differentially activated by SDF-1α among each NSC differentiation stages, and the extent to which these pathways participate in cell chemotaxis exhibits a differentiation stage-dependent manner. Taken together, these results suggest that the differentiation of NSCs influences their chemotactic responses to SDF-1α, providing new insight into the optimization of the therapeutic efficacy of NSCs for neural regeneration and nerve repair after injury.
Collapse
Affiliation(s)
- Yebing Chen
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123, China
| | | | | | | |
Collapse
|
29
|
Lin CH, Yu MC, Tung WH, Chen TT, Yu CC, Weng CM, Tsai YJ, Bai KJ, Hong CY, Chien MH, Chen BC. Connective tissue growth factor induces collagen I expression in human lung fibroblasts through the Rac1/MLK3/JNK/AP-1 pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:2823-2833. [PMID: 23906792 DOI: 10.1016/j.bbamcr.2013.07.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 01/05/2023]
Abstract
Connective tissue growth factor (CTGF) plays an important role in lung fibrosis. In this study, we investigated the role of Rac1, mixed-lineage kinase 3 (MLK3), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CTGF-induced collagen I expression in human lung fibroblasts. CTGF caused concentration- and time-dependent increases in collagen I expression. CTGF-induced collagen I expression was inhibited by the dominant negative mutant (DN) of Rac1 (RacN17), MLK3DN, MLK3 inhibitor (K252a), JNK1DN, JNK2DN, a JNK inhibitor (SP600125), and an AP-1 inhibitor (curcumin). Treatment of cells with CTGF caused activation of Rac1, MLK3, JNK, and AP-1. The CTGF-induced increase in MLK3 phosphorylation was inhibited by RacN17. Treatment with RacN17 and the MLK3DN inhibited CTGF-induced JNK phosphorylation. CTGF caused increases in c-Jun phosphorylation and the recruitment of c-Jun and c-Fos to the collagen I promoter. Furthermore, stimulation of cells with the CTGF resulted in increases in AP-1-luciferase activity; this effect was inhibited by Rac1N17, MLK3DN, JNK1DN, and JNK2DN. Moreover, CTGF-induced α-smooth muscle actin (α-SMA) expression was inhibited by the procollagen I small interfering RNA (siRNA). These results suggest for the first time that CTGF acting through Rac1 activates the MLK3/JNK signaling pathway, which in turn initiates AP-1 activation and recruitment of c-Jun and c-Fos to the collagen I promoter and ultimately induces collagen I expression in human lung fibroblasts.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chih Yu
- Department of Pulmonary Medicine, Taipei Medical University - Wanfang Hospital, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wan-Hsuan Tung
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ting Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Chi Yu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Weng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yan-Jyu Tsai
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kua-Jen Bai
- Department of Pulmonary Medicine, Taipei Medical University - Wanfang Hospital, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chuang-Ye Hong
- Taipei Medical University Wangfang Hospital, Taipei, Taiwan
| | - Ming-Hsien Chien
- Taipei Medical University Wangfang Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
30
|
Babelova A, Jansen F, Sander K, Löhn M, Schäfer L, Fork C, Ruetten H, Plettenburg O, Stark H, Daniel C, Amann K, Pavenstädt H, Jung O, Brandes RP. Activation of Rac-1 and RhoA contributes to podocyte injury in chronic kidney disease. PLoS One 2013; 8:e80328. [PMID: 24244677 PMCID: PMC3820652 DOI: 10.1371/journal.pone.0080328] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/02/2013] [Indexed: 12/12/2022] Open
Abstract
Rho-family GTPases like RhoA and Rac-1 are potent regulators of cellular signaling that control gene expression, migration and inflammation. Activation of Rho-GTPases has been linked to podocyte dysfunction, a feature of chronic kidney diseases (CKD). We investigated the effect of Rac-1 and Rho kinase (ROCK) inhibition on progressive renal failure in mice and studied the underlying mechanisms in podocytes. SV129 mice were subjected to 5/6-nephrectomy which resulted in arterial hypertension and albuminuria. Subgroups of animals were treated with the Rac-1 inhibitor EHT1846, the ROCK inhibitor SAR407899 and the ACE inhibitor Ramipril. Only Ramipril reduced hypertension. In contrast, all inhibitors markedly attenuated albumin excretion as well as glomerular and tubulo-interstitial damage. The combination of SAR407899 and Ramipril was more effective in preventing albuminuria than Ramipril alone. To study the involved mechanisms, podocytes were cultured from SV129 mice and exposed to static stretch in the Flexcell device. This activated RhoA and Rac-1 and led via TGFβ to apoptosis and a switch of the cells into a more mesenchymal phenotype, as evident from loss of WT-1 and nephrin and induction of α-SMA and fibronectin expression. Rac-1 and ROCK inhibition as well as blockade of TGFβ dramatically attenuated all these responses. This suggests that Rac-1 and RhoA are mediators of podocyte dysfunction in CKD. Inhibition of Rho-GTPases may be a novel approach for the treatment of CKD.
