1
|
Thierry GR, Baudon EM, Bijnen M, Bellomo A, Lagueyrie M, Mondor I, Simonnet L, Carrette F, Fenouil R, Keshvari S, Hume DA, Dombrowicz D, Bajenoff M. Non-classical monocytes scavenge the growth factor CSF1 from endothelial cells in the peripheral vascular tree to ensure survival and homeostasis. Immunity 2024; 57:2108-2121.e6. [PMID: 39089257 DOI: 10.1016/j.immuni.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/15/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024]
Abstract
Unlike sessile macrophages that occupy specialized tissue niches, non-classical monocytes (NCMs)-circulating phagocytes that patrol and cleanse the luminal surface of the vascular tree-are characterized by constant movement. Here, we examined the nature of the NCM's nurturing niche. Expression of the growth factor CSF1 on endothelial cells was required for survival of NCMs in the bloodstream. Lack of endothelial-derived CSF1 did not affect blood CSF1 concentration, suggesting that NCMs rely on scavenging CSF1 present on endothelial cells. Deletion of the transmembrane chemokine and adhesion factor CX3CL1 on endothelial cells impaired NCM survival. Mechanistically, endothelial-derived CX3CL1 and integrin subunit alpha L (ITGAL) facilitated the uptake of CSF1 by NCMs. CSF1 was produced by all tissular endothelial cells, and deletion of Csf1 in all endothelial cells except bone marrow sinusoids impaired NCM survival, arguing for a model where the full vascular tree acts as a niche for NCMs and where survival and patrolling function are connected.
Collapse
Affiliation(s)
- Guilhem R Thierry
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Elisa M Baudon
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Mitchell Bijnen
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Alicia Bellomo
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Marine Lagueyrie
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Isabelle Mondor
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Louise Simonnet
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Florent Carrette
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Romain Fenouil
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Sahar Keshvari
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - David A Hume
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - David Dombrowicz
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Marc Bajenoff
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France.
| |
Collapse
|
2
|
Duc Nguyen H, Ardeshir A, Fonseca VA, Kim WK. Cluster of differentiation molecules in the metabolic syndrome. Clin Chim Acta 2024; 561:119819. [PMID: 38901629 DOI: 10.1016/j.cca.2024.119819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) represents a significant public health concern due to its association with an increased risk of cardiovascular disease, type 2 diabetes, and other serious health conditions. Despite extensive research, the underlying molecular mechanisms contributing to MetS pathogenesis remain elusive. This review aims to provide a comprehensive overview of the molecular mechanisms linking MetS and cluster of differentiation (CD) markers, which play critical roles in immune regulation and cellular signaling. Through an extensive literature review with a systematic approach, we examine the involvement of various CD markers in MetS development and progression, including their roles in adipose tissue inflammation, insulin resistance, dyslipidemia, and hypertension. Additionally, we discuss potential therapeutic strategies targeting CD markers for the management of MetS. By synthesizing current evidence, this review contributes to a deeper understanding of the complex interplay between immune dysregulation and metabolic dysfunction in MetS, paving the way for the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Amir Ardeshir
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Vivian A Fonseca
- Department Endocrinology Metabolism & Diabetes, Tulane University School of Medicine, New Orleans, LA, USA
| | - Woong-Ki Kim
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
3
|
Kim W, Chu JO, Kim DY, Lee SH, Choi CH, Lee KH. Mimicking chronic alcohol effects through a controlled and sustained ethanol release device. J Biol Eng 2024; 18:31. [PMID: 38715085 PMCID: PMC11077717 DOI: 10.1186/s13036-024-00428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Alcohol consumption, a pervasive societal issue, poses considerable health risks and socioeconomic consequences. Alcohol-induced hepatic disorders, such as fatty liver disease, alcoholic hepatitis, chronic hepatitis, liver fibrosis, and cirrhosis, underscore the need for comprehensive research. Existing challenges in mimicking chronic alcohol exposure in cellular systems, attributed to ethanol evaporation, necessitate innovative approaches. In this study, we developed a simple, reusable, and controllable device for examining the physiological reactions of hepatocytes to long-term alcohol exposure. Our approach involved a novel device designed to continuously release ethanol into the culture medium, maintaining a consistent ethanol concentration over several days. We evaluated device performance by examining gene expression patterns and cytokine secretion alterations during long-term exposure to ethanol. These patterns were correlated with those observed in patients with alcoholic hepatitis. Our results suggest that our ethanol-releasing device can be used as a valuable tool to study the mechanisms of chronic alcohol-mediated hepatic diseases at the cellular level. Our device offers a practical solution for studying chronic alcohol exposure, providing a reliable platform for cellular research. This innovative tool holds promise for advancing our understanding of the molecular processes involved in chronic alcohol-mediated hepatic diseases. Future research avenues should explore broader applications and potential implications for predicting and treating alcohol-related illnesses.
Collapse
Affiliation(s)
- Wanil Kim
- Department of Biochemistry and Institute of Medical Science, School of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jin-Ok Chu
- Department of Cosmetic Science and Technology, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Soo-Hyeon Lee
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Chang-Hyung Choi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Kyung-Ha Lee
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea.
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
4
|
Keshvari S, Masson JJR, Ferrari-Cestari M, Bodea LG, Nooru-Mohamed F, Tse BWC, Sokolowski KA, Batoon L, Patkar OL, Sullivan MA, Ebersbach H, Stutz C, Parton RG, Summers KM, Pettit AR, Hume DA, Irvine KM. Reversible expansion of tissue macrophages in response to macrophage colony-stimulating factor (CSF1) transforms systemic lipid and carbohydrate metabolism. Am J Physiol Endocrinol Metab 2024; 326:E149-E165. [PMID: 38117267 DOI: 10.1152/ajpendo.00347.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 12/21/2023]
Abstract
Macrophages regulate metabolic homeostasis in health and disease. Macrophage colony-stimulating factor (CSF1)-dependent macrophages contribute to homeostatic control of the size of the liver. This study aimed to determine the systemic metabolic consequences of elevating circulating CSF1. Acute administration of a CSF1-Fc fusion protein to mice led to monocytosis, increased resident tissue macrophages in the liver and all major organs, and liver growth. These effects were associated with increased hepatic glucose uptake and extensive mobilization of body fat. The impacts of CSF1 on macrophage abundance, liver size, and body composition were rapidly reversed to restore homeostasis. The effects of CSF1 on metabolism were independent of several known endocrine regulators and did not impact the physiological fasting response. Analysis using implantable telemetry in metabolic cages revealed progressively reduced body temperature and physical activity with no change in diurnal food intake. These results demonstrate the existence of a dynamic equilibrium between CSF1, the mononuclear phagocyte system, and control of liver-to-body weight ratio, which in turn controls systemic metabolic homeostasis. This novel macrophage regulatory axis has the potential to promote fat mobilization, without changes in appetence, which may have novel implications for managing metabolic syndrome.NEW & NOTEWORTHY CSF1 administration expands tissue macrophages, which transforms systemic metabolism. CSF1 drives fat mobilization and glucose uptake to support liver growth. The effects of CSF1 are independent of normal hormonal metabolic regulation. The effects of CSF1 are rapidly reversible, restoring homeostatic body composition. CSF1-dependent macrophages and liver size are coupled in a dynamic equilibrium.
Collapse
Affiliation(s)
- Sahar Keshvari
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Jesse J R Masson
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Michelle Ferrari-Cestari
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Liviu-Gabriel Bodea
- Clem Jones Centre for Ageing and Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Fathima Nooru-Mohamed
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Brian W C Tse
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, Queensland, Australia
| | - Kamil A Sokolowski
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, Queensland, Australia
| | - Lena Batoon
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Omkar L Patkar
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Mitchell A Sullivan
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Hilmar Ebersbach
- Novartis Institutes for Biomedical Research (NIBR), Basel, Switzerland
| | - Cian Stutz
- Novartis Institutes for Biomedical Research (NIBR), Basel, Switzerland
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Kim M Summers
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Allison R Pettit
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David A Hume
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Waddell LA, Wu Z, Sauter KA, Hope JC, Hume DA. A novel monoclonal antibody against porcine macrophage colony-stimulating factor (CSF1) detects expression on the cell surface of macrophages. Vet Immunol Immunopathol 2023; 266:110681. [PMID: 37992576 DOI: 10.1016/j.vetimm.2023.110681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Macrophage colony-stimulating factor (CSF1) controls the proliferation and differentiation of cells of the mononuclear phagocyte system through binding to the receptor CSF1R. The expression and function of CSF1 has been well-studied in rodents and humans, but knowledge is lacking in other veterinary species. The development of a novel mouse anti-porcine CSF1 monoclonal antibody (mAb) facilitates the characterisation of this growth factor in pigs. Cell surface expression of CSF1 was confirmed on differentiated macrophage populations derived from blood and bone marrow monocytes, and on lung resident macrophages, the first species for this to be confirmed. However, monocytes isolated from blood and bone marrow lacked CSF1 expression. This species-specific mAb delivers the opportunity to further understanding of porcine myeloid cell biology. This is not only vital for the role of pigs as a model for human health, but also as a veterinary species of significant economic and agricultural importance.
Collapse
Affiliation(s)
- Lindsey A Waddell
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Zhiguang Wu
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Kristin A Sauter
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Jayne C Hope
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | - David A Hume
- Mater Research Institute-University of Queensland, 37 Kent St, Woolloongabba, Qld 4104, Australia
| |
Collapse
|
6
|
Kharouf N, Flanagan TW, Hassan SY, Shalaby H, Khabaz M, Hassan SL, Megahed M, Haikel Y, Santourlidis S, Hassan M. Tumor Microenvironment as a Therapeutic Target in Melanoma Treatment. Cancers (Basel) 2023; 15:3147. [PMID: 37370757 DOI: 10.3390/cancers15123147] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The role of the tumor microenvironment in tumor growth and therapy has recently attracted more attention in research and drug development. The ability of the microenvironment to trigger tumor maintenance, progression, and resistance is the main cause for treatment failure and tumor relapse. Accumulated evidence indicates that the maintenance and progression of tumor cells is determined by components of the microenvironment, which include stromal cells (endothelial cells, fibroblasts, mesenchymal stem cells, and immune cells), extracellular matrix (ECM), and soluble molecules (chemokines, cytokines, growth factors, and extracellular vesicles). As a solid tumor, melanoma is not only a tumor mass of monolithic tumor cells, but it also contains supporting stroma, ECM, and soluble molecules. Melanoma cells are continuously in interaction with the components of the microenvironment. In the present review, we focus on the role of the tumor microenvironment components in the modulation of tumor progression and treatment resistance as well as the impact of the tumor microenvironment as a therapeutic target in melanoma.
Collapse
Affiliation(s)
- Naji Kharouf
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Sofie-Yasmin Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Marla Khabaz
- Department of Production, Beta Factory for Veterinary Pharmaceutical Industries, Damascus 0100, Syria
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany
| | - Youssef Haikel
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Mohamed Hassan
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Lazarov T, Juarez-Carreño S, Cox N, Geissmann F. Physiology and diseases of tissue-resident macrophages. Nature 2023; 618:698-707. [PMID: 37344646 PMCID: PMC10649266 DOI: 10.1038/s41586-023-06002-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 03/23/2023] [Indexed: 06/23/2023]
Abstract
Embryo-derived tissue-resident macrophages are the first representatives of the haematopoietic lineage to emerge in metazoans. In mammals, resident macrophages originate from early yolk sac progenitors and are specified into tissue-specific subsets during organogenesis-establishing stable spatial and functional relationships with specialized tissue cells-and persist in adults. Resident macrophages are an integral part of tissues together with specialized cells: for instance, microglia reside with neurons in brain, osteoclasts reside with osteoblasts in bone, and fat-associated macrophages reside with white adipocytes in adipose tissue. This ancillary cell type, which is developmentally and functionally distinct from haematopoietic stem cell and monocyte-derived macrophages, senses and integrates local and systemic information to provide specialized tissue cells with the growth factors, nutrient recycling and waste removal that are critical for tissue growth, homeostasis and repair. Resident macrophages contribute to organogenesis, promote tissue regeneration following damage and contribute to tissue metabolism and defence against infectious disease. A correlate is that genetic or environment-driven resident macrophage dysfunction is a cause of degenerative, metabolic and possibly inflammatory and tumoural diseases. In this Review, we aim to provide a conceptual outline of our current understanding of macrophage physiology and its importance in human diseases, which may inform and serve the design of future studies.
