1
|
Geertsma ER, Oliver D. SLC26 Anion Transporters. Handb Exp Pharmacol 2024; 283:319-360. [PMID: 37947907 DOI: 10.1007/164_2023_698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Solute carrier family 26 (SLC26) is a family of functionally diverse anion transporters found in all kingdoms of life. Anions transported by SLC26 proteins include chloride, bicarbonate, and sulfate, but also small organic dicarboxylates such as fumarate and oxalate. The human genome encodes ten functional homologs, several of which are causally associated with severe human diseases, highlighting their physiological importance. Here, we review novel insights into the structure and function of SLC26 proteins and summarize the physiological relevance of human members.
Collapse
Affiliation(s)
- Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg, Giessen, Germany.
| |
Collapse
|
2
|
Whittamore JM, Hatch M. Oxalate secretion is stimulated by a cAMP-dependent pathway in the mouse cecum. Pflugers Arch 2023; 475:249-266. [PMID: 36044064 PMCID: PMC9851989 DOI: 10.1007/s00424-022-02742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 02/01/2023]
Abstract
Elevated levels of the intracellular second messenger cAMP can stimulate intestinal oxalate secretion however the membrane transporters responsible are unclear. Oxalate transport by the chloride/bicarbonate (Cl-/HCO3-) exchanger Slc26a6 or PAT-1 (Putative Anion Transporter 1), is regulated via cAMP when expressed in Xenopus oocytes and cultured cells but whether this translates to the native epithelia is unknown. This study investigated the regulation of oxalate transport by the mouse intestine focusing on transport at the apical membrane hypothesizing PAT-1 is the target of a cAMP-dependent signaling pathway. Adopting the Ussing chamber technique we measured unidirectional 14C-oxalate and 36Cl- flux ([Formula: see text] and [Formula: see text]) across distal ileum, cecum and distal colon, employing forskolin (FSK) and 3-isobutyl-1-methylxanthine (IBMX) to trigger cAMP production. FSK/IBMX initiated a robust secretory response by all segments but the stimulation of net oxalate secretion was confined to the cecum only involving activation of [Formula: see text] and distinct from net Cl- secretion produced by inhibiting [Formula: see text]. Using the PAT-1 knockout (KO) mouse we determined cAMP-stimulated [Formula: see text] was not directly dependent on PAT-1, but it was sensitive to mucosal DIDS (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid), although unlikely to be another Cl-/HCO3- exchanger given the lack of trans-stimulation or cis-inhibition by luminal Cl- or HCO3-. The cAMP-activated oxalate efflux was reliant on CFTR (Cystic Fibrosis Transmembrane conductance Regulator) activity, but only in the presence of PAT-1, leading to speculation on the involvement of a multi-transporter regulatory complex. Further investigations at the cellular and molecular level are necessary to define the mechanism and transporter(s) responsible.
Collapse
Affiliation(s)
- Jonathan M Whittamore
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research | Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-8885, USA.
| | - Marguerite Hatch
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Whittamore JM, Hatch M. Oxalate Flux Across the Intestine: Contributions from Membrane Transporters. Compr Physiol 2021; 12:2835-2875. [PMID: 34964122 DOI: 10.1002/cphy.c210013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial oxalate transport is fundamental to the role occupied by the gastrointestinal (GI) tract in oxalate homeostasis. The absorption of dietary oxalate, together with its secretion into the intestine, and degradation by the gut microbiota, can all influence the excretion of this nonfunctional terminal metabolite in the urine. Knowledge of the transport mechanisms is relevant to understanding the pathophysiology of hyperoxaluria, a risk factor in kidney stone formation, for which the intestine also offers a potential means of treatment. The following discussion presents an expansive review of intestinal oxalate transport. We begin with an overview of the fate of oxalate, focusing on the sources, rates, and locations of absorption and secretion along the GI tract. We then consider the mechanisms and pathways of transport across the epithelial barrier, discussing the transcellular, and paracellular components. There is an emphasis on the membrane-bound anion transporters, in particular, those belonging to the large multifunctional Slc26 gene family, many of which are expressed throughout the GI tract, and we summarize what is currently known about their participation in oxalate transport. In the final section, we examine the physiological stimuli proposed to be involved in regulating some of these pathways, encompassing intestinal adaptations in response to chronic kidney disease, metabolic acid-base disorders, obesity, and following gastric bypass surgery. There is also an update on research into the probiotic, Oxalobacter formigenes, and the basis of its unique interaction with the gut epithelium. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Jonathan M Whittamore