Collapse
Affiliation(s)
| | - Felix Jansen
- Physiology I, Goethe-University, Frankfurt am Main, Germany
| | - Kerstin Sander
- Institute for Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | | | - Liliana Schäfer
- General Pharmacology and Toxicology, Goethe-University, Frankfurt am Main, Germany
| | - Christian Fork
- Physiology I, Goethe-University, Frankfurt am Main, Germany
| | | | | | - Holger Stark
- Institute for Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Christoph Daniel
- Department of Pathology, Nephropathology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Pathology, Nephropathology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Hermann Pavenstädt
- Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Oliver Jung
- Physiology I, Goethe-University, Frankfurt am Main, Germany
- Internal Medicine/Nephrology, Goethe-University, Frankfurt am Main, Germany
| | - Ralf P. Brandes
- Physiology I, Goethe-University, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
31
|
Citalán-Madrid AF, García-Ponce A, Vargas-Robles H, Betanzos A, Schnoor M. Small GTPases of the Ras superfamily regulate intestinal epithelial homeostasis and barrier function via common and unique mechanisms. Tissue Barriers 2013; 1:e26938. [PMID: 24868497 PMCID: PMC3942330 DOI: 10.4161/tisb.26938] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022] Open
Abstract
The intestinal epithelium forms a stable barrier protecting underlying tissues from pathogens in the gut lumen. This is achieved by specialized integral membrane structures such as tight and adherens junctions that connect neighboring cells and provide stabilizing links to the cytoskeleton. Junctions are constantly remodeled to respond to extracellular stimuli. Assembly and disassembly of junctions is regulated by interplay of actin remodeling, endocytotic recycling of junctional proteins, and various signaling pathways. Accumulating evidence implicate small G proteins of the Ras superfamily as important signaling molecules for the regulation of epithelial junctions. They function as molecular switches circling between an inactive GDP-bound and an active GTP-bound state. Once activated, they bind different effector molecules to control cellular processes required for correct junction assembly, maintenance and remodelling. Here, we review recent advances in understanding how GTPases of the Rho, Ras, Rab and Arf families contribute to intestinal epithelial homeostasis.
Collapse
Affiliation(s)
- Alí Francisco Citalán-Madrid
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Alexander García-Ponce
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Hilda Vargas-Robles
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| |
Collapse
|
32
|
Yasuda M, Kato S, Yamanaka N, Iimori M, Matsumoto K, Utsumi D, Kitahara Y, Amagase K, Horie S, Takeuchi K. 5-HT₃ receptor antagonists ameliorate 5-fluorouracil-induced intestinal mucositis by suppression of apoptosis in murine intestinal crypt cells. Br J Pharmacol 2013; 168:1388-400. [PMID: 23072534 DOI: 10.1111/bph.12019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/23/2012] [Accepted: 10/02/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Chemotherapeutic agents, including 5-fluorouracil (5-FU), frequently cause intestinal mucositis resulting in severe diarrhoea and morphological mucosal damage. 5-HT₃ receptor antagonists are clinically effective in the treatment of nausea and emesis during cancer chemotherapy. Therefore we here have examined the effects of 5-HT₃ receptor antagonists on 5-FU-induced intestinal mucositis in mice. EXPERIMENTAL APPROACH Intestinal mucositis was induced in male C57BL/6 mice by daily administration of 5-FU (50 mg·kg⁻¹) for 5 days. Effects of 5-HT₃ receptor antagonists, ramosetron (0.01-0.1 mg·kg⁻¹) and ondansetron (5 mg·kg⁻¹), on the accompanying histology, cytokine production and apoptosis were assessed. KEY RESULTS Continuous administration of 5-FU to mice caused severe intestinal mucositis, which was histologically characterized by the shortening of villi and destruction of intestinal crypts, accompanied by body weight loss and diarrhoea. Daily ramosetron administration dose-dependently reduced the severity of intestinal mucositis, body weight loss and diarrhoea. Similar beneficial effects were observed with ondansetron. The number of apoptotic, caspase-3- and caspase-8-activated cells increased 24 h after the first 5-FU administration, and these responses were reduced by ramosetron. The up-regulation of TNF-α, IL-1β and IL-6 following 5-FU treatment was also attenuated by ramosetron. CONCLUSIONS AND IMPLICATIONS 5-HT₃ receptor antagonists ameliorated 5-FU-induced intestinal mucositis in mice, and this action could result from suppression of apoptotic responses in the intestinal crypt cells via inhibition of cytokine expression. Thus, 5-HT₃ receptor antagonists may be useful for preventing not only nausea and emesis but also intestinal mucositis during 5-FU chemotherapy.