Collapse
Affiliation(s)
- Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sergio Juarez-Carreño
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nehemiah Cox
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
8
|
Mu T, Hu H, Ma Y, Yang C, Feng X, Wang Y, Liu J, Yu B, Zhang J, Gu Y. Identification of critical lncRNAs for milk fat metabolism in dairy cows using WGCNA and the construction of a ceRNAs network. Anim Genet 2022; 53:740-760. [PMID: 36193627 DOI: 10.1111/age.13249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022]
Abstract
As key regulators, long non-coding RNAs (lncRNAs) play a crucial role in the ruminant mammary gland. However, the function of lncRNAs in milk fat synthesis from dairy cows is largely unknown. In this study, we used the weighted gene co-expression network analysis (WGCNA) to comprehensive analyze the expression profile data of lncRNAs from the group's previous Illumina PE150 sequencing results based on bovine mammary epithelial cells from high- and low-milk-fat-percentage (MFP) cows, and identify core_lncRNAs significantly associated with MFP by module membership (MM) and gene significance (GS). Functional enrichment analysis (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes) of core_lncRNA target genes (co-localization and co-expression) was performed to screen potential lncRNAs regulating milk fat metabolism and further construct an interactive regulatory network of lipid metabolism-related competing endogenous RNAs (ceRNAs). A total of 4876 lncRNAs were used to construct the WGCNA. The MEdarkturquoise module among the 19 modules obtained was significantly associated with MFP (r = 0.78, p-value <0.05) and contained 64 core_lncRNAs (MM > 0.8, GS > 0.4). Twenty-four lipid metabolism-related lncRNAs were identified by core_lncRNA target gene enrichment analysis. TCONS_00054233, TCONS_00152292, TCONS_00048619, TCONS_00033839, TCONS_00153791 and TCONS_00074642 were key candidate lncRNAs for regulating milk fat synthesis. The 22 ceRNAs most likely to be involved in milk fat metabolism were constructed by interaction network analysis, and TCONS_00133813 and bta-miR-2454-5p were located at the network's core. TCONS_00133813_bta-miR-2454-5p_TNFAIP3, TCONS_00133813_bta-miR-2454-5p_ARRB1 and TCONS_00133813_bta-miR-2454-5p_PIK3R1 are key candidate ceRNAs associated with milk fat metabolism. This study provides a framework for the co-expression module of MFP-related lncRNAs in ruminants, identifies several major lncRNAs and ceRNAs that influence milk fat synthesis, and provides a new understanding of the complex biology of milk fat synthesis in dairy cows.
Collapse
Affiliation(s)
- Tong Mu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Honghong Hu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yanfen Ma
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Yinchuan, China
| | - Chaoyun Yang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Xiaofang Feng
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Ying Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Jiamin Liu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Baojun Yu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Juan Zhang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yaling Gu
- School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
9
|
Sehgal A, Irvine KM, Hume DA. Functions of macrophage colony-stimulating factor (CSF1) in development, homeostasis, and tissue repair. Semin Immunol 2021; 54:101509. [PMID: 34742624 DOI: 10.1016/j.smim.2021.101509] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Macrophage colony-stimulating factor (CSF1) is the primary growth factor required for the control of monocyte and macrophage differentiation, survival, proliferation and renewal. Although the cDNAs encoding multiple isoforms of human CSF1 were cloned in the 1980s, and recombinant proteins were available for testing in humans, CSF1 has not yet found substantial clinical application. Here we present an overview of CSF1 biology, including evolution, regulation and functions of cell surface and secreted isoforms. CSF1 is widely-expressed, primarily by cells of mesenchymal lineages, in all mouse tissues. Cell-specific deletion of a floxed Csf1 allele in mice indicates that local CSF1 production contributes to the maintenance of tissue-specific macrophage populations but is not saturating. CSF1 in the circulation is controlled primarily by receptor-mediated clearance by macrophages in liver and spleen. Administration of recombinant CSF1 to humans or animals leads to monocytosis and expansion of tissue macrophage populations and growth of the liver and spleen. In a wide variety of tissue injury models, CSF1 administration promotes monocyte infiltration, clearance of damaged cells and repair. We suggest that CSF1 has therapeutic potential in regenerative medicine.
Collapse
Affiliation(s)
- Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
10
|
Wessendarp M, Watanabe-Chailland M, Liu S, Stankiewicz T, Ma Y, Kasam RK, Shima K, Chalk C, Carey B, Rosendale LR, Dominique Filippi M, Arumugam P. Role of GM-CSF in regulating metabolism and mitochondrial functions critical to macrophage proliferation. Mitochondrion 2021; 62:85-101. [PMID: 34740864 DOI: 10.1016/j.mito.2021.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) exerts pleiotropic effects on macrophages and is required for self-renewal but the mechanisms responsible are unknown. Using mouse models with disrupted GM-CSF signaling, we show GM-CSF is critical for mitochondrial turnover, functions, and integrity. GM-CSF signaling is essential for fatty acid β-oxidation and markedly increased tricarboxylic acid cycle activity, oxidative phosphorylation, and ATP production. GM-CSF also regulated cytosolic pathways including glycolysis, pentose phosphate pathway, and amino acid synthesis. We conclude that GM-CSF regulates macrophages in part through a critical role in maintaining mitochondria, which are necessary for cellular metabolism as well as proliferation and self-renewal.
Collapse
Affiliation(s)
- Matthew Wessendarp
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | | | - Serena Liu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Yan Ma
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | | | - Kenjiro Shima
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | - Claudia Chalk
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | - Brenna Carey
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | | | | | - Paritha Arumugam
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA.
| |
Collapse
|
11
|
Keshvari S, Caruso M, Teakle N, Batoon L, Sehgal A, Patkar OL, Ferrari-Cestari M, Snell CE, Chen C, Stevenson A, Davis FM, Bush SJ, Pridans C, Summers KM, Pettit AR, Irvine KM, Hume DA. CSF1R-dependent macrophages control postnatal somatic growth and organ maturation. PLoS Genet 2021; 17:e1009605. [PMID: 34081701 PMCID: PMC8205168 DOI: 10.1371/journal.pgen.1009605] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/15/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Homozygous mutation of the Csf1r locus (Csf1rko) in mice, rats and humans leads to multiple postnatal developmental abnormalities. To enable analysis of the mechanisms underlying the phenotypic impacts of Csf1r mutation, we bred a rat Csf1rko allele to the inbred dark agouti (DA) genetic background and to a Csf1r-mApple reporter transgene. The Csf1rko led to almost complete loss of embryonic macrophages and ablation of most adult tissue macrophage populations. We extended previous analysis of the Csf1rko phenotype to early postnatal development to reveal impacts on musculoskeletal development and proliferation and morphogenesis in multiple organs. Expression profiling of 3-week old wild-type (WT) and Csf1rko livers identified 2760 differentially expressed genes associated with the loss of macrophages, severe hypoplasia, delayed hepatocyte maturation, disrupted lipid metabolism and the IGF1/IGF binding protein system. Older Csf1rko rats developed severe hepatic steatosis. Consistent with the developmental delay in the liver Csf1rko rats had greatly-reduced circulating IGF1. Transfer of WT bone marrow (BM) cells at weaning without conditioning repopulated resident macrophages in all organs, including microglia in the brain, and reversed the mutant phenotypes enabling long term survival and fertility. WT BM transfer restored osteoclasts, eliminated osteopetrosis, restored bone marrow cellularity and architecture and reversed granulocytosis and B cell deficiency. Csf1rko rats had an elevated circulating CSF1 concentration which was rapidly reduced to WT levels following BM transfer. However, CD43hi non-classical monocytes, absent in the Csf1rko, were not rescued and bone marrow progenitors remained unresponsive to CSF1. The results demonstrate that the Csf1rko phenotype is autonomous to BM-derived cells and indicate that BM contains a progenitor of tissue macrophages distinct from hematopoietic stem cells. The model provides a unique system in which to define the pathways of development of resident tissue macrophages and their local and systemic roles in growth and organ maturation.
Collapse
Affiliation(s)
- Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Melanie Caruso
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Ngari Teakle
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Lena Batoon
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Omkar L. Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Michelle Ferrari-Cestari
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Cameron E. Snell
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Alex Stevenson
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Felicity M. Davis
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Clare Pridans
- Centre for Inflammation Research and Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Allison R. Pettit
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Katharine M. Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
- * E-mail: (KMI); (DAH)
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
- * E-mail: (KMI); (DAH)
| |
Collapse
|
12
|
Correa-Gallegos D, Jiang D, Rinkevich Y. Fibroblasts as confederates of the immune system. Immunol Rev 2021; 302:147-162. [PMID: 34036608 DOI: 10.1111/imr.12972] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
Fibroblastic stromal cells are as diverse, in origin and function, as the niches they fashion in the mammalian body. This cellular variety impacts the spectrum of responses elicited by the immune system. Fibroblast influence on the immune system keeps evolving our perspective on fibroblast roles and functions beyond just a passive structural part of organs. This review discusses the foundations of fibroblastic stromal-immune crosstalk, under the scope of stromal heterogeneity as a basis for tissue-specific tutoring of the immune system. Focusing on the skin as a relevant immunological organ, we detail the complex interactions between distinct fibroblast populations and immune cells that occur during homeostasis, injury repair, scarring, and disease. We further review the relevance of fibroblastic stromal cell heterogeneity and how this heterogeneity is central to regulate the immune system from its inception during embryonic development into adulthood.
Collapse
Affiliation(s)
- Donovan Correa-Gallegos
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Dongsheng Jiang
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
13
|
Bellomo A, Gentek R, Golub R, Bajénoff M. Macrophage-fibroblast circuits in the spleen. Immunol Rev 2021; 302:104-125. [PMID: 34028841 DOI: 10.1111/imr.12979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022]
Abstract
Macrophages are an integral part of all organs in the body, where they contribute to immune surveillance, protection, and tissue-specific homeostatic functions. This is facilitated by so-called niches composed of macrophages and their surrounding stroma. These niches structurally anchor macrophages and provide them with survival factors and tissue-specific signals that imprint their functional identity. In turn, macrophages ensure appropriate functioning of the niches they reside in. Macrophages thus form reciprocal, mutually beneficial circuits with their cellular niches. In this review, we explore how this concept applies to the spleen, a large secondary lymphoid organ whose primary functions are to filter the blood and regulate immunity. We first outline the splenic micro-anatomy, the different populations of splenic fibroblasts and macrophages and their respective contribution to protection of and key physiological processes occurring in the spleen. We then discuss firmly established and potential cellular circuits formed by splenic macrophages and fibroblasts, with an emphasis on the molecular cues underlying their crosstalk and their relevance to splenic functionality. Lastly, we conclude by considering how these macrophage-fibroblast circuits might be impaired by aging, and how understanding these changes might help identify novel therapeutic avenues with the potential of restoring splenic functions in the elderly.
Collapse
Affiliation(s)
- Alicia Bellomo
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Rachel Golub
- Inserm U1223, Institut Pasteur, Paris, France.,Lymphopoiesis Unit, Institut Pasteur, Paris, France
| | - Marc Bajénoff
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
14
|
Biocompatibility Study of a New Dental Cement Based on Hydroxyapatite and Calcium Silicates: Focus on Liver, Kidney, and Spleen Tissue Effects. Int J Mol Sci 2021; 22:ijms22115468. [PMID: 34067318 PMCID: PMC8196841 DOI: 10.3390/ijms22115468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
The effects of a new material based on hydroxyapatite and calcium silicates, named ALBO-MPCA, were investigated on the liver, kidney and spleen. The material was administrated orally for 120 days in an in vivo model in Wistar rats, and untreated animals served as a control. Hematological and biochemical blood parameters were analyzed. Qualitative histological analysis of tissues, change in mitotic activity of cells, and histological characteristics was conducted, as well as quantitative stereological analysis of parenchymal cells, blood sinusoids, and connective tissues. Additionally, the protein expressions of Ki67 and CD68 markers were evaluated. Histological analysis revealed no pathological changes after the tested period. It showed the preservation of the architecture of blood sinusoids and epithelial cells and the presence of mitosis. Additionally, the significantly increased number of the Ki67 in the presence of ALBO-MPCA confirmed the proliferative effect of the material noticed by stereological analysis, while immunoreactive CD68 positive cells did not differ between groups. The study showed non-toxicity of the tested material based on the effects on the hematological, biochemical, and observed histological parameters; in addition, it showed evidence of its biocompatibility. These results could be the basis for further steps toward the application of tested materials in endodontics.
Collapse
|
15
|
Hume DA, Caruso M, Keshvari S, Patkar OL, Sehgal A, Bush SJ, Summers KM, Pridans C, Irvine KM. The Mononuclear Phagocyte System of the Rat. THE JOURNAL OF IMMUNOLOGY 2021; 206:2251-2263. [PMID: 33965905 DOI: 10.4049/jimmunol.2100136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
The laboratory rat continues to be the model of choice for many studies of physiology, behavior, and complex human diseases. Cells of the mononuclear phagocyte system (MPS; monocytes, macrophages, and dendritic cells) are abundant residents in every tissue in the body and regulate postnatal development, homeostasis, and innate and acquired immunity. Recruitment and proliferation of MPS cells is an essential component of both initiation and resolution of inflammation. The large majority of current knowledge of MPS biology is derived from studies of inbred mice, but advances in technology and resources have eliminated many of the advantages of the mouse as a model. In this article, we review the tools available and the current state of knowledge of development, homeostasis, regulation, and diversity within the MPS of the rat.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Melanie Caruso
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Omkar L Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Stephen J Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Clare Pridans
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
16
|
Pridans C, Irvine KM, Davis GM, Lefevre L, Bush SJ, Hume DA. Transcriptomic Analysis of Rat Macrophages. Front Immunol 2021; 11:594594. [PMID: 33633725 PMCID: PMC7902030 DOI: 10.3389/fimmu.2020.594594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat is widely used as a model for human diseases. Many of these diseases involve monocytes and tissue macrophages in different states of activation. Whilst methods for in vitro differentiation of mouse macrophages from embryonic stem cells (ESC) and bone marrow (BM) are well established, these are lacking for the rat. The gene expression profiles of rat macrophages have also not been characterised to the same extent as mouse. We have established the methodology for production of rat ESC-derived macrophages and compared their gene expression profiles to macrophages obtained from the lung and peritoneal cavity and those differentiated from BM and blood monocytes. We determined the gene signature of Kupffer cells in the liver using rats deficient in macrophage colony stimulating factor receptor (CSF1R). We also examined the response of BM-derived macrophages to lipopolysaccharide (LPS). The results indicate that many, but not all, tissue-specific adaptations observed in mice are conserved in the rat. Importantly, we show that unlike mice, rat macrophages express the CSF1R ligand, colony stimulating factor 1 (CSF1).
Collapse
Affiliation(s)
- Clare Pridans
- Centre for Inflammation Research, University of Edinburgh Centre for Inflammation Research, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M. Irvine
- Mater Research Institute Mater Research Institute – University of Queensland, Brisbane, QLD, Australia
| | - Gemma M. Davis
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Lucas Lefevre
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, University of Oxford, Headington, United Kingdom
| | - David A. Hume
- Mater Research Institute Mater Research Institute – University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Zhang D, Liu K, Hu W, Lu X, Li L, Zhang Q, Huang H, Wang H. Prenatal dexamethasone exposure caused fetal rats liver dysplasia by inhibiting autophagy-mediated cell proliferation. Toxicology 2021; 449:152664. [PMID: 33359579 DOI: 10.1016/j.tox.2020.152664] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/16/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022]
Abstract
As a synthetic glucocorticoid, dexamethasone has been widely used in the clinical treatment of premature birth and related pregnant diseases, but its clinical use is still controversial due to developmental toxicity. This study aimed to confirm the proliferation inhibitory effect of pregnant dexamethasone exposure (PDE) on fetal liver development and elucidate its molecular mechanism. In vitro studies, we found that dexamethasone inhibited hepatocyte proliferation through autophagy activated by glucocorticoid receptor (GR)-forkhead protein O1 (FOXO1) pathway. Subsequently, in vivo, we confirmed in a PDE rat model that male fetal liver proliferation was inhibited, and the expression of the GR-FOXO1 pathway and autophagy were increased. Taken together, PDE induces autophagy by activating the GR-FOXO1 pathway, which leads to fetal liver proliferation inhibition and dysplasia in offspring rats. This study confirmed that dexamethasone activates cell autophagy in utero through the GR-FOXO1 pathway, thereby inhibiting hepatocyte proliferation and liver development, which provides theoretical basis for understanding the developmental toxicity of dexamethasone and guiding the rational clinical use.
Collapse
Affiliation(s)
- Dingmei Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Wen Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Li Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Qi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hegui Huang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Wuhan No.1 Hospital, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
18
|
Zhuge A, Li B, Yuan Y, Lv L, Li Y, Wu J, Yang L, Bian X, Wang K, Wang Q, Yan R, Zhu X, Li L. Lactobacillus salivarius LI01 encapsulated in alginate-pectin microgels ameliorates D-galactosamine-induced acute liver injury in rats. Appl Microbiol Biotechnol 2020; 104:7437-7455. [PMID: 32666187 DOI: 10.1007/s00253-020-10749-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
Abstract
Acute liver failure is a clinical emergency associated with high mortality. Accumulating evidence indicates that gut microbiota participates in the progression of liver injury, and preventive therapies based on altering gut microbiota are of great interest. Previous studies demonstrated that Lactobacillus salivarius LI01 attenuates hepatic injury, though efficiency in curtailed in the harsh environment in the gastrointestinal tract. In this study, a system to encapsulate LI01 in alginate-pectin (AP) microgels was investigated. Encapsulation significantly enhances probiotic viability for long-term storage and heat treatment, and in simulated gastrointestinal fluids (SGF or SIF) and bile salt solutions. Acute liver injury was induced in Sprague-Dawley (SD) rats by D-galactosamine (D-GaIN) injection following pretreatment with probiotics. Liver and gut barrier function, cytokines, liver and gut histology, bacterial translocation, and gut microbiota were assessed. Administration of encapsulated LI01 more effectively upregulates hepatic anti-inflammatory cytokine IL-10 and TLR-3, restores expressions of gut barrier biomarkers Claudin-1 and MUC2 and attenuates destruction of mucosal ultrastructure compared with unencapsulated probiotics pretreatment. Pretreatment with AP-LI01 microgels altered the microbial community, decreasing the abundance of pathogenic taxa Ruminiclostridium, Dorea and Ruminococcaceae_UCG-004 and enriching beneficial taxa Ruminococcaceae_UCG-014, Eubacterium, and Prevotella_1 that produce short-chain fatty acids. These results suggest that AP encapsulation of LI01 boosts viability and attenuates liver injury by reducing inflammation and restoring intestinal barrier function. These beneficial effects are probably due to alternation of gut flora. These findings provide new insight into encapsulation technology and prevention of liver failure. KEY POINTS: • Alginate-pectin encapsulation enhances the viability of Lactobacillus salivarius LI01 under simulated commercial conditions and simulated gastrointestinal environment. • AP-LI01 microgel attenuates hepatic and intestinal inflammation and restores gut barrier function. • AP-LI01 microgel alters gut microbial community with increased SCFAs producers and decreased pathogenic microbes. • Beneficial improvements after administration of probiotics are highly associated with alternation of gut microbial community.
Collapse
Affiliation(s)
- Aoxiang Zhuge
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Bo Li
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yin Yuan
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yating Li
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jingjing Wu
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Liya Yang
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoyuan Bian
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xueling Zhu
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
19
|
Toxicological Profile of Nanostructured Bone Substitute Based on Hydroxyapatite and Poly(lactide-co-glycolide) after Subchronic Oral Exposure of Rats. NANOMATERIALS 2020; 10:nano10050918. [PMID: 32397466 PMCID: PMC7279500 DOI: 10.3390/nano10050918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 01/18/2023]
Abstract
Novel three-dimensional (3D) nanohydroxyapatite-PLGA scaffolds with high porosity was developed to better mimic mineral component and microstructure of natural bone. To perform a final assessment of this nanomaterial as a potential bone substitute, its toxicological profile was particularly investigated. Therefore, we performed a comet assay on human monocytes for in vitro genotoxicity investigation, and the systemic subchronic toxicity investigation on rats being per oral feed with exactly administrated extract quantities of the nano calcium hydroxyapatite covered with tiny layers of PLGA (ALBO-OS) for 120 days. Histological and stereological parameters of the liver, kidney, and spleen tissue were analyzed. Comet assay revealed low genotoxic potential, while histological analysis and stereological investigation revealed no significant changes in exposed animals when compared to controls, although the volume density of blood sinusoids and connective tissue, as well as numerical density and number of mitosis were slightly increased. Additionally, despite the significantly increased average number of the Ki67 and slightly increased number of CD68 positive cells in the presence of ALBO-OS, immunoreactive cells proliferation was almost neglected. Blood analyses showed that all of the blood parameters in rats fed with extract nanomaterial are comparable with corresponding parameters of no feed rats, taken as blind probe. This study contributes to the toxicological profiling of ALBO-OS scaffold for potential future application in bone tissue engineering.
Collapse
|
20
|
Zhao M, Jung Y, Jiang Z, Svensson KJ. Regulation of Energy Metabolism by Receptor Tyrosine Kinase Ligands. Front Physiol 2020; 11:354. [PMID: 32372975 PMCID: PMC7186430 DOI: 10.3389/fphys.2020.00354] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic diseases, such as diabetes, obesity, and fatty liver disease, have now reached epidemic proportions. Receptor tyrosine kinases (RTKs) are a family of cell surface receptors responding to growth factors, hormones, and cytokines to mediate a diverse set of fundamental cellular and metabolic signaling pathways. These ligands signal by endocrine, paracrine, or autocrine means in peripheral organs and in the central nervous system to control cellular and tissue-specific metabolic processes. Interestingly, the expression of many RTKs and their ligands are controlled by changes in metabolic demand, for example, during starvation, feeding, or obesity. In addition, studies of RTKs and their ligands in regulating energy homeostasis have revealed unexpected diversity in the mechanisms of action and their specific metabolic functions. Our current understanding of the molecular, biochemical and genetic control of energy homeostasis by the endocrine RTK ligands insulin, FGF21 and FGF19 are now relatively well understood. In addition to these classical endocrine signals, non-endocrine ligands can govern local energy regulation, and the intriguing crosstalk between the RTK family and the TGFβ receptor family demonstrates a signaling network that diversifies metabolic process between tissues. Thus, there is a need to increase our molecular and mechanistic understanding of signal diversification of RTK actions in metabolic disease. Here we review the known and emerging molecular mechanisms of RTK signaling that regulate systemic glucose and lipid metabolism, as well as highlighting unexpected roles of non-classical RTK ligands that crosstalk with other receptor pathways.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Yunshin Jung
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Zewen Jiang
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Katrin J Svensson
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| |
Collapse
|
21
|
Establishment and Maintenance of the Macrophage Niche. Immunity 2020; 52:434-451. [PMID: 32187515 DOI: 10.1016/j.immuni.2020.02.015] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023]
|
22
|
Elchaninov AV, Fatkhudinov TK, Vishnyakova PA, Lokhonina AV, Sukhikh GT. Phenotypical and Functional Polymorphism of Liver Resident Macrophages. Cells 2019; 8:E1032. [PMID: 31491903 PMCID: PMC6769646 DOI: 10.3390/cells8091032] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Liver diseases are one of the main causes of mortality. In this regard, the development of new ways of reparative processes stimulation is relevant. Macrophages play a leading role in the regulation of liver homeostasis in physiological conditions and in pathology. In this regard, the development of new liver treatment methods is impossible without taking into account this cell population. Resident macrophages of the liver, Kupffer cells, represent a unique cell population, first of all, due to their development. Most of the liver macrophages belong to the self-sustaining macrophage cell population, whose origin is not bone marrow. In addition, Kupffer cells are involved in such processes as regulation of hepatocyte proliferation and apoptosis, remodeling of the intercellular matrix, lipid metabolism, protective function, etc. Such a broad spectrum of liver macrophage functions indicates their high functional plasticity. The review summarizes recent data on the development, phenotypic and functional plasticity, and participation in the reparative processes of liver macrophages: resident macrophages (Kupffer cells) and bone marrow-derived macrophages.
Collapse
Affiliation(s)
- Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Histology, Embryology and Cytology Department, Ministry of Healthcare of The Russian Federation, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997, Russia.
| | - Timur Kh Fatkhudinov
- Histology, Embryology and Cytology Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia.
| | - Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| | - Anastasia V Lokhonina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Histology, Embryology and Cytology Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| |
Collapse
|
23
|
Hume DA, Gutowska‐Ding MW, Garcia‐Morales C, Kebede A, Bamidele O, Trujillo AV, Gheyas AA, Smith J. Functional evolution of the colony‐stimulating factor 1 receptor (CSF1R) and its ligands in birds. J Leukoc Biol 2019; 107:237-250. [DOI: 10.1002/jlb.6ma0519-172r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- David A. Hume
- Mater Research Institute‐University of Queensland Translational Research Institute Woolloongabba QLD 4102 Australia
| | | | - Carla Garcia‐Morales
- Department Biotecnologia Universidad Automona del Estado de Mexico Toluca Area Mexico
| | - Adebabay Kebede
- Department of Microbial, Cellular and Molecular Biology Addis Ababa University Addis Ababa Ethiopia
- Amhara Regional Agricultural Research Institute Bahir Dar Ethiopia
- International Livestock Research Institution (ILRI) Addis Ababa Ethiopia
| | - Oladeji Bamidele
- African Chicken Genetic Gains Project‐Nigeria The International Livestock Research Institute (ILRI) Addis Ababa Ethiopia
| | - Adriana Vallejo Trujillo
- Cells, Organisms and Molecular Genetics, School of Life Sciences University of Nottingham Nottingham United Kingdom
| | - Almas A. Gheyas
- The Roslin Institute University of Edinburgh Midlothian United Kingdom
- Centre for Tropical Livestock Genetics and Health University of Edinburgh Midlothian United Kingdom
| | - Jacqueline Smith
- The Roslin Institute University of Edinburgh Midlothian United Kingdom
- Centre for Tropical Livestock Genetics and Health University of Edinburgh Midlothian United Kingdom
| |
Collapse
|
24
|
Irvine KM, Caruso M, Cestari MF, Davis GM, Keshvari S, Sehgal A, Pridans C, Hume DA. Analysis of the impact of CSF‐1 administration in adult rats using a novel
Csf1r
‐mApple reporter gene. J Leukoc Biol 2019; 107:221-235. [DOI: 10.1002/jlb.ma0519-149r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/04/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Melanie Caruso
- Mater Research The University of Queensland Brisbane Australia
| | | | - Gemma M. Davis
- Faculty of Life Sciences The University of Manchester Manchester United Kingdom
| | - Sahar Keshvari
- Mater Research The University of Queensland Brisbane Australia
| | - Anuj Sehgal
- Mater Research The University of Queensland Brisbane Australia
| | - Clare Pridans
- Centre for Inflammation Research The University of Edinburgh Edinburgh United Kingdom
| | - David A. Hume
- Mater Research The University of Queensland Brisbane Australia
- Centre for Inflammation Research The University of Edinburgh Edinburgh United Kingdom
| |
Collapse
|
25
|
Hume DA, Caruso M, Ferrari-Cestari M, Summers KM, Pridans C, Irvine KM. Phenotypic impacts of CSF1R deficiencies in humans and model organisms. J Leukoc Biol 2019; 107:205-219. [PMID: 31330095 DOI: 10.1002/jlb.mr0519-143r] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Mϕ proliferation, differentiation, and survival are controlled by signals from the Mϕ CSF receptor (CSF1R). Mono-allelic gain-of-function mutations in CSF1R in humans are associated with an autosomal-dominant leukodystrophy and bi-allelic loss-of-function mutations with recessive skeletal dysplasia, brain disorders, and developmental anomalies. Most of the phenotypes observed in these human disease states are also observed in mice and rats with loss-of-function mutations in Csf1r or in Csf1 encoding one of its two ligands. Studies in rodent models also highlight the importance of genetic background and likely epistatic interactions between Csf1r and other loci. The impacts of Csf1r mutations on the brain are usually attributed solely to direct impacts on microglial number and function. However, analysis of hypomorphic Csf1r mutants in mice and several other lines of evidence suggest that primary hydrocephalus and loss of the physiological functions of Mϕs in the periphery contribute to the development of brain pathology. In this review, we outline the evidence that CSF1R is expressed exclusively in mononuclear phagocytes and explore the mechanisms linking CSF1R mutations to pleiotropic impacts on postnatal growth and development.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Melanie Caruso
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | | | - Kim M Summers
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Clare Pridans
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M Irvine
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
26
|
Paraš S, Janković O, Trišić D, Čolović B, Mitrović-Ajtić O, Dekić R, Soldatović I, Živković Sandić M, Živković S, Jokanović V. Influence of nanostructured calcium aluminate and calcium silicate on the liver: histological and unbiased stereological analysis. Int Endod J 2019; 52:1162-1172. [PMID: 30802977 DOI: 10.1111/iej.13105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
AIM To examine the potential systemic toxicity of nanostructured materials based on calcium silicate and calcium aluminate, for potential application in Dentistry. METHODOLOGY Twenty-four Albino Wistar rats aged 2 months were used as an in vivo animal model for subcutaneous implantation of the investigated materials, placed in polyethylene tubes. Thirty days after implantation, the livers of the rats were analysed and following histological and stereological parameters were evaluated for volume density of hepatocytes and blood sinusoids, number and numerical density of hepatocytes, surface of hepatocytes and their nucleuses, nucleocytoplasmic ratio and mitotic index of hepatocytes. Stereological measurements were achieved using Cavalieri's principle, with grid P2 and unbiased analysis. Additionally, immunohistochemistry studies were performed to further analyse changes in liver tissue. Several haematological and biochemical parameters of blood of experimental animals were also analysed, as well as local tissue reactions around the implants. Statistical analysis was performed using parametric (anova and t-test) and nonparametric tests (Kruskal-Wallis and Mann-Whitney U-test) depending on data distribution. RESULTS Implanted dental cements led to an increase in stereological and histological parameters in liver tissue compared to control rats. Although the investigated parameters mostly showed significant differences between control and experimental animals, the liver tissue of the experimental animals did not have visible signs of pathological changes. This was supported by the analysis of blood parameters which were not significantly different between control and experimental animals. Also, the subcutaneous tissues had minimal inflammatory reactions. Immunohistochemistry studies revealed that nanostructured materials induced proliferation of hepatocytes, but that the immunological response to the materials was not strong enough to induce proliferation of immunoreactive cells in liver in the observed time period. CONCLUSIONS This study was performed as a contribution to the attestation of the biocompatibility of dental cements based on calcium silicate and calcium aluminate. Although these materials induced several changes in the liver structure, they were not clinically relevant and represent a normal and reversible response of the liver to the presence of biocompatible materials in the body. Blood and immunohistochemistry analyses and local tissue reactions further confirmed that these materials possess good biocompatible potential.
Collapse
Affiliation(s)
- S Paraš
- Department of Zoology, Faculty of Science and Mathematics, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - O Janković
- Department of Stomatology, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - D Trišić
- Faculty of Stomatology, University of Belgrade, Belgrade, Serbia
| | - B Čolović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - O Mitrović-Ajtić
- Department for Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - R Dekić
- Department of Zoology, Faculty of Science and Mathematics, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - I Soldatović
- Institute for Biostatistics, University of Belgrade, Belgrade, Serbia
| | | | - S Živković
- Faculty of Stomatology, University of Belgrade, Belgrade, Serbia
| | - V Jokanović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.,ALBOS LLC, Belgrade, Serbia
| |
Collapse
|
27
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
28
|
The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
29
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
30
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
31
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
32
|
The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
33
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
34
|
Herron LR, Pridans C, Turnbull ML, Smith N, Lillico S, Sherman A, Gilhooley HJ, Wear M, Kurian D, Papadakos G, Digard P, Hume DA, Gill AC, Sang HM. A chicken bioreactor for efficient production of functional cytokines. BMC Biotechnol 2018; 18:82. [PMID: 30594166 PMCID: PMC6311007 DOI: 10.1186/s12896-018-0495-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The global market for protein drugs has the highest compound annual growth rate of any pharmaceutical class but their availability, especially outside of the US market, is compromised by the high cost of manufacture and validation compared to traditional chemical drugs. Improvements in transgenic technologies allow valuable proteins to be produced by genetically-modified animals; several therapeutic proteins from such animal bioreactors are already on the market after successful clinical trials and regulatory approval. Chickens have lagged behind mammals in bioreactor development, despite a number of potential advantages, due to the historic difficulty in producing transgenic birds, but the production of therapeutic proteins in egg white of transgenic chickens would substantially lower costs across the entire production cycle compared to traditional cell culture-based production systems. This could lead to more affordable treatments and wider markets, including in developing countries and for animal health applications. RESULTS Here we report the efficient generation of new transgenic chicken lines to optimize protein production in eggs. As proof-of-concept, we describe the expression, purification and functional characterization of three pharmaceutical proteins, the human cytokine interferon α2a and two species-specific Fc fusions of the cytokine CSF1. CONCLUSION Our work optimizes and validates a transgenic chicken system for the cost-effective production of pure, high quality, biologically active protein for therapeutics and other applications.
Collapse
Affiliation(s)
- Lissa R. Herron
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
- Roslin Technologies Limited, Roslin Innovation Centre, Easter Bush Campus, Midlothian, EH25 9RG UK
| | - Clare Pridans
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
- Centre for Inflammation Research at the University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH16 4TJ UK
| | - Matthew L. Turnbull
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
- Medical Research Council University of Glasgow Centre for Virus Research (CVR), University of Glasgow, Glasgow, G61 1QH UK
| | - Nikki Smith
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Simon Lillico
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Adrian Sherman
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Hazel J. Gilhooley
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Martin Wear
- Edinburgh Protein Production Facility, Wellcome Trust Centre for Cell Biology (WTCCB), University of Edinburgh, Edinburgh, EH9 3JR UK
| | - Dominic Kurian
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Grigorios Papadakos
- Roslin Technologies Limited, Roslin Innovation Centre, Easter Bush Campus, Midlothian, EH25 9RG UK
| | - Paul Digard
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - David A. Hume
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
- Centre for Inflammation Research at the University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH16 4TJ UK
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102 Australia
| | - Andrew C. Gill
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Lincoln, Lincolnshire LN6 7DL UK
| | - Helen M. Sang
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| |
Collapse
|
35
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2018; 40:98-112. [PMID: 30579704 DOI: 10.1016/j.it.2018.11.007] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/18/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
Abstract
The mononuclear phagocyte system (MPS) is defined as a cell lineage in which committed marrow progenitors give rise to blood monocytes and tissue macrophages. Here, we discuss the concept of self-proscribed macrophage territories and homeostatic regulation of tissue macrophage abundance through growth factor availability. Recent studies have questioned the validity of the MPS model and argued that tissue-resident macrophages are a separate lineage seeded during development and maintained by self-renewal. We address this issue; discuss the limitations of inbred mouse models of monocyte-macrophage homeostasis; and summarize the evidence suggesting that during postnatal life, monocytes can replace resident macrophages in all major organs and adopt their tissue-specific gene expression. We conclude that the MPS remains a valid and accurate framework for understanding macrophage development and homeostasis.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
36
|
Waddell LA, Lefevre L, Bush SJ, Raper A, Young R, Lisowski ZM, McCulloch MEB, Muriuki C, Sauter KA, Clark EL, Irvine KM, Pridans C, Hope JC, Hume DA. ADGRE1 (EMR1, F4/80) Is a Rapidly-Evolving Gene Expressed in Mammalian Monocyte-Macrophages. Front Immunol 2018; 9:2246. [PMID: 30327653 PMCID: PMC6174849 DOI: 10.3389/fimmu.2018.02246] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/10/2018] [Indexed: 12/26/2022] Open
Abstract
The F4/80 antigen, encoded by the Adgre1 locus, has been widely-used as a monocyte-macrophage marker in mice, but its value as a macrophage marker in other species is unclear, and has even been questioned. ADGRE1 is a seven transmembrane G protein-coupled receptor with an extracellular domain containing repeated Epidermal Growth Factor (EGF)-like calcium binding domains. Using a new monoclonal antibody, we demonstrated that ADGRE1 is a myeloid differentiation marker in pigs, absent from progenitors in bone marrow, highly-expressed in mature granulocytes, monocytes, and tissue macrophages and induced by macrophage colony-stimulating factor (CSF1) treatment in vivo. Based upon these observations, we utilized RNA-Seq to assess the expression of ADGRE1 mRNA in bone marrow or monocyte-derived macrophages (MDM) and alveolar macrophages from 8 mammalian species including pig, human, rat, sheep, goat, cow, water buffalo, and horse. ADGRE1 mRNA was expressed by macrophages in each species, with inter-species variation both in expression level and response to lipopolysaccharide (LPS) stimulation. Analysis of the RNA-Seq data also revealed additional exons in several species compared to current Ensembl annotations. The ruminant species and horses appear to encode a complete duplication of the 7 EGF-like domains. In every species, Sashimi plots revealed evidence of exon skipping of the EGF-like domains, which are highly-variable between species and polymorphic in humans. Consistent with these expression patterns, key elements of the promoter and a putative enhancer are also conserved across all species. The rapid evolution of this molecule and related ADGRE family members suggests immune selection and a role in pathogen recognition.
Collapse
Affiliation(s)
- Lindsey A. Waddell
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Anna Raper
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rachel Young
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Zofia M. Lisowski
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Charity Muriuki
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kristin A. Sauter
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily L. Clark
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Clare Pridans
- Centre for Inflammation Research at the University of Edinburgh, Edinburgh, United Kingdom
| | - Jayne C. Hope
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Hume
- Mater Research-University of Queensland, Woolloongabba, QLD, Australia
- Centre for Inflammation Research at the University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
37
|
Röszer T. Understanding the Biology of Self-Renewing Macrophages. Cells 2018; 7:cells7080103. [PMID: 30096862 PMCID: PMC6115929 DOI: 10.3390/cells7080103] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Macrophages reside in specific territories in organs, where they contribute to the development, homeostasis, and repair of tissues. Recent work has shown that the size of tissue macrophage populations has an impact on tissue functions and is determined by the balance between replenishment and elimination. Macrophage replenishment is mainly due to self-renewal of macrophages, with a secondary contribution from blood monocytes. Self-renewal is a recently discovered trait of macrophages, which can have a major impact on their physiological functions and hence on the wellbeing of the organism. In this review, I discuss our current understanding of the developmental origin of self-renewing macrophages and the mechanisms used to maintain a physiologically stable macrophage pool.
Collapse
Affiliation(s)
- Tamás Röszer
- Institute of Neurobiology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|