1
|
Rehman MZ, Melamed M, Harris A, Shankar M, Rosa RM, Batlle D. Urinary Ammonium in Clinical Medicine: Direct Measurement and the Urine Anion Gap as a Surrogate Marker During Metabolic Acidosis. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:197-206. [PMID: 36868734 DOI: 10.1053/j.akdh.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 03/05/2023]
Abstract
Ammonium is the most important component of urinary acid excretion, normally accounting for about two-third of net acid excretion. In this article, we discuss urine ammonium not only in the evaluation of metabolic acidosis but also in other clinical conditions such as chronic kidney disease. Different methods to measure urine NH4+ that have been employed over the years are discussed. The enzymatic method used by clinical laboratories in the United States to measure plasma ammonia via the glutamate dehydrogenase can be used for urine ammonium. The urine anion gap calculation can be used as a rough marker of urine ammonium in the initial bedside evaluation of metabolic acidosis such as in distal renal tubular acidosis. Urine ammonium measurements, however, should be made more available in clinical medicine for a precise evaluation of this important component of urinary acid excretion.
Collapse
Affiliation(s)
- Mohammed Z Rehman
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Michal Melamed
- Department of Medicine (Nephrology), Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY
| | - Autumn Harris
- Department of Small Animal Clinical Sciences College of Veterinary Medicine, Gainesville, FL
| | - Mythri Shankar
- Department of Nephrology, Institute of Nephro-urology, Bengaluru, India
| | - Robert M Rosa
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Daniel Batlle
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL.
| |
Collapse
|
2
|
Jung EH, Nguyen J, Nelson C, Brauner CJ, Wood CM. Ammonia transport is independent of PNH 3 gradients across the gastrointestinal epithelia of the rainbow trout: A role for the stomach. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:180-192. [PMID: 36369634 DOI: 10.1002/jez.2670] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022]
Abstract
Although the gastrointestinal tract (GIT) is an important site for nitrogen metabolism in teleosts, the mechanisms of ammonia absorption and transport remain to be elucidated. Both protein catabolism in the lumen and the metabolism of the GIT tissues produce ammonia which, in part, enters the portal blood through the anterior region of the GIT. The present study examined the possible roles of different GIT sections of rainbow trout (Oncorhynchus mykiss) in transporting ammonia in its unionized gas form-NH3 -by changing the PNH3 gradient across GIT epithelia using in vitro gut sac preparations. We also surveyed messenger RNA expression patterns of three of the identified Rh proteins (Rhbg, Rhcg1, and Rhcg2) as potential NH3 transporters and NKCC as a potential ammonium ion (NH4 + ) transporter along the GIT of rainbow trout. We found that ammonia absorption is not dependent on the PNH3 gradient despite expression of Rhbg and Rhcg2 in the intestinal tissues, and Rhcg2 in the stomach. We detected no expression of Rhbg in the stomach and no expression of Rhcg1 in any GIT tissues. There was also a lack of correlation between ammonia transport and [NH4 + ] gradient despite NKCC expression in all GIT tissues. Regardless of PNH3 gradients, the stomach showed the greatest absorption and net tissue consumption of ammonia. Overall, our findings suggest nitrogen metabolism zonation of GIT, with stomach serving as an important site for the absorption, handling and transport of ammonia that is independent of the PNH3 gradient.