Collapse
Affiliation(s)
- M Yasuda
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Salgado APC, Soares-Martins JAP, Andrade LG, Albarnaz JD, Ferreira PCP, Kroon EG, Bonjardim CA. Study of vaccinia and cowpox viruses' replication in Rac1-N17 dominant-negative cells. Mem Inst Oswaldo Cruz 2013; 108:554-62. [PMID: 23903969 DOI: 10.1590/s0074-02762013000500004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/13/2013] [Indexed: 11/22/2022] Open
Abstract
Interfering with cellular signal transduction pathways is a common strategy used by many viruses to create a propitious intracellular environment for an efficient replication. Our group has been studying cellular signalling pathways activated by the orthopoxviruses Vaccinia (VACV) and Cowpox (CPXV) and their significance to viral replication. In the present study our aim was to investigate whether the GTPase Rac1 was an upstream signal that led to the activation of MEK/ERK1/2, JNK1/2 or Akt pathways upon VACV or CPXV' infections. Therefore, we generated stable murine fibroblasts exhibiting negative dominance to Rac1-N17 to evaluate viral growth and the phosphorylation status of ERK1/2, JNK1/2 and Akt. Our results demonstrated that VACV replication, but not CPXV, was affected in dominant-negative (DN) Rac1-N17 cell lines in which viral yield was reduced in about 10-fold. Viral late gene expression, but not early, was also reduced. Furthermore, our data showed that Akt phosphorylation was diminished upon VACV infection in DN Rac1-N17 cells, suggesting that Rac1 participates in the phosphoinositide-3 kinase pathway leading to the activation of Akt. In conclusion, our results indicate that while Rac1 indeed plays a role in VACV biology, perhaps another GTPase may be involved in CPXV replication.
Collapse
Affiliation(s)
- Ana Paula Carneiro Salgado
- Grupo de Transdução de Sinal/Orthopoxvirus e Flavivírus - LABVÍRUS, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | | | | | | | |
Collapse
|
34
|
Jin S. Role of p53 in Anticancer Drug Treatment- and Radiation-Induced Injury in Normal Small Intestine. Cancer Biol Med 2013; 9:1-8. [PMID: 23691447 PMCID: PMC3643648 DOI: 10.3969/j.issn.2095-3941.2012.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 02/27/2012] [Indexed: 12/15/2022] Open
Abstract
In the human gastrointestinal tract, the functional mucosa of the small intestine has the highest capacity for absorption of nutrients and rapid proliferation rates, making it vulnerable to chemoradiotherapy. Recent understanding of the protective role of p53-mediated cell cycle arrest in the small intestinal mucosa has led researchers to explore new avenues to mitigate mucosal injury during cancer treatment. A traditional p53 inhibitor and two other molecules that exhibit strong protective effects on normal small intestinal epithelium during anticancer drug treatment and radiation therapy are introduced in this work. The objective of this review was to update current knowledge regarding potential mechanisms and targets that inhibit the side effects induced by chemoradiotherapy.