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marguerite Hatch
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Takei Y. The digestive tract as an essential organ for water acquisition in marine teleosts: lessons from euryhaline eels. ZOOLOGICAL LETTERS 2021; 7:10. [PMID: 34154668 PMCID: PMC8215749 DOI: 10.1186/s40851-021-00175-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/16/2021] [Indexed: 05/17/2023]
Abstract
Adaptation to a hypertonic marine environment is one of the major topics in animal physiology research. Marine teleosts lose water osmotically from the gills and compensate for this loss by drinking surrounding seawater and absorbing water from the intestine. This situation is in contrast to that in mammals, which experience a net osmotic loss of water after drinking seawater. Water absorption in fishes is made possible by (1) removal of monovalent ions (desalinization) by the esophagus, (2) removal of divalent ions as carbonate (Mg/CaCO3) precipitates promoted by HCO3- secretion, and (3) facilitation of NaCl and water absorption from diluted seawater by the intestine using a suite of unique transporters. As a result, 70-85% of ingested seawater is absorbed during its passage through the digestive tract. Thus, the digestive tract is an essential organ for marine teleost survival in the hypertonic seawater environment. The eel is a species that has been frequently used for osmoregulation research in laboratories worldwide. The eel possesses many advantages as an experimental animal for osmoregulation studies, one of which is its outstanding euryhalinity, which enables researchers to examine changes in the structure and function of the digestive tract after direct transfer from freshwater to seawater. In recent years, the molecular mechanisms of ion and water transport across epithelial cells (the transcellular route) and through tight junctions (the paracellular route) have been elucidated for the esophagus and intestine. Thanks to the rapid progress in analytical methods for genome databases on teleosts, including the eel, the molecular identities of transporters, channels, pumps and junctional proteins have been clarified at the isoform level. As 10 y have passed since the previous reviews on this subject, it seems relevant and timely to summarize recent progress in research on the molecular mechanisms of water and ion transport in the digestive tract in eels and to compare the mechanisms with those of other teleosts and mammals from comparative and evolutionary viewpoints. We also propose future directions for this research field to achieve integrative understanding of the role of the digestive tract in adaptation to seawater with regard to pathways/mechanisms including the paracellular route, divalent ion absorption, metabolon formation and cellular trafficking of transporters. Notably, some of these have already attracted practical attention in laboratories.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| |
Collapse
|
5
|
Cil O, Haggie PM, Tan JAT, Rivera AA, Verkman AS. SLC26A6-selective inhibitor identified in a small-molecule screen blocks fluid absorption in small intestine. JCI Insight 2021; 6:147699. [PMID: 34100381 PMCID: PMC8262356 DOI: 10.1172/jci.insight.147699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
SLC26A6 (also known as putative anion transporter 1 [PAT1]) is a Cl-/HCO3- exchanger expressed at the luminal membrane of enterocytes where it facilitates intestinal Cl- and fluid absorption. Here, high-throughput screening of 50,000 synthetic small molecules in cells expressing PAT1 and a halide-sensing fluorescent protein identified several classes of inhibitors. The most potent compound, the pyrazolo-pyrido-pyrimidinone PAT1inh-B01, fully inhibited PAT1-mediated anion exchange (IC50 ~350 nM), without inhibition of the related intestinal transporter SLC26A3 (also known as DRA). In closed midjejunal loops in mice, PAT1inh-B01 inhibited fluid absorption by 50%, which increased to >90% when coadministered with DRA inhibitor DRAinh-A270. In ileal loops, PAT1inh-B01 blocked fluid absorption by >80%, whereas DRAinh-A270 was without effect. In colonic loops, PAT1inh-B01 was without effect, whereas DRAinh-A270 completely blocked fluid absorption. In a loperamide constipation model, coadministration of PAT1inh-B01 with DRAinh-A270 increased stool output compared with DRAinh-A270 alone. These results provide functional evidence for complementary and region-specific roles of PAT1 and DRA in intestinal fluid absorption, with PAT1 as the predominant anion exchanger in mouse ileum. We believe that PAT1inh-B01 is a novel tool to study intestinal ion and fluid transport and perhaps a drug candidate for small intestinal hyposecretory disorders such as cystic fibrosis-related meconium ileus and distal intestinal obstruction syndrome.
