1
|
Tümen D, Heumann P, Huber J, Hahn N, Macek C, Ernst M, Kandulski A, Kunst C, Gülow K. Unraveling Cancer's Wnt Signaling: Dynamic Control through Protein Kinase Regulation. Cancers (Basel) 2024; 16:2686. [PMID: 39123414 PMCID: PMC11312265 DOI: 10.3390/cancers16152686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Since the initial identification of oncogenic Wnt in mice and Drosophila, the Wnt signaling pathway has been subjected to thorough and extensive investigation. Persistent activation of Wnt signaling exerts diverse cancer characteristics, encompassing tumor initiation, tumor growth, cell senescence, cell death, differentiation, and metastasis. Here we review the principal signaling mechanisms and the regulatory influence of pathway-intrinsic and extrinsic kinases on cancer progression. Additionally, we underscore the divergences and intricate interplays of the canonical and non-canonical Wnt signaling pathways and their critical influence in cancer pathophysiology, exhibiting both growth-promoting and growth-suppressing roles across diverse cancer types.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (D.T.); (N.H.)
| |
Collapse
|
2
|
Zhang Z, Zhang X, Zheng Z, Xin J, Han S, Qi J, Zhang T, Wang Y, Zhang S. Latest advances: Improving the anti-inflammatory and immunomodulatory properties of PEEK materials. Mater Today Bio 2023; 22:100748. [PMID: 37600350 PMCID: PMC10432209 DOI: 10.1016/j.mtbio.2023.100748] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Excellent biocompatibility, mechanical properties, chemical stability, and elastic modulus close to bone tissue make polyetheretherketone (PEEK) a promising orthopedic implant material. However, biological inertness has hindered the clinical applications of PEEK. The immune responses and inflammatory reactions after implantation would interfere with the osteogenic process. Eventually, the proliferation of fibrous tissue and the formation of fibrous capsules would result in a loose connection between PEEK and bone, leading to implantation failure. Previous studies focused on improving the osteogenic properties and antibacterial ability of PEEK with various modification techniques. However, few studies have been conducted on the immunomodulatory capacity of PEEK. New clinical applications and advances in processing technology, research, and reports on the immunomodulatory capacity of PEEK have received increasing attention in recent years. Researchers have designed numerous modification techniques, including drug delivery systems, surface chemical modifications, and surface porous treatments, to modulate the post-implantation immune response to address the regulatory factors of the mechanism. These studies provide essential ideas and technical preconditions for the development and research of the next generation of PEEK biological implant materials. This paper summarizes the mechanism by which the immune response after PEEK implantation leads to fibrous capsule formation; it also focuses on modification techniques to improve the anti-inflammatory and immunomodulatory abilities of PEEK. We also discuss the limitations of the existing modification techniques and present the corresponding future perspectives.
Collapse
Affiliation(s)
- Zilin Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Xingmin Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Song Han
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Jinwei Qi
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Tianhui Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Yongjie Wang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| |
Collapse
|
3
|
Tufail M, Wu C. WNT5A: a double-edged sword in colorectal cancer progression. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108465. [PMID: 37495091 DOI: 10.1016/j.mrrev.2023.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
The Wnt signaling pathway is known to play a crucial role in cancer, and WNT5A is a member of this pathway that binds to the Frizzled (FZD) and Receptor Tyrosine Kinase-Like Orphan Receptor (ROR) family members to activate non-canonical Wnt signaling pathways. The WNT5A pathway is involved in various cellular processes, such as proliferation, differentiation, migration, adhesion, and polarization. In the case of colorectal cancer (CRC), abnormal activation or inhibition of WNT5A signaling can lead to both oncogenic and antitumor effects. Moreover, WNT5A is associated with inflammation, metastasis, and altered metabolism in cancer cells. This article aims to discuss the molecular mechanisms and dual roles of WNT5A in CRC.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| | - Changxin Wu
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
4
|
Gelineau-van Waes J, van Waes MA, Hallgren J, Hulen J, Bredehoeft M, Ashley-Koch AE, Krupp D, Gregory SG, Stessman HA. Gene-nutrient interactions that impact magnesium homeostasis increase risk for neural tube defects in mice exposed to dolutegravir. Front Cell Dev Biol 2023; 11:1175917. [PMID: 37377737 PMCID: PMC10292217 DOI: 10.3389/fcell.2023.1175917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
In 2018, data from a surveillance study in Botswana evaluating adverse birth outcomes raised concerns that women on antiretroviral therapy (ART) containing dolutegravir (DTG) may be at increased risk for neural tube defects (NTDs). The mechanism of action for DTG involves chelation of Mg2+ ions in the active site of the viral integrase. Plasma Mg2+ homeostasis is maintained primarily through dietary intake and reabsorption in the kidneys. Inadequate dietary Mg2+ intake over several months results in slow depletion of plasma Mg2+ and chronic latent hypomagnesemia, a condition prevalent in women of reproductive age worldwide. Mg2+ is critical for normal embryonic development and neural tube closure. We hypothesized that DTG therapy might slowly deplete plasma Mg2+ and reduce the amount available to the embryo, and that mice with pre-existing hypomagnesemia due to genetic variation and/or dietary Mg2+ insufficiency at the time of conception and initiation of DTG treatment would be at increased risk for NTDs. We used two different approaches to test our hypothesis: 1) we selected mouse strains that had inherently different basal plasma Mg2+ levels and 2) placed mice on diets with different concentrations of Mg2+. Plasma and urine Mg2+ were determined prior to timed mating. Pregnant mice were treated daily with vehicle or DTG beginning on the day of conception and embryos examined for NTDs on gestational day 9.5. Plasma DTG was measured for pharmacokinetic analysis. Our results demonstrate that hypomagnesemia prior to conception, due to genetic variation and/or insufficient dietary Mg2+ intake, increases the risk for NTDs in mice exposed to DTG. We also analyzed whole-exome sequencing data from inbred mouse strains and identified 9 predicted deleterious missense variants in Fam111a that were unique to the LM/Bc strain. Human FAM111A variants are associated with hypomagnesemia and renal Mg2+ wasting. The LM/Bc strain exhibits this same phenotype and was the strain most susceptible to DTG-NTDs. Our results suggest that monitoring plasma Mg2+ levels in patients on ART regimens that include DTG, identifying other risk factors that impact Mg2+ homeostasis, and correcting deficiencies in this micronutrient might provide an effective strategy for mitigating NTD risk.
Collapse
Affiliation(s)
- J. Gelineau-van Waes
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | | | - J. Hallgren
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - J. Hulen
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - M. Bredehoeft
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - A. E. Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - D. Krupp
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - S. G. Gregory
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - H. A. Stessman
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
5
|
Manfreda L, Rampazzo E, Persano L. Wnt Signaling in Brain Tumors: A Challenging Therapeutic Target. BIOLOGY 2023; 12:biology12050729. [PMID: 37237541 DOI: 10.3390/biology12050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The involvement of Wnt signaling in normal tissue homeostasis and disease has been widely demonstrated over the last 20 years. In particular, dysregulation of Wnt pathway components has been suggested as a relevant hallmark of several neoplastic malignancies, playing a role in cancer onset, progression, and response to treatments. In this review, we summarize the current knowledge on the instructions provided by Wnt signaling during organogenesis and, particularly, brain development. Moreover, we recapitulate the most relevant mechanisms through which aberrant Wnt pathway activation may impact on brain tumorigenesis and brain tumor aggressiveness, with a particular focus on the mutual interdependency existing between Wnt signaling components and the brain tumor microenvironment. Finally, the latest anti-cancer therapeutic approaches employing the specific targeting of Wnt signaling are extensively reviewed and discussed. In conclusion, here we provide evidence that Wnt signaling, due to its pleiotropic involvement in several brain tumor features, may represent a relevant target in this context, although additional efforts will be needed to: (i) demonstrate the real clinical impact of Wnt inhibition in these tumors; (ii) overcome some still unsolved concerns about the potential systemic effects of such approaches; (iii) achieve efficient brain penetration.
Collapse
Affiliation(s)
- Lorenzo Manfreda
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Elena Rampazzo
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Luca Persano
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| |
Collapse
|
6
|
Zhao T, Chu Z, Ma J, Ouyang L. Immunomodulation Effect of Biomaterials on Bone Formation. J Funct Biomater 2022; 13:jfb13030103. [PMID: 35893471 PMCID: PMC9394331 DOI: 10.3390/jfb13030103] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Traditional bone replacement materials have been developed with the goal of directing the osteogenesis of osteoblastic cell lines toward differentiation and therefore achieving biomaterial-mediated osteogenesis, but the osteogenic effect has been disappointing. With advances in bone biology, it has been revealed that the local immune microenvironment has an important role in regulating the bone formation process. According to the bone immunology hypothesis, the immune system and the skeletal system are inextricably linked, with many cytokines and regulatory factors in common, and immune cells play an essential role in bone-related physiopathological processes. This review combines advances in bone immunology with biomaterial immunomodulatory properties to provide an overview of biomaterials-mediated immune responses to regulate bone regeneration, as well as methods to assess the bone immunomodulatory properties of bone biomaterials and how these strategies can be used for future bone tissue engineering applications.
Collapse
Affiliation(s)
- Tong Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (T.Z.); (Z.C.)
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Zhuangzhuang Chu
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (T.Z.); (Z.C.)
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Jun Ma
- Department of General Practitioners, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Correspondence: (L.O.); (J.M.); Tel.: +86-21-52039999 (L.O.); +86-21-52039999 (J.M.)
| | - Liping Ouyang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (T.Z.); (Z.C.)
- Correspondence: (L.O.); (J.M.); Tel.: +86-21-52039999 (L.O.); +86-21-52039999 (J.M.)
| |
Collapse
|
7
|
Ionica E, Gaina G, Tica M, Chifiriuc MC, Gradisteanu-Pircalabioru G. Contribution of Epithelial and Gut Microbiome Inflammatory Biomarkers to the Improvement of Colorectal Cancer Patients' Stratification. Front Oncol 2022; 11:811486. [PMID: 35198435 PMCID: PMC8859258 DOI: 10.3389/fonc.2021.811486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
In order to ensure that primary endpoints of clinical studies are attained, the patients' stratification is an important aspect. Selection criteria include age, gender, and also specific biomarkers, such as inflammation scores. These criteria are not sufficient to achieve a straightforward selection, however, in case of multifactorial diseases, with unknown or partially identified mechanisms, occasionally including host factors, and the microbiome. In these cases, the efficacy of interventions is difficult to predict, and as a result, the selection of subjects is often random. Colorectal cancer (CRC) is a highly heterogeneous disease, with variable clinical features, outcomes, and response to therapy; the CRC onset and progress involves multiple sequential steps with accumulation of genetic alterations, namely, mutations, gene amplification, and epigenetic changes. The gut microbes, either eubiotic or dysbiotic, could influence the CRC evolution through a complex and versatile crosstalk with the intestinal and immune cells, permanently changing the tumor microenvironment. There have been significant advances in the development of personalized approaches for CRC screening, treatment, and potential prevention. Advances in molecular techniques bring new criteria for patients' stratification-mutational analysis at the time of diagnosis to guide treatment, for example. Gut microbiome has emerged as the main trigger of gut mucosal homeostasis. This may impact cancer susceptibility through maintenance of the epithelial/mucus barrier and production of protective metabolites, such as short-chain fatty acids (SCFAs) via interactions with the hosts' diet and metabolism. Microbiome dysbiosis leads to the enrichment of cancer-promoting bacterial populations, loss of protective populations or maintaining an inflammatory chronic state, all of which contribute to the development and progression of CRC. Meanwhile, variations in patient responses to anti-cancer immuno- and chemotherapies were also linked to inter-individual differences in intestine microbiomes. The authors aim to highlight the contribution of epithelial and gut microbiome inflammatory biomarkers in the improvement of CRC patients' stratification towards a personalized approach of early diagnosis and treatment.
Collapse
Affiliation(s)
- Elena Ionica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Gisela Gaina
- Laboratory of Cell Biology, Neuroscience and Experimental Miology, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Mihaela Tica
- Bucharest Emergency University Hospital, Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Biological Science Division, Romanian Academy of Sciences, Bucharest, Romania
| | | |
Collapse
|
8
|
He Y, Tian M, Li X, Hou J, Chen S, Yang G, Liu X, Zhou S. A Hierarchical-Structured Mineralized Nanofiber Scaffold with Osteoimmunomodulatory and Osteoinductive Functions for Enhanced Alveolar Bone Regeneration. Adv Healthc Mater 2022; 11:e2102236. [PMID: 34779582 DOI: 10.1002/adhm.202102236] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/07/2021] [Indexed: 02/05/2023]
Abstract
Alveolar bone resorption is a major cause of teeth loss and jeopardizes the osseointegration of dental implants, greatly affecting patient's quality of life and health. It is still a great challenge to completely regenerate the alveolar bone defect through traditional guided bone regeneration (GBR) membranes due to their limited bioactivity and regeneration potential. Herein, a new hierarchical-structured mineralized nanofiber (HMF) scaffold, which is combined with both anisotropic and isotropic nanofibrous surface topography and the mineralized particles, is fabricated via a simple template-assisted electrospinning technology and in situ mineralization method. This HMF scaffold can not only directly induce osteogenic differentiation of bone mesenchymal stem cells (osteoinduction), but also stimulate macrophage toward pro-healing (M2) phenotype-polarization with an elevated secretion of the pro-healing cytokines, eventually enhancing the osteogenesis (osteoimmunomodulation). The results of in vivo rat alveolar bone defect repair experiments demonstrate that as compared with the combination of commercial Bio-Gide and Bio-Oss, the single HMF scaffold shows comparable or even superior bone repair effect, with better tissue-integration and more suitable degradation time and accompanied by a simplified operation.
Collapse
Affiliation(s)
- Yang He
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Mi Tian
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Department of Orthodontics West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Xilin Li
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Jianwen Hou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Song Chen
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Department of Orthodontics West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Guang Yang
- College of Medicine Southwest Jiaotong University Chengdu 610031 China
| | - Xian Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Department of Orthodontics West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| |
Collapse
|
9
|
Kosar K, Cornuet P, Singh S, Lee E, Liu S, Gayden J, Sato T, Freyberg Z, Arteel G, Nejak‐Bowen K. WNT7B Regulates Cholangiocyte Proliferation and Function During Murine Cholestasis. Hepatol Commun 2021; 5:2019-2034. [PMID: 34558852 PMCID: PMC8631094 DOI: 10.1002/hep4.1784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
We previously identified an up-regulation of specific Wnt proteins in the cholangiocyte compartment during cholestatic liver injury and found that mice lacking Wnt secretion from hepatocytes and cholangiocytes showed fewer proliferating cholangiocytes and high mortality in response to a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet, a murine model of primary sclerosing cholangitis. In vitro studies demonstrated that Wnt7b, one of the Wnts up-regulated during cholestasis, induces proliferation of cholangiocytes in an autocrine manner and increases secretion of proinflammatory cytokines. We hypothesized that loss of Wnt7b may exacerbate some of the complications of cholangiopathies by decreasing the ability of bile ducts to induce repair. Wnt7b-flox mice were bred with Krt19-cre mice to deplete Wnt7b expression in only cholangiocytes (CC) or with albumin-Cre mice to delete Wnt7b expression in both hepatocytes and cholangiocytes (HC + CC). These mice were placed on a DDC diet for 1 month then killed for evaluation. Contrary to our expectations, we found that mice lacking Wnt7b from CC and HC + CC compartments had improved biliary injury, decreased cellular senescence, and lesser bile acid accumulation after DDC exposure compared to controls, along with decreased expression of inflammatory cytokines. Although Wnt7b knockout (KO) resulted in fewer proliferating cholangiocytes, CC and HC + CC KO mice on a DDC diet also had more hepatocytes expressing cholangiocyte markers compared to wild-type mice on a DDC diet, indicating that Wnt7b suppression promotes hepatocyte reprogramming. Conclusion: Wnt7b induces a proproliferative proinflammatory program in cholangiocytes, and its loss is compensated for by conversion of hepatocytes to a biliary phenotype during cholestatic injury.
Collapse
Affiliation(s)
- Karis Kosar
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
| | - Pamela Cornuet
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
| | - Sucha Singh
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
| | - Elizabeth Lee
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
| | - Silvia Liu
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPAUSA
| | - Jenesis Gayden
- Department of PsychiatryUniversity of PittsburghPittsburghPAUSA
| | - Toshifumi Sato
- Department of MedicineGastroenterology DivisionUniversity of PittsburghPittsburghPAUSA
| | - Zachary Freyberg
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPAUSA
- Department of PsychiatryUniversity of PittsburghPittsburghPAUSA
- Department of Cell BiologyUniversity of PittsburghPittsburghPAUSA
| | - Gavin Arteel
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPAUSA
- Department of MedicineGastroenterology DivisionUniversity of PittsburghPittsburghPAUSA
| | - Kari Nejak‐Bowen
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
10
|
Clinical Importance of Wnt5a in the Pathogenesis of Colorectal Cancer. JOURNAL OF ONCOLOGY 2021; 2021:3136508. [PMID: 34603445 PMCID: PMC8486513 DOI: 10.1155/2021/3136508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022]
Abstract
Wnt5a is one of the potent signaling molecules that initiates responses involved in cancer through activation of both canonical and noncanonical signaling cascades. Wnt5a both directly and indirectly triggers cancer-associated signaling pathways based on the cancer type. In colorectal cancer (CRC), altering Wnt5a expression can influence several cellular processes of tumor cells, including proliferation, differentiation, migration, invasion, and metastasis. This review summarizes the molecular mechanisms and clinical importance of Wnt5a in the pathogenesis of CRC for better understanding the pathogenesis and its potential role as a prognostic marker and as an appropriate therapeutic target in the treatment of this disease in the future.
Collapse
|
11
|
Newman H, Shih YV, Varghese S. Resolution of inflammation in bone regeneration: From understandings to therapeutic applications. Biomaterials 2021; 277:121114. [PMID: 34488119 DOI: 10.1016/j.biomaterials.2021.121114] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/10/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022]
Abstract
Impaired bone healing occurs in 5-10% of cases following injury, leading to a significant economic and clinical impact. While an inflammatory response upon injury is necessary to facilitate healing, its resolution is critical for bone tissue repair as elevated acute or chronic inflammation is associated with impaired healing in patients and animal models. This process is governed by important crosstalk between immune cells through mediators that contribute to resolution of inflammation in the local healing environment. Approaches modulating the initial inflammatory phase followed by its resolution leads to a pro-regenerative environment for bone regeneration. In this review, we discuss the role of inflammation in bone repair, the negative impact of dysregulated inflammation on bone tissue regeneration, and how timely resolution of inflammation is necessary to achieve normal healing. We will discuss applications of biomaterials to treat large bone defects with a specific focus on resolution of inflammation to modulate the immune environment following bone injury, and their observed functional benefits. We conclude the review by discussing future strategies that could lead to the realization of anti-inflammatory therapeutics for bone tissue repair.
Collapse
Affiliation(s)
- Hunter Newman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA
| | - Yuru Vernon Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shyni Varghese
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
12
|
Vizoso M, van Rheenen J. Diverse transcriptional regulation and functional effects revealed by CRISPR/Cas9-directed epigenetic editing. Oncotarget 2021; 12:1651-1662. [PMID: 34434494 PMCID: PMC8378768 DOI: 10.18632/oncotarget.28037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/27/2021] [Indexed: 01/04/2023] Open
Abstract
DNA methylation is an epigenetic process that controls DNA accessibility and serves as a transcriptomic switch when deposited at regulatory regions. The adequate functioning of this process is indispensable for tissue homeostasis and cell fate determination. Conversely, altered DNA methylation patterns result in abnormal gene transcription profiles that contribute to tumor initiation and progression. However, whether the consequence of DNA methylation on gene expression and cell fate is uniform regardless of the cell type or state could so far not been tested due to the lack of technologies to target DNA methylation in-situ. Here, we have taken advantage of CRISPR/dCas9 technology adapted for epigenetic editing through site-specific targeting of DNA methylation to characterize the transcriptional changes of the candidate gene and the functional effects on cell fate in different tumor settings. As a proof-of-concept, we were able to induce de-novo site-specific methylation of the gene promoter of IGFBP2 up to 90% with long-term and bona-fide inheritance by daughter cells. Strikingly, this modification led to opposing expression profiles of the target gene in different cancer cell models and affected the expression of mesenchymal genes CDH1, VIM1, TGFB1 and apoptotic marker BCL2. Moreover, methylation-induced changes in expression profiles was also accompanied by a phenotypic switch in cell migration and cell morphology. We conclude that in different cell types the consequence of DNA methylation on gene expression and cell fate can be completely different.