Collapse
Affiliation(s)
- Shi Jin
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, The Johns Hopkins University, Baltimore, MD 21210, USA
| |
Collapse
|
35
|
Schwarz J, Proff J, Hävemeier A, Ladwein M, Rottner K, Barlag B, Pich A, Tatge H, Just I, Gerhard R. Serine-71 phosphorylation of Rac1 modulates downstream signaling. PLoS One 2012; 7:e44358. [PMID: 22970203 PMCID: PMC3438190 DOI: 10.1371/journal.pone.0044358] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/03/2012] [Indexed: 01/14/2023] Open
Abstract
The Rho GTPases Rac1 and Cdc42 regulate a variety of cellular functions by signaling to different signal pathways. It is believed that the presence of a specific effector at the location of GTPase activation determines the route of downstream signaling. We previously reported about EGF-induced Ser-71 phosphorylation of Rac1/Cdc42. By using the phosphomimetic S71E-mutants of Rac1 and Cdc42 we investigated the impact of Ser-71 phosphorylation on binding to selected effector proteins. Binding of the constitutively active (Q61L) variants of Rac1 and Cdc42 to their specific interaction partners Sra-1 and N-WASP, respectively, as well as to their common effector protein PAK was abrogated when Ser-71 was exchanged to glutamate as phosphomimetic substitution. Interaction with their common effector proteins IQGAP1/2/3 or MRCK alpha was, however, hardly affected. This ambivalent behaviour was obvious in functional assays. In contrast to Rac1 Q61L, phosphomimetic Rac1 Q61L/S71E was not able to induce increased membrane ruffling. Instead, Rac1 Q61L/S71E allowed filopodia formation, which is in accordance with abrogation of the dominant Sra-1/Wave signalling pathway. In addition, in contrast to Rac1 transfected cells Rac1 S71E failed to activate PAK1/2. On the other hand, Rac1 Q61L/S71E was as effective in activation of NF-kappaB as Rac1 Q61L, illustrating positive signal transduction of phosphorylated Rac1. Together, these data suggest that phosphorylation of Rac1 and Cdc42 at serine-71 represents a reversible mechanism to shift specificity of GTPase/effector coupling, and to preferentially address selected downstream pathways.
Collapse
Affiliation(s)
- Janett Schwarz
- Department of Toxicology, Hannover Medical School, Hannover, Germany
| | - Julia Proff
- Department of Toxicology, Hannover Medical School, Hannover, Germany
| | - Anika Hävemeier
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Markus Ladwein
- Cytoskeleton Dynamics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klemens Rottner
- Cytoskeleton Dynamics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institut für Genetik, Rheinische Friederich-Wilhelms-Universität, Bonn, Germany
| | - Britta Barlag
- Department of Toxicology, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Department of Toxicology, Hannover Medical School, Hannover, Germany
| | - Helma Tatge
- Department of Toxicology, Hannover Medical School, Hannover, Germany
| | - Ingo Just
- Department of Toxicology, Hannover Medical School, Hannover, Germany
| | - Ralf Gerhard
- Department of Toxicology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
36
|
AN INSOOK, AN SUNGKWAN, KANG SANGMO, CHOE TAEBOO, LEE SUNGNAE, JANG HYUNHEE, BAE SEUNGHEE. Titrated extract of Centella asiatica provides a UVB protective effect by altering microRNA expression profiles in human dermal fibroblasts. Int J Mol Med 2012; 30:1194-202. [DOI: 10.3892/ijmm.2012.1117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/20/2012] [Indexed: 11/06/2022] Open
|
37
|
Thomson ABR, Chopra A, Clandinin MT, Freeman H. Recent advances in small bowel diseases: Part I. World J Gastroenterol 2012; 18:3336-52. [PMID: 22807604 PMCID: PMC3396187 DOI: 10.3748/wjg.v18.i26.3336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/05/2012] [Accepted: 04/13/2012] [Indexed: 02/06/2023] Open
Abstract
As is the case in all parts of gastroenterology and hepatology, there have been many advances in our knowledge and understanding of small intestinal diseases. Over 1000 publications were reviewed for 2008 and 2009, and the important advances in basic science as well as clinical applications were considered. In Part I of this Editorial Review, seven topics are considered: intestinal development; proliferation and repair; intestinal permeability; microbiotica, infectious diarrhea and probiotics; diarrhea; salt and water absorption; necrotizing enterocolitis; and immunology/allergy. These topics were chosen because of their importance to the practicing physician.