Collapse
Affiliation(s)
| | - Peter M. Haggie
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California, USA
| | - Joseph-Anthony Tapia Tan
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California, USA
| | - Amber A. Rivera
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California, USA
| | - Alan S. Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
6
|
The anion exchanger PAT-1 (Slc26a6) does not participate in oxalate or chloride transport by mouse large intestine. Pflugers Arch 2020; 473:95-106. [PMID: 33205229 DOI: 10.1007/s00424-020-02495-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 01/20/2023]
Abstract
The membrane-bound transport proteins responsible for oxalate secretion across the large intestine remain unidentified. The apical chloride/bicarbonate (Cl-/HCO3-) exchanger encoded by Slc26a6, known as PAT-1 (putative anion transporter 1), is a potential candidate. In the small intestine, PAT-1 makes a major contribution to oxalate secretion but whether this role extends into the large intestine has not been directly tested. Using the PAT-1 knockout (KO) mouse, we compared the unidirectional absorptive ([Formula: see text]) and secretory ([Formula: see text]) flux of oxalate and Cl- across cecum, proximal colon, and distal colon from wild-type (WT) and KO mice in vitro. We also utilized the non-specific inhibitor DIDS (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid) to confirm a role for PAT-1 in WT large intestine and (in KO tissues) highlight any other apical anion exchangers involved. Under symmetrical, short-circuit conditions the cecum and proximal colon did not transport oxalate on a net basis, whereas the distal colon supported net secretion. We found no evidence for the participation of PAT-1, or indeed any other DIDS-sensitive transport mechanism, in oxalate or Cl- by the large intestine. Most unexpectedly, mucosal DIDS concurrently stimulated [Formula: see text] and [Formula: see text] by 25-68% across each segment without impacting net transport. For the colon, these changes were directly proportional to increased transepithelial conductance suggesting this response was the result of bidirectional paracellular flux. In conclusion, PAT-1 does not contribute to oxalate or Cl- transport by the large intestine, and we urge caution when using DIDS with mouse colonic epithelium.
Collapse
|
7
|
Sodium bisulfate feed additive aids broilers in growth and intestinal health during a coccidiosis challenge. Poult Sci 2020; 99:5324-5330. [PMID: 33142448 PMCID: PMC7647734 DOI: 10.1016/j.psj.2020.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/19/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Sodium bisulfate (SB) was evaluated on its ability to improve broiler growth and intestinal structure with(out) a coccidia challenge. One thousand two hundred Cobb500 day-old males were randomly assigned within 4 experimental groups with a 2 × 2 factorial design, with (out) SB in the diet and with(out) a day 0 coccidia challenge using a 10× dose of a commercial vaccine. At day 7, oocysts per gram of feces were determined. At day 0, 14, 28, and 41, BW and feed consumption were measured. At day 21, 20 birds per treatment were subjectively scored for coccidia lesions, and jejunal histologic samples were collected for villi measurements. Twenty additional birds were given fluorescein isothiocyanate-dextran to determine gut permeability. At day 41, 10 birds per treatment had histologic samples collected. Statistical analysis was conducted in JMP Pro 14 using GLM procedure to compare disease state and diet. Means were separated using Dunnett's test (P ≤ 0.05) with the nonchallenged standard diet treatment that is considered the control. All parameters measured indicated an effect due to the coccidia inoculation. Therefore, effects of diet on (non)challenged treatments were determined using a Student t test (P ≤ 0.05). Limited differences due to diet were seen for the nonchallenged production data. Sodium bisulfate had a thinner villi base width (P = 0.04) on day 21 and greater villi height (P = 0.03), smaller base width (P = 0.04), thicker muscularis (P = 0.03), and lower crypt: height ratio (P = 0.01) on day 41. Challenged SB had similar gut permeability to the nonchallenged control (P = 0.94) on day 21. There was no difference in flock uniformity, feed intake, oocysts per gram of feces, or lesion scores between challenged treatments. Challenged SB had greater BW on day 14 (P < 0.0001), 28 (P < 0.0001), and 41 (P = 0.02). Feed conversion ratio from day 0 to 14 was also lower (P = 0.0002). Challenged SB had smaller crypts (P = 0.02) and therefore a smaller crypt: height ratio (P = 0.03) on day 21. Challenged control had a larger apical width (P = 0.03) and thicker muscularis (P = 0.04) on day 41. Overall, the addition of SB during coccidial enteropathy aided in BW, feed conversion ratio, and villi health with no observed effects on parasite cycling.
Collapse
|
8
|
Munemasa T, Mukaibo T, Melvin JE. Slc26a6 is an apical membrane anion exchanger that drives HCO 3--dependent fluid secretion in murine pancreatic acinar cells. Am J Physiol Cell Physiol 2019; 317:C1153-C1160. [PMID: 31532720 PMCID: PMC6957380 DOI: 10.1152/ajpcell.00257.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 11/22/2022]
Abstract
The nonselective anion exchanger Slc26a6, also known as putative anion transporter 1 and chloride/formate exchanger, is thought to play a major role in HCO 3 - transport in exocrine glands. In this study, Slc26a6 null mice were used to explore the function of Slc26a6 in the exocrine pancreas. Slc26a6 primarily localized to the apical membrane of pancreatic exocrine acinar cells. The volume of stimulated juice secretion by the ex vivo pancreas was significantly reduced ~35% in Slc26a6-/- mice, but no changes occurred in the gross structure or gland weights of Slc26a6 null mice. The secretion of pancreatic juice by Slc26a6+/+ mice was dependent on HCO 3 - while, in contrast, fluid secretion by Slc26a6-/- mice was independent of HCO 3 - , suggesting that Slc26a6 mediates the HCO 3 - -dependent component of fluid secretion. Consistent with these observations, disruption of Slc26a6 also significantly reduced HCO 3 - secretion by the pancreas ~35%. Taken together, these results demonstrate that the apical Slc26a6 anion exchanger in acinar cells is involved in HCO 3 - -dependent fluid secretion but that another major HCO 3 - -independent pathway is the primary driver of the fluid secretion process in the mouse pancreas.
Collapse
Affiliation(s)
- Takashi Munemasa
- Secretory Mechanisms and Dysfunctions Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Japan
| | - Taro Mukaibo
- Secretory Mechanisms and Dysfunctions Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Japan
| | - James E Melvin
- Secretory Mechanisms and Dysfunctions Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
9
|
Bertocchi M, Sirri F, Palumbo O, Luise D, Maiorano G, Bosi P, Trevisi P. Exploring Differential Transcriptome between Jejunal and Cecal Tissue of Broiler Chickens. Animals (Basel) 2019; 9:ani9050221. [PMID: 31067716 DOI: 10.3390/ani9050221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
The study proposed an exploratory functional analysis on differential gene expression of the jejunum and of cecum in chickens. For this study, 150 Ross 308 male chickens were randomly allotted in six pens (25 birds/pen) and fed the same commercial diet. From 19 birds of 42 days of age, jejunum and cecum mucosae were collected for RNA extraction for transcriptome microarray analysis. Differentially expressed genes (DEGs) submitted to DAVID (Database for Annotation, Visualization, and Integrated Discovery) and Gene Set Enrichment Analysis (GSEA) software evidenced enriched gene clusters for biological functions differentiated in the tissues. DAVID analysis in the jejunum showed enriched annotations for cell membrane integral components, PPAR (peroxisome proliferator-activated receptor) signaling pathway, and peroxisome and lipid metabolism, and showed DEGs for gluconeogenesis, not previously reported in chicken jejunum. The cecum showed enriched annotations for disulfide bond category, cysteine and methionine metabolism, glycoprotein category, cell cycle, and extracellular matrix (ECM). GSEA analysis in the jejunum showed peroxisome and PPAR signaling pathway-related gene sets, as found with DAVID, and gene sets for immune regulation, tryptophan and histidine metabolism, and renin-angiotensin system, like in mammals. The cecum showed cell cycle and regulation processes, as well as ECM receptor interaction and focal adhesion-related gene sets. Typical intestinal functions specific for the gut site and interesting functional genes groups emerged, revealing tissue-related key aspects which future studies might take advantage of.
Collapse
Affiliation(s)
- Micol Bertocchi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40126 Bologna BO, Italy.
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso CB, Italy.
| | - Federico Sirri
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40126 Bologna BO, Italy.
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo FG, Italy.
| | - Diana Luise
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40126 Bologna BO, Italy.
| | - Giuseppe Maiorano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso CB, Italy.
| | - Paolo Bosi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40126 Bologna BO, Italy.
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40126 Bologna BO, Italy.
| |
Collapse
|
10
|
Seidler U, Nikolovska K. Slc26 Family of Anion Transporters in the Gastrointestinal Tract: Expression, Function, Regulation, and Role in Disease. Compr Physiol 2019; 9:839-872. [DOI: 10.1002/cphy.c180027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Stephens CE, Whittamore JM, Hatch M. 125 Iodide as a surrogate tracer for epithelial chloride transport by the mouse large intestine in vitro. Exp Physiol 2019; 104:334-344. [PMID: 30615234 PMCID: PMC6397055 DOI: 10.1113/ep087445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/02/2019] [Indexed: 12/25/2022]
Abstract
NEW FINDINGS What is the central question of this study? The tracer 36 Cl- , currently used to measure transepithelial Cl- fluxes, has become prohibitively expensive, threatening its future use. 125 Iodide, previously validated alongside 36 Cl- as a tracer of Cl- efflux by cells, has not been tested as a surrogate for 36 Cl- across epithelia. What is the main finding and its importance? We demonstrate that 125 I- can serve as an inexpensive replacement for measuring Cl- transport across mouse large intestine, tracking Cl- transport in response to cAMP stimulation (inducing Cl- secretion) in the presence and absence of the main gastrointestinal Cl- -HCO3- exchanger, DRA. ABSTRACT Chloride transport is important for driving fluid secretion and absorption by the large intestine, with dysregulation resulting in diarrhoea-associated pathologies. The radioisotope 36 Cl- has long been used as a tracer to measure epithelial Cl- transport but is prohibitively expensive. 125 Iodide has been used as an alternative to 36 Cl- in some transport assays but has never been validated as an alternative for tracing bidirectional transepithelial Cl- fluxes. The goal of this study was to validate 125 I- as an alternative to 36 Cl- for measurement of Cl- transport by the intestine. Simultaneous fluxes of 36 Cl- and 125 I- were measured across the mouse caecum and distal colon. Net Cl- secretion was induced by the stimulation of cAMP with a cocktail of forskolin (FSK) and 3-isobutyl-1-methylxanthine (IBMX). Unidirectional fluxes of 125 I- correlated well with 36 Cl- fluxes after cAMP-induced net Cl- secretion, occurring predominantly through a reduction in the absorptive mucosal-to-serosal Cl- flux rather than by stimulation of the secretory serosal-to-mucosal Cl- flux. Correlations between 125 I- fluxes and 36 Cl- fluxes were maintained in epithelia from mice lacking DRA (Slc26a3), the main Cl- -HCO3- exchanger responsible for Cl- absorption by the large intestine. Lower rates of Cl- and I- absorption in the DRA knockout intestine suggest that DRA might have a previously unrecognized role in iodide uptake. This study validates that 125 I- traces transepithelial Cl- fluxes across the mouse large intestine, provides insights into the mechanism of net Cl- secretion and suggests that DRA might be involved in intestinal iodide absorption.
