1
|
Luo F, Zhang M, Zhang L, Zhou P. Nutritional and health effects of bovine colostrum in neonates. Nutr Rev 2024; 82:1631-1645. [PMID: 38052234 DOI: 10.1093/nutrit/nuad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
High concentrations of immunoglobulins, bioactive peptides, and growth factors are found in bovine colostrum (BC), the milk produced by cows in the first few days after parturition. Various biological functions make it increasingly used to provide nutritional support and immune protection to the offspring of many species, including humans. These biological functions include cell growth stimulation, anti-infection, and immunomodulation. The primary components and biological functions of colostrum were reviewed in the literature, and the authors also looked at its latent effects on the growth and development of neonates as well as on conditions such as infections, necrotizing enterocolitis, short bowel syndrome, and feeding intolerance. The importance of BC in neonatal nutrition, immune support, growth and development, and gut health has been demonstrated in a number of experimental and animal studies. BC has also been shown to be safe at low doses without adverse effects in newborns. BC supplementation has been shown to be efficient in preventing several disorders, including rotavirus diarrhea, necrotizing enterocolitis, and sepsis in animal models of prematurity and some newborn studies. Therefore, BC supplementation should be considered in cases where maternal milk is insufficient or donor milk is unavailable. The optimal age, timing, dosage, and form of BC administration still require further investigation.
Collapse
Affiliation(s)
- Fangmei Luo
- Department of Neonatology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Min Zhang
- Department of Neonatology, Jinan University-Affiliated Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Lian Zhang
- Department of Neonatology, Jinan University-Affiliated Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Ping Zhou
- Department of Neonatology, Jinan University-Affiliated Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| |
Collapse
|
2
|
Liu Y, Zhang J, Feng L. Disrupted metabolic signatures in amniotic fluid associated with increased risk of intestinal inflammation in cesarean section offspring. Front Immunol 2023; 14:1067602. [PMID: 36761749 PMCID: PMC9903135 DOI: 10.3389/fimmu.2023.1067602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction Children born by cesarean section (CS) are at a greater risk of inflammatory bowel disease (IBD). However, the mechanisms underlying the association are not yet well understood. Herein, we investigated the impact of CS delivery on colonic inflammation and mechanisms underlying these effects in offspring. Methods CS mice model and dextran sulfate sodium (DSS)-induced colitis model were constructed and used to analyze the impact of CS on the development of colitis. Colonic tight junction markers and epithelium differentiation markers were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Levels of zonulin in serum were detected by enzyme-linked immunosorbent assay (ELISA). Immune cells in colon were analyzed by flow cytometry. Metabolic profiling between human vaginal delivery (VD) and CS AF were analyzed by using mass spectrometry. Transcriptome changes between VD AF- and CS AF-treated human intestine epithelial cells were analyzed by RNA-sequencing. A multi-omics approach that integrated transcriptomics with metabolomics to identify the pathways underlying colonic inflammation associated with delivery modes. Then, the identified pathways were confirmed by immunoblotting and ELISA. Results Mice pups delivered by CS exhibited a defective intestinal homeostasis manifested by decreased expression of tight junction markers of ZO-1 and Occludin in the colons, increased levels of zonulin in serum and dysregulated expression of intestinal epithelium differentiation markers of Lysozyme, Mucin2, and Dipeptidyl peptidase-4. CS pups were more susceptible to DSS-induced colitis compared to VD pups. The proportion of macrophage, dendritic cells (DCs), and natural killer cells (NKs) in the colons were altered in an age-dependent manner compared with pups born naturally. The metabolites in AF differed between CS and VD cases, and the CS AF-induced differentially expressed genes (DEGs) were significantly enriched in pathways underlying IBD. Signal transducer and activator of transcription 3 (STAT3) signaling was downregulated in NCM460 intestinal epithelial cells by CS AF compared to VD AF and in colon of CS pups compared to VD pups. Deficiency in metabolites like vitamin D2 glucosiduronate in CS AF may attribute to the risk of inflammatory intestine through STAT3 signaling. Conclusion Our study provides a novel insight into the underlying mechanisms of CS-associated intestinal inflammation and potential prevention strategies.
Collapse
Affiliation(s)
- Yongjie Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Feng
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
3
|
Bowen CM, Ditmars FS, Gupta A, Reems JA, Fagg WS. Cell-Free Amniotic Fluid and Regenerative Medicine: Current Applications and Future Opportunities. Biomedicines 2022; 10:2960. [PMID: 36428527 PMCID: PMC9687956 DOI: 10.3390/biomedicines10112960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Amniotic fluid (AF) provides critical biological and physical support for the developing fetus. While AF is an excellent source of progenitor cells with regenerative properties, recent investigations indicate that cell-free AF (cfAF), which consists of its soluble components and extracellular vesicles, can also stimulate regenerative and reparative activities. This review summarizes published fundamental, translational, and clinical investigations into the biological activity and potential use of cfAF as a therapeutic agent. Recurring themes emerge from these studies, which indicate that cfAF can confer immunomodulatory, anti-inflammatory, and pro-growth characteristics to the target cells/tissue with which they come into contact. Another common observation is that cfAF seems to promote a return of cells/tissue to a homeostatic resting state when applied to a model of cell stress or disease. The precise mechanisms through which these effects are mediated have not been entirely defined, but it is clear that cfAF can safely and effectively treat cutaneous wounds and perhaps orthopedic degenerative conditions. Additional applications are currently being investigated, but require further study to dissect the fundamental mechanisms through which its regenerative effects are mediated. By doing so, rational design can be used to fully unlock its potential in the biotechnology lab and in the clinic.
Collapse
Affiliation(s)
- Charles M. Bowen
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- John Sealy School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Frederick S. Ditmars
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- John Sealy School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA
- BioIntegrate, Lawrenceville, GA 30043, USA
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
- Regenerative Orthopaedics, Noida 201301, UP, India
| | - Jo-Anna Reems
- Merakris Therapeutics, RTP Frontier 800 Park Offices Dr. Suite 3322, Research Triangle Park, NC 27709, USA
- Department of Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - William Samuel Fagg
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Regenerative Orthopaedics, Noida 201301, UP, India
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
4
|
Sodhi CP, Ahmad R, Jia H, Fulton WB, Lopez C, Gonzalez Salazar AJ, Ishiyama A, Sampah M, Steinway S, Wang S, Prindle T, Wang M, Steed DL, Wessel H, Kirshner Z, Brown LR, Lu P, Hackam DJ. The administration of amnion-derived multipotent cell secretome ST266 protects against necrotizing enterocolitis in mice and piglets. Am J Physiol Gastrointest Liver Physiol 2022; 323:G265-G282. [PMID: 35819175 PMCID: PMC9448291 DOI: 10.1152/ajpgi.00364.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of death from gastrointestinal disease in premature infants and is steadily rising in frequency. Patients who develop NEC have a very high mortality, illustrating the importance of developing novel prevention or treatment approaches. We and others have shown that NEC arises in part from exaggerated signaling via the bacterial receptor, Toll-like receptor 4 (TLR4) on the intestinal epithelium, leading to widespread intestinal inflammation and intestinal ischemia. Strategies that limit the extent of TLR4 signaling, including the administration of amniotic fluid, can reduce NEC development in mouse and piglet models. We now seek to test the hypothesis that a secretome derived from amnion-derived cells can prevent or treat NEC in preclinical models of this disease via a process involving TLR4 inhibition. In support of this hypothesis, we show that the administration of this secretome, named ST266, to mice or piglets can prevent and treat experimental NEC. The protective effects of ST266 occurred in the presence of marked TLR4 inhibition in the intestinal epithelium of cultured epithelial cells, intestinal organoids, and human intestinal samples ex vivo, independent of epidermal growth factor. Strikingly, RNA-seq analysis of the intestinal epithelium in mice reveals that the ST266 upregulates critical genes associated with gut remodeling, intestinal immunity, gut differentiation. and energy metabolism. These findings show that the amnion-derived secretome ST266 can prevent and treat NEC, suggesting the possibility of novel therapeutic approaches for patients with this devastating disease.NEW & NOTEWORTHY This work provides hope for children who develop NEC, a devastating disease of premature infants that is often fatal, by revealing that the secreted product of amniotic progenitor cells (called ST266) can prevent or treat NEC in mice, piglet, and "NEC-in-a-dish" models of this disease. Mechanistically, ST266 prevented bacterial signaling, and a detailed transcriptomic analysis revealed effects on gut differentiation, immunity, and metabolism. Thus, an amniotic secretome may offer novel approaches for NEC.
Collapse
Affiliation(s)
- Chhinder P Sodhi
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Raheel Ahmad
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Hongpeng Jia
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - William B Fulton
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Carla Lopez
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Andres J Gonzalez Salazar
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Asuka Ishiyama
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Maame Sampah
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Steve Steinway
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Sanxia Wang
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Thomas Prindle
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Menghan Wang
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - David L Steed
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania
| | - Howard Wessel
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania
| | - Ziv Kirshner
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania
| | - Larry R Brown
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania
| | - Peng Lu
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - David J Hackam
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| |
Collapse
|
5
|
Jantscher-Krenn E, von Schirnding L, Trötzmüller M, Köfeler H, Kurtovic U, Fluhr H, Müller A, Bagci S. Human Milk Oligosaccharides Are Present in Amniotic Fluid and Show Specific Patterns Dependent on Gestational Age. Nutrients 2022; 14:nu14102065. [PMID: 35631205 PMCID: PMC9146373 DOI: 10.3390/nu14102065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Human milk oligosaccharides (HMOs) are already found in maternal circulation in early pregnancy, changing with gestational age. HMOs are also present in cord blood and amniotic fluid (AF). We aimed to assess HMO profiles in AF over the course of gestation. (2) Methods: AF was collected during diagnostic amniocentesis, fetal surgery, or C-section from 77 women with a gestational age of ranging from 14.3 to 40.9 weeks. Samples were analysed using high performance liquid chromatography with fluorescence detection. (3) Results: We found lactose and up to 16 HMO structures in all AF samples investigated, starting at 14 weeks of gestation. Overall, 3′-sialyllactose (3′SL) and 2′-fucosyllactose (2′FL) were the most abundant HMOs. Individual and total HMO concentrations were significantly positively correlated with gestational age. HMO composition also changed between early, mid- and late pregnancy, with relative concentrations of 3′SL significantly decreasing (44%, 25%, 24%) and 2′FL increasing (7%, 13%, 21%), respectively. (4) Conclusion: Our study shows that HMOs are already present in AF early in pregnancy. This demonstrates extensive contact of the fetus with a broad variety of HMOs, suggesting roles for HMOs in fetal tissue development during the time course of pregnancy.
Collapse
Affiliation(s)
- Evelyn Jantscher-Krenn
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (U.K.); (H.F.)