Collapse
|
38
|
Vandevyver S, Dejager L, Van Bogaert T, Kleyman A, Liu Y, Tuckermann J, Libert C. Glucocorticoid receptor dimerization induces MKP1 to protect against TNF-induced inflammation. J Clin Invest 2012; 122:2130-40. [PMID: 22585571 DOI: 10.1172/jci60006] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 04/04/2012] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids acting through the glucocorticoid receptor (GR) inhibit TNF-induced lethal inflammation. Here, we demonstrate that GR dimerization plays a role in reducing TNF sensitivity. In mutant mice unable to dimerize GR, we found that TNF failed to induce MAPK phosphatase 1 (MKP1). We assessed TNF sensitivity in Mkp1(-/-) mice and found increased inflammatory gene induction in livers, increased circulating cytokines, cell death in intestinal epithelium, severe intestinal inflammation, hypothermia, and death. Mkp1(-/-) mice had increased levels of phosphorylated JNK, which promotes apoptosis, in liver tissue. We further examined JNK-deficient mice for their response to TNF. Although Jnk1(-/-) mice showed no change in sensitivity to TNF, Jnk2(-/-) mice were significantly protected against TNF, identifying JNK2 as an essential player in inflammation induced by TNF. Furthermore, we found that loss of Jnk2 partially rescued the increased sensitivity of Mkp1(-/-) and mutant GR mice to TNF. Our data show that GR dimerization inhibits JNK2 through MKP1 and protects from TNF-induced apoptosis and lethal inflammation.
Collapse
Affiliation(s)
- Sofie Vandevyver
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
39
|
Ray RM, Jin S, Bavaria MN, Johnson LR. Regulation of JNK activity in the apoptotic response of intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2011; 300:G761-70. [PMID: 21350193 PMCID: PMC3094148 DOI: 10.1152/ajpgi.00405.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have studied apoptosis of gastrointestinal epithelial cells by examining the receptor-mediated and DNA damage-induced pathways using TNF-α and camptothecin (CPT), respectively. TNF-α requires inhibition of antiapoptotic protein synthesis by cycloheximide (CHX). CHX also results in high levels of active JNK, which are necessary for TNF-induced apoptosis. While CPT induces apoptosis, the increase in JNK activity was not proportional to the degree of apoptosis. Thus the mechanism of activation of JNK and its role in apoptosis are unclear. We examined the course of JNK activation in response to a combination of TNF-α and CPT (TNF + CPT), which resulted in a three- to fourfold increase in apoptosis compared with CPT alone, indicating an amplification of apoptotic signaling pathways. TNF + CPT caused apoptosis by activating JNK, p38, and caspases-8, -9, and -3. TNF-α stimulated a transient phosphorylation of JNK1/2 and ERK1/2 at 15 min, which returned to basal by 60 min and remained low for 4 h. CPT increased JNK1/2 activity between 3 and 4 h. TNF + CPT caused a sustained and robust JNK1/2 and ERK1/2 phosphorylation by 2 h, which remained high at 4 h, suggesting involvement of MEKK4/7 and MEK1, respectively. When administered with TNF + CPT, SP-600125, a specific inhibitor of MEKK4/7, completely inhibited JNK1/2 and decreased apoptosis. However, administration of SP-600125 at 1 h after TNF + CPT failed to prevent JNK1/2 phosphorylation, and the protective effect of SP-600125 on apoptosis was abolished. These results indicate that the persistent activation of JNK might be due to inhibition of JNK-specific MAPK phosphatase 1 (MKP1). Small interfering RNA-mediated knockdown of MKP1 enhanced TNF + CPT-induced activity of JNK1/2 and caspases-9 and -3. Taken together, these results suggest that MKP1 activity determines the duration of JNK1/2 and p38 activation and, thereby, apoptosis in response to TNF + CPT.
Collapse
Affiliation(s)
- Ramesh M. Ray
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Shi Jin
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Mitulkumar N. Bavaria
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Leonard R. Johnson
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
40
|
Overmeyer JH, Maltese WA. Death pathways triggered by activated Ras in cancer cells. Front Biosci (Landmark Ed) 2011; 16:1693-713. [PMID: 21196257 DOI: 10.2741/3814] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ras GTPases are best known for their ability to serve as molecular switches regulating cell growth, differentiation and survival. Gene mutations that result in expression of constitutively active forms of Ras have been linked to oncogenesis in animal models and humans. However, over the past two decades, evidence has gradually accumulated to support a paradoxical role for Ras proteins in the initiation of cell death pathways. In this review we survey the literature pointing to the ability of activated Ras to promote cell death under conditions where cancer cells encounter apoptotic stimuli or Ras is ectopically expressed. In some of these cases Ras acts through known effectors and well defined apoptotic death pathways. However, in other cases it appears that Ras operates by triggering novel non-apoptotic death mechanisms that are just beginning to be characterized. Understanding these mechanisms and the factors that go into changing the nature of Ras signaling from pro-survival to pro-death could set the stage for development of novel therapeutic approaches aimed at manipulating pro-death Ras signaling pathways in cancer.
Collapse
Affiliation(s)
- Jean H Overmeyer
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio 43614, USA
| | | |
Collapse
|
41
|
Park YJ, Ahn HJ, Kim YS, Cho Y, Joo DJ, Ju MK. Illumina-microarray analysis of mycophenolic acid-induced cell death in an insulin-producing cell line and primary rat islet cells: New insights into apoptotic pathways involved. Cell Signal 2010; 22:1773-82. [DOI: 10.1016/j.cellsig.2010.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/07/2010] [Indexed: 11/25/2022]
|
42
|
Rac1 activity changes are associated with neuronal pathology and spatial memory long-term recovery after global cerebral ischemia. Neurochem Int 2010; 57:762-73. [PMID: 20817060 DOI: 10.1016/j.neuint.2010.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 07/01/2010] [Accepted: 08/10/2010] [Indexed: 11/21/2022]
Abstract
Excitotoxicity is the main event during neurological disorders producing drastic morphological and functional changes. Rac-GTPase is involved in cytoskeletal remodeling and survival. However, the role of Rac1 after cerebral ischemia has not been completely understood yet. In this study, we evaluated the activity of Rac1 and its immunoreactivity associated to neuropathological hallmarks and behavioral task analyses after global cerebral ischemia in an acute and long-term post-ischemia period. Our findings showed that during the acute phase (24h) after global cerebral ischemia, a decrease of the active state of Rac1 was detected in the hippocampus, together with a down-regulation of survival signaling. In this same post-ischemia time, Rac1 immunoreactivity was redistributed to cytoplasm and to aberrant neurites, accompanied by dendritic and actin cytoskeletal retraction both in vivo and in vitro in neuronal primary cultures treated with glutamate. Neurons transfected with the constitutively active mutant of Rac1 were recovered from the glutamate-induced affection in vitro. However, in the in vivo model an inactive state of Rac1, and its cellular localization remained one month after ischemia, with still decreased survival signaling, significant tauopathy, and learning and memory alterations. These neuropathological hallmarks were reversed two months post-ischemia, related with a Rac1 activity state similar to control, as well as a "normalization" of the learning and memory tasks in the ischemic rats. In summary, our data suggests that changes in Rac1 activity are involved in the neurodegenerative processes after cerebral ischemia, and also in its long-term recovery.
Collapse
|
43
|
Elias BC, Bhattacharya S, Ray RM, Johnson LR. Polyamine-dependent activation of Rac1 is stimulated by focal adhesion-mediated Tiam1 activation. Cell Adh Migr 2010; 4:419-30. [PMID: 20448461 DOI: 10.4161/cam.4.3.12043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Integrin receptors cluster on the cell surface and bind to extra cellular matrix (ECM) proteins triggering the formation of focal contacts and the activation of various signal transduction pathways that affect the morphology, motility, gene expression and survival of adherent cells. Polyamine depletion prevents the increase in autophosphorylation of focal adhesion kinase (FAK) and Src during attachment. Rac activity also shows a steady decline, and its upstream guanine nucleotide exchange factor (GEF), Tiam1 also shows a reduction in total protein level when cells are depleted of polyamines. When Tiam1 and Rac1 interaction was inhibited by NSC-23766, there was not only a decrease in Rac1 activity as expected but also a decrease in FAK auto-phosphorylation. Inhibition of Src activity by PP2 also reduced FAK autophosphorylation, which implies that Src modulates FAK autophosphorylation. From the data obtained in this study we conclude that FAK and Src are rapidly activated upon fibronectin mediated signaling leading to Tiam1-mediated Rac1 activation and that intracellular polyamines influence the signaling strength by modulating interaction of Src with Tiam1 using focal adhesion kinase as a scaffolding site.