Collapse
Affiliation(s)
- Christine E Stephens
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jonathan M Whittamore
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marguerite Hatch
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Takei Y, Wong MKS, Ando M. Molecular mechanisms for intestinal HCO3− secretion and its regulation by guanylin in seawater-acclimated eels. J Exp Biol 2019; 222:jeb.203539. [DOI: 10.1242/jeb.203539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/03/2019] [Indexed: 01/25/2023]
Abstract
The intestine of marine teleosts secretes HCO3− into the lumen and precipitates Ca2+ and Mg2+ in the imbibed seawater as carbonates to decrease luminal fluid osmolality and facilitate water absorption. However, hormonal regulation of HCO3−secretion is largely unknown. Here, mucosally-added guanylin (GN) increased HCO3− secretion, measured by pH-stat, across isolated seawater-acclimated eel intestine bathed in saline at pH 7.4 (5% CO2). The effect of GN on HCO3− secretion was slower than that on the short-circuit current, and the time-course of the GN effect was similar to that of bumetanide. Mucosal bumetanide and serosal 4,4’-dinitrostilbene-2,2’-disulfonic acid (DNDS) inhibited the GN effect, suggesting an involvement of apical Na+-K+-2Cl− cotransporter (NKCC2) and basolateral Cl−/HCO3− exchanger (AE)/Na+-HCO3− cotransporter (NBC) in the GN effect. As mucosal DNDS failed to inhibit the GN effect, apical DNDS-sensitive AE may not be involved. To identify molecular species of transporters involved in the GN effect, we performed RNA-seq analyses followed by quantitative real-time PCR after transfer of eels to seawater. Among the genes upregulated after seawater transfer, AE genes, draa, b, and pat1a, c, on the apical membrane, and NBC genes, nbce1a, n1, n2a, and a AE gene, sat-1, on the basolateral membrane were candidates involved in HCO3− secretion. Judging from the slow effect of GN, we suggest that GN inhibits NKCC2b on the apical membrane and decreases cytosolic Cl− and Na+, which then activates apical DNDS-insensitive DRAs and basolateral DNDS-sensitive NBCs to enhance transcellular HCO3− flux across the intestinal epithelia of seawater-acclimated eels.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, the University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Marty K. S. Wong
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, the University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Masaaki Ando
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, the University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
13
|
Whittamore JM, Stephens CE, Hatch M. Absence of the sulfate transporter SAT-1 has no impact on oxalate handling by mouse intestine and does not cause hyperoxaluria or hyperoxalemia. Am J Physiol Gastrointest Liver Physiol 2019; 316:G82-G94. [PMID: 30383413 PMCID: PMC6383384 DOI: 10.1152/ajpgi.00299.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The anion exchanger SAT-1 [sulfate anion transporter 1 (Slc26a1)] is considered an important regulator of oxalate and sulfate homeostasis, but the mechanistic basis of these critical roles remain undetermined. Previously, characterization of the SAT-1-knockout (KO) mouse suggested that the loss of SAT-1-mediated oxalate secretion by the intestine was responsible for the hyperoxaluria, hyperoxalemia, and calcium oxalate urolithiasis reportedly displayed by this model. To test this hypothesis, we compared the transepithelial fluxes of 14C-oxalate, 35SO42- , and 36Cl- across isolated, short-circuited segments of the distal ileum, cecum, and distal colon from wild-type (WT) and SAT-1-KO mice. The absence of SAT-1 did not impact the transport of these anions by any part of the intestine examined. Additionally, SAT-1-KO mice were neither hyperoxaluric nor hyperoxalemic. Instead, 24-h urinary oxalate excretion was almost 50% lower than in WT mice. With no contribution from the intestine, we suggest that this may reflect the loss of SAT-1-mediated oxalate efflux from the liver. SAT-1-KO mice were, however, profoundly hyposulfatemic, even though there were no changes to intestinal sulfate handling, and the renal clearances of sulfate and creatinine indicated diminished rates of sulfate reabsorption by the proximal tubule. Aside from this distinct sulfate phenotype, we were unable to reproduce the hyperoxaluria, hyperoxalemia, and urolithiasis of the original SAT-1-KO model. In conclusion, oxalate and sulfate transport by the intestine were not dependent on SAT-1, and we found no evidence supporting the long-standing hypothesis that intestinal SAT-1 contributes to oxalate and sulfate homeostasis. NEW & NOTEWORTHY SAT-1 is a membrane-bound transport protein expressed in the intestine, liver, and kidney, where it is widely considered essential for the excretion of oxalate, a potentially toxic waste metabolite. Previously, calcium oxalate kidney stone formation by the SAT-1-knockout mouse generated the hypothesis that SAT-1 has a major role in oxalate excretion via the intestine. We definitively tested this proposal and found no evidence for SAT-1 as an intestinal anion transporter contributing to oxalate homeostasis.
Collapse
Affiliation(s)
- Jonathan M. Whittamore
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Christine E. Stephens
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Marguerite Hatch
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
14
|
McHugh DR, Cotton CU, Moss FJ, Vitko M, Valerio DM, Kelley TJ, Hao S, Jafri A, Drumm ML, Boron WF, Stern RC, McBennett K, Hodges CA. Linaclotide improves gastrointestinal transit in cystic fibrosis mice by inhibiting sodium/hydrogen exchanger 3. Am J Physiol Gastrointest Liver Physiol 2018; 315:G868-G878. [PMID: 30118317 PMCID: PMC9925117 DOI: 10.1152/ajpgi.00261.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrointestinal dysfunction in cystic fibrosis (CF) is a prominent source of pain among patients with CF. Linaclotide, a guanylate cyclase C (GCC) receptor agonist, is a US Food and Drug Administration-approved drug prescribed for chronic constipation but has not been widely used in CF, as the cystic fibrosis transmembrane conductance regulator (CFTR) is the main mechanism of action. However, anecdotal clinical evidence suggests that linaclotide may be effective for treating some gastrointestinal symptoms in CF. The goal of this study was to determine the effectiveness and mechanism of linaclotide in treating CF gastrointestinal disorders using CF mouse models. Intestinal transit, chloride secretion, and intestinal lumen fluidity were assessed in wild-type and CF mouse models in response to linaclotide. CFTR and sodium/hydrogen exchanger 3 (NHE3) response to linaclotide was also evaluated. Linaclotide treatment improved intestinal transit in mice carrying either F508del or null Cftr mutations but did not induce detectable Cl- secretion. Linaclotide increased fluid retention and fluidity of CF intestinal contents, suggesting inhibition of fluid absorption. Targeted inhibition of sodium absorption by the NHE3 inhibitor tenapanor produced improvements in gastrointestinal transit similar to those produced by linaclotide treatment, suggesting that inhibition of fluid absorption by linaclotide contributes to improved gastrointestinal transit in CF. Our results demonstrate that linaclotide improves gastrointestinal transit in CF mouse models by increasing luminal fluidity through inhibiting NHE3-mediated sodium absorption. Further studies are necessary to assess whether linaclotide could improve CF intestinal pathologies in patients. GCC signaling and NHE3 inhibition may be therapeutic targets for CF intestinal manifestations. NEW & NOTEWORTHY Linaclotide's primary mechanism of action in alleviating chronic constipation is through cystic fibrosis transmembrane conductance regulator (CFTR), negating its use in patients with cystic fibrosis (CF). For the first time, our findings suggest that in the absence of CFTR, linaclotide can improve fluidity of the intestinal lumen through the inhibition of sodium/hydrogen exchanger 3. These findings suggest that linaclotide could improve CF intestinal pathologies in patients.
Collapse
Affiliation(s)
- Daniel R. McHugh
- 1Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Calvin U. Cotton
- 2Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio,3Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Fraser J. Moss
- 2Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Megan Vitko
- 1Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Dana M. Valerio
- 3Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Thomas J. Kelley
- 3Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio,4Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Shuyu Hao
- 1Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Anjum Jafri
- 3Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Mitchell L. Drumm
- 1Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio,3Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Walter F. Boron
- 2Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio,5Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio,6Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Robert C. Stern
- 3Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio,7Rainbow Babies and Children’s Hospital, Cleveland, Ohio
| | - Kimberly McBennett
- 3Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio,7Rainbow Babies and Children’s Hospital, Cleveland, Ohio
| | - Craig A. Hodges
- 1Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio,3Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
15
|
Whittamore JM, Hatch M. Oxalate transport by the mouse intestine in vitro is not affected by chronic challenges to systemic acid-base homeostasis. Urolithiasis 2018; 47:243-254. [PMID: 29947993 DOI: 10.1007/s00240-018-1067-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/10/2018] [Indexed: 12/15/2022]
Abstract
In rats, we recently showed how a chronic metabolic acidosis simultaneously reduced urinary oxalate excretion and promoted oxalate secretion by the distal colon leading to the proposition that acid-base disturbances may trigger changes to renal and intestinal oxalate handling. The present study sought to reproduce and extend these observations using the mouse model, where the availability of targeted gene knockouts (KOs) would offer future opportunities to reveal some of the underlying transporters and mechanisms involved. Mice were provided with a sustained load of acid (NH4Cl), base (NaHCO3) or the carbonic anhydrase inhibitor acetazolamide (ATZ) for 7 days after which time the impacts on urinary oxalate excretion and its transport by the intestine were evaluated. Mice consuming NH4Cl developed a metabolic acidosis but urinary oxalate was only reduced 46% and not statistically different from the control group, while provision of NaHCO3 provoked a significant 2.6-fold increase in oxalate excretion. For mice receiving ATZ, the rate of urinary oxalate excretion did not change significantly. Critically, none of these treatments altered the fluxes of oxalate (or chloride) across the distal ileum, cecum or distal colon. Hence, we were unable to produce the same effects of a metabolic acidosis in mice that we had previously found in rats, failing to find any evidence of the 'gut-kidney axis' influencing oxalate handling in response to various acid-base challenges. Despite the potential advantages offered by KO mice, this model species is not suitable for exploring how acid-base status regulates oxalate handling between the kidney and intestine.