Collapse
Affiliation(s)
- Miguel Vizoso
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Li J, Wang S, Dong Y. Regeneration of pulp-dentine complex-like tissue in a rat experimental model under an inflammatory microenvironment using high phosphorous-containing bioactive glasses. Int Endod J 2021; 54:1129-1141. [PMID: 33657647 DOI: 10.1111/iej.13505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022]
Abstract
AIM To investigate the effects of a bioactive glass with a high proportion of phosphorus (BG-hP) on the repair and regeneration of dental pulps in rats under an inflammatory microenvironment. METHODOLOGY Human dental pulp cells (hDPCs) stimulated with 1 μg mL-1 lipopolysaccharide (LPS) were co-cultured with 0.1 mg mL-1 BG-hP. Cell proliferation was detected by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT) assays. The expression of inflammation-related genes and odontogenic differentiation-related genes was determined by real-time PCR. Alizarin red staining was used to detect the formation of mineralized nodules. Coronal pulp tissues of rat molars were stimulated with 10 mg mL-1 LPS and then treated with BG-hP. The expression of inflammation-related genes in pulp tissue was determined by real-time PCR. Haematoxylin-eosin staining and Masson staining were performed to observe the inflammatory response and mineralized matrix formation, after subcutaneous implantation in nude mice, at 3 days and 4 weeks, respectively. Analysis of variance was performed to measure statistical significance (P < 0.05). RESULTS BG-hP significantly reduced expression of interleukin-6 (IL-6) and IL-8 and significantly upregulated the expression of IL-10, IL-4 and transforming growth factor-β1 of the LPS-stimulated hDPCs (P < 0.05). BG-hP significantly inhibited the initial cell number (P < 0.05), but the hDPCs stimulated by LPS and co-cultured with BG-hP maintained the same proliferation rate as the untreated hDPCs. BG-hP significantly promoted the expression of dentine matrix protein-1 and dentine sialophosphoprotein and the mineralization capacity of the LPS-stimulated hDPCs (P < 0.05). Furthermore, BG-hP significantly downregulated the expression of Il-6 and reduced the inflammatory response of the LPS-stimulated pulp tissue 3 days after subcutaneous implantation (P < 0.05). Four weeks after subcutaneous implantation, BG-hP induced the formation of a continuous layer of dentine-like structure with dentinal tubules and polarizing odontoblast-like cells aligned along it in the LPS-stimulated pulp tissue. CONCLUSION The present preliminarily results demonstrated that the bioactive glass with a high proportion of phosphorus inhibited the inflammatory response and promoted the formation of a pulp-dentine complex in a rat experimental model. This study provides a foundation for the construction of materials with the dual functions of exerting anti-inflammatory effects and promoting tissue regeneration to meet the needs of dental pulp repair and regeneration.
Collapse
Affiliation(s)
- J Li
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - S Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y Dong
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
14
|
Negrescu AM, Cimpean A. The State of the Art and Prospects for Osteoimmunomodulatory Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1357. [PMID: 33799681 PMCID: PMC7999637 DOI: 10.3390/ma14061357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
The critical role of the immune system in host defense against foreign bodies and pathogens has been long recognized. With the introduction of a new field of research called osteoimmunology, the crosstalk between the immune and bone-forming cells has been studied more thoroughly, leading to the conclusion that the two systems are intimately connected through various cytokines, signaling molecules, transcription factors and receptors. The host immune reaction triggered by biomaterial implantation determines the in vivo fate of the implant, either in new bone formation or in fibrous tissue encapsulation. The traditional biomaterial design consisted in fabricating inert biomaterials capable of stimulating osteogenesis; however, inconsistencies between the in vitro and in vivo results were reported. This led to a shift in the development of biomaterials towards implants with osteoimmunomodulatory properties. By endowing the orthopedic biomaterials with favorable osteoimmunomodulatory properties, a desired immune response can be triggered in order to obtain a proper bone regeneration process. In this context, various approaches, such as the modification of chemical/structural characteristics or the incorporation of bioactive molecules, have been employed in order to modulate the crosstalk with the immune cells. The current review provides an overview of recent developments in such applied strategies.
Collapse
Affiliation(s)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
| |
Collapse
|
15
|
Kim SG. Immunomodulation for maxillofacial reconstructive surgery. Maxillofac Plast Reconstr Surg 2020; 42:5. [PMID: 32206664 PMCID: PMC7058765 DOI: 10.1186/s40902-020-00249-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Immunomodulation is a technique for the modulation of immune responses against graft material to improve surgical success rates. The main target cell for the immunomodulation is a macrophage because it is the reaction site of the graft and controls the healing process. Macrophages can be classified into M1 and M2 types. Most immunomodulation techniques focus on the rapid differentiation of M2-type macrophage. An M2 inducer, 4-hexylresorcinol, has been recently identified and is used for bone grafts and dental implant coatings.
Collapse
Affiliation(s)
- Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, Jukhyun-gil 25457 South Korea
| |
Collapse
|
16
|
Chen Y, Chen Z, Tang Y, Xiao Q. The involvement of noncanonical Wnt signaling in cancers. Biomed Pharmacother 2020; 133:110946. [PMID: 33212376 DOI: 10.1016/j.biopha.2020.110946] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022] Open
Abstract
Wnt signaling is one of the key cascades regulating normal tissue development and has been tightly associated with cancer. The Wnt signaling can be subdivided into two categories: canonical & noncanonical. Noncanonical Wnt signaling pathways mainly include Wnt/PCP (planar cell polarity) signaling and Wnt-cGMP (cyclic guanosine monophosphate) /Ca2+ signaling. It has been well studied by previous researches that noncanonical Wnt signaling regulates multiple cell functions including proliferation, differentiation, adhesion, polarity, motility, and migration. The aberrant activation or inhibition of noncanonical Wnt signaling is crucial in cancer progression, exerting both oncogenic and tumor-suppressive effects. Recent studies show the involvement of noncanonical Wnt in regulating cancer cell invasion, metastasis, metabolism, and inflammation. Here, we review current insights into novel components of non-canonical signalings and describe their involvement in various cancer types. We also summarize recent biological and clinical discoveries that outline non-canonical Wnt signaling in tumorigenesis. Finally, we provide an overview of current strategies to target non-canonical Wnt signaling in cancer and challenges that are associated with such approaches.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of General Surgery, Zhejiang Yuhuan People's Hospital, Taizhou, Zhejiang, China
| | - Zhengxi Chen
- Department of Orthodontics, Shanghai Ninth People׳s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China; Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States
| | - Yin Tang
- Omni Family Health, Bakersfield, CA, United States
| | - Qian Xiao
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
17
|
Cosín-Roger J, Ortiz-Masia D, Barrachina MD, Calatayud S. Metabolite Sensing GPCRs: Promising Therapeutic Targets for Cancer Treatment? Cells 2020; 9:cells9112345. [PMID: 33113952 PMCID: PMC7690732 DOI: 10.3390/cells9112345] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
G-protein-coupled receptors constitute the most diverse and largest receptor family in the human genome, with approximately 800 different members identified. Given the well-known metabolic alterations in cancer development, we will focus specifically in the 19 G-protein-coupled receptors (GPCRs), which can be selectively activated by metabolites. These metabolite sensing GPCRs control crucial processes, such as cell proliferation, differentiation, migration, and survival after their activation. In the present review, we will describe the main functions of these metabolite sensing GPCRs and shed light on the benefits of their potential use as possible pharmacological targets for cancer treatment.
Collapse
Affiliation(s)
- Jesús Cosín-Roger
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46017 Valencia, Spain
- Correspondence: ; Tel.: +34-963851234
| | - Dolores Ortiz-Masia
- Departament of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Maria Dolores Barrachina
- Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (M.D.B.); (S.C.)
| | - Sara Calatayud
- Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (M.D.B.); (S.C.)
| |
Collapse
|
18
|
Wnt Signaling in Gynecologic Malignancies. Int J Mol Sci 2020; 21:ijms21124272. [PMID: 32560059 PMCID: PMC7348953 DOI: 10.3390/ijms21124272] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/24/2022] Open
Abstract
Gynecologic malignancies, including ovarian cancer, endometrial cancer, and cervical cancer, affect hundreds of thousands of women worldwide every year. Wnt signaling, specifically Wnt/β-catenin signaling, has been found to play an essential role in many oncogenic processes in gynecologic malignancies, including tumorigenesis, metastasis, recurrence, and chemotherapy resistance. As such, the Wnt/β-catenin signaling pathway has the potential to be a target for effective treatment, improving patient outcomes. In this review, we discuss the evidence supporting the importance of the Wnt signaling pathways in the development, progression, and treatment of gynecologic malignancies.
Collapse
|
19
|
Lee H, Kim JW, Kim DK, Choi DK, Lee S, Yu JH, Kwon OB, Lee J, Lee DS, Kim JH, Min SH. Calcium Channels as Novel Therapeutic Targets for Ovarian Cancer Stem Cells. Int J Mol Sci 2020; 21:ijms21072327. [PMID: 32230901 PMCID: PMC7177693 DOI: 10.3390/ijms21072327] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Drug resistance in epithelial ovarian cancer (EOC) is reportedly attributed to the existence of cancer stem cells (CSC), because in most cancers, CSCs still remain after chemotherapy. To overcome this limitation, novel therapeutic strategies are required to prevent cancer recurrence and chemotherapy-resistant cancers by targeting cancer stem cells (CSCs). We screened an FDA-approved compound library and found four voltage-gated calcium channel blockers (manidipine, lacidipine, benidipine, and lomerizine) that target ovarian CSCs. Four calcium channel blockers (CCBs) decreased sphere formation, viability, and proliferation, and induced apoptosis in ovarian CSCs. CCBs destroyed stemness and inhibited the AKT and ERK signaling pathway in ovarian CSCs. Among calcium channel subunit genes, three L- and T-type calcium channel genes were overexpressed in ovarian CSCs, and downregulation of calcium channel genes reduced the stem-cell-like properties of ovarian CSCs. Expressions of these three genes are negatively correlated with the survival rate of patient groups. In combination therapy with cisplatin, synergistic effect was shown in inhibiting the viability and proliferation of ovarian CSCs. Moreover, combinatorial usage of manidipine and paclitaxel showed enhanced effect in ovarian CSCs xenograft mouse models. Our results suggested that four CCBs may be potential therapeutic drugs for preventing ovarian cancer recurrence.
Collapse
Affiliation(s)
- Heejin Lee
- New Drug Development Center, DGMIF, 80 Chumbok-ro, Dong-gu, Daegu 41061, Korea; (H.L.); (J.W.K.); (D.K.C.); (J.H.Y.); (O.-B.K.)
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Jun Woo Kim
- New Drug Development Center, DGMIF, 80 Chumbok-ro, Dong-gu, Daegu 41061, Korea; (H.L.); (J.W.K.); (D.K.C.); (J.H.Y.); (O.-B.K.)
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Dae Kyung Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea;
| | - Dong Kyu Choi
- New Drug Development Center, DGMIF, 80 Chumbok-ro, Dong-gu, Daegu 41061, Korea; (H.L.); (J.W.K.); (D.K.C.); (J.H.Y.); (O.-B.K.)
| | - Seul Lee
- New Drug Development Center, DGMIF, 80 Chumbok-ro, Dong-gu, Daegu 41061, Korea; (H.L.); (J.W.K.); (D.K.C.); (J.H.Y.); (O.-B.K.)
| | - Ji Hoon Yu
- New Drug Development Center, DGMIF, 80 Chumbok-ro, Dong-gu, Daegu 41061, Korea; (H.L.); (J.W.K.); (D.K.C.); (J.H.Y.); (O.-B.K.)
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Oh-Bin Kwon
- New Drug Development Center, DGMIF, 80 Chumbok-ro, Dong-gu, Daegu 41061, Korea; (H.L.); (J.W.K.); (D.K.C.); (J.H.Y.); (O.-B.K.)
| | - Jungsul Lee
- 3 billion Inc., Seocho-gu, Seoul 06621, Korea;
| | - Dong-Seok Lee
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (D.-S.L.); (J.H.K.); (S.-H.M.)