- BioTechMed, 8010 Graz, Austria;
- Correspondence: (E.J.-K.); (S.B.); Tel.: +43-316-385-80076 (E.J.-K.); +49-228-287-37834 (S.B.)
| | - Lara von Schirnding
- Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, D-53113 Bonn, Germany; (L.v.S.); (A.M.)
| | - Martin Trötzmüller
- Core Facility Mass Spectrometry, Center for Medical Research, Medical University of Graz, 8036 Graz, Austria;
| | - Harald Köfeler
- BioTechMed, 8010 Graz, Austria;
- Core Facility Mass Spectrometry, Center for Medical Research, Medical University of Graz, 8036 Graz, Austria;
| | - Una Kurtovic
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (U.K.); (H.F.)
| | - Herbert Fluhr
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (U.K.); (H.F.)
| | - Andreas Müller
- Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, D-53113 Bonn, Germany; (L.v.S.); (A.M.)
| | - Soyhan Bagci
- Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, D-53113 Bonn, Germany; (L.v.S.); (A.M.)
- Correspondence: (E.J.-K.); (S.B.); Tel.: +43-316-385-80076 (E.J.-K.); +49-228-287-37834 (S.B.)
| |
Collapse
|
6
|
Managlia E, Yan X, De Plaen IG. Intestinal Epithelial Barrier Function and Necrotizing Enterocolitis. NEWBORN 2022; 1:32-43. [PMID: 35846894 PMCID: PMC9286028 DOI: 10.5005/jp-journals-11002-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Necrotizing enterocolitis (NEC) is a major cause of morbidity and mortality in premature infants. NEC is characterized by intestinal tissue inflammation and necrosis. The intestinal barrier is altered in NEC, which potentially contributes to its pathogenesis by promoting intestinal bacterial translocation and stimulating the inflammatory response. In premature infants, many components of the intestinal barrier are immature. This article reviews the different components of the intestinal barrier and how their immaturity contributes to intestinal barrier dysfunction and NEC.
Collapse
Affiliation(s)
- Elizabeth Managlia
- Division of Neonatology, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois, United States
| | - Xiaocai Yan
- Division of Neonatology, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois, United States
| | - Isabelle G De Plaen
- Division of Neonatology, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
7
|
Maheshwari A, Traub TM, Garg PM, Ethawi Y, Buonocore G. Necrotizing Enterocolitis: Clinical Features, Histopathological Characteristics, and Genetic Associations. Curr Pediatr Rev 2022; 18:210-225. [PMID: 35125082 DOI: 10.2174/1573396318666220204113858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
Necrotizing enterocolitis (NEC) is an inflammatory bowel necrosis seen in premature infants. Although the etiopathogenesis of NEC is unclear, genetic factors may alter a patient's susceptibility, clinical course, and outcomes. This review draws from existing studies focused on individual genes and others based on microarray-based high-throughput discovery techniques. We have included evidence from our own studies and from an extensive literature search in the databases PubMed, EMBASE, and Scopus. To avoid bias in the identification of studies, keywords were short-listed a priori from anecdotal experience and PubMed's Medical Subject Heading (MeSH) thesaurus.
Collapse
Affiliation(s)
| | - Terri M Traub
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Parvesh M Garg
- Global Newborn Society, Clarksville, Maryland, USA.,Department of Pediatrics, University of Mississippi, Jackson, Mississippi, USA
| | - Yahya Ethawi
- Global Newborn Society, Clarksville, Maryland, USA.,Department of Pediatrics, Saudi American Hospital, Ajman, United Arab Emirates
| | - Giuseppe Buonocore
- Global Newborn Society, Clarksville, Maryland, USA.,Department of Pediatrics/ Neonatology, University of Siena, Siena, Italy
| |
Collapse
|
8
|
de Kroon RR, de Baat T, Senger S, van Weissenbruch MM. Amniotic Fluid: A Perspective on Promising Advances in the Prevention and Treatment of Necrotizing Enterocolitis. Front Pediatr 2022; 10:859805. [PMID: 35359891 PMCID: PMC8964040 DOI: 10.3389/fped.2022.859805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 12/09/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a common and potentially fatal disease that typically affects preterm (PIs) and very low birth weight infants (VLBWIs). Although NEC has been extensively studied, the current therapeutic approaches are unsatisfactory. Due to the similarities in the composition between human amniotic fluid (AF) and human breast milk (BM), which plays a protective role in the development of NEC in PIs and VLBWIs, it has been postulated that AF has similar effects on the outcome of NEC and potential therapeutic implications. AF has been long used for its diagnostic purposes and is often discarded after birth as "biological waste". However, researchers have started to elucidate its therapeutic potential. Experimental studies in animal models have shown that diseases of various organ systems can possibly benefit from AF-based therapy. Hence, we have identified three approaches which show promising results for future clinical application in the prevention and/or treatment of NEC: (1) administration of processed AF (PAF) isolated from donor mothers, (2) administration of AF stem cells (AFSCs), and (3) administration of simulated AF (SAF) formulated to mimic the composition of physiological AF. We have highlighted the most important aspects that should be taken into account to guide further research on the clinical application of AF-based therapy. We hope that this review can provide a framework to identify the challenges of AF-based therapy and help to design future studies to better evaluate AF-based approaches for the treatment and/or prevention of NEC in PIs and VLBWIs.
Collapse
Affiliation(s)
- Rimke Romee de Kroon
- Department of Neonatology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Tessa de Baat
- Department of Neonatology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Stefania Senger
- Department of Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
| | | |
Collapse
|
9
|
Sangild PT, Vonderohe C, Melendez Hebib V, Burrin DG. Potential Benefits of Bovine Colostrum in Pediatric Nutrition and Health. Nutrients 2021; 13:nu13082551. [PMID: 34444709 PMCID: PMC8402036 DOI: 10.3390/nu13082551] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Bovine colostrum (BC), the first milk produced from cows after parturition, is increasingly used as a nutritional supplement to promote gut function and health in other species, including humans. The high levels of whey and casein proteins, immunoglobulins (Igs), and other milk bioactives in BC are adapted to meet the needs of newborn calves. However, BC supplementation may improve health outcomes across other species, especially when immune and gut functions are immature in early life. We provide a review of BC composition and its effects in infants and children in health and selected diseases (diarrhea, infection, growth-failure, preterm birth, necrotizing enterocolitis (NEC), short-bowel syndrome, and mucositis). Human trials and animal studies (mainly in piglets) are reviewed to assess the scientific evidence of whether BC is a safe and effective antimicrobial and immunomodulatory nutritional supplement that reduces clinical complications related to preterm birth, infections, and gut disorders. Studies in infants and animals suggest that BC should be supplemented at an optimal age, time, and level to be both safe and effective. Exclusive BC feeding is not recommended for infants because of nutritional imbalances relative to human milk. On the other hand, adverse effects, including allergies and intolerance, appear unlikely when BC is provided as a supplement within normal nutrition guidelines for infants and children. Larger clinical trials in infant populations are needed to provide more evidence of health benefits when patients are supplemented with BC in addition to human milk or formula. Igs and other bioactive factors in BC may work in synergy, making it critical to preserve bioactivity with gentle processing and pasteurization methods. BC has the potential to become a safe and effective nutritional supplement for several pediatric subpopulations.
Collapse
Affiliation(s)
- Per Torp Sangild
- Comparative Pediatrics & Nutrition, University of Copenhagen, DK-1870 Copenhagen, Denmark;
- Department of Neonatology, Rigshospitalet, DK-1870 Copenhagen, Denmark
- Department of Pediatrics, Odense University Hospital, DK-5000 Odense, Denmark
| | - Caitlin Vonderohe
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (C.V.); (V.M.H.)
| | - Valeria Melendez Hebib
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (C.V.); (V.M.H.)
| | - Douglas G. Burrin
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (C.V.); (V.M.H.)
- Correspondence: ; Tel.: +1-713-798-7049
| |
Collapse
|
10
|
Wiechers C, Bernhard W, Goelz R, Poets CF, Franz AR. Optimizing Early Neonatal Nutrition and Dietary Pattern in Premature Infants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7544. [PMID: 34300000 PMCID: PMC8304391 DOI: 10.3390/ijerph18147544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022]
Abstract
Providing adequate amounts of all essential macro- and micronutrients to preterm infants during the period of extraordinarily rapid growth from 24 to 34 weeks' postmenstrual age to achieve growth as in utero is challenging yet important, since early growth restriction and suboptimal neonatal nutrition have been identified as risk factors for adverse long-term development. Along with now well-established early parenteral nutrition, this review emphasizes enteral nutrition, which should be started early and rapidly increased. To minimize the side effects of parenteral nutrition and improve outcomes, early full enteral nutrition based on expressed mothers' own milk is an important goal. Although neonatal nutrition has improved in recent decades, existing knowledge about, for example, the optimal composition and duration of parenteral nutrition, practical aspects of the transition to full enteral nutrition or the need for breast milk fortification is limited and intensively discussed. Therefore, further prospective studies on various aspects of preterm infant feeding are needed, especially with regard to the effects on long-term outcomes. This narrative review will summarize currently available and still missing evidence regarding optimal preterm infant nutrition, with emphasis on enteral nutrition and early postnatal growth, and deduce a practical approach.
Collapse
Affiliation(s)
- Cornelia Wiechers
- Department of Neonatology, University Children′s Hospital, Eberhard Karls University, Calwerstr. 7, 72076 Tübingen, Germany; (W.B.); (R.G.); (C.F.P.); (A.R.F.)
| | - Wolfgang Bernhard
- Department of Neonatology, University Children′s Hospital, Eberhard Karls University, Calwerstr. 7, 72076 Tübingen, Germany; (W.B.); (R.G.); (C.F.P.); (A.R.F.)
| | - Rangmar Goelz
- Department of Neonatology, University Children′s Hospital, Eberhard Karls University, Calwerstr. 7, 72076 Tübingen, Germany; (W.B.); (R.G.); (C.F.P.); (A.R.F.)
| | - Christian F. Poets
- Department of Neonatology, University Children′s Hospital, Eberhard Karls University, Calwerstr. 7, 72076 Tübingen, Germany; (W.B.); (R.G.); (C.F.P.); (A.R.F.)
| | - Axel R. Franz
- Department of Neonatology, University Children′s Hospital, Eberhard Karls University, Calwerstr. 7, 72076 Tübingen, Germany; (W.B.); (R.G.); (C.F.P.); (A.R.F.)