Collapse
Affiliation(s)
- Bertha C Elias
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | |
Collapse
|
44
|
Feng YX, Zhao JS, Li JJ, Wang T, Cheng SQ, Yuan Y, Wang F, Wang XF, Xie D. Liver cancer: EphrinA2 promotes tumorigenicity through Rac1/Akt/NF-kappaB signaling pathway. Hepatology 2010; 51:535-44. [PMID: 19918976 DOI: 10.1002/hep.23313] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
UNLABELLED Eph/Ephrin family, one of the largest receptor tyrosine kinase families, has been extensively studied in morphogenesis and neural development. Recently, growing attention has been paid to its role in the initiation and progression of various cancers. However, the role of Eph/Ephrins in hepatocellular carcinoma (HCC) has been rarely investigated. In this study, we found that the expression of EphrinA2 was significantly up-regulated in both established cell lines and clinical tissue samples of HCC, and the most significant increase was observed in the tumors invading the portal veins. Forced expression of EphrinA2 in HCC cells significantly promoted in vivo tumorigenicity, whereas knockdown of this gene inhibited this oncogenic effect. We further found that suppression of apoptosis, rather than accelerating proliferation, was responsible for EphrinA2-enhanced tumorigenicity. In addition, EphrinA2 endowed cancer cells with resistance to tumor necrosis factor alpha (TNF-alpha)-induced apoptosis, thus facilitating their survival. Furthermore, we disclosed a novel EphrinA2/ras-related c3 botulinum toxin substrate 1 (Rac1)/V-akt murine thymoma viral oncogene homolog (Akt)/nuclear factor-kappa B (NF-kappaB) pathway contributing to the inhibitory effect on apoptosis in HCC cells. CONCLUSION This study revealed that EphrinA2 played an important role in the development and progression of HCC by promoting the survival of cancer cells, indicating its role as a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Yu-Xiong Feng
- Laboratory of Molecular Oncology, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Byun JY, Kim MJ, Yoon CH, Cha H, Yoon G, Lee SJ. Oncogenic Ras Signals through Activation of Both Phosphoinositide 3-Kinase and Rac1 to Induce c-Jun NH2-Terminal Kinase–Mediated, Caspase-Independent Cell Death. Mol Cancer Res 2009; 7:1534-42. [DOI: 10.1158/1541-7786.mcr-08-0542] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Zhang QG, Wang R, Han D, Brann DW. Role of Rac1 GTPase in JNK signaling and delayed neuronal cell death following global cerebral ischemia. Brain Res 2009; 1265:138-47. [PMID: 19368836 PMCID: PMC3801190 DOI: 10.1016/j.brainres.2009.01.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/14/2009] [Accepted: 01/18/2009] [Indexed: 12/31/2022]
Abstract
The overall goal of this study was to determine the role of Rac1 in POSH/MLK/JNK signaling and delayed neuronal cell death following cerebral ischemia. Temporal studies revealed that Rac1 GTPase activation was significantly elevated in hippocampus CA1 at 10 min to 72 h after cerebral ischemia reperfusion, with peak levels 30 min to 6 h after reperfusion. Total Rac1 protein levels were not significantly changed following cerebral ischemia. Rac1 has been shown to interact with POSH (plenty of SH3s), a scaffold protein that binds to and regulates MLK3 and JNK activation. Co-immunoprecipitation (Co-IP) studies revealed that POSH-Rac1-MLK3 complex formation displayed a significant and prolonged elevation after reperfusion, with a correlative increase in phosphorylation/activation of MLK3 as compared to sham controls. Intracerebroventricular administration of Rac1 antisense oligonucleotides (AS-ODNs) significantly attenuated Rac1 levels and Rac1 activation at 30 min after reperfusion, with a correlated significant attenuation of POSH-MLK3-Rac1 complex formation and MLK3 activation in hippocampus CA1. Infusion of Rac1 AS-ODNs also significantly attenuated post-ischemic activation of JNK, downstream of MLK3, and strongly protected the hippocampus CA1 from ischemic damage. Missense oligos had no effect on any of the parameters measured. The Rac1 AS-ODNs results were further confirmed by administration of a Rac1 inhibitor (NSC23766), which markedly attenuated activation of Rac1 and JNK, and significantly attenuated apoptotic delayed neuronal cell death following cerebral ischemia. As a whole, these studies demonstrate an important role for Rac1 in activation of the prodeath MLK3-JNK kinase signaling pathway and delayed neuronal cell death following cerebral ischemia.
Collapse
Affiliation(s)
- Quan-Guang Zhang
- Developmental Neurobiology Program, Institute of Molecular Medicine and Genetics, and Department of Neurology, Medical College of Georgia, Augusta, GA 30912
| | - Ruimin Wang
- Research Center for Molecular Biology, North China Coal Medical University, Tangshan 063000, China
| | - Dong Han
- Developmental Neurobiology Program, Institute of Molecular Medicine and Genetics, and Department of Neurology, Medical College of Georgia, Augusta, GA 30912
| | - Darrell W. Brann
- Developmental Neurobiology Program, Institute of Molecular Medicine and Genetics, and Department of Neurology, Medical College of Georgia, Augusta, GA 30912
| |
Collapse
|
47
|
Zhang Y, Rivera Rosado LA, Moon SY, Zhang B. Silencing of D4-GDI inhibits growth and invasive behavior in MDA-MB-231 cells by activation of Rac-dependent p38 and JNK signaling. J Biol Chem 2009; 284:12956-65. [PMID: 19269969 DOI: 10.1074/jbc.m807845200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho GDP dissociation inhibitor D4-GDI is overexpressed in some human breast cancer cell lines (Zhang, Y., and Zhang, B. (2006) Cancer Res. 66, 5592-5598). Here, we show that silencing of D4-GDI by RNA interference abrogates tumor growth and lung metastasis of otherwise highly invasive MDA-MB-231 breast cancer cells. Under anchorage-independent culture conditions, D4-GDI-depleted cells undergo rapid apoptosis (anoikis), which is known to hinder metastasis. We also found that D4-GDI associates with Rac1 and Rac3 in breast cancer cells, but not with other Rho GTPases tested (Cdc42, RhoA, RhoC, and TC10). Silencing of D4-GDI results in constitutive Rac1 activation and translocation from the cytosol to cellular membrane compartments and in sustained activation of p38 and JNK kinases. Rac1 blockade inhibits p38/JNK kinase activities and the spontaneous anoikis of D4-GDI knockdown cells. These results suggest that D4-GDI regulates cell function by interacting primarily with Rac GTPases and may play an integral role in breast cancer tumorigenesis. D4-GDI could prove to be a potential new target for therapeutic intervention.
Collapse
Affiliation(s)
- Yaqin Zhang
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
48
|
Kim YJ, Park T. Genes are differentially expressed in the epididymal fat of rats rendered obese by a high-fat diet. Nutr Res 2009; 28:414-22. [PMID: 19083440 DOI: 10.1016/j.nutres.2008.03.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 02/24/2008] [Accepted: 03/14/2008] [Indexed: 02/01/2023]
Abstract
The aim of present study was to identify the visceral adipose tissue genes differentially expressed in a well-characterized rat model of high-fat diet (HFD)-induced obesity. Male Sprague-Dawley rats were fed either the HFD (17 g lard + 3 g corn oil/100 g) or the normal diet (5 g corn oil/100 g) for 9 weeks. The HFD rats weighed 55% more and accumulated 85% to 133% greater visceral fats than did the normal-diet rats (P < .05). Animals given the HFD for 9 weeks acquired dyslipidemia, fatty liver, insulin resistance, and hyperleptinemia along with the overexpression of several obesity-related genes, such as leptin, tumor necrosis factor alpha, resistin, peroxisome proliferator-activated receptor gamma2, CCAAT/enhancer-binding protein alpha, and sterol regulatory element-binding protein-1c, in the epididymal adipose tissue. The differential gene expression profile obtained from the cDNA microarray analysis followed by the real-time polymerase chain reaction confirmation led to a recruitment of several uncharacterized adipose tissue genes responding to the HFD. We report herein, for the first time, that a series of genes which might be implicated in the insulin-stimulated glucose transporter 4 translocation, such as protein phosphatase 2 (formerly 2A), cell division cycle 42-interacting protein 4, syntaxin 6, linker of T-cell receptor pathways 10, as well as the genes which might be involved in cancer development, such as heat shock 10-kd protein 1, and ras-related C3 botulinum toxin substrate 1, were differentially expressed in the epididymal adipose tissue of rats rendered obese by an HFD.
Collapse
Affiliation(s)
- Yun Jung Kim
- Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University, Seoul 120-749, Korea
| | | |
Collapse
|
49
|
Yeh YC, Wang CZ, Tang MJ. Discoidin domain receptor 1 activation suppresses α2β1integrin-dependent cell spreading through inhibition of Cdc42 activity. J Cell Physiol 2009; 218:146-56. [DOI: 10.1002/jcp.21578] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
|