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea;
- Correspondence: (D.-S.L.); (J.H.K.); (S.-H.M.)
| | - Sang-Hyun Min
- New Drug Development Center, DGMIF, 80 Chumbok-ro, Dong-gu, Daegu 41061, Korea; (H.L.); (J.W.K.); (D.K.C.); (J.H.Y.); (O.-B.K.)
- Correspondence: (D.-S.L.); (J.H.K.); (S.-H.M.)
| |
Collapse
|
20
|
Yin X, Wu H, Zhang B, Zhu N, Chen T, Ma X, Zhang L, Lv L, Zhang M, Wang F, Tang X. Tojapride prevents CaSR-mediated NLRP3 inflammasome activation in oesophageal epithelium irritated by acidic bile salts. J Cell Mol Med 2020; 24:1208-1219. [PMID: 31859410 PMCID: PMC6991659 DOI: 10.1111/jcmm.14631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/23/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Impairment of the oesophageal epithelium in patients with reflux oesophagitis (RE) is a cytokine-mediated injury rather than a chemical burn. The present study was conducted to explore CaSR/NLRP3 inflammasome pathway activation and cytokines IL-1β and IL-18 release in oesophageal epithelia injured by refluxates and the effects of Tojapride on that signal regulation. Using a modified RE rat model with Tojapride administration and Tojapride-pretreated SV40-immortalized human oesophageal epithelial cells (HET-1A) exposed to acidic bile salts pretreated with Tojapride, we evaluated the therapeutic effects of Tojapride on oesophageal epithelial barrier function, the expression of CaSR/NLRP3 inflammasome pathway-related proteins and the release of downstream cytokines in response to acidic bile salt irritation. In vivo, Tojapride treatment ameliorated the general condition and pathological lesions of the oesophageal epithelium in modified RE rats. In addition, Tojapride effectively blocked the CaSR-mediated NLRP3 inflammasome activation in modified RE rats. In vitro, Tojapride treatment can reverse the harmful effect of acidic bile salts, which reduced transepithelial electrical resistance (TEER), up-regulated the CaSR-mediated NLRP3 inflammasome pathway and increased caspase-1 activity, LDH release and cytokines secretion. Taken together, these data show that Tojapride can prevent CaSR-mediated NLRP3 inflammasome activation and alleviate oesophageal epithelial injury induced by acidic bile salt exposure.
Collapse
Affiliation(s)
- Xiao‐Lan Yin
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Hao‐Meng Wu
- Department of Gastroenterology, Guangzhou Higher Education Mega CenterThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Xiao‐gu‐wei JieGuangzhouChina
| | - Bei‐Huang Zhang
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Ning‐Wei Zhu
- Department of PharmacyZhejiang Pharmaceutical CollegeNingboChina
| | - Ting Chen
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Xiang‐Xue Ma
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Li‐Ying Zhang
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Lin Lv
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Min Zhang
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Feng‐Yun Wang
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Xu‐Dong Tang
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| |
Collapse
|
21
|
Regulation of Osteogenic Markers at Late Stage of Osteoblast Differentiation in Silicon and Zinc Doped Porous TCP. J Funct Biomater 2019; 10:jfb10040048. [PMID: 31694210 PMCID: PMC6963500 DOI: 10.3390/jfb10040048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/24/2019] [Accepted: 10/22/2019] [Indexed: 11/17/2022] Open
Abstract
Calcium phosphates (CaPs) are one of the most widely used synthetic materials for bone grafting applications in the orthopedic industry. Recent trends in synthetic bone graft applications have shifted towards the incorporation of metal trace elements that extend the performance of CaPs to have osteoinductive properties. The objective of this study is to investigate the effects of silicon (Si) and zinc (Zn) dopants in highly porous tricalcium phosphate (TCP) scaffolds on late-stage osteoblast cell differentiation markers. In this study, an oil emulsion method is utilized to fabricate highly porous SiO2 doped β-TCP (Si-TCP) and ZnO doped β-TCP (Zn-TCP) scaffolds through the incorporation of 0.5 wt.% SiO2 and 0.25 wt.% ZnO, respectively, to the β-TCP scaffold. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is utilized to analyze the mRNA expression of osteoprotegerin (OPG), receptor activator of nuclear kappa beta ligand (RANKL), bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (Runx2) at the later stage of osteoblast differentiation, day 21 and day 28. Results show that the addition of Si and Zn to the β-TCP structure inhibited the β to α-TCP phase transformation and enhance the density without affecting the dissolution properties. Normal BMP-2 and Runx2 transcriptions are observed in both Si-TCP and Zn-TCP scaffolds at the initial time point, as demonstrated by RT-qPCR. Moreover, the addition of both Si and Zn positively regulate the osteoprotegerin: receptor activator of nuclear factor k-β ligand (OPG:RANKL) ratio at 21-days for Si-TCP and Zn-TCP scaffolds. These results demonstrate the effects of Si and Zn doped porous β-TCP scaffolds on the upregulation of osteoblast marker gene expression including OPG, RANKL, BMP-2, and Runx2, indicating the role of trace elements on the effective regulation of late-stage osteoblast cell differentiation markers.
Collapse
|
22
|
Xing L, Zhang H, Majumder K, Zhang W, Mine Y. γ-Glutamylvaline Prevents Low-Grade Chronic Inflammation via Activation of a Calcium-Sensing Receptor Pathway in 3T3-L1Mouse Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8361-8369. [PMID: 31339708 DOI: 10.1021/acs.jafc.9b02334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The calcium-sensing receptor (CaSR), a G-protein receptor, is well recognized for its role in the regulation of adipocyte proliferation, in modulating adipose tissue dysfunction, and as a potential target for therapeutic intervention. In the present study, we investigate the anti-inflammatory effect of γ-glutamylvaline (γ-EV) on mouse adipocytes and explore the role of γ-EV-activated CaSR in the regulation of cellular homeostasis using the mouse 3T3-L1 cell line in vitro model. Our results indicate that the 3T3-L1 adipocyte-like cells accumulated lipids and expressed CaSR after 2 days of differentiation and 7 days of maturation period. The pretreatment with γ-EV (10 μM) suppressed the production of TNF-α-induced pro-inflammatory cytokines, i.e., IL-6 (23.92 ± 5.45 ng/mL, p < 0.05)) and MCP-1 (101.17 ± 39.93 ng/mL, p < 0.05), while enhancing the expression of PPARγ (1.249 ± 0.109, p < 0.001) and adiponectin (7.37 ± 0.59 ng/mL, p < 0.05). Elevated expression of Wnt5a was detected in γ-EV-treated cells (115.90 ± 45.50, p < 0.001), suggesting the involvement of the Wnt/β-catenin pathway. Also, phosphorylation of β-catenin was shown to be significantly inhibited (0.442 ± 0.034) by TNF-α but restored when cells were pretreated with γ-EV (0.765 ± 0.048, p < 0.05). These findings suggest that γ-EV-induced CaSR activation not only prevents TNF-α-induced inflammation in adipocytes but also modulates the cross-talk between Wnt and PPARγ pathways. Concentrations of serine phosphorylated IRS-1 were shown to be lower in γ-EV-treated cells, indicating γ-EV may also prevent inflammation in the context of insulin resistance. Thus, γ-EV-activated CaSR plays a significant role in the cross-talk between adipocyte inflammatory and metabolic pathways through the regulation of extracellular sensing.
Collapse
Affiliation(s)
- Lujuan Xing
- Department of Food Science , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
- Key Laboratory of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210000 , China
| | - Hua Zhang
- Guelph Food Research Centre , Agriculture and Agri-Food Canada , Guelph , Ontario N1G 5C9 , Canada
| | - Kaustav Majumder
- Department of Food Science , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210000 , China
| | - Yoshinori Mine
- Department of Food Science , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| |
Collapse
|
23
|
Barzi A, Hershman DL, Till C, Barlow WE, Ramsey S, Lenz HJ, Hochster HS, Unger JM. Osteoporosis in colorectal cancer survivors: analysis of the linkage between SWOG trial enrollees and Medicare claims. Arch Osteoporos 2019; 14:83. [PMID: 31352608 PMCID: PMC6852789 DOI: 10.1007/s11657-019-0629-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/02/2019] [Indexed: 02/03/2023]
Abstract
UNLABELLED To explore the rates of osteoporosis (diagnosis and screening) and fractures in colorectal cancer survivors (CRCS), records of clinical trial enrollees was linked to Medicare. Female/male risk of fracture in CRCS is 74% higher than general population. Less than 30% of male and female CRCS receive osteoporosis screening. Osteoporosis is a significant morbidity in CRCS. INTRODUCTION In the USA, the population of colorectal cancer survivors (CRCS) is on the rise. Calcium and vitamin D are the common thread between colorectal cancer and osteoporosis. We set to explore the patterns and prevalence of osteoporosis (OP) and osteoporotic fractures (OF) in CRCS who received fluorouracil-based therapy on SWOG trials. METHODS Data for CRCS from three SWOG phase III treatment trials between 1994 and 2000 (N = 3775) were linked to Medicare claims (N = 1233). OP was identified using ICD9 and HCPCS codes; OF was defined using a more restricted set of codes. We compared patterns of OP, OF, and screening for OP by gender in CRCS. Given the gender disparities in the rates of OP and OF, we used data from the National Health Interview Survey (NHIS) and the National Hospital Discharge Survey (NHDS) to assess the ratio of OF in females and males in general population. RESULTS Forty-seven percent of females and 15% of men CRCS had OP claims. Female CRCS were more likely than males to have OP (HR = 4.76 [3.77-6.01], p < 0.0001) and OF (HR = 2.64 [2.04-3.42], p < 0.0001). In the general population, the female to male ratio of OF was 1.67 as opposed to 2.90 in CRCS, indicating a significantly larger gender disparity of OF in CRCS (p < 0.001). Only 7% of men and 27% of women CRCS had OP screening. CONCLUSION Despite a low rate of OP screening, the gender disparity of OF in CRCS is more pronounced than the general population. These findings provide an impetus for studying OP and OF in CRCS.
Collapse
Affiliation(s)
| | | | | | | | - Scott Ramsey
- Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | | |
Collapse
|
24
|
Ke D, Tarafder S, Vahabzadeh S, Bose S. Effects of MgO, ZnO, SrO, and SiO 2 in tricalcium phosphate scaffolds on in vitro gene expression and in vivo osteogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:10-19. [PMID: 30606515 PMCID: PMC6484851 DOI: 10.1016/j.msec.2018.10.073] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 09/05/2018] [Accepted: 10/21/2018] [Indexed: 11/28/2022]
Abstract
β‑tricalcium phosphate (β‑TCP) is a versatile bioceramic for its use in many orthopedic and dental applications due to its excellent biocompatibility and biodegradability. Recently, the addition of additives to β‑TCP has been proven to improve bone repair and regeneration, however, the underlying mechanism of enhanced bone regeneration is still unknown. In this study, strontium oxide (SrO), silica (SiO2), magnesia (MgO), and zinc oxide (ZnO) were added to β‑TCP for dense discs fabrication followed by in vitro evaluation using a preosteoblast cell line. Cell viability and gene expression were analyzed at day 3 and day 9 during the cell culture. MgO and SiO2 were found to significantly enhance and expedite osteoblastic differentiation. A potential mechanism was introduced to explain the additive induced osteoblastic differentiation. In addition, in vivo characterizations showed that porous 3D printed MgO-SiO2-TCP scaffolds significantly improved new bone formation after 16 weeks of implantation. This study shows beneficial effects of additives on osteoblastic viability and differentiation in vitro as well as osteogenesis in vivo, which is crucial towards the development of bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Dongxu Ke
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA
| | - Solaiman Tarafder
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA
| | - Sahar Vahabzadeh
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA.
| |
Collapse
|
25
|
Iamartino L, Elajnaf T, Kallay E, Schepelmann M. Calcium-sensing receptor in colorectal inflammation and cancer: Current insights and future perspectives. World J Gastroenterol 2018; 24:4119-4131. [PMID: 30271078 PMCID: PMC6158479 DOI: 10.3748/wjg.v24.i36.4119] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/11/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
The extracellular calcium-sensing receptor (CaSR) is best known for its action in the parathyroid gland and kidneys where it controls body calcium homeostasis. However, the CaSR has different roles in the gastrointestinal tract, where it is ubiquitously expressed. In the colon, the CaSR is involved in controlling multiple mechanisms, including fluid transport, inflammation, cell proliferation and differentiation. Although the expression pattern and functions of the CaSR in the colonic microenvironment are far from being completely understood, evidence has been accumulating that the CaSR might play a protective role against both colonic inflammation and colorectal cancer. For example, CaSR agonists such as dipeptides have been suggested to reduce colonic inflammation, while dietary calcium was shown to reduce the risk of colorectal cancer. CaSR expression is lost in colonic malignancies, indicating that the CaSR is a biomarker for colonic cancer progression. This dual anti-inflammatory and anti-tumourigenic role of the CaSR makes it especially interesting in colitis-associated colorectal cancer. In this review, we describe the clinical and experimental evidence for the role of the CaSR in colonic inflammation and colorectal cancer, the intracellular signalling pathways which are putatively involved in these actions, and the possibilities to exploit these actions of the CaSR for future therapies of colonic inflammation and cancer.
Collapse
Affiliation(s)
- Luca Iamartino
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| | - Taha Elajnaf
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| | - Enikö Kallay
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| | - Martin Schepelmann
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
26
|
The Cu-containing TiO 2 coatings with modulatory effects on macrophage polarization and bactericidal capacity prepared by micro-arc oxidation on titanium substrates. Colloids Surf B Biointerfaces 2018; 170:242-250. [PMID: 29933233 DOI: 10.1016/j.colsurfb.2018.06.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/15/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
The implant materials with both osteogenic and anti-bacterial properties are promising for orthopedic and dental applications. Moreover, the inflammatory response induced by biomaterials has been recently recognized as one of the critical factors in determining implantation fate. A new generation of implant materials should have modulatory effects on the local inflammatory environment such that it favors osteogenesis and osteointegration instead of being bio-inert. In this study, the micro-arc oxidation (MAO) technique was employed to fabricate Cu-containing ceramic coatings on titanium substrates. The macrophages cultured on Cu-containing MAO-fabricated surfaces were polarized to M1 phenotype, evidenced by the high expression levels of inducible nitric oxide synthase (iNOS), low expression levels of arginase1 (Arg1), enhanced pro-inflammatory cytokine interleukin-6 (IL-6) release and inhibited IL-4 and IL-10 (anti-inflammatory cytokines) release. The MAO-treated surface incorporated with larger amounts of Cu (referred as Cu(h)-MAO) could modulate a favorable inflammatory microenvironment for osteoblast-like cell differentiation. Moreover, the macrophages cultured on Cu(h)-MAO surface exhibited enhanced bacteria uptake and killing rate, indicating that the Cu(h)-MAO surface promoted the bactericidal capacity of macrophages. Together, Cu could be used as a promising modulatory agent for macrophage functions. The integration of Cu in biomaterials could lead to enhanced macrophage-mediated osteogenesis and bactericidal capacity.
Collapse
|
27
|
Zhang R, Liu X, Xiong Z, Huang Q, Yang X, Yan H, Ma J, Feng Q, Shen Z. The immunomodulatory effects of Zn-incorporated micro/nanostructured coating in inducing osteogenesis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018. [DOI: 10.1080/21691401.2018.1446442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ranran Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, China
| | - Xujie Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, China
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Zhiyuan Xiong
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, China
| | - Qianli Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, China
| | - Xing Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, China
| | - Hao Yan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, China
| | - Jing Ma
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, China
| | - Zhijian Shen
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
28
|
Momen-Heravi F, Masugi Y, Qian ZR, Nishihara R, Liu L, Smith-Warner SA, Keum N, Zhang L, Tchrakian N, Nowak JA, Yang W, Ma Y, Bowden M, da Silva A, Wang M, Fuchs CS, Meyerhardt JA, Ng K, Wu K, Giovannucci E, Ogino S, Zhang X. Tumor expression of calcium sensing receptor and colorectal cancer survival: Results from the nurses' health study and health professionals follow-up study. Int J Cancer 2017; 141:2471-2479. [PMID: 28856682 DOI: 10.1002/ijc.31021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/16/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
Although experimental evidence suggests calcium-sensing receptor (CASR) as a tumor-suppressor, the prognostic role of tumor CASR expression in colorectal carcinoma remains unclear. We hypothesized that higher tumor CASR expression might be associated with improved survival among colorectal cancer patients. We evaluated tumor expression levels of CASR by immunohistochemistry in 809 incident colorectal cancer patients within the Nurses' Health Study and the Health Professionals Follow-up Study. We used Cox proportional hazards regression models to estimate multivariable hazard ratio (HR) for the association of tumor CASR expression with colorectal cancer-specific and all-cause mortality. We adjusted for potential confounders including tumor biomarkers such as microsatellite instability, CpG island methylator phenotype, LINE-1 methylation level, expressions of PTGS2, VDR and CTNNB1 and mutations of KRAS, BRAF and PIK3CA. There were 240 colorectal cancer-specific deaths and 427 all-cause deaths. The median follow-up of censored patients was 10.8 years (interquartile range: 7.2, 15.1). Compared with patients with no or weak expression of CASR, the multivariable HRs for colorectal cancer-specific mortality were 0.80 [95% confidence interval (CI): 0.55-1.16] in patients with moderate CASR expression and 0.50 (95% CI: 0.32-0.79) in patients with intense CASR expression (p-trend = 0.003). The corresponding HRs for overall mortality were 0.85 (0.64-1.13) and 0.81 (0.58-1.12), respectively. Higher tumor CASR expression was associated with a lower risk of colorectal cancer-specific mortality. This finding needs further confirmation and if confirmed, may lead to better understanding of the role of CASR in colorectal cancer progression.
Collapse
Affiliation(s)
- Fatemeh Momen-Heravi
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, NY
| | - Yohei Masugi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Reiko Nishihara
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Food Science and Biotechnology, Dongguk University, Goyang, South Korea.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Pathology, Program in MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Li Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Food Science and Biotechnology, Dongguk University, Goyang, South Korea.,Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Stephanie A Smith-Warner
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Food Science and Biotechnology, Dongguk University, Goyang, South Korea.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - NaNa Keum
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Food Science and Biotechnology, Dongguk University, Goyang, South Korea
| | - Lanjing Zhang
- Department of Pathology, University Medical Center of Princeton, Plainsboro, NJ.,Department of Biological Sciences, Rutgers University, Newark, NJ.,Clinical Investigations and Precision Therapeutics Research Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Nairi Tchrakian
- Department of Pathology, St James's Hospital, Dublin, Ireland
| | - Jonathan A Nowak
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA.,Department of Pathology, Program in MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Wanshui Yang
- Department of Social Science and Public Health, School of Basic Medical Science, Jiujiang University, Jiujiang, People's Republic of China
| | - Yanan Ma
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Michaela Bowden
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Annacarolina da Silva
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Charles S Fuchs
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, NY.,Yale Cancer Center & Smilow Cancer Hospital, New Haven, CT.,Department of Medicine, Yale School of Medicine, New Haven, CT
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Food Science and Biotechnology, Dongguk University, Goyang, South Korea
| | - Edward Giovannucci
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Food Science and Biotechnology, Dongguk University, Goyang, South Korea
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Pathology, Program in MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Zhang W, Yan Y, Gu M, Wang X, Zhu H, Zhang S, Wang W. High expression levels of Wnt5a and Ror2 in laryngeal squamous cell carcinoma are associated with poor prognosis. Oncol Lett 2017; 14:2232-2238. [PMID: 28781662 PMCID: PMC5530173 DOI: 10.3892/ol.2017.6386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/30/2017] [Indexed: 12/16/2022] Open
Abstract
The present study investigated the prognostic significance of Wnt family member 5a (Wnt5a) and receptor tyrosine kinase-like orphan receptor 2 (Ror2) expression in laryngeal squamous cell carcinoma (LSCC). The protein expression levels of Wnt5a and Ror2 were analyzed in specimens from 137 patients with LSCC, using immunohistochemical staining of tissue microarrays and pairs of LSCC and adjacent tissue samples, and examined the associations between the two markers and various clinicopathological parameters. The Wnt5a and Ror2 expression levels were significantly higher in LSCC tissues than in normal tissue samples (Wnt5a, P=0.015; Ror2, P=0.039), and were significantly associated with high tumor stage (P<0.001), lymph node metastasis (Wnt5a, P=0.029; Ror2, P=0.018), and with each other (P=0.002). Patients with LSCC with high Wnt5a or Ror2 expression had poorer prognosis compared with those with low Wnt5a (P=0.022) or Ror2 (P=0.038) expression. Thus, Wnt5a and Ror2 may affect LSCC development, and are potential biomarkers in LSCC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yongbing Yan
- Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Miao Gu
- Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xudong Wang
- Department of Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Huijun Zhu
- Department of Clinical Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shu Zhang
- Department of Clinical Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wei Wang
- Department of Clinical Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
30
|
Implication of downregulation and prospective pathway signaling of microRNA-375 in lung squamous cell carcinoma. Pathol Res Pract 2017; 213:364-372. [PMID: 28214218 DOI: 10.1016/j.prp.2017.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is one of the most typical cancers in the world. Altered expression profiles of microRNA-375(miR-375) are linked to many diseases including lung cancer. However, the relationship between miR-375 and lung squamous cell carcinoma (LUSC) is controversial. METHODS We first evaluated the 23 LUSCs and the paired normal lung tissues by qRT-PCR. Then we analyzed the LUSC samples with miR-375 expression based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Furthermore, bioinformatics analysis was performed to explore the biological role of miR-375 in LUSC. RESULTS The expression of miR-375 was remarkably reduced in LUSC tissues compared with that in paired lung tissues by qRT-PCR (P=0.003). Additionally, the TCGA dataset suggested that miR-375 was significantly downregulated in 478 LUSC tissues compared with 45 normal lung tissues (P<0.0001), as well as the result derived from GEO datasets (the pooled SMD=-1.01; 95%CIs-1.66 to -0.33, P=0.004). Furthermore, a total of 1348 miR-375-related differently expressed genes were identified by the analytical integration, which were involved in critical pathways of LUSC like neuron differentiation, plasma membrane part and sequence-specific DNA binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway examination also unveiled the involvement of target genes in morphine addiction and drug metabolism- other enzymes and neuroactive ligand-receptor interaction. Finally, the expression of WNT5A was inversely correlated with miR-375 expression according to TCGA dataset (r=-0.2342, P<0.0001). CONCLUSIONS miR-375 exerts a strong tumor-suppressive effect in LUSC and provided novel insight into the biological function in tumorigenesis and progression of LUSC.
Collapse
|
31
|
Pan T, Xu J, Zhu Y. Self-renewal molecular mechanisms of colorectal cancer stem cells. Int J Mol Med 2016; 39:9-20. [PMID: 27909729 PMCID: PMC5179189 DOI: 10.3892/ijmm.2016.2815] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/22/2016] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer stem cells (CCSCs) represent a small fraction of the colorectal cancer cell population that possess self-renewal and multi-lineage differentiation potential and drive tumorigenicity. Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood, the aberrant activation of signaling pathways, such as Wnt, Notch, transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) and Hedgehog-Gli (HH-GLI), specific roles mediated by cell surface markers and micro-environmental factors are involved in the regulation of self-renewal. The elucidation of the molecular mechanisms behind self-renewal may lead to the development of novel targeted interventions for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jinghong Xu
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
32
|
Wnt5a Increases Properties of Lung Cancer Stem Cells and Resistance to Cisplatin through Activation of Wnt5a/PKC Signaling Pathway. Stem Cells Int 2016; 2016:1690896. [PMID: 27895670 PMCID: PMC5118537 DOI: 10.1155/2016/1690896] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/31/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023] Open
Abstract
The development of chemoresistance to cisplatin regimens causes a poor prognosis in patients with advanced NSCLC. The role of noncanonical Wnt signaling in the regulation of properties of lung cancer stem cells and chemoresistance was interrogated, by accessing capacities of cell proliferation, migration, invasion, and clonogenicity as well as the apoptosis in A549 cell lines and cisplatin-resistant A549 cells treated with Wnt5a conditional medium or protein kinase C (PKC) inhibitor GF109203X. Results showed that the noncanonical Wnt signaling ligand, Wnt5a, could promote the proliferation, migration, invasion, and colony formation in A549 lung adenocarcinoma cells and cisplatin-resistant A549/DDP cells and increase the fraction of ALDH-positive cell in A549/DDP cells. An exposure of cells to Wnt5a led to a significant reduction of A549/DDP cell apoptosis but not A549 cells. An addition of GF109203X could both strikingly increase the baseline apoptosis and resensitize the Wnt5a-inhibited cell apoptosis. Interestingly, an inhibition of Wnt/PKC signaling pathway could reduce properties of lung cancer stem cells, promote cell apoptosis, and resensitize cisplatin-resistant cells to cisplatin via a caspase/AIF-dependent pathway. These data thus suggested that the Wnt5a could promote lung cancer cell mobility and cisplatin-resistance through a Wnt/PKC signaling pathway and a blockage of this signaling may be an alternative therapeutic strategy for NSCLC patients with resistance to chemotherapies.
Collapse
|
33
|
Aggarwal A, Kállay E. Cross Talk between the Calcium-Sensing Receptor and the Vitamin D System in Prevention of Cancer. Front Physiol 2016; 7:451. [PMID: 27803671 PMCID: PMC5067519 DOI: 10.3389/fphys.2016.00451] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/21/2016] [Indexed: 12/25/2022] Open
Abstract
There is epidemiological evidence for the cancer preventive effect of dietary calcium (Ca2+) and vitamin D. This effect is strongest in colorectal cancer (CRC). The active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (1,25D3), bound to its receptor, the vitamin D receptor (VDR) regulates the expression of hundreds of different genes in a cell- and tissue-specific manner. While Ca2+ acts through multiple mechanisms and pathways, some of its effects are mediated by the calcium-sensing receptor (CaSR). The joint action of Ca2+ and 1,25D3 is due to the fact that both regulate some of the main processes involved in the development of various cancers, such as proliferation, differentiation, apoptosis, migration, and inflammation. Moreover, 1,25D3, bound to VDR can induce translation of the CaSR, while the amount and activity of the CaSR affects 1,25D3 signaling. However, the complexity of the cross-talk between the CaSR and the vitamin D system goes beyond regulating similar pathways and affecting each other's expression. Our aim was to review some of the mechanisms that drive the cross-talk between the vitamin D system and the CaSR with a special focus on the interaction in CRC cells. We evaluated the molecular evidence that supports the epidemiological observation that both vitamin D and calcium are needed for protection against malignant transformation of the colon and that their effect is modulated by the presence of a functional CaSR.
Collapse
Affiliation(s)
- Abhishek Aggarwal
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of ViennaVienna, Austria; Department of Pediatrics/Endocrinology, School of Medicine, Stanford UniversityStanford, CA, USA
| | - Enikö Kállay
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna Vienna, Austria
| |
Collapse
|
34
|
Lu C, Wang X, Zhu H, Feng J, Ni S, Huang J. Over-expression of ROR2 and Wnt5a cooperatively correlates with unfavorable prognosis in patients with non-small cell lung cancer. Oncotarget 2016; 6:24912-21. [PMID: 26305508 PMCID: PMC4694803 DOI: 10.18632/oncotarget.4701] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/09/2015] [Indexed: 01/27/2023] Open
Abstract
We investigated the expression of receptor tyrosine kinase-like orphan receptor (ROR) 2 and Wnt5a and their prognostic significance in non-small cell lung cancer (NSCLC). Tissue microarray-based immunohistochemical analysis was performed to determine the expression of ROR2 and Wnt5a in 219 patients. mRNA expression of ROR2 and Wnt5a was examined in 20 pairs of NSCLC and matched adjacent normal tissues by real-time PCR. Compared with non-tumorous tissues, both mRNA expression and protein product of ROR2 and Wnt5a genes were significantly increased in NSCLC. c2 analysis revealed that high ROR2 or Wnt5a expression in NSCLC was significantly associated with advanced TNM stage. High expression of both ROR2 and Wnt5a was also related to advanced TNM stage. Multivariate analyses suggested that ROR2, Wnt5a and TNM stage were independent prognostic factors in NSCLC. Our clinical findings suggest that high ROR2 or Wnt5a expression is associated with poor prognosis in NSCLC, and combined detection of ROR2 and Wnt5a is helpful in predicting the prognosis of NSCLC.
Collapse
Affiliation(s)
- Chenlin Lu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huijun Zhu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jian Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Songshi Ni
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianfei Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
35
|
The calcium-sensing receptor and the hallmarks of cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1398-407. [DOI: 10.1016/j.bbamcr.2015.11.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
|
36
|
ETS2 and Twist1 promote invasiveness of Helicobacter pylori-infected gastric cancer cells by inducing Siah2. Biochem J 2016; 473:1629-40. [PMID: 27048589 PMCID: PMC4888467 DOI: 10.1042/bcj20160187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 04/05/2016] [Indexed: 12/13/2022]
Abstract
H. pylori induce ETS2 and Twist1 expression in the infected GCC. ETS2 and Twist1 transcriptionally activate siah2 in the H. pylori-infected GCCs. H. pylori-mediated Siah2 induction enhances motility and invasiveness of the infected GCCs.
Helicobacter pylori infection is one of the most potent factors leading to gastric carcinogenesis. The seven in absentia homologue (Siah2) is an E3 ubiquitin ligase which has been implicated in various cancers but its role in H. pylori-mediated gastric carcinogenesis has not been established. We investigated the involvement of Siah2 in gastric cancer metastasis which was assessed by invasiveness and migration of H. pylori-infected gastric epithelial cancer cells. Cultured gastric cancer cells (GCCs) MKN45, AGS and Kato III showed significantly induced expression of Siah2, increased invasiveness and migration after being challenged with the pathogen. Siah2-expressing stable cells showed increased invasiveness and migration after H. pylori infection. Siah2 was transcriptionally activated by E26 transformation-specific sequence 2 (ETS2)- and Twist-related protein 1 (Twist1) induced in H. pylori-infected gastric epithelial cells. These transcription factors dose-dependently enhanced the aggressiveness of infected GCCs. Our data suggested that H. pylori-infected GCCs gained cell motility and invasiveness through Siah2 induction. As gastric cancer biopsy samples also showed highly induced expression of ETS2, Twist1 and Siah2 compared with noncancerous gastric tissue, we surmise that ETS2- and Twist1-mediated Siah2 up-regulation has potential diagnostic and prognostic significance and could be targeted for therapeutic purpose.
Collapse
|
37
|
Kumawat K, Gosens R. WNT-5A: signaling and functions in health and disease. Cell Mol Life Sci 2016; 73:567-87. [PMID: 26514730 PMCID: PMC4713724 DOI: 10.1007/s00018-015-2076-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Abstract
WNT-5A plays critical roles in a myriad of processes from embryonic morphogenesis to the maintenance of post-natal homeostasis. WNT-5A knock-out mice fail to survive and present extensive structural malformations. WNT-5A predominantly activates β-catenin-independent WNT signaling cascade but can also activate β-catenin signaling to relay its diverse cellular effects such as cell polarity, migration, proliferation, cell survival, and immunomodulation. Moreover, aberrant WNT-5A signaling is associated with several human pathologies such as cancer, fibrosis, and inflammation. Thus, owing to its diverse functions, WNT-5A is a crucial signaling molecule currently under intense investigation with efforts to not only delineate its signaling mechanisms and functions in physiological and pathological conditions, but also to develop strategies for its therapeutic targeting.
Collapse
Affiliation(s)
- Kuldeep Kumawat
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands.
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
Gröschel C, Aggarwal A, Tennakoon S, Höbaus J, Prinz-Wohlgenannt M, Marian B, Heffeter P, Berger W, Kállay E. Effect of 1,25-dihydroxyvitamin D3 on the Wnt pathway in non-malignant colonic cells. J Steroid Biochem Mol Biol 2016; 155:224-30. [PMID: 25777538 DOI: 10.1016/j.jsbmb.2015.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 02/08/2023]
Abstract
Epidemiological studies suggest a correlation between vitamin D deficiency and colorectal cancer (CRC) incidence. The majority of sporadic tumors develop from premalignant lesions with aberrant activation of the Wnt/β-catenin signaling pathway. The adenoma cell line LT97 harbors an adenomatous polyposis coli (APC) mutation leading to constitutively active Wnt signaling. In these cells, expression of Wnt target genes leads to increased survival capacity. We hypothesized that 1,25-dihydroyvitamin D3 (1,25-D3), the active form of vitamin D3, promotes differentiation by modulating β-catenin/T-cell factor (TCF) 4-mediated gene transcription. The effect of dietary vitamin D on colonic Wnt signaling was investigated in mice fed either with 100 IU or 2500 IU vitamin D/kg diet. We examined the effect of 1,25-D3 on differentiation by measuring alkaline phosphatase activity. We analyzed mRNA expression of Wnt target genes by real time qRT-PCR. The impact of 1,25-D3 on β-catenin and TCF4 protein expression was assessed by western blot and immunohistochemistry. In LT97 cells, 1,25-D3 increased cellular differentiation and reduced nuclear β-catenin levels. Further, 1,25-D3 decreased mRNA expression of the Wnt target genes BCL-2, Cyclin D1, Snail1, CD44 and LGR5. In healthy colon of mice fed with high vitamin D diet, the mRNA levels of Wnt5a and ROR2, that promote degradation of β-catenin, were upregulated whereas β-catenin and TCF4 protein expression were decreased. In conclusion, 1,25-D3 inhibits Wnt signaling even in nonmalignant cells underlining its importance in protection against colorectal tumorigenesis and early tumor progression. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.
Collapse
Affiliation(s)
- Charlotte Gröschel
- Department of Pathophysiology and Allergy Research, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Abhishek Aggarwal
- Department of Pathophysiology and Allergy Research, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Samawansha Tennakoon
- Department of Pathophysiology and Allergy Research, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Julia Höbaus
- Department of Pathophysiology and Allergy Research, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Maximilian Prinz-Wohlgenannt
- Department of Pathophysiology and Allergy Research, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Brigitte Marian
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria; Research Platform ``Translational Cancer Therapy Research", Vienna, Austria
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria; Research Platform ``Translational Cancer Therapy Research", Vienna, Austria
| | - Enikő Kállay
- Department of Pathophysiology and Allergy Research, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
39
|
Wnt pathway in Dupuytren disease: connecting profibrotic signals. Transl Res 2015; 166:762-771.e3. [PMID: 26470681 DOI: 10.1016/j.trsl.2015.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/28/2022]
Abstract
A role of Wnt signaling in Dupuytren disease, a fibroproliferative disease of the hand and fingers, has not been fully elucidated. We examined a large set of Wnt pathway components and signaling targets and found significant dysregulation of 41 Wnt-related genes in tissue from the Dupuytren nodules compared with patient-matched control tissue. A large proportion of genes coding for Wnt proteins themselves was downregulated. However, both canonical Wnt targets and components of the noncanonical signaling pathway were upregulated. Immunohistochemical analysis revealed that protein expression of Wnt1-inducible secreted protein 1 (WISP1), a known Wnt target, was increased in nodules compared with control tissue, but knockdown of WISP1 using small interfering RNA (siRNA) in the Dupuytren myofibroblasts did not confirm a functional role. The protein expression of noncanonical pathway components Wnt5A and VANGL2 as well as noncanonical coreceptors Ror2 and Ryk was increased in nodules. On the contrary, the strongest downregulated genes in this study were 4 antagonists of Wnt signaling (DKK1, FRZB, SFRP1, and WIF1). Downregulation of these genes in the Dupuytren tissue was mimicked in vitro by treating normal fibroblasts with transforming growth factor β1 (TGF-β1), suggesting cross talk between different profibrotic pathways. Furthermore, siRNA-mediated knockdown of these antagonists in normal fibroblasts led to increased nuclear translocation of Wnt target β-catenin in response to TGF-β1 treatment. In conclusion, we have shown extensive dysregulation of Wnt signaling in affected tissue from Dupuytren disease patients. Components of both the canonical and the noncanonical pathways are upregulated, whereas endogenous antagonists are downregulated, possibly via interaction with other profibrotic pathways.
Collapse
|
40
|
Mine Y, Zhang H. Calcium-sensing receptor (CaSR)-mediated anti-inflammatory effects of L-amino acids in intestinal epithelial cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9987-9995. [PMID: 26551350 DOI: 10.1021/acs.jafc.5b03749] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Calcium-sensing receptor (CaSR) plays an essential role in sensing nutrients and monitoring ion balance in the human gut. However, no discovery of CaSR-mediated anti-inflammatory effect of l-amino acids (l-AAs) on the gut system has been reported. The aim of this study is to screen and identify the anti-inflammatory activity of various l-AAs in intestinal epithelial cells (IECs) and stepwise illustrate a possible molecular mechanism for anti-inflammation. We used Caco-2 and HT-29 cell lines to evaluate the anti-inflammatory activity of l-AAs and revealed that l-tryptophan (l-Trp) and l-valine (l-Val) have strong anti-inflammatory activity consistent in both cell lines. l-Trp treatment (5 mM) reduced TNF-α-induced IL-8 secretion from HT-29 or Caco-2 cells to about 50 or 40%, respectively. l-Trp also significantly inhibited the expression of phosphorylation of JNK or IκBα to around 50% in HT-29 cells. However, the above inhibitory effects of l-Trp on inflammatory responses in TNF-α-induced HT-29 cells were abrogated by NPS-2143. The result of CaSR antagonist NPS-2143 pretreatment study suggests l-Trp exerts anti-inflammatory effects on IECs through CaSR activation. The involvement of β-arrestin2 was then found to block tumor necrosis factor (TNF)-α-induced signaling pathways after CaSR activated by l-Trp. These results validate a novel mechanism underlying CaSR agonistic l-AAs exerting anti-inflammatory effects on human intestinal epithelia.
Collapse
Affiliation(s)
- Yoshinori Mine
- Department of Food Science, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | - Hua Zhang
- Department of Food Science, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
41
|
Aznar N, Midde KK, Dunkel Y, Lopez-Sanchez I, Pavlova Y, Marivin A, Barbazán J, Murray F, Nitsche U, Janssen KP, Willert K, Goel A, Abal M, Garcia-Marcos M, Ghosh P. Daple is a novel non-receptor GEF required for trimeric G protein activation in Wnt signaling. eLife 2015; 4:e07091. [PMID: 26126266 PMCID: PMC4484057 DOI: 10.7554/elife.07091] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/01/2015] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling is essential for tissue homeostasis and its dysregulation causes cancer. Wnt ligands trigger signaling by activating Frizzled receptors (FZDRs), which belong to the G-protein coupled receptor superfamily. However, the mechanisms of G protein activation in Wnt signaling remain controversial. In this study, we demonstrate that FZDRs activate G proteins and trigger non-canonical Wnt signaling via the Dishevelled-binding protein, Daple. Daple contains a Gα-binding and activating (GBA) motif, which activates Gαi proteins and an adjacent domain that directly binds FZDRs, thereby linking Wnt stimulation to G protein activation. This triggers non-canonical Wnt responses, that is, suppresses the β-catenin/TCF/LEF pathway and tumorigenesis, but enhances PI3K-Akt and Rac1 signals and tumor cell invasiveness. In colorectal cancers, Daple is suppressed during adenoma-to-carcinoma transformation and expressed later in metastasized tumor cells. Thus, Daple activates Gαi and enhances non-canonical Wnt signaling by FZDRs, and its dysregulation can impact both tumor initiation and progression to metastasis.
Collapse
Affiliation(s)
- Nicolas Aznar
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Krishna K Midde
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Ying Dunkel
- Department of Medicine, University of California, San Diego, San Diego, United States
| | | | - Yelena Pavlova
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Jorge Barbazán
- Translational Medical Oncology Laboratory, Health Research Institute of Santiago, Servizo Galego de Saúde, Santiago de Compostela, Spain
| | - Fiona Murray
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Ulrich Nitsche
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Karl Willert
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California, United States
| | - Ajay Goel
- Division of Gastroenterology, Department of Internal Medicine and Charles A Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, United States
| | - Miguel Abal
- Translational Medical Oncology Laboratory, Health Research Institute of Santiago, Servizo Galego de Saúde, Santiago de Compostela, Spain
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, San Diego, United States
| |
Collapse
|
42
|
Yang J, Cusimano A, Monga JK, Preziosi ME, Pullara F, Calero G, Lang R, Yamaguchi TP, Nejak-Bowen KN, Monga SP. WNT5A inhibits hepatocyte proliferation and concludes β-catenin signaling in liver regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2194-205. [PMID: 26100214 DOI: 10.1016/j.ajpath.2015.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/09/2015] [Accepted: 04/07/2015] [Indexed: 02/08/2023]
Abstract
Activation of Wnt/β-catenin signaling during liver regeneration (LR) after partial hepatectomy (PH) is observed in several species. However, how this pathway is turned off when hepatocyte proliferation is no longer required is unknown. We assessed LR in liver-specific knockouts of Wntless (Wls-LKO), a protein required for Wnt secretion from a cell. When subjected to PH, Wls-LKO showed prolongation of hepatocyte proliferation for up to 4 days compared with littermate controls. This coincided with increased β-catenin-T-cell factor 4 interaction and cyclin-D1 expression. Wls-LKO showed decreased expression and secretion of inhibitory Wnt5a during LR. Wnt5a expression increased between 24 and 48 hours, and Frizzled-2 between 24 and 72 hours, after PH in normal mice. Treatment of primary mouse hepatocytes and liver tumor cells with Wnt5a led to a notable decrease in β-catenin-T-cell factor activity, cyclin-D1 expression, and cell proliferation. Intriguingly, Wnt5a-LKO did not display any prolongation of LR because of compensation by other cells. In addition, Wnt5a-LKO hepatocytes failed to respond to exogenous Wnt5a treatment in culture because of a compensatory decrease in Frizzled-2 expression. In conclusion, we demonstrate Wnt5a to be, by default, a negative regulator of β-catenin signaling and hepatocyte proliferation, both in vitro and in vivo. We also provide evidence that the Wnt5a/Frizzled-2 axis suppresses β-catenin signaling in hepatocytes in an autocrine manner, thereby contributing to timely conclusion of the LR process.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Antonella Cusimano
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Ri.MED Foundation, Palermo, Italy; Institute of Biomedicine and Molecular Immunology Alberto Monroy, National Research Council, Palermo, Italy
| | - Jappmann K Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Morgan E Preziosi
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Filippo Pullara
- Ri.MED Foundation, Palermo, Italy; Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richard Lang
- Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Terry P Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, Maryland
| | - Kari N Nejak-Bowen
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
43
|
Dandawate P, Padhye S, Ahmad A, Sarkar FH. Novel strategies targeting cancer stem cells through phytochemicals and their analogs. Drug Deliv Transl Res 2015; 3:165-82. [PMID: 24076568 DOI: 10.1007/s13346-012-0079-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer stem cells (CSCs) are cells that exist within a tumor with a capacity of self-renewal and an ability to differentiate, giving rise to heterogeneous populations of cancer cells. These cells are increasingly being implicated in resistance to conventional therapeutics and have also been implicated in tumor recurrence. Several cellular signaling pathways including Notch, Wnt, phosphoinositide-3-kinase-Akt-mammalian target of rapamycin pathways, and known markers such as CD44, CD133, CD166, ALDH, etc. have been associated with CSCs. Here, we have reviewed our current understanding of self-renewal pathways and factors that help in the survival of CSCs with special emphasis on those that have been documented to be modulated by well characterized natural agents such as curcumin, sulforaphane, resveratrol, genistein, and epigallocatechin gallate. With the inclusion of a novel derivative of curcumin, CDF, we showcase how natural agents can be effectively modified to increase their efficacy, particularly against CSCs. We hope that this article will generate interest among researchers for further mechanistic and clinical studies exploiting the cancer preventive and therapeutic role of nutraceuticals by targeted elimination of CSCs.
Collapse
Affiliation(s)
- Prasad Dandawate
- ISTRA, Department of Chemistry, Abeda Inamdar Senior College, University of Pune, Pune 411001, India
| | | | | | | |
Collapse
|
44
|
Pataki CA, Couchman JR, Brábek J. Wnt Signaling Cascades and the Roles of Syndecan Proteoglycans. J Histochem Cytochem 2015; 63:465-80. [PMID: 25910817 DOI: 10.1369/0022155415586961] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling comprises a group of pathways emanating from the extracellular environment through cell-surface receptors into the intracellular milieu. Wnt signaling cascades can be divided into two main branches, the canonical/β-catenin pathway and the non-canonical pathways containing the Wnt/planar cell polarity and Wnt/calcium signaling. Syndecans are type I transmembrane proteoglycans with a long evolutionary history, being expressed in all Bilateria and in almost all cell types. Both Wnt pathways have been extensively studied over the past 30 years and shown to have roles during development and in a multitude of diseases. Although the first evidence for interactions between syndecans and Wnts dates back to 1997, the number of studies connecting these pathways is low, and many open questions remained unanswered. In this review, syndecan's involvement in Wnt signaling pathways as well as some of the pathologies resulting from dysregulation of the components of these pathways are summarized.
Collapse
Affiliation(s)
- Csilla A Pataki
- Department of Cell Biology, Charles University in Prague, Czech Republic, University of Copenhagen, Denmark (CAP,JB)
| | - John R Couchman
- Department of Biomedical Sciences and Biotech Research and Innovation Center, University of Copenhagen, Denmark (JRC)
| | - Jan Brábek
- Department of Cell Biology, Charles University in Prague, Czech Republic, University of Copenhagen, Denmark (CAP,JB)
| |
Collapse
|
45
|
Hernández-Bedolla MA, Carretero-Ortega J, Valadez-Sánchez M, Vázquez-Prado J, Reyes-Cruz G. Chemotactic and proangiogenic role of calcium sensing receptor is linked to secretion of multiple cytokines and growth factors in breast cancer MDA-MB-231 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:166-82. [DOI: 10.1016/j.bbamcr.2014.10.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/11/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022]
|
46
|
Endo M, Nishita M, Fujii M, Minami Y. Insight into the role of Wnt5a-induced signaling in normal and cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:117-48. [PMID: 25619716 DOI: 10.1016/bs.ircmb.2014.10.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wnt5a is involved in the activation of noncanonical Wnt signaling, including planar cell polarity (PCP) and Wnt-Ca(2+) pathways. The Ror-family of receptor tyrosine kinases is composed of Ror1 and Ror2 in mammals. Ror2 acts as a receptor or coreceptor for Wnt5a and regulates Wnt5a-induced activation of PCP pathway, and Wnt5a-Ror2 axis indeed plays critical roles in the developmental morphogenesis by regulating cell polarity and migration. Furthermore, Wnt5a-Ror2 axis is constitutively activated in cancer cells and confers highly motile and invasive properties on cancer cells through the expression of matrix metalloproteinase genes and enhanced formation of invadopodia. Meanwhile, Wnt5a also exhibits a tumor-suppressive function in certain cancers, including breast and colorectal carcinomas. Thus, it is of great importance to understand the respective molecular mechanisms governing Wnt5a-mediated tumor-progressive and tumor-suppressive functions, in order to develop novel and proper diagnostic and therapeutic strategies targeting Wnt5a signaling for human cancers.
Collapse
Affiliation(s)
- Mitsuharu Endo
- Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Japan
| | - Michiru Nishita
- Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Japan
| | - Masanori Fujii
- Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Japan
| | - Yasuhiro Minami
- Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Japan
| |
Collapse
|
47
|
Fetahu IS, Höbaus J, Aggarwal A, Hummel DM, Tennakoon S, Mesteri I, Baumgartner-Parzer S, Kállay E. Calcium-sensing receptor silencing in colorectal cancer is associated with promoter hypermethylation and loss of acetylation on histone 3. Int J Cancer 2014; 135:2014-23. [PMID: 24691920 PMCID: PMC4282356 DOI: 10.1002/ijc.28856] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/06/2014] [Indexed: 12/25/2022]
Abstract
The calcium-sensing receptor (CaSR) is suggested to mediate the antiproliferative effects of calcium in colon. However, in colorectal cancer (CRC) the expression of the CaSR is silenced and the underlying mechanisms leading to its loss are poorly understood. We investigated whether loss of the CaSR expression in colorectal tumors is caused by DNA hypermethylation and imbalance of transcriptionally permissive/repressive histone alterations. We observed significantly lower CaSR mRNA expression (n = 65, p < 0.001) in colorectal tumors compared with the adjacent mucosa from the same patient. Immunofluorescence staining confirmed downregulation of the CaSR protein also. The CaSR promoter was methylated to a greater extent in tumors compared with adjacent mucosa as determined by bisulfite sequencing (n = 20, p < 0.01) and by pyrosequencing (n = 45, p < 0.001), and methylation correlated inversely with mRNA expression (n = 20, ρ = -0.310, p < 0.05 and n = 45, ρ = -0.588, p < 0.001). Treatments with 5-aza-2'-deoxycytidine (DAC), a DNA methyltransferase inhibitor and/or with two different histone deacetylase inhibitors, trichostatin A (TSA) or suberoylanilide hydroxamic acid (SAHA) restored the expression of CaSR in colon cancer cells. Restored CaSR expression in Coga1A and HT29 cells was functional. Inhibition of lysine-specific demethylase 1 (LSD1) to prevent demethylation of mono- and dimethylated H3K4, increased CaSR expression only marginally. Our data show that hypermethylation of the CaSR promoter and H3K9 deacetylation, but not H3K4me2 demethylation are important factors that cause silencing of the CaSR in colorectal cancer.
Collapse
Affiliation(s)
- Irfete S Fetahu
- Department of Pathophysiology and Allergy Research, Medical University of ViennaVienna, Austria
| | - Julia Höbaus
- Department of Pathophysiology and Allergy Research, Medical University of ViennaVienna, Austria
| | - Abhishek Aggarwal
- Department of Pathophysiology and Allergy Research, Medical University of ViennaVienna, Austria
| | - Doris M Hummel
- Department of Pathophysiology and Allergy Research, Medical University of ViennaVienna, Austria
| | - Samawansha Tennakoon
- Department of Pathophysiology and Allergy Research, Medical University of ViennaVienna, Austria
| | - Ildiko Mesteri
- Department of Pathology, Medical University of ViennaVienna, Austria
| | | | - Enikő Kállay
- Department of Pathophysiology and Allergy Research, Medical University of ViennaVienna, Austria
| |
Collapse
|
48
|
Soler-Torronteras R, Lara-Chica M, García V, Calzado MA, Muñoz E. Hypoximimetic activity of N-acyl-dopamines. N-arachidonoyl-dopamine stabilizes HIF-1α protein through a SIAH2-dependent pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2730-43. [DOI: 10.1016/j.bbamcr.2014.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 01/30/2023]
|
49
|
Leach K, Sexton PM, Christopoulos A, Conigrave AD. Engendering biased signalling from the calcium-sensing receptor for the pharmacotherapy of diverse disorders. Br J Pharmacol 2014; 171:1142-55. [PMID: 24111791 DOI: 10.1111/bph.12420] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/14/2022] Open
Abstract
The human calcium-sensing receptor (CaSR) is widely expressed in the body, where its activity is regulated by multiple orthosteric and endogenous allosteric ligands. Each ligand stabilizes a unique subset of conformational states, which enables the CaSR to couple to distinct intracellular signalling pathways depending on the extracellular milieu in which it is bathed. Differential signalling arising from distinct receptor conformations favoured by each ligand is referred to as biased signalling. The outcome of CaSR activation also depends on the cell type in which it is expressed. Thus, the same ligand may activate diverse pathways in distinct cell types. Given that the CaSR is implicated in numerous physiological and pathophysiological processes, it is an ideal target for biased ligands that could be rationally designed to selectively regulate desired signalling pathways in preferred cell types.
Collapse
Affiliation(s)
- K Leach
- Pharmaceutical Sciences, Monash University, Melbourne, Vic., Australia
| | | | | | | |
Collapse
|
50
|
Cheng R, Sun B, Liu Z, Zhao X, Qi L, Li Y, Gu Q. Wnt5a suppresses colon cancer by inhibiting cell proliferation and epithelial-mesenchymal transition. J Cell Physiol 2014; 229:1908-17. [PMID: 24464650 DOI: 10.1002/jcp.24566] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/22/2014] [Indexed: 02/01/2023]
Abstract
Colon cancer remains one of the lethal malignancies in the world. Aberrant activation of canonical Wnt/β-catenin signaling pathway has been observed in colon cancer. In contrast, the non-canonical Wnt signaling functions remain obscure. Wnt5a is a representative non-canonical Wnt ligand which has gained extensive attention nowadays. Wnt5a has been shown to play an important role in EMT in prostate cancer and melanoma, but its role in colon cancer is still ambiguous. Here we have evaluated Wnt5a expression in a large cohort of 217 colon cancers by immunohistochemistry and analyzed its correlation with clinicopathologic characteristics. We found that expression of Wnt5a was diminished significantly in majority of primary colon cancers and negatively related with EMT biomarkers. To further enlighten the mechanism which Wnt5a regulates EMT in vitro, we established ectopic Wnt5a expression models. Protein analysis demonstrated that Wnt5a inhibited EMT and antagonized canonical Wnt signaling in colon cancer cells. Overexpression of Wnt5a impaired cell motility and invasion and inhibited cell proliferation by manipulating Bax. Moreover, Wnt5a suppressed the tumor growth in nude mice and impaired tumorigenicity in vivo. Wnt5a also induced intracellular calcium and activated non-canonical Wnt/Ca(2+) signaling in colon cancer. In summary, although Wnt5a was down-regulated in majority of colon cancers, enhanced Wnt5a expression predict preferable outcome in colon cancer patients. Our findings indicate that Wnt5a might act as tumor suppressor by inhibiting cell proliferation and attenuating EMT in colon cancer cells. Wnt5a could be used as a novel prognostic marker and/or therapeutic target for colon cancer in the future.
Collapse
Affiliation(s)
- Runfen Cheng
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | | | | | | | | | | | | |
Collapse
|