- Center for Pediatric Clinical Studies, University Children′s Hospital, Eberhard Karls University, 72076 Tübingen, Germany
| |
Collapse
|
11
|
Blickwedel J, Bagci S, Alsat EA, Strizek B, Renner M, Müller A, Müller H. DMBT1 amount in amniotic fluid depends on gestational age. J Matern Fetal Neonatal Med 2021; 35:7058-7064. [PMID: 34107846 DOI: 10.1080/14767058.2021.1937103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Amniotic fluid is a mixture containing many different proteins as immunomodulatory peptides and growth factors. The glycoprotein Deleted in Malignant Brain Tumors 1 (DMBT1) is participated in innate immunity, angiogenesis and epithelial differentiation. We analyzed the DMBT1 concentration in amniotic fluid during gestation. METHODS DMBT1 concentration was quantified by ELISA. Amniotic fluid samples were collected from preterm and term neonates. Effects of maternal or neonatal parameters were analyzed. To evaluate the source of DMBT1 we examined RNA of fetal tissue in relation to DMBT1 expression. RESULTS The median DMBT1 concentration in amniotic fluid was 54.4 ng/ml. Amniotic fluid obtained <28 weeks of gestation revealed significantly lower DMBT1 concentrations compared to ≥28 weeks. We found a positive correlation between DMBT1 concentration and gestational age (p = .026). The fetal DMBT1 expression was pronounced in the gastrointestinal tract. CONCLUSIONS The results showed that DMBT1 concentrations in amniotic fluid correlate with the gestational age during gestation and that the fetal gastrointestinal tract is a potential source of DMBT1. BRIEF RATIONALE Amniotic fluid contains not only nutrients, but also many immunomodulatory peptides and growth factors. Deleted in Malignant Brain Tumors 1 (DMBT1) is an innate immunity protein with functions in epithelial differentiation and angiogenesis. The aim of this research was to study the DMBT1 content and the factors affecting its concentration in amniotic fluid during gestation. In summary, the results obtained in this study showed that DMBT1 is a component of amniotic fluid and that DMBT1 concentrations in amniotic fluid correlate with gestational age. In addition to this, the fetal gastrointestinal tract is a potential source of DMBT1 detected in amniotic fluid.
Collapse
Affiliation(s)
- Jana Blickwedel
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Soyhan Bagci
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Ebru Ailen Alsat
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Brigitte Strizek
- Department of Obstetrics and Prenatal Medicine, University of Bonn, Bonn, Germany
| | - Marcus Renner
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Andreas Müller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Hanna Müller
- Neonatology and Pediatric Intensive Care, Department of Pediatrics, University of Marburg, Marburg, Germany.,Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
12
|
Zeng R, Wang J, Zhuo Z, Luo Y, Sha W, Chen H. Stem cells and exosomes: promising candidates for necrotizing enterocolitis therapy. Stem Cell Res Ther 2021; 12:323. [PMID: 34090496 PMCID: PMC8180168 DOI: 10.1186/s13287-021-02389-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease predominately affecting neonates. Despite therapeutic advances, NEC remains the leading cause of mortality due to gastrointestinal conditions in neonates. Stem cells have been exploited in various diseases, and the application of different types of stem cells in the NEC therapy is explored in the past decade. However, stem cell transplantation possesses several deficiencies, and exosomes are considered potent alternatives. Exosomes, especially those derived from stem cells and breast milk, demonstrate beneficial effects for NEC both in vivo and in vitro and emerge as promising options for clinical practice. In this review, the function and therapeutic effects of stem cells and exosomes for NEC are investigated and summarized, which provide insights for the development and application of novel therapeutic strategies in pediatric diseases. Further elucidation of mechanisms, improvement in preparation, bioengineering, and administration, as well as rigorous clinical trials are warranted.
Collapse
Affiliation(s)
- Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Shantou University Medical College, Shantou, 515041, China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
13
|
de Lange IH, van Gorp C, Eeftinck Schattenkerk LD, van Gemert WG, Derikx JPM, Wolfs TGAM. Enteral Feeding Interventions in the Prevention of Necrotizing Enterocolitis: A Systematic Review of Experimental and Clinical Studies. Nutrients 2021; 13:1726. [PMID: 34069699 PMCID: PMC8161173 DOI: 10.3390/nu13051726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Necrotizing enterocolitis (NEC), which is characterized by severe intestinal inflammation and in advanced stages necrosis, is a gastrointestinal emergency in the neonate with high mortality and morbidity. Despite advancing medical care, effective prevention strategies remain sparse. Factors contributing to the complex pathogenesis of NEC include immaturity of the intestinal immune defense, barrier function, motility and local circulatory regulation and abnormal microbial colonization. Interestingly, enteral feeding is regarded as an important modifiable factor influencing NEC pathogenesis. Moreover, breast milk, which forms the currently most effective prevention strategy, contains many bioactive components that are known to support neonatal immune development and promote healthy gut colonization. This systematic review describes the effect of different enteral feeding interventions on the prevention of NEC incidence and severity and the effect on pathophysiological mechanisms of NEC, in both experimental NEC models and clinical NEC. Besides, pathophysiological mechanisms involved in human NEC development are briefly described to give context for the findings of altered pathophysiological mechanisms of NEC by enteral feeding interventions.
Collapse
Affiliation(s)
- Ilse H. de Lange
- European Surgical Center Aachen/Maastricht, Department of Pediatric Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), 6202 AZ Maastricht, The Netherlands; (I.H.d.L.); (W.G.v.G.)
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Charlotte van Gorp
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Laurens D. Eeftinck Schattenkerk
- Department of Pediatric Surgery, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.D.E.S.); (J.P.M.D.)
| | - Wim G. van Gemert
- European Surgical Center Aachen/Maastricht, Department of Pediatric Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), 6202 AZ Maastricht, The Netherlands; (I.H.d.L.); (W.G.v.G.)
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Joep P. M. Derikx
- Department of Pediatric Surgery, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.D.E.S.); (J.P.M.D.)
| | - Tim G. A. M. Wolfs
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
- Department of Biomedical Engineering (BMT), School for Cardiovascular Diseases (CARIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
14
|
Mesenchymal stem cell-derived secretomes for therapeutic potential of premature infant diseases. Biosci Rep 2021; 40:222738. [PMID: 32320046 PMCID: PMC7953482 DOI: 10.1042/bsr20200241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Preterm birth is a complex syndrome and remains a substantial public health problem globally. Its common complications include periventricular leukomalacia (PVL), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC) and retinopathy of prematurity (ROP). Despite great advances in the comprehension of the pathogenesis and improvements in neonatal intensive care and associated medicine, preterm birth-related diseases remain essentially without adequate treatment and can lead to high morbidity and mortality. The therapeutic potential of mesenchymal stem/stromal cells (MSCs) appears promising as evidenced by their efficacy in preclinical models of pathologies relevant to premature infant complications. MSC-based therapeutic efficacy is closely associated with MSC secretomes and a subsequent paracrine action response to tissue injuries, which are complex and abundant in response to the local microenvironment. In the current review, we summarize the paracrine mechanisms of MSC secretomes underlying diverse preterm birth-related diseases, including PVL, BPD, NEC and ROP, are summarized, and focus is placed on MSC-conditioned media (CM) and MSC-derived extracellular vesicles (EVs) as key mediators of modulatory action, thereby providing new insights for future therapies in newborn medicine.
Collapse
|
15
|
Necrotizing enterocolitis intestinal barrier function protection by antenatal dexamethasone and surfactant-D in a rat model. Pediatr Res 2021; 90:768-775. [PMID: 33469185 PMCID: PMC8566228 DOI: 10.1038/s41390-020-01334-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is the most common gastrointestinal disorder in premature neonates. Possible therapeutic approaches are centered on promoting maturation of the gastrointestinal mucosal barrier. Studies have demonstrated that antenatal administration of corticosteroids can decrease NEC incidence and mortality. METHODS Pregnant rat dams were administered dexamethasone 48 h prior to delivery. The pups were subjected to an experimental NEC-like injury protocol. Ileal tissues and sera were collected and evaluated for inflammatory cytokines, gut permeability and expressions and localizations of tight junction proteins, and surfactant protein-D by immunohistochemistry/immunofluorescent staining. Intestinal epithelial cells (IEC-6) were pretreated with SP-D to examine the effect of SP-D on tight junction protein expressions when challenged with platelet-activating factor and lipopolysaccharide to model proinflammatory insults. RESULTS Antenatal dexamethasone reduced systemic inflammation, preserved intestinal barrier integrity, and stimulated SP-D expression on the intestinal mucosal surface in pups exposed to NEC-like injury. Pretreatment of SP-D blocked platelet-activating factor/lipopolysaccharide-induced tight junction disruption in IEC-6 cells in vitro. CONCLUSIONS Antenatal dexamethasone preserves the development of intestinal mucosal barrier integrity and reduces incidence and morbidity from an experimental NEC-like injury model. Dexamethasone upregulation of intestinal SP-D-protective effects on tight junction proteins. IMPACT Antenatal administration of dexamethasone can function in concert with intestinal surfactant protein-D to decrease systemic inflammatory responses, and protect intestinal barrier integrity in a neonatal rat model of NEC. A novel role of intestinal SP-D in preserving tight junction protein structures under inflammatory conditions. We describe the intestinal SP-D-an overlooked role of antenatal dexamethasone in neonatal NEC?
Collapse
|
16
|
Li B, Lee C, O'Connell JS, Antounians L, Ganji N, Alganabi M, Cadete M, Nascimben F, Koike Y, Hock A, Botts SR, Wu RY, Miyake H, Minich A, Maalouf MF, Zani-Ruttenstock E, Chen Y, Johnson-Henry KC, De Coppi P, Eaton S, Maattanen P, Delgado Olguin P, Zani A, Sherman PM, Pierro A. Activation of Wnt signaling by amniotic fluid stem cell-derived extracellular vesicles attenuates intestinal injury in experimental necrotizing enterocolitis. Cell Death Dis 2020; 11:750. [PMID: 32929076 PMCID: PMC7490270 DOI: 10.1038/s41419-020-02964-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
Necrotizing enterocolitis (NEC) is a devastating intestinal disease primarily affecting preterm neonates and causing high morbidity, high mortality, and huge costs for the family and society. The treatment and the outcome of the disease have not changed in recent decades. Emerging evidence has shown that stimulating the Wnt/β-catenin pathway and enhancing intestinal regeneration are beneficial in experimental NEC, and that they could potentially be used as a novel treatment. Amniotic fluid stem cells (AFSC) and AFSC-derived extracellular vesicles (EV) can be used to improve intestinal injury in experimental NEC. However, the mechanisms by which they affect the Wnt/β-catenin pathway and intestinal regeneration are unknown. In our current study, we demonstrated that AFSC and EV attenuate NEC intestinal injury by activating the Wnt signaling pathway. AFSC and EV stimulate intestinal recovery from NEC by increasing cellular proliferation, reducing inflammation and ultimately regenerating a normal intestinal epithelium. EV administration has a rescuing effect on intestinal injury when given during NEC induction; however, it failed to prevent injury when given prior to NEC induction. AFSC-derived EV administration is thus a potential emergent novel treatment strategy for NEC.
Collapse
Affiliation(s)
- Bo Li
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Carol Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Joshua S O'Connell
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Lina Antounians
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Niloofar Ganji
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Mashriq Alganabi
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Marissa Cadete
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Francesca Nascimben
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Yuhki Koike
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Alison Hock
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Steven R Botts
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Richard Y Wu
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Hiromu Miyake
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Adam Minich
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Michael F Maalouf
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Elke Zani-Ruttenstock
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Yong Chen
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | | | - Paolo De Coppi
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Simon Eaton
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Pekka Maattanen
- Biology Department, Burman University, Lacombe, AB, T4L 2E5, Canada
| | - Paul Delgado Olguin
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Heart & Stroke Richard Lewar Centre of Excellence, Toronto, ON, M5S 3H2, Canada
| | - Augusto Zani
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Philip M Sherman
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
| | - Agostino Pierro
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Surgery, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
17
|
Baumgarten HD, Hartman HA, Butt Z, Ozawa K, Rossidis AC, Lawrence KM, Kim AG, Davey M, Flake AW. A Rabbit Model for Optimization of Amniotic Fluid Components in the EXTrauterine Environment for Newborn Development (EXTEND) System. Fetal Diagn Ther 2020; 47:939-946. [PMID: 32877895 DOI: 10.1159/000509247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/06/2020] [Indexed: 11/19/2022]
Abstract
In this model article, we present a protocol for continuous amniotic fluid exchange in rabbits using a novel system to test the effects of growth factor-deficient, artificial amniotic fluid on bowel development. BACKGROUND Ideally, the EXTrauterine Environment for Neonatal Development (EXTEND) will provide physiologic support to the extreme premature infant. An important component of that environment is the amniotic fluid. Thus, we developed an animal model to study the growth factors found within amniotic fluid and inform design of a synthetic fluid to optimize fetal development. METHODS We designed a model of amniotic fluid exchange within the pregnant rabbit, continuously removing the natural fluid from around 2 fetuses per doe and replacing it with a physiologic electrolyte solution during the final 100 h of gestation. Two fetuses from the contralateral uterine horn were used as sham-operated controls. Thirty-eight fetuses were analyzed, 19 in each group. We analyzed the fetal growth and bowel development. RESULTS Ultrasound after 100 h of exchange showed equivalent fluid volumes, p = 0.63. Cultures were negative for bacterial colonization. Final fluid protein concentrations were 11.6% that of control fluid (mean 1,451 ± 224.2 vs. 12,491 ± 849.2 μg/mL). There was no significant difference in fetal growth, with experimental weights 91.4% of control weights, p = 0.07. Fetal bowel weights (90.1%, p = 0.16) and lengths (94.2%, p = 0.49) were also not significantly less compared to controls. There was no significant difference in villous height or crypt depth measurements between the groups, and absorptive capacity of the bowel was not different between groups, p = 0.44. CONCLUSION This animal model allows for manipulation of the components of amniotic fluid. Marked reduction of natural amniotic fluid proteins during gestation does not appear to significantly impair fetal growth or bowel development. Further work with this model will assess the importance of amniotic fluid components for normal development to inform design of a synthetic fluid for use during EXTEND.
Collapse
Affiliation(s)
- Heron D Baumgarten
- The Children's Hospital of Philadelphia Research Institute and the Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Heather A Hartman
- The Children's Hospital of Philadelphia Research Institute and the Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Zoya Butt
- The Children's Hospital of Philadelphia Research Institute and the Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Katsusuke Ozawa
- The Children's Hospital of Philadelphia Research Institute and the Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Avery C Rossidis
- The Children's Hospital of Philadelphia Research Institute and the Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Kendall M Lawrence
- The Children's Hospital of Philadelphia Research Institute and the Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Aimee G Kim
- The Children's Hospital of Philadelphia Research Institute and the Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Marcus Davey
- The Children's Hospital of Philadelphia Research Institute and the Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Alan W Flake
- The Children's Hospital of Philadelphia Research Institute and the Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA,
| |
Collapse
|
18
|
Burrin D, Sangild PT, Stoll B, Thymann T, Buddington R, Marini J, Olutoye O, Shulman RJ. Translational Advances in Pediatric Nutrition and Gastroenterology: New Insights from Pig Models. Annu Rev Anim Biosci 2020; 8:321-354. [PMID: 32069436 DOI: 10.1146/annurev-animal-020518-115142] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pigs are increasingly important animals for modeling human pediatric nutrition and gastroenterology and complementing mechanistic studies in rodents. The comparative advantages in size and physiology of the neonatal pig have led to new translational and clinically relevant models of important diseases of the gastrointestinal tract and liver in premature infants. Studies in pigs have established the essential roles of prematurity, microbial colonization, and enteral nutrition in the pathogenesis of necrotizing enterocolitis. Studies in neonatal pigs have demonstrated the intestinal trophic effects of akey gut hormone, glucagon-like peptide 2 (GLP-2), and its role in the intestinal adaptation process and efficacy in the treatment of short bowel syndrome. Further, pigs have been instrumental in elucidating the physiology of parenteral nutrition-associated liver disease and the means by which phytosterols, fibroblast growth factor 19, and a new generation of lipid emulsions may modify disease. The premature pig will continue to be a valuable model in the development of optimal infant diets (donor human milk, colostrum), specific milk bioactives (arginine, growth factors), gut microbiota modifiers (pre-, pro-, and antibiotics), pharmaceutical drugs (GLP-2 analogs, FXR agonists), and novel diagnostic tools (near-infrared spectroscopy) to prevent and treat these pediatric diseases.
Collapse
Affiliation(s)
- Douglas Burrin
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA;
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, University of Copenhagen, DK-1870 Frederiksberg C., Copenhagen, Denmark
| | - Barbara Stoll
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA;
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, University of Copenhagen, DK-1870 Frederiksberg C., Copenhagen, Denmark
| | - Randal Buddington
- College of Nursing, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Juan Marini
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA; .,Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Oluyinka Olutoye
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Robert J Shulman
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA;
| |
Collapse
|
19
|
Pammi M, De Plaen IG, Maheshwari A. Recent Advances in Necrotizing Enterocolitis Research: Strategies for Implementation in Clinical Practice. Clin Perinatol 2020; 47:383-397. [PMID: 32439118 PMCID: PMC7245582 DOI: 10.1016/j.clp.2020.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Necrotizing enterocolitis (NEC) is a complex inflammatory necrosis of the neonatal intestine, which is likely to require a multipronged approach for prevention and treatment. Despite identifying and defining NEC as a disease entity several decades back, no major progress has been made toward its early identification, treatment, or prevention. This article reviews the latest research strategies that are currently ongoing for early diagnosis and monitoring and prevention of the disease.
Collapse
Affiliation(s)
- Mohan Pammi
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Isabelle G. De Plaen
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Akhil Maheshwari
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Meister AL, Doheny KK, Travagli RA. Necrotizing enterocolitis: It's not all in the gut. Exp Biol Med (Maywood) 2019; 245:85-95. [PMID: 31810384 DOI: 10.1177/1535370219891971] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Necrotizing enterocolitis is the leading cause of death due to gastrointestinal disease in preterm neonates, affecting 5–12% of neonates born at a very-low birth weight. Necrotizing enterocolitis can present with a slow and insidious onset, with some neonates displaying early symptoms such as feeding intolerance. Treatment during the early stages includes bowel rest and careful use of antibiotics, but surgery is required if pneumoperitoneum and intestinal perforation occur. Mortality rates among neonates requiring surgery are estimated to be 20–30%, mandating the development of non-invasive and reliable biomarkers to predict necrotizing enterocolitis before the onset of clinical signs. Such biomarkers would allow at-risk neonates to receive maximal preventative therapies such as careful nutritional consideration, probiotics, and increased skin-to-skin care.Impact statementNecrotizing enterocolitis (NEC) is a devastating gastrointestinal disease; its high mortality rate mandates the development of non-invasive biomarkers to predict NEC before its onset. This review summarizes the pathogenesis, prevention, unresolved issues, and long-term outcomes of NEC.
Collapse
Affiliation(s)
- Alissa L Meister
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Kim K Doheny
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA.,Neonatal-Perinatal Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
21
|
El-Farrash RA, Gad GI, Abdelkader HM, Salem DADD, Fahmy SA. Simulated amniotic fluid-like solution given enterally to neonates after obstructive bowel surgeries: A randomized controlled trial. Nutrition 2019; 66:187-191. [PMID: 31310960 DOI: 10.1016/j.nut.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Withholding postoperative feeding is common in neonates recovering from surgeries for congenital abnormalities of the gastrointestinal tract (GIT), which leads to prolonged exposure to total parenteral nutrition, intestinal atrophy, and feeding intolerance. Because amniotic fluid plays a significant role in fetal gut maturation and development, the aim of this study was to test a hypothesis suggesting that feeding tolerance could be improved in neonates recovering from surgeries for congenital obstructive bowel abnormalities by enteral administration of simulated amniotic fluid-like solution given enterally (SAFE) containing recombinant human granulocyte colony-stimulating factor and erythropoietin. METHODS This prospective, double-blind, randomized, placebo-controlled trial was conducted with 40 late preterm/term neonates recovering from GIT surgeries. Neonates were randomly divided postoperatively into two groups: 20 neonates received the test solution (SAFE group) and 20 neonates received distilled water (placebo group) with a gestational age range (34.3-40.4 versus 34-40 wk, respectively) and mean gestational age (37.10 ± 1.68 versus 36.90 ± 1.83 wk, respectively). Treatment was started postoperatively and the test solution (or distilled water) was discontinued when daily enteral intake reached 100 mL/kg. RESULTS The study group showed better feeding tolerance as demonstrated as reflected by an earlier achievement of 50, 100, 120, and 150 mL/kg enteral feeding per day with a higher enteral caloric intake on day 7 post SAFE administration and a higher rate of weight gain (P < 0.05 for all). CONCLUSION Enteral administration of SAFE may improve postoperative feeding tolerance, enteral caloric intake, and weight gain.
Collapse
Affiliation(s)
- Rania Ali El-Farrash
- Department of Pediatrics-Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Ghada Ibrahim Gad
- Department of Pediatrics-Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | | |
Collapse
|
22
|
Chen S, Wang XQ, Hu XY, Guo L, He Y, Wang ZL, Li LQ. Meconium-stained amniotic fluid as a risk factor for necrotizing enterocolitis in very low-birth weight preterm infants: a retrospective cohort study. J Matern Fetal Neonatal Med 2019; 33:4102-4107. [PMID: 30885024 DOI: 10.1080/14767058.2019.1597045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: To evaluate whether meconium-stained amniotic fluid (MSAF) is a risk factor for necrotizing enterocolitis (NEC) in very-low-birth-weight preterm infants.Materials and methods: The retrospective study was conducted at the Neonatal Diagnosis and Treatment Center of the Children's Hospital of Chongqing Medical University from January 2010 to October 2016. The maternal and neonatal characteristics in cases of very low-birth weight infants born prior to 34 weeks of gestation were collected and compared between the MSAF and non-MSAF groups.Results: In the present study, 461 medical records of very low-birth-weight preterm infants were reviewed. A total of 41 (8.9%) infants were born to mothers with MSAF; in all, 180 infants were included in the study. Demographic characteristics and neonatal complications in the MSAF (n = 30) and non-MSAF groups (n = 150) were compared. A higher incidence of NEC (26.7% versus 10%, χ2 = 4.825, p = .028) was found in the MSAF group than in the non-MSAF group. Logistic regression analysis showed that MSAF (OR = 3.385, 95% CI: 1.349-8.492, p = .009) and sepsis (OR = 3.538, 95% CI: 1.442-8.679, p = .006) were independent risk factors for NEC.Conclusions: MSAF might be a risk factor for NEC in very-low-birth-weight infants. MSAF and sepsis contribute to the development of NEC.
Collapse
Affiliation(s)
- Shi Chen
- Department of Neonatology, Neonatal Diagnosis and Treatment Center, Children's Hospital of Chongqing Medical University, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, PR China
| | - Xue-Qiu Wang
- Department of Neonatology, Neonatal Diagnosis and Treatment Center, Children's Hospital of Chongqing Medical University, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, PR China
| | - Xiao-Yu Hu
- Department of Neonatology, Neonatal Diagnosis and Treatment Center, Children's Hospital of Chongqing Medical University, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, PR China
| | - Lu Guo
- Department of Neonatology, Neonatal Diagnosis and Treatment Center, Children's Hospital of Chongqing Medical University, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, PR China
| | - Yu He
- Department of Neonatology, Neonatal Diagnosis and Treatment Center, Children's Hospital of Chongqing Medical University, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, PR China
| | - Zheng-Li Wang
- Department of Neonatology, Neonatal Diagnosis and Treatment Center, Children's Hospital of Chongqing Medical University, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, PR China
| | - Lu-Quan Li
- Department of Neonatology, Neonatal Diagnosis and Treatment Center, Children's Hospital of Chongqing Medical University, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, PR China
| |
Collapse
|
23
|
Pisano C, Besner GE. Potential role of stem cells in disease prevention based on a murine model of experimental necrotizing enterocolitis. J Pediatr Surg 2019; 54:413-416. [PMID: 30236604 PMCID: PMC6380911 DOI: 10.1016/j.jpedsurg.2018.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/04/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a devastating disease of newborns, and despite years of research, there is no known cure. The mortality rate of infants with NEC remains as high as 20%-30%. Babies who survive NEC frequently have long term complications including short gut syndrome, developmental delays and neurological sequelae. Unfortunately, despite much research over the past years, the precise pathogenesis of the disease is still not completely understood. METHODS Our laboratory has focused on identifying novel therapies to prevent the disease, including the use of stem cells (SC), heparin-binding epidermal growth factor-like growth factor (HB-EGF) and recently, stem cell derived-exosomes, a type of nanovesicle, to combat this illness. RESULTS We have outlined the major SC lines and data suggesting potential benefit as a curative or preventive approach for NEC as well as describing several new therapeutic strategies, including stem cell derived- exosomes and HB-EGF for decreasing the incidence and severity of this disease in rat models in our lab. CONCLUSION Overall, our lab has demonstrated that these different types of SC equivalently reduce the incidence and severity of NEC and equally preserve intestinal barrier function during NEC. We have previously demonstrated that AF-MSC can protect the intestines from intestinal injury and may therefore hold strong therapeutic potential for the prevention of NEC. Most recently, our work with stem cell derived-exosomes has shown them to be equivalent to their derived SC lines in decreasing the incidence of this disease.
Collapse
Affiliation(s)
- Courtney Pisano
- Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Gail E Besner
- Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
| |
Collapse
|
24
|
Wang Y, Li X, Guo C. The Association of Nil Per Os (NPO) Days with Necrotizing Enterocolitis. Gastroenterol Res Pract 2018; 2018:2795468. [PMID: 30510571 PMCID: PMC6232799 DOI: 10.1155/2018/2795468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/25/2018] [Accepted: 08/29/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Enteral feeds are an essential part of care for infants and may be a potential risk factor in NEC development. The present study objective was to evaluate the relationship between nil per os (NPO) and clinical outcomes in infants with NEC. METHODS This was a retrospective review of 196 premature, low-birth-weight infants with NEC from January 1, 2011, to October 31, 2016, at four academic tertiary care hospitals. The patients were evaluated based on the median nil per os (NPO) days (5.6 days) in longer NPO (6.3 ± 1.1 days) versus shorter NPO groups (4.2 ± 0.9 days). RESULTS Patients who experienced longer than 5.6 NPO days were more likely associated with perforated NEC (odds ratio (OR), 2.01; 95% confidence interval (CI), 1.07-3.76; p = 0.021), stage III NEC (OR, 1.81; 95% CI, 0.97-3.38; p = 0.042), and longer duration of mechanical ventilation (OR, 0.17; 95% CI, 0.08-0.98; p = 0.005) than the shorter duration group of 5.6 NPO days. For the secondary outcomes, there was a trend towards earlier birth (p = 0.083), longer NICU length of stay (p = 0.093), and higher mortality (p = 0.10) in the longer NPO cohort (p = 0.057). The incidence of bacterial sepsis and short bowel syndrome also increased as the length of NPO increased. There was no statistically significant difference in nutritional variables between the two groups within the in-hospital period. CONCLUSION Longer NPO time was associated with the severity of NEC and more injurious clinical outcomes, as demonstrated by rates of surgical intervention and duration of mechanical ventilation.
Collapse
Affiliation(s)
- Yongming Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
- Department of Neonatology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoyu Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
- Department of Neonatology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Chunbao Guo
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
- Department of Pediatric General Surgery and Liver Transplantation, Children's Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Bering SB. Human Milk Oligosaccharides to Prevent Gut Dysfunction and Necrotizing Enterocolitis in Preterm Neonates. Nutrients 2018; 10:nu10101461. [PMID: 30297668 PMCID: PMC6213229 DOI: 10.3390/nu10101461] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/25/2022] Open
Abstract
This review focuses on the evidence for health benefits of human milk oligosaccharides (HMOs) for preterm infants to stimulate gut adaptation and reduce the incidence of necrotizing enterocolitis (NEC) in early life. The health benefits of breastfeeding are partly explained by the abundant HMOs that serve as prebiotics and immunomodulators. Gut immaturity in preterm infants leads to difficulties in tolerating enteral feeding and bacterial colonization and a high sensitivity to NEC, particularly when breast milk is insufficient. Due to the immaturity of the preterm infants, their response to HMOs could be different from that in term infants. The concentration of HMOs in human milk is highly variable and there is no evidence to support a specifically adapted high concentration in preterm milk. Further, the gut microbiota is not only different but also highly variable after preterm birth. Studies in pigs as models for preterm infants indicate that HMO supplementation to formula does not mature the gut or prevent NEC during the first weeks after preterm birth and the effects may depend on a certain stage of gut maturity. Supplemented HMOs may become more important for gut protection in the preterm infants when the gut has reached a more mature phase.
Collapse
Affiliation(s)
- Stine Brandt Bering
- Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
26
|
Abstract
Necrotizing enterocolitis (NEC) continues to afflict approximately 7% of preterm infants born weighing less than 1500g, though recent investigations have provided novel insights into the pathogenesis of this complex disease. The disease has been a major cause of morbidity and mortality in neonatal intensive care units worldwide for many years, and our current understanding reflects exceptional observations made decades ago. In this review, we will describe NEC from a historical context and summarize seminal findings that underscore the importance of enteral feeding, the gut microbiota, and intestinal inflammation in this complex pathophysiology.
Collapse
Affiliation(s)
- David Hackam
- Division of Pediatric General Surgery, Department of Surgery, Johns Hopkins Children's Center and The Johns Hopkins University, Baltimore, MD.
| | - Michael Caplan
- North Shore University Health System and the University of Chicago Pritzker School of Medicine
| |
Collapse
|
27
|
Drucker NA, McCulloh CJ, Li B, Pierro A, Besner GE, Markel TA. Stem cell therapy in necrotizing enterocolitis: Current state and future directions. Semin Pediatr Surg 2018; 27:57-64. [PMID: 29275819 PMCID: PMC5745058 DOI: 10.1053/j.sempedsurg.2017.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cell therapy is a promising treatment modality for necrotizing enterocolitis. Among the many promising stem cells identified to date, it is likely that mesenchymal stem cells will be the most useful and practical cell-based therapies for this condition. Using acellular components such as exosomes or other paracrine mediators are promising as well. Multiple mechanisms are likely at play in the positive effects provided by these cells, and further research is underway to further elucidate these effects.
Collapse
Affiliation(s)
- Natalie A. Drucker
- Department of Surgery, Section of Pediatric Surgery, Riley Hospital for Children, Indianapolis, IN
| | - Christopher J. McCulloh
- Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children’s Hospital, Columbus, OH
| | - Bo Li
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Gail E. Besner
- Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children’s Hospital, Columbus, OH
| | - Troy A. Markel
- Department of Surgery, Section of Pediatric Surgery, Riley Hospital for Children, Indianapolis, IN
| |
Collapse
|
28
|
A review on early gut maturation and colonization in pigs, including biological and dietary factors affecting gut homeostasis. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Dasgupta S, Jain SK. Protective effects of amniotic fluid in the setting of necrotizing enterocolitis. Pediatr Res 2017; 82:584-595. [PMID: 28609432 DOI: 10.1038/pr.2017.144] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
Abstract
Necrotizing enterocolitis (NEC) is the most common life threatening condition affecting preterm infants. NEC occurs in 1-5% of all neonatal intensive care admissions and 5-10% of very low birth weight infants. The protective role of human breast milk (BM) has been well established. It has also been shown that amniotic fluid (AF) and BM have many similarities in terms of presence of growth and other immune-modulatory factors. This finding led to the initial hypothesis that AF may exert similar protective effects against the development of NEC, as does BM. Multiple studies have elucidated the presence of growth factors in AF and the protective effect of AF against NEC. Studies have also described possible mechanisms how AF protects against NEC. At present, research in this particular area is extremely active and robust. This review summarizes the various studies looking at the protective effects of AF against the development of NEC. It also provides an insight into future directions, the vast potential of AF as a readily available biologic medium, and the ethical barriers that must be overcome before using AF.
Collapse
Affiliation(s)
- Soham Dasgupta
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Sunil Kumar Jain
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
30
|
Evaluating the efficacy of different types of stem cells in preserving gut barrier function in necrotizing enterocolitis. J Surg Res 2017. [PMID: 28624056 DOI: 10.1016/j.jss.2017.03.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in premature infants. Increased intestinal permeability is central to NEC development. We have shown that stem cells (SCs) can reduce the incidence and severity of NEC. Our current goal was to investigate the efficacy of four different types of SC in preservation of gut barrier function during NEC. MATERIALS AND METHODS We compared (1) amniotic fluid-derived mesenchymal SC, (2) bone marrow-derived mesenchymal SC, (3) amniotic fluid-derived neural SC, and (4) enteric neural SC. Premature rat pups received an intraperitoneal injection of 2 × 106 SC or phosphate-buffered saline only and were then subjected to experimental NEC. Control pups were breastfed and not subjected to NEC. After 48 h, animals received a single enteral dose of fluorescein isothiocyanate -labeled dextran (FD70), were sacrificed 4 h later, and serum FD70 concentrations determined. RESULTS Compared to breastfed, unstressed pups with intact gut barrier function and normal intestinal permeability (serum FD70 concentration 2.22 ± 0.271 μg/mL), untreated pups exposed to NEC had impaired barrier function with significantly increased permeability (18.6 ± 4.25 μg/mL, P = 0.047). Pups exposed to NEC but treated with SC had significantly reduced intestinal permeability: Amniotic fluid-derived mesenchymal SC (9.45 ± 1.36 μg/mL, P = 0.017), bone marrow-derived mesenchymal SC (6.73 ± 2.74 μg/mL, P = 0.049), amniotic fluid-derived neural SC (8.052 ± 1.31 μg/mL, P = 0.0496), and enteric neural SC (6.60 ± 1.46 μg/mL, P = 0.033). CONCLUSIONS SCs improve gut barrier function in experimental NEC. Although all four types of SC reduce permeability equivalently, SC derived from amniotic fluid may be preferable due to availability at delivery and ease of culture, potentially enhancing clinical translation.
Collapse
|
31
|
MohanKumar K, Namachivayam K, Ho TT, Torres BA, Ohls RK, Maheshwari A. Cytokines and growth factors in the developing intestine and during necrotizing enterocolitis. Semin Perinatol 2017; 41:52-60. [PMID: 27832931 PMCID: PMC5334139 DOI: 10.1053/j.semperi.2016.09.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytokines and growth factors play diverse roles in the uninflamed fetal/neonatal intestinal mucosa and in the development of inflammatory bowel injury during necrotizing enterocolitis (NEC). During gestational development and the early neonatal period, the fetal/premature intestine is exposed to high levels of many "inflammatory" cytokines and growth factors, first via swallowed amniotic fluid in utero and then, after birth, in colostrum and mother's milk. This article reviews the dual, seemingly counter-intuitive roles of cytokines, where these agents play a "trophic" role and promote maturation of the uninflamed mucosa, but can also cause inflammation and promote intestinal injury during NEC.
Collapse
Affiliation(s)
| | | | - Thao T.B. Ho
- Department of Pediatrics, Morsani College of Medicine, Tampa, FL
| | | | - Robin K. Ohls
- Department of Pediatrics, University of New Mexico, Albuquerque, NM
| | - Akhil Maheshwari
- Department of Pediatrics, Morsani College of Medicine, Tampa, FL; Departments of Molecular Medicine, Morsani College of Medicine, Tampa, FL; Department of Community and Family Health, College of Public Health, University of South Florida, 1 Tampa General Circle, Suite F170, Tampa, FL.
| |
Collapse
|
32
|
Hodzic Z, Bolock AM, Good M. The Role of Mucosal Immunity in the Pathogenesis of Necrotizing Enterocolitis. Front Pediatr 2017; 5:40. [PMID: 28316967 PMCID: PMC5334327 DOI: 10.3389/fped.2017.00040] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/15/2017] [Indexed: 12/29/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is the most devastating gastrointestinal disease of prematurity. Although the precise cause is not well understood, the main risk factors thought to contribute to NEC include prematurity, formula feeding, and bacterial colonization. Recent evidence suggests that NEC develops as a consequence of intestinal hyper-responsiveness to microbial ligands upon bacterial colonization in the preterm infant, initiating a cascade of aberrant signaling events, and a robust pro-inflammatory mucosal immune response. We now have a greater understanding of important mechanisms of disease pathogenesis, such as the role of cytokines, immunoglobulins, and immune cells in NEC. In this review, we will provide an overview of the mucosal immunity of the intestine and the relationship between components of the mucosal immune system involved in the pathogenesis of NEC, while highlighting recent advances in the field that have promise as potential therapeutic targets. First, we will describe the cellular components of the intestinal epithelium and mucosal immune system and their relationship to NEC. We will then discuss the relationship between the gut microbiota and cell signaling that underpins disease pathogenesis. We will conclude our discussion by highlighting notable therapeutic advancements in NEC that target the intestinal mucosal immunity.
Collapse
Affiliation(s)
- Zerina Hodzic
- University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Alexa M Bolock
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine , St. Louis, MO , USA
| | - Misty Good
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine , St. Louis, MO , USA
| |
Collapse
|
33
|
Eaton S, Rees CM, Hall NJ. Current Research on the Epidemiology, Pathogenesis, and Management of Necrotizing Enterocolitis. Neonatology 2017; 111:423-430. [PMID: 28538238 DOI: 10.1159/000458462] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite decades of research on necrotizing enterocolitis, we still do not fully understand the pathogenesis of the disease, or how to prevent or how to treat it. However, as a result of recent significant advances in the microbiology, molecular biology, and cell biology of the intestine of preterm infants and infants with necrotizing enterocolitis, there is some hope that research into this devastating disease will yield some important translation into effective prevention, more rapid diagnosis, and novel therapies.
Collapse
|
34
|
Zubarioglu U, Uslu S, Bulbul A. New Frontiers of Necrotizing Enterocolitis: From Pathophysiology to Treatment. Health (London) 2017. [DOI: 10.4236/health.2017.91008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Martínez-Rodríguez L, Estañ J, Bermudez JD, Molina A, Hortelano V, Martinez-Costa C. Influence of nutritional variables on the onset of necrotizing enterocolitis in preterm infants: A case-control study. Early Hum Dev 2016; 103:193-198. [PMID: 27723519 DOI: 10.1016/j.earlhumdev.2016.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/17/2016] [Accepted: 09/27/2016] [Indexed: 02/04/2023]
Affiliation(s)
| | - Javier Estañ
- Neonatology Unit, Hospital Clínico Universitario de Valencia, Spain; Departments of Pediatrics, School of Medicine, University of Valencia, Spain.
| | - Jose D Bermudez
- Departments of Statistics, School of Medicine, University of Valencia, Spain.
| | - Agustin Molina
- Neonatology Unit, Hospital Clínico Universitario de Valencia, Spain.
| | | | | |
Collapse
|
36
|
Floris I, Kraft JD, Altosaar I. Roles of MicroRNA across Prenatal and Postnatal Periods. Int J Mol Sci 2016; 17:ijms17121994. [PMID: 27916805 PMCID: PMC5187794 DOI: 10.3390/ijms17121994] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022] Open
Abstract
Communication between mother and offspring in mammals starts at implantation via the maternal-placental-fetal axis, and continues postpartum via milk targeted to the intestinal mucosa. MicroRNAs (miRNAs), short, noncoding single-stranded RNAs, of about 22 nucleotides in length, are actively involved in many developmental and physiological processes. Here we highlight the role of miRNA in the dynamic signaling that guides infant development, starting from implantation of conceptus and persisting through the prenatal and postnatal periods. miRNAs in body fluids, particularly in amniotic fluid, umbilical cord blood, and breast milk may offer new opportunities to investigate physiological and/or pathological molecular mechanisms that portend to open novel research avenues for the identification of noninvasive biomarkers.
Collapse
Affiliation(s)
- Ilaria Floris
- Biochemistry, Microbiology & Immunology Department, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada.
| | - Jamie D Kraft
- Biochemistry, Microbiology & Immunology Department, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada.
| | - Illimar Altosaar
- Biochemistry, Microbiology & Immunology Department, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada.
| |
Collapse
|
37
|
Pierce J, Jacobson P, Benedetti E, Peterson E, Phibbs J, Preslar A, Reems JA. Collection and characterization of amniotic fluid from scheduled C-section deliveries. Cell Tissue Bank 2016; 17:413-25. [PMID: 27460879 DOI: 10.1007/s10561-016-9572-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/15/2016] [Indexed: 02/06/2023]
Abstract
Amniotic fluid (AF) possesses anti-inflammatory, anti-microbial and regenerative properties that make it attractive for use in clinical applications. The goals of this study were to assess the feasibility of collecting AF from full-term pregnancies and to evaluate non-cellular and cellular properties of AF for clinical applications. Donor informed consent and medical histories were obtained from pregnant women scheduled for C-sections and infectious disease testing was performed the day of collection. AFs were evaluated for total volume, fluid chemistries, total protein, and hyaluronic acid (HA) levels. AF was also assessed with quantitative antibody arrays, cellular content and for an ability to support angiogenesis. Thirty-six pregnant women consented and passed donor screening to give birth tissue. AF was successfully collected from 17 individuals. Median AF volumes were 70 mL (range 10-815 mL; n = 17). Fluid chemistries were similar, but some differences were noted in HA levels and cytokine profiles. Cytokine arrays revealed that an average of 304 ± 20 of 400 proteins tested were present in AF with a majority of cytokines associated with host defense. AF supported angiogenesis. Epithelioid cells were the major cell type in AF with only a minor population of lymphoid cells. Cultures revealed a highly proliferative population of adherent cells capable of producing therapeutic doses of mesenchymal stromal cells (MSCs). These findings showed that significant volumes of AF were routinely collected from full-term births. AF contained a number of bioactive proteins and only a rare population of MSCs. Variations noted in components present in different AFs, warrant further investigations to determine their relevance for specific clinical applications.
Collapse
Affiliation(s)
- Jan Pierce
- Cell Therapy and Regenerative Medicine Facility, University of Utah, 676 Arapeen Drive, Suite 300, Salt Lake City, UT, 84108, USA
| | - Pam Jacobson
- Cell Therapy and Regenerative Medicine Facility, University of Utah, 676 Arapeen Drive, Suite 300, Salt Lake City, UT, 84108, USA
| | - Eric Benedetti
- Cell Therapy and Regenerative Medicine Facility, University of Utah, 676 Arapeen Drive, Suite 300, Salt Lake City, UT, 84108, USA
| | - Emily Peterson
- Cell Therapy and Regenerative Medicine Facility, University of Utah, 676 Arapeen Drive, Suite 300, Salt Lake City, UT, 84108, USA
| | - Jessica Phibbs
- Cell Therapy and Regenerative Medicine Facility, University of Utah, 676 Arapeen Drive, Suite 300, Salt Lake City, UT, 84108, USA
| | - Amber Preslar
- Cell Therapy and Regenerative Medicine Facility, University of Utah, 676 Arapeen Drive, Suite 300, Salt Lake City, UT, 84108, USA
| | - Jo-Anna Reems
- Cell Therapy and Regenerative Medicine Facility, University of Utah, 676 Arapeen Drive, Suite 300, Salt Lake City, UT, 84108, USA. .,Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
38
|
Abstract
Necrotising enterocolitis (NEC) is an uncommon, but devastating intestinal inflammatory disease that predominantly affects preterm infants. NEC is sometimes dubbed the spectre of neonatal intensive care units, as its onset is insidiously non-specific, and once the disease manifests, the damage inflicted on the baby's intestine is already disastrous. Subsequent sepsis and multi-organ failure entail a mortality of up to 65%. Development of effective treatments for NEC has stagnated, largely because of our lack of understanding of NEC pathogenesis. It is clear, however, that NEC is driven by a profoundly dysregulated immune system. NEC is associated with local increases in pro-inflammatory mediators, e.g. Toll-like receptor (TLR) 4, nuclear factor-κB, tumour necrosis factor, platelet-activating factor (PAF), interleukin (IL)-18, interferon-gamma, IL-6, IL-8 and IL-1β. Deficiencies in counter-regulatory mechanisms, including IL-1 receptor antagonist (IL-1Ra), TLR9, PAF-acetylhydrolase, transforming growth factor beta (TGF-β)1&2, IL-10 and regulatory T cells likely facilitate a pro-inflammatory milieu in the NEC-afflicted intestine. There is insufficient evidence to conclude a predominance of an adaptive Th1-, Th2- or Th17-response in the disease. Our understanding of the accompanying regulation of systemic immunity remains poor; however, IL-1Ra, IL-6, IL-8 and TGF-β1 show promise as biomarkers. Here, we chart the emerging immunological landscape that underpins NEC by reviewing the involvement and potential clinical implications of innate and adaptive immune mediators and their regulation in NEC.
Collapse
|
39
|
Abstract
Despite decades of research on necrotizing enterocolitis, we still do not fully understand the pathogenesis of the disease, how to prevent or how to treat the disease. However, as a result of recent significant advances in the microbiology, molecular biology, and cell biology of the intestine of premature infants and infants with necrotizing enterocolitis, there is some hope that research into this devastating disease will yield some important translation into improved outcomes.
Collapse
Affiliation(s)
- Simon Eaton
- UCL Institute of Child Health and Great Ormond Street Hospital for Children, London, UK.
| | - Clare M Rees
- UCL Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Nigel J Hall
- Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
40
|
Dasgupta S, Arya S, Choudhary S, Jain SK. Amniotic fluid: Source of trophic factors for the developing intestine. World J Gastrointest Pathophysiol 2016; 7:38-47. [PMID: 26909227 PMCID: PMC4753188 DOI: 10.4291/wjgp.v7.i1.38] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract (GIT) is a complex system, which changes in response to requirements of the body. GIT represents a barrier to the external environment. To achieve this, epithelial cells must renew rapidly. This renewal of epithelial cells starts in the fetal life under the influence of many GIT peptides by swallowing amniotic fluid (AF). Development and maturation of GIT is a very complex cascade that begins long before birth and continues during infancy and childhood by breast-feeding. Many factors like genetic preprogramming, local and systemic endocrine secretions and many trophic factors (TF) from swallowed AF contribute and modulate the development and growth of the GIT. GIT morphogenesis, differentiation and functional development depend on the activity of various TF in the AF. This manuscript will review the role of AF borne TF in the development of GIT.
Collapse
|
41
|
Cao M, Andersen AD, Li Y, Thymann T, Jing J, Sangild PT. Physical Activity and Gastric Residuals as Biomarkers for Region-Specific NEC Lesions in Preterm Neonates. Neonatology 2016; 110:241-247. [PMID: 27265345 DOI: 10.1159/000445707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/22/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a serious feeding-related inflammatory gut disease with high mortality. Early clinical markers of NEC are of great importance for optimizing preventive interventions. OBJECTIVE Using preterm pigs as models, we hypothesized that an early postnatal onset of NEC can be predicted by decreased physical activity during the first few days after birth. METHODS Cesarean-delivered preterm pigs were fed parenteral nutrition and increasing amounts of formula for 5 days after birth (n = 120). Their physical activity was quantified by a continuous camera surveillance system and they were evaluated twice daily for clinical signs of apathy, discoloration, respiratory distress, abdominal distension and diarrhea. The volume of gastric residuals and the presence of macroscopic NEC-like lesions in the stomach, intestine and colon were recorded at euthanasia on day 5. RESULTS Half of the pigs (48%) showed clear NEC-like lesions on day 5, and these individuals had more adverse clinical symptoms from day 3 but decreased physical activity already from day 2 relative to the unaffected pigs (both p < 0.05). Only animals with NEC lesions in the small intestine had lower physical activity on days 2 and 3, and the increased volume of gastric residuals was specifically related to colon lesions (both p < 0.05). CONCLUSIONS Decreased physical activity precedes the clinical symptoms of NEC in the small intestine of preterm pigs, and increased gastric residuals predict NEC lesions in the colon. Physical activity and gastric residuals may function as clinical biomarkers for region-specific NEC lesions in preterm neonates.
Collapse
Affiliation(s)
- Muqing Cao
- Department of Maternal and Child Health, Faculty of Public Health, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
42
|
Okuyama H, Ohfuji S, Hayakawa M, Urushihara N, Yokoi A, Take H, Shiraishi J, Fujinaga H, Ohashi K, Minagawa K, Misaki M, Nose S, Taguchi T. Risk factors for surgical intestinal disorders in VLBW infants: Case-control study. Pediatr Int 2016; 58:34-9. [PMID: 26333186 DOI: 10.1111/ped.12815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/20/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Very low-birthweight (VLBW) infants (VLBWI) are at increased risk for surgical intestinal disorders including necrotizing enterocolitis (NEC), focal intestinal perforation (FIP) and meconium-related ileus (MRI). The aim of this study was to identify disease-specific risk factors for surgical intestinal disorders in VLBWI. METHODS A retrospective multicenter case-control study was conducted at 11 institutes. We reviewed VLBWI who underwent laparotomy for intestinal disorders including perforation and intractable bowel obstruction. The surgical disorders were classified into four categories (NEC, FIP, MRI, others) based on the macroscopic findings at operation. In order to identify risk factors, two matched controls for each subject were chosen based on gestational age and birthweight. OR and 95%CI were calculated using a conditional logistic regression model and a multivariate model. RESULTS A total of 150 cases (NEC, n = 44; FIP, n = 47; MRI, n = 42; others, n = 17) and 293 controls were identified. The cases and controls were similar in terms of gestational age and birthweight (cases/controls, 26.7 ± 2.5/26.5 ± 2.6 weeks; 790 ± 256/795 ± 257 g). On multivariate modeling, disease-specific risk factors were as follows: female (OR, 0.23; 95%CI: 0.06-0.89), respiratory distress syndrome (OR, 35.7; 95%CI: 2.48-514) and patent ductus arteriosus (OR, 10.9; 95%CI: 1.51-79.3) for NEC; outborn delivery (OR, 5.47; 95%CI: 1.48-20.2) for FIP; and twin pregnancy (OR, 4.25; 95%CI: 1.06-17.1), PROM (OR, 6.85; 95%CI: 1.33-35.4) and maternal steroid (OR, 0.23; 95%CI: 0.07-0.79) for MRI. CONCLUSIONS Different risk factors were identified for NEC, FIP and MRI, suggesting that each disease has a different etiology, and that different strategies are required to prevent these diseases.
Collapse
Affiliation(s)
- Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoko Ohfuji
- Department of Public Health, Faculty of Medicine, Osaka City University, Osaka, Japan
| | - Masahiro Hayakawa
- Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Naoto Urushihara
- Department of Pediatric Surgery, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Akiko Yokoi
- Department of Pediatric Surgery, Hyogo Children's Hospital, Kobe, Japan
| | - Hiroshi Take
- Department of Pediatric Surgery, Kanagawa Children's Hospital, Yokohama, Japan
| | - Jun Shiraishi
- Department of Neonatology, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Japan
| | - Hideshi Fujinaga
- Division of Neonatology, National Center for Child Health and Development, Tokyo, Japan
| | - Kensuke Ohashi
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kyoko Minagawa
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Maiko Misaki
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Satoko Nose
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Kyushu University, Fukuoka, Japan
| |
Collapse
|
43
|
Favaron PO, Carvalho RC, Borghesi J, Anunciação ARA, Miglino MA. The Amniotic Membrane: Development and Potential Applications - A Review. Reprod Domest Anim 2015; 50:881-92. [DOI: 10.1111/rda.12633] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/23/2015] [Indexed: 02/06/2023]
Affiliation(s)
- PO Favaron
- Department of Surgery; School of Veterinary Medicine and Animal Science; University of Sao Paulo; São Paulo São Paulo Brazil
| | - RC Carvalho
- Center of Agricultural and Environmental Sciences; Federal University of Maranhão; Boa Vista Chapadinha Maranhão Brazil
| | - J Borghesi
- Department of Surgery; School of Veterinary Medicine and Animal Science; University of Sao Paulo; São Paulo São Paulo Brazil
| | - ARA Anunciação
- Department of Surgery; School of Veterinary Medicine and Animal Science; University of Sao Paulo; São Paulo São Paulo Brazil
| | - MA Miglino
- Department of Surgery; School of Veterinary Medicine and Animal Science; University of Sao Paulo; São Paulo São Paulo Brazil
| |
Collapse
|
44
|
Factors influencing gastrointestinal tract and microbiota immune interaction in preterm infants. Pediatr Res 2015; 77:726-31. [PMID: 25760550 DOI: 10.1038/pr.2015.54] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
Abstract
The role of microbial colonization is indispensable for keeping a balanced immune response in life. However, the events that regulate the establishment of the microbiota, their timing, and the way in which they interact with the host are not yet fully understood. Factors such as gestational age, mode of delivery, environment, hygienic measures, and diet influence the establishment of microbiota in the perinatal period. Environmental microbes constitute the most important group of exogenous stimuli in this critical time frame. However, the settlement of a stable gut microbiota in preterm infants is delayed compared to term infants. Preterm infants have an immature gastrointestinal tract and immune system which predisposes to infectious morbidity. Neonatal microbial dynamics and alterations in early gut microbiota may precede and/or predispose to diseases such as necrotizing enterocolitis (NEC), late-onset sepsis or others. During this critical period, nutrition is the principal contributor for immunological and metabolic development, and microbiological programming. Breast milk is a known source of molecules that act synergistically to protect the gut barrier and enhance the maturation of the gut-related immune response. Host-microbe interactions in preterm infants and the protective role of diet focused on breast milk impact are beginning to be unveiled.
Collapse
|
45
|
Zhang JW, Zhang GX, Chen HL, Liu GL, Owusu L, Wang YX, Wang GY, Xu CM. Therapeutic effect of Qingyi decoction in severe acute pancreatitis-induced intestinal barrier injury. World J Gastroenterol 2015; 21:3537-3546. [PMID: 25834318 PMCID: PMC4375575 DOI: 10.3748/wjg.v21.i12.3537] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/06/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of Qingyi decoction on the expression of secreted phospholipase A2 (sPLA2) in intestinal barrier injury.
METHODS: Fifty healthy Sprague-Dawley rats were randomly divided into control, severe acute pancreatitis (SAP), Qingyi decoction-treated (QYT), dexamethasone-treated (DEX), and verapamil-treated (VER) groups. The SAP model was induced by retrograde infusion of 1.5% sodium deoxycholate into the biliopancreatic duct of the rats. All rats were sacrificed 24 h post-SAP induction. Arterial blood, intestine, and pancreas from each rat were harvested for investigations. The levels of serum amylase (AMY) and diamine oxidase (DAO) were determined using biochemical methods, and serum tumor necrosis factor (TNF)-α level was measured by an enzyme linked immunosorbent assay. Pathologic changes in the harvested tissues were investigated by microscopic examination of hematoxylin and eosin-stained tissue sections. The expressions of sPLA2 at mRNA and protein levels were detected by reverse transcriptase PCR and Western blot, respectively. A terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay was used to investigate apoptosis of epithelial cells in the intestinal tissues.
RESULTS: Compared to the control group, the expression of sPLA2 at both the mRNA and protein levels increased significantly in the SAP group (0.36 ± 0.13 vs 0.90 ± 0.38, and 0.16 ± 0.05 vs 0.64 ± 0.05, respectively; Ps < 0.01). The levels of AMY, TNF-α and DAO in serum were also significantly increased (917 ± 62 U/L vs 6870 ± 810 U/L, 59.7 ± 14.3 ng/L vs 180.5 ± 20.1 ng/L, and 10.37 ± 2.44 U/L vs 37.89 ± 5.86 U/L, respectively; Ps < 0.01). The apoptosis index of intestinal epithelial cells also differed significantly between the SAP and control rats (0.05 ± 0.02 vs 0.26 ± 0.06; P < 0.01). The serum levels of DAO and TNF-α, and the intestinal apoptosis index significantly correlated with sPLA2 expression in the intestine (r = 0.895, 0.893 and 0.926, respectively; Ps < 0.05). The levels of sPLA2, AMY, TNF-α, and DAO in the QYT, VER, and DEX groups were all decreased compared with the SAP group, but not the control group. Qingyi decoction intervention, however, gave the most therapeutic effect against intestinal barrier damage, although the onset of its therapeutic effect was slower.
CONCLUSION: Qingyi decoction ameliorates acute pancreatitis-induced intestinal barrier injury by inhibiting the overexpression of intestinal sPLA2. This mechanism may be similar to that of verapamil.
Collapse
|
46
|
Berding K, Makarem P, Hance B, Axel AMD, Nolan V, Buddington KK, Buddington RK. Responses of Preterm Pigs to an Oral Fluid Supplement During Parenteral Nutrition. JPEN J Parenter Enteral Nutr 2015; 40:934-43. [PMID: 25754441 DOI: 10.1177/0148607115574746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/28/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Nutrients and electrolytes in amniotic fluid swallowed by fetuses are important for growth and development. Yet, preterm infants requiring parenteral nutrition (PN) receive minimal or no oral inputs. With the limited availability of amniotic fluid, we evaluated the responses of preterm pigs receiving PN to an oral fluid supplement (OFS) based on the electrolyte and nutrient composition of amniotic fluid. MATERIALS AND METHODS Preterm pigs (92% of term) received a combination of PN (6 mL/kg-h) and 4 mL/kg-h of supplemental fluid as an experimental OFS (n = 9), lactated Ringer's either enterally (n = 10) or intravenously (n = 8). Outcome measures after 96 hours were weight gain, blood chemistry, organ weights, and small intestine mass and brush-border membrane carbohydrases. RESULTS The OFS did not improve weight gain compared with providing lactated Ringer's orally or intravenously, or increase serum urea nitrogen values, but resulted in higher serum total and low-density lipoprotein cholesterol, as well as improved glucoregulation and heavier intestines, livers, kidneys, and brains and lighter lungs. CONCLUSIONS Providing supplemental fluid and electrolytes during PN either intravenously or orally increases weight gain after preterm birth. An oral fluid supplement based on amniotic fluid may accelerate development and maturation of organs critical for extrauterine life after preterm birth and may enhance neurodevelopment.
Collapse
Affiliation(s)
- Kirsten Berding
- Health and Sport Science, University of Memphis, Memphis, Tennessee, USA
| | - Patty Makarem
- Health and Sport Science, University of Memphis, Memphis, Tennessee, USA
| | - Brittany Hance
- Health and Sport Science, University of Memphis, Memphis, Tennessee, USA
| | - Anne Marie Dixen Axel
- Institute of Basic Animal and Veterinary Sciences, Copenhagen University, Frederiksberg C, Denmark
| | - Vikki Nolan
- Public Health, University of Memphis, Memphis, Tennessee, USA
| | | | | |
Collapse
|
47
|
Østergaard MV, Shen RL, Støy ACF, Skovgaard K, Krych Ł, Leth SS, Nielsen DS, Hartmann B, Bering SB, Schmidt M, Sangild PT. Provision of Amniotic Fluid During Parenteral Nutrition Increases Weight Gain With Limited Effects on Gut Structure, Function, Immunity, and Microbiology in Newborn Preterm Pigs. JPEN J Parenter Enteral Nutr 2015; 40:552-66. [PMID: 25613990 DOI: 10.1177/0148607114566463] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/17/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Small enteral boluses with human milk may reduce the risk of subsequent feeding intolerance and necrotizing enterocolitis in preterm infants receiving parenteral nutrition (PN). We hypothesized that feeding amniotic fluid, the natural enteral diet of the mammalian fetus, will have similar effects and improve growth and gastrointestinal (GI) maturation in preterm neonates receiving PN, prior to the transition to milk feeding. MATERIALS AND METHODS Twenty-seven pigs, delivered by cesarean section at ~90% of gestation, were provided with PN and also fed boluses with amniotic fluid (AF; n = 13, 24-72 mL/kg/d) or no oral supplements (nil per os [NPO]; n = 14) until day 5 when blood, tissue, and fecal samples were collected for analyses. RESULTS Body weight gain was 2.7-fold higher in AF vs NPO pigs. AF pigs showed slower gastric emptying, reduced meal-induced release of gastric inhibitory peptide and glucagon-like peptide 2, changed gut microbiota, and reduced intestinal permeability. There were no effects on GI weight, percentage mucosa, villus height, plasma citrulline, hexose absorptive capacity, and digestive enzymes. Intestinal interleukin (IL)-1β levels and expression of IL1B and IL8 were increased in AF pigs, while blood biochemistry and amino acid levels were minimally affected. CONCLUSION Enteral boluses of AF were well tolerated in the first 5 days of life in preterm pigs receiving PN. Enteral provision of AF before the initiation of milk feeding may stimulate body growth and improve hydration in preterm infants receiving PN. Furthermore, it may improve GI motility and integrity, although most markers of GI maturation remain unchanged.
Collapse
Affiliation(s)
- Mette Viberg Østergaard
- Department of Nutrition, Exercise and Sports and Department of Clinical Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Rene Liang Shen
- Department of Nutrition, Exercise and Sports and Department of Clinical Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Ann Cathrine Findal Støy
- Department of Nutrition, Exercise and Sports and Department of Clinical Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark Innate Immunology Group, National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - Kerstin Skovgaard
- Innate Immunology Group, National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - Łukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Stine Sofie Leth
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Dennis Sandris Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Bolette Hartmann
- NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Stine Brandt Bering
- Department of Nutrition, Exercise and Sports and Department of Clinical Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Mette Schmidt
- Department of Nutrition, Exercise and Sports and Department of Clinical Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Per Torp Sangild
- Department of Nutrition, Exercise and Sports and Department of Clinical Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen Ø, Denmark
| |
Collapse
|
48
|
Nguyen DN, Sangild PT, Ostergaard MV, Bering SB, Chatterton DEW. Transforming growth factor-β2 and endotoxin interact to regulate homeostasis via interleukin-8 levels in the immature intestine. Am J Physiol Gastrointest Liver Physiol 2014; 307:G689-99. [PMID: 25147235 DOI: 10.1152/ajpgi.00193.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A balance between pro- and anti-inflammatory signals from milk and microbiota controls intestinal homeostasis just after birth, and an optimal balance is particularly important for preterm neonates that are sensitive to necrotizing enterocolitis (NEC). We suggest that the intestinal cytokine IL-8 plays an important role and hypothesize that transforming growth factor-β2 (TGF-β2) acts in synergy with bacterial lipopolysaccharide (LPS) to control IL-8 levels, thereby supporting intestinal homeostasis. Preterm pigs were fed colostrum (containing TGF-β2) or infant formula (IF) with or without antibiotics (COLOS, n = 27; ANTI, n = 11; IF, n = 40). Intestinal IL-8 levels and NEC incidence were much higher in IF than in COLOS and ANTI pigs (P < 0.001), but IL-8 levels did not correlate with NEC severity. Intestinal TGF-β2 levels were high in COLOS but low in IF and ANTI pigs. Based on these observations, the interplay among IL-8, TGF-β2, and LPS was investigated in a porcine intestinal epithelial cell line. TGF-β2 attenuated LPS-induced IL-6, IL-1β, and TNF-α release by reducing early ERK activation, whereas IL-8 secretion was synergistically induced by LPS and TGF-β2 via NF-κB. The TGF-β2/LPS-induced IL-8 levels stimulated cell proliferation and migration following epithelial injury, without continuous NF-κB activation and cyclooxygenase-2 expression. We suggest that a combined TGF-β2-LPS induction of IL-8 stimulates epithelial repair just after birth when the intestine is first exposed to colonizing bacteria and TGF-β2-containing milk. Moderate IL-8 levels may act to control intestinal inflammation, whereas excessive IL-8 production may enhance the damaging proinflammatory cascade leading to NEC.
Collapse
Affiliation(s)
- Duc Ninh Nguyen
- Faculty of Science, Department of Food Science, University of Copenhagen, Copenhagen, Denmark; and
| | - Per T Sangild
- Faculty of Science, Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mette V Ostergaard
- Faculty of Science, Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Stine B Bering
- Faculty of Science, Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Dereck E W Chatterton
- Faculty of Science, Department of Food Science, University of Copenhagen, Copenhagen, Denmark; and Faculty of Science, Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Jiang P, Sangild PT. Intestinal proteomics in pig models of necrotising enterocolitis, short bowel syndrome and intrauterine growth restriction. Proteomics Clin Appl 2014; 8:700-14. [PMID: 24634357 DOI: 10.1002/prca.201300097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/16/2014] [Accepted: 03/11/2014] [Indexed: 12/13/2022]
Abstract
Necrotising enterocolitis (NEC), short bowel syndrome (SBS) and intrauterine growth restriction (IUGR) are three conditions associated with intestinal dysfunction in newborn infants, particularly those born preterm. Piglet (Sus scrofa) models have recently been developed for NEC, SBS and IUGR, and tissue proteomic analyses have identified unknown pathways and new prognostic disease markers. Intestinal HSPs, iron metabolism proteins and proteins related to amino acid (e.g. arginine) and glucose metabolism are consistently affected by NEC progression and some of these proteins are also affected by SBS and IUGR. Parallel changes in some plasma and urinary proteins (e.g. haptoglobin, globulins, complement proteins, fatty acid binding proteins) may mirror the intestinal responses and pave the way to biomarker discovery. Explorative non-targeted proteomics provides ideas about the cellular pathways involved in intestinal adaptation during the critical neonatal period. Proteomics, combined with other -omic techniques, helps to get a more holistic picture of intestinal adaptation during NEC, SBS and IUGR. Explorative -omic research methods also have limitations and cannot replace, but only supplement, classical hypothesis-driven research that investigate disease mechanisms using a single or few endpoints.
Collapse
Affiliation(s)
- Pingping Jiang
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
50
|
Good M, Sodhi CP, Hackam DJ. Evidence-based feeding strategies before and after the development of necrotizing enterocolitis. Expert Rev Clin Immunol 2014; 10:875-84. [PMID: 24898361 DOI: 10.1586/1744666x.2014.913481] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease of premature infants and is associated with significant morbidity and mortality. While the pathogenesis of NEC remains incompletely understood, it is well established that the risk of disease is increased by the administration of infant formula and decreased by the administration of breast milk. This review will focus on the mechanisms by which breast milk may serve to protect against NEC, and will review the evidence regarding various feeding strategies that may be utilized before and after an episode of NEC.
Collapse
Affiliation(s)
- Misty Good
- Department of Pediatrics, Division of Newborn Medicine, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|