Collapse
Affiliation(s)
- Jonathan M Whittamore
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, PO Box 100275, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.
| | - Marguerite Hatch
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, PO Box 100275, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| |
Collapse
|
16
|
Mukaibo T, Munemasa T, George AT, Tran DT, Gao X, Herche JL, Masaki C, Shull GE, Soleimani M, Melvin JE. The apical anion exchanger Slc26a6 promotes oxalate secretion by murine submandibular gland acinar cells. J Biol Chem 2018; 293:6259-6268. [PMID: 29530983 PMCID: PMC5925796 DOI: 10.1074/jbc.ra118.002378] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/08/2018] [Indexed: 12/15/2022] Open
Abstract
The solute carrier family 26 (SLC26) gene family encodes at least 10 different anion exchangers. SLC26 member 6 (SLC26A6 or CFEX/PAT-1) and the cystic fibrosis transmembrane conductance regulator (CFTR) co-localize to the apical membrane of pancreatic duct cells, where they act in concert to drive HCO3- and fluid secretion. In contrast, in the small intestine, SLC26A6 serves as the major pathway for oxalate secretion. However, little is known about the function of Slc26a6 in murine salivary glands. Here, RNA sequencing-based transcriptional profiling and Western blots revealed that Slc26a6 is highly expressed in mouse submandibular and sublingual salivary glands. Slc26a6 localized to the apical membrane of salivary gland acinar cells with no detectable immunostaining in the ducts. CHO-K1 cells transfected with mouse Slc26a6 exchanged Cl- for oxalate and HCO3-, whereas two other anion exchangers known to be expressed in salivary gland acinar cells, Slc4a4 and Slc4a9, mediated little, if any, Cl-/oxalate exchange. Of note, both Cl-/oxalate exchange and Cl-/HCO3- exchange were significantly reduced in acinar cells isolated from the submandibular glands of Slc26a6-/- mice. Oxalate secretion in submandibular saliva also decreased significantly in Slc26a6-/- mice, but HCO3- secretion was unaffected. Taken together, our findings indicate that Slc26a6 is located at the apical membrane of salivary gland acinar cells, where it mediates Cl-/oxalate exchange and plays a critical role in the secretion of oxalate into saliva.
Collapse
Affiliation(s)
- Taro Mukaibo
- From the Secretory Mechanisms and Dysfunctions Section and
- the Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan
| | - Takashi Munemasa
- From the Secretory Mechanisms and Dysfunctions Section and
- the Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan
| | - Alvin T George
- From the Secretory Mechanisms and Dysfunctions Section and
| | - Duy T Tran
- Biological Chemistry Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Xin Gao
- From the Secretory Mechanisms and Dysfunctions Section and
- the Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, Maryland 20742, and
| | - Jesse L Herche
- From the Secretory Mechanisms and Dysfunctions Section and
| | - Chihiro Masaki
- the Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan
| | - Gary E Shull
- Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | | | - James E Melvin
- From the Secretory Mechanisms and Dysfunctions Section and
| |
Collapse
|