Collapse
Affiliation(s)
- Ellen H Jung
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica Nguyen
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charlotte Nelson
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Jung EH, Brauner CJ, Wood CM. Do extreme postprandial levels of oxygen, carbon dioxide, and ammonia in the digestive tract equilibrate with the bloodstream in the freshwater rainbow trout (Oncorhynchus mykiss)? J Comp Physiol B 2023; 193:193-205. [PMID: 36656334 DOI: 10.1007/s00360-023-01475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023]
Abstract
The gastrointestinal tract (GIT) lumen of teleosts harbors extreme conditions, especially after feeding: high PCO2 (20-115 Torr), total ammonia (415-3710 μM), PNH3 (79-1760 μTorr in the intestine), and virtual anoxia (PO2 < 1 Torr). These levels could be dangerous if they were to equilibrate with the bloodstream. Thus, we investigated the potential equilibration of O2, CO2, and ammonia across the GIT epithelia in freshwater rainbow trout by monitoring postprandial arterial and venous blood gases in vivo and in situ. In vivo blood was sampled from the indwelling catheters in the dorsal aorta (DA) and subintestinal vein (SIV) draining the posterior intestine in the fasting state and at 4 to 48 h following catheter-feeding. To investigate possible ammonia absorption in the anterior part of the GIT, blood was sampled from the DA, SIV and hepatic portal vein (HPV) from anaesthetized fish in situ following voluntary feeding. We found minimal equilibration of all three gases between the GIT lumen and the SIV blood, with the latter maintaining pre-feeding levels (PO2 = 25-49 Torr, PCO2 = 6-8 Torr, and total ammonia = 117-134 μM and PNH3 = 13-30 μTorr at 48 h post-feeding). In contrast to the SIV, we found that the HPV total ammonia more than doubled 24 h after feeding (128 to 297 μM), indicative of absorption in the anterior GIT. Overall, the GIT epithelia of trout, although specialized for absorption, prevent dangerous levels of PO2, PCO2 and ammonia from equilibrating with the blood circulation.
Collapse
Affiliation(s)
- Ellen H Jung
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
4
|
Blachier F, Andriamihaja M, Kong XF. Fate of undigested proteins in the pig large intestine: What impact on the colon epithelium? ANIMAL NUTRITION 2022; 9:110-118. [PMID: 35573094 PMCID: PMC9065739 DOI: 10.1016/j.aninu.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022]
Abstract
Apart from its obvious agronomic interest in feeding billions of people worldwide, the porcine species represents an irreplaceable experimental model for intestinal physiologists and nutritionists. In this review, we give an overview on the fate of proteins that are not fully digested in the pig small intestine, and thus are transferred into the large intestine. In the large intestine, dietary and endogenous proteins are converted to peptides and amino acids (AA) by the action of bacterial proteases and peptidases. AA, which cannot, except in the neonatal period, be absorbed to any significant level by the colonocytes, are used by the intestinal microbes for protein synthesis and for the production of numerous metabolites. Of note, the production of the AA-derived metabolites greatly depends on the amount of undigested polysaccharides in the pig's diet. The effects of these AA-derived bacterial metabolites on the pig colonic epithelium have not yet been largely studied. However, the available data, performed on colonic mucosa, isolated colonic crypts and colonocytes, indicate that some of them, like ammonia, butyrate, acetate, hydrogen sulfide (H2S), and p-cresol are active either directly or indirectly on energy metabolism in colonic epithelial cells. Further studies in that area will certainly gain from the utilization of the pig colonic organoid model, which allows for disposal of functional epithelial unities. Such studies will contribute to a better understanding of the potential causal links between diet-induced changes in the luminal concentrations of these AA-derived bacterial metabolites and effects on the colon epithelial barrier function and water/electrolyte absorption.
Collapse
|
5
|
Zhang K, Fan R, Zhao D, Liu P, Yang Z, Liu J, Zhang S, Rao S, Wang Y, Wan L. CircATIC
inhibits esophageal carcinoma progression and promotes radiosensitivity by elevating
RHCG
through sponging
miR‐10‐3p. Thorac Cancer 2022; 13:934-946. [PMID: 35307984 PMCID: PMC8977172 DOI: 10.1111/1759-7714.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- Kai Zhang
- Department of Radiation Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Ruitai Fan
- Department of Radiation Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Deyao Zhao
- Department of Radiation Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Peipei Liu
- Department of Respiratory and Critical Care Medicine Nanyang Central Hospital Nanyang Henan China
| | - Zheng Yang
- Department of Radiotherapy Nanyang Central Hospital Nanyang Henan China
| | - Junqi Liu
- Department of Radiation Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Song Zhang
- Department of Radiation Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Shilei Rao
- Department of Radiotherapy Nanyang Central Hospital Nanyang Henan China
| | - Yang Wang
- Department of Radiotherapy Nanyang Central Hospital Nanyang Henan China
| | - Lixin Wan
- Department of Oncology Nanyang Central Hospital Nanyang Henan China
| |
Collapse
|
6
|
Liu J, Zhai C, Rho JR, Lee S, Heo HJ, Kim S, Kim HJ, Hong ST. Treatment of Hyperammonemia by Transplanting a Symbiotic Pair of Intestinal Microbes. Front Cell Infect Microbiol 2022; 11:696044. [PMID: 35071025 PMCID: PMC8766988 DOI: 10.3389/fcimb.2021.696044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperammonemia is a deleterious and inevitable consequence of liver failure. However, no adequate therapeutic agent is available for hyperammonemia. Although recent studies showed that the pharmabiotic approach could be a therapeutic option for hyperammonemia, its development is clogged with poor identification of etiological microbes and low transplantation efficiency of candidate microbes. In this study, we developed a pharmabiotic treatment for hyperammonemia that employs a symbiotic pair of intestinal microbes that are both able to remove ammonia from the surrounding environment. By a radioactive tracing experiment in mice, we elucidated how the removal of ammonia by probiotics in the intestinal lumen leads to lower blood ammonia levels. After determination of the therapeutic mechanism, ammonia-removing probiotic strains were identified by high-throughput screening of gut microbes. The symbiotic partners of ammonia-removing probiotic strains were identified by screening intestinal microbes of a human gut, and the pairs were administrated to hyperammonemic mice to evaluate therapeutic efficacy. Blood ammonia was in a chemical equilibrium relationship with intestinal ammonia. Lactobacillus reuteri JBD400 removed intestinal ammonia to shift the chemical equilibrium to lower the blood ammonia level. L. reuteri JBD400 was successfully transplanted with a symbiotic partner, Streptococcus rubneri JBD420, improving transplantation efficiency 2.3×103 times more compared to the sole transplantation while lowering blood ammonia levels significantly. This work provides new pharmabiotics for the treatment of hyperammonemia as well as explains its therapeutic mechanism. Also, this approach provides a concept of symbiotic pairs approach in the emerging field of pharmabiotics.
Collapse
Affiliation(s)
- Jing Liu
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, South Korea
| | - Chongkai Zhai
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, South Korea
| | - Jung-Rae Rho
- Department of Oceanography, Kunsan National University, Kunsan, South Korea
| | - Sangbum Lee
- Department of Oceanography, Kunsan National University, Kunsan, South Korea
| | - Ho Jin Heo
- Division of Applied Life Science [Brain Korea (BK) 21 Plus], Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | - Sangwoo Kim
- JINIS BDRD Institute, JINIS Biopharmaceuticals Inc., Wanju, South Korea
| | - Hyeon Jin Kim
- JINIS BDRD Institute, JINIS Biopharmaceuticals Inc., Wanju, South Korea.,SNJ Pharma Inc., BioLabs Los Angeles (LA) in the Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, South Korea
| |
Collapse
|
7
|
Jung EH, Brauner CJ, Wood CM. Post-prandial respiratory gas and acid-base profiles in the gastrointestinal tract and its venous drainage in freshwater rainbow trout (Oncorhynchus mykiss) and seawater English sole (Parophrys vetulus). Comp Biochem Physiol A Mol Integr Physiol 2021; 265:111123. [PMID: 34856374 DOI: 10.1016/j.cbpa.2021.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/15/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
The basic respiratory gas and acid-base conditions inside the lumen of the gastrointestinal tract (GIT) and blood draining the tract are largely unestablished in teleost fishes after feeding, though there have been some recent novel discoveries on freshwater rainbow trout (Oncorhynchus mykiss) and seawater English sole (Parophrys vetulus). The present study examined in greater detail the gas (PO2, PCO2, PNH3) and acid-base profiles (pH, [HCO3-], total [ammonia]) in the lumen of the stomach, the anterior, mid, and posterior intestine, as well as the venous drainage (subintestinal and/or hepatic portal vein) of the GIT in these two species 20 h post-feeding. Both species had high PCO2, PNH3, and total [ammonia], and low PO2 (virtual anoxia) in the lumens throughout all sections of the GIT, and high [HCO3-] in the intestine. Total [ammonia], PNH3, and [HCO3-] increased from anterior to posterior intestine in both species. P. vetulus had higher intestinal total [ammonia] and lower [HCO3-] than O. mykiss post feeding, but total [ammonia] was much higher in the stomach of O. mykiss. Despite the extreme conditions in the lumen, both arterial and venous blood showed relatively lower PCO2, total [ammonia] and higher PO2, implying limited equilibration between the two compartments. The higher [HCO3-] and lower total [ammonia] in the intestinal lumen of the freshwater O. mykiss than the seawater P. vetulus suggest the need for future comparative studies using conspecifics fed identical diets but acclimated to the two different salinities in order to understand the potential role of environmental salinity and associated osmoregulatory processes underlying these differences.
Collapse
Affiliation(s)
- Ellen H Jung
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Bamfield Marine Sciences Centre, Bamfield, BC V0R 1B0, Canada.
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Bamfield Marine Sciences Centre, Bamfield, BC V0R 1B0, Canada.
| |
Collapse
|
8
|
Liebe H, Liebe F, Sponder G, Hedtrich S, Stumpff F. Beyond Ca 2+ signalling: the role of TRPV3 in the transport of NH 4. Pflugers Arch 2021; 473:1859-1884. [PMID: 34664138 PMCID: PMC8599221 DOI: 10.1007/s00424-021-02616-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
Mutations of TRPV3 lead to severe dermal hyperkeratosis in Olmsted syndrome, but whether the mutants are trafficked to the cell membrane or not is controversial. Even less is known about TRPV3 function in intestinal epithelia, although research on ruminants and pigs suggests an involvement in the uptake of NH4+. It was the purpose of this study to measure the permeability of the human homologue (hTRPV3) to NH4+, to localize hTRPV3 in human skin equivalents, and to investigate trafficking of the Olmsted mutant G573S. Immunoblotting and immunostaining verified the successful expression of hTRPV3 in HEK-293 cells and Xenopus oocytes with trafficking to the cell membrane. Human skin equivalents showed distinct staining of the apical membrane of the top layer of keratinocytes with cytosolic staining in the middle layers. Experiments with pH-sensitive microelectrodes on Xenopus oocytes demonstrated that acidification by NH4+ was significantly greater when hTRPV3 was expressed. Single-channel measurements showed larger conductances in overexpressing Xenopus oocytes than in controls. In whole-cell experiments on HEK-293 cells, both enantiomers of menthol stimulated influx of NH4+ in hTRPV3 expressing cells, but not in controls. Expression of the mutant G573S greatly reduced cell viability with partial rescue via ruthenium red. Immunofluorescence confirmed cytosolic expression, with membrane staining observed in a very small number of cells. We suggest that expression of TRPV3 by epithelia may have implications not just for Ca2+ signalling, but also for nitrogen metabolism. Models suggesting how influx of NH4+ via TRPV3 might stimulate skin cornification or intestinal NH4+ transport are discussed.
Collapse
Affiliation(s)
- Hendrik Liebe
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Franziska Liebe
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Gerhard Sponder
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Friederike Stumpff
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany.
| |
Collapse
|
9
|
Méndez-Salazar EO, Martínez-Nava GA. Uric acid extrarenal excretion: the gut microbiome as an evident yet understated factor in gout development. Rheumatol Int 2021; 42:403-412. [PMID: 34586473 DOI: 10.1007/s00296-021-05007-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/19/2021] [Indexed: 12/19/2022]
Abstract
Humans do not produce uricase, an enzyme responsible for degrading uric acid. However, some bacteria residing in the gut can degrade one-third of the dietary and endogenous uric acid generated daily. New insights based on metagenomic and metabolomic approaches provide a new interest in exploring the involvement of gut microbiota in gout. Nevertheless, the exact mechanisms underlying this association are complex and have not been widely discussed. In this study, we aimed to review the evidence that suggests uric acid extrarenal excretion and gut microbiome are potential risk factors for developing gout. A literature search was performed in PubMed, Web of Science, and Google Scholar using several keywords, including "gut microbiome AND gout". A remarkable intestinal dysbiosis and shifts in abundance of certain bacterial taxa in gout patients have been consistently reported among different studies. Under this condition, bacteria might have developed adaptive mechanisms for de novo biosynthesis and salvage of purines, and thus, a concomitant alteration in uric acid metabolism. Moreover, gut microbiota can produce substrates that might cross the portal vein so the liver can generate de novo purinogenic amino acids, as well as uric acid. Therefore, the extrarenal excretion of uric acid needs to be considered as a factor in gout development. Nevertheless, further studies are needed to fully understand the role of gut microbiome in uric acid production and its extrarenal excretion, and to point out possible bacteria or bacterial enzymes that could be used as probiotic coadjutant treatment in gout patients.
Collapse
Affiliation(s)
| | - Gabriela Angélica Martínez-Nava
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Calzada México-Xochimilco 289, Arenal de Guadalupe, 14389, Mexico City, Mexico.
| |
Collapse
|
10
|
Manneck D, Braun H, Schrapers KT, Stumpff F. TRPV3 and TRPV4 as candidate proteins for intestinal ammonium absorption. Acta Physiol (Oxf) 2021; 233:e13694. [PMID: 34031986 DOI: 10.1111/apha.13694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
AIM Absorption of ammonia from the gut has consequences that range from encephalitis in hepatic disease to global climate change induced by nitrogenous excretions from livestock. Since patch clamp data show that certain members of the transient receptor potential (TRP) family are permeable to NH4 + , participation in ammonium efflux was investigated. METHODS Digesta, mucosa and muscular samples from stomach, duodenum, jejunum, ileum, caecum and colon of pigs were analysed via colourimetry, qPCR, Western blot, immunohistochemistry and Ussing chambers. RESULTS qPCR data show high duodenal expression of TRPV6. TRPM6 was highest in jejunum and colon, with expression of TRPM7 ubiquitous. TRPM8 and TRPV1 were below detection. TRPV2 was highest in the jejunum but almost non-detectable in the colon. TRPV4 was ubiquitously expressed by mucosal and muscular layers. TRPV3 mRNA was only found in the mucosa of the caecum and colon, organs in which NH4 + was highest (>7 mmol·L-1 ). Immunohistochemically, an apical expression of TRPV3 and TRPV4 could be detected in all tissues, with effects of 2-APB and GSK106790A supporting functional expression. In symmetrical NaCl Ringer, removal of mucosal Ca2+ and Mg2+ increased colonic short circuit current (Isc ) and conductance (Gt ) by 0.18 ± 0.06 µeq·cm-2 ·h-1 and 4.70 ± 0.85 mS·cm-2 (P < .05, N/n = 4/17). Application of mucosal NH4 Cl led to dose-dependent and divalent-sensitive increases in Gt and Isc , with effects highest in the caecum and colon. CONCLUSION We propose that TRP channels contribute to the intestinal transport of ammonium, with TRPV3 and TRPV4 promising candidate proteins. Pharmacological regulation may be possible.
Collapse
Affiliation(s)
- David Manneck
- Institute of Veterinary Physiology Freie Universität Berlin Berlin Germany
| | | | | | - Friederike Stumpff
- Institute of Veterinary Physiology Freie Universität Berlin Berlin Germany
| |
Collapse
|
11
|
Michenkova M, Taki S, Blosser MC, Hwang HJ, Kowatz T, Moss FJ, Occhipinti R, Qin X, Sen S, Shinn E, Wang D, Zeise BS, Zhao P, Malmstadt N, Vahedi-Faridi A, Tajkhorshid E, Boron WF. Carbon dioxide transport across membranes. Interface Focus 2021; 11:20200090. [PMID: 33633837 PMCID: PMC7898146 DOI: 10.1098/rsfs.2020.0090] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/30/2022] Open
Abstract
Carbon dioxide (CO2) movement across cellular membranes is passive and governed by Fick's law of diffusion. Until recently, we believed that gases cross biological membranes exclusively by dissolving in and then diffusing through membrane lipid. However, the observation that some membranes are CO2 impermeable led to the discovery of a gas molecule moving through a channel; namely, CO2 diffusion through aquaporin-1 (AQP1). Later work demonstrated CO2 diffusion through rhesus (Rh) proteins and NH3 diffusion through both AQPs and Rh proteins. The tetrameric AQPs exhibit differential selectivity for CO2 versus NH3 versus H2O, reflecting physico-chemical differences among the small molecules as well as among the hydrophilic monomeric pores and hydrophobic central pores of various AQPs. Preliminary work suggests that NH3 moves through the monomeric pores of AQP1, whereas CO2 moves through both monomeric and central pores. Initial work on AQP5 indicates that it is possible to create a metal-binding site on the central pore's extracellular face, thereby blocking CO2 movement. The trimeric Rh proteins have monomers with hydrophilic pores surrounding a hydrophobic central pore. Preliminary work on the bacterial Rh homologue AmtB suggests that gas can diffuse through the central pore and three sets of interfacial clefts between monomers. Finally, initial work indicates that CO2 diffuses through the electrogenic Na/HCO3 cotransporter NBCe1. At least in some cells, CO2-permeable proteins could provide important pathways for transmembrane CO2 movements. Such pathways could be amenable to cellular regulation and could become valuable drug targets.
Collapse
Affiliation(s)
- Marie Michenkova
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sara Taki
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matthew C. Blosser
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Hyea J. Hwang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Thomas Kowatz
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Fraser. J. Moss
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Xue Qin
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Soumyo Sen
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eric Shinn
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dengke Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian S. Zeise
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pan Zhao
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Noah Malmstadt
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Ardeschir Vahedi-Faridi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Walter F. Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
12
|
Grishin D, Kasap E, Izotov A, Lisitsa A. Multifaceted ammonia transporters. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1812443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- D.V. Grishin
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| | - E.Y. Kasap
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| | - A.A. Izotov
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| | - A.V. Lisitsa
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| |
Collapse
|
13
|
Liebe F, Liebe H, Kaessmeyer S, Sponder G, Stumpff F. The TRPV3 channel of the bovine rumen: localization and functional characterization of a protein relevant for ruminal ammonia transport. Pflugers Arch 2020; 472:693-710. [PMID: 32458085 PMCID: PMC7293678 DOI: 10.1007/s00424-020-02393-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/31/2020] [Accepted: 05/06/2020] [Indexed: 12/28/2022]
Abstract
Large quantities of ammonia (NH3 or NH4+) are absorbed from the gut, associated with encephalitis in hepatic disease, poor protein efficiency in livestock, and emissions of nitrogenous climate gasses. Identifying the transport mechanisms appears urgent. Recent functional and mRNA data suggest that absorption of ammonia from the forestomach of cattle may involve TRPV3 channels. The purpose of the present study was to sequence the bovine homologue of TRPV3 (bTRPV3), localize the protein in ruminal tissue, and confirm transport of NH4+. After sequencing, bTRPV3 was overexpressed in HEK-293 cells and Xenopus oocytes. An antibody was selected via epitope screening and used to detect the protein in immunoblots of overexpressing cells and bovine rumen, revealing a signal of the predicted ~ 90 kDa. In rumen only, an additional ~ 60 kDa band appeared, which may represent a previously described bTRPV3 splice variant of equal length. Immunohistochemistry revealed staining from the ruminal stratum basale to stratum granulosum. Measurements with pH-sensitive microelectrodes showed that NH4+ acidifies Xenopus oocytes, with overexpression of bTRPV3 enhancing permeability to NH4+. Single-channel measurements revealed that Xenopus oocytes endogenously expressed small cation channels in addition to fourfold-larger channels only observed after expression of bTRPV3. Both endogenous and bTRPV3 channels conducted NH4+, Na+, and K+. We conclude that bTRPV3 is expressed by the ruminal epithelium on the protein level. In conjunction with data from previous studies, a role in the transport of Na+, Ca2+, and NH4+ emerges. Consequences for calcium homeostasis, ruminal pH, and nitrogen efficiency in cattle are discussed.
Collapse
Affiliation(s)
- Franziska Liebe
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Hendrik Liebe
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Sabine Kaessmeyer
- Institute of Veterinary Anatomy, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany
| | - Gerhard Sponder
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Friederike Stumpff
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany.
| |
Collapse
|
14
|
Chen P, Liu C, Li P, Wang Q, Gao X, Wu H, Huang J. High RhCG expression predicts poor survival and promotes migration and proliferation of gastric cancer via keeping intracellular alkaline. Exp Cell Res 2020; 386:111740. [PMID: 31756312 DOI: 10.1016/j.yexcr.2019.111740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 11/25/2022]
Abstract
Advanced gastric cancer (GC) is aggressive with a high mortality rate. Rhesus family, C glycoprotein (RhCG) participates in tumor progression in many cancers, however its function in GC is still unknown. Here, we showed that RhCG was overexpressed in GC tissues at mRNA (P = 0.036) and protein levels (P < 0.05) compared with normal tissues. High RhCG level was correlated with poor differentiation (P = 0.037), TNM stage (P < 0.001), high HER-2 level (P = 0.018) and worse prognosis (P < 0.001). Cox proportional hazard model indicated that RhCG level was an independent prognostic biomarker. RhCG knockdown significantly decreased pHi and impeded tumor cellular proliferation, migration and invasion and repressed β-catenin and c-myc expression in GC cells. Moreover, GC cells with high RhCG level had reduced oxaliplatin efficacy suggesting a role for RhCG as a therapeutic target for GC. Our findings revealed a function of RhCG in cancer pathogenesis, invasion and metastasis in human GC. We suggest that RhCG act may as a novel prognostic indicator and a therapeutic target for gastric adenocarcinoma.
Collapse
Affiliation(s)
- Pei Chen
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China; Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, 226000, China
| | - Can Liu
- Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, 226000, China
| | - Peng Li
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Qingqing Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Xiaodong Gao
- Department of General Surgery, Medical School of Nantong University, Nantong, Jiangsu, 226000, China
| | - Han Wu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China.
| | - JianFei Huang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China; Institute of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
15
|
younesian O, younesian S, hosseinzadeh S, joshaghani HR. Association of Selenium and Risk of Esophageal Cancer: A Review. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
16
|
An in vitro analysis of intestinal ammonia transport in fasted and fed freshwater rainbow trout: roles of NKCC, K + channels, and Na +, K + ATPase. J Comp Physiol B 2019; 189:549-566. [PMID: 31486919 DOI: 10.1007/s00360-019-01231-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/15/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
We examined mechanisms of ammonia handling in the anterior, mid, and posterior intestine of unfed and fed freshwater rainbow trout (Oncorhynchus mykiss), with a focus on the Na+:K+:2Cl- co-transporter (NKCC), Na+:K +-ATPase (NKA), and K+ channels. NKCC was localized by immunohistochemistry to the mucosal (apical) surface of enterocytes, and NKCC mRNA was upregulated after feeding in the anterior and posterior segments. NH4+ was equally potent to K+ in supporting NKA activity in all intestinal sections. In vitro gut sac preparations were employed to examine mucosal ammonia flux rates (Jmamm, disappearance from the mucosal saline), serosal ammonia flux rates (Jsamm, appearance in the serosal saline), and total tissue ammonia production rates (Jtamm = Jsamm - Jmamm). Bumetanide (10-4 mol L-1), a blocker of NKCC, inhibited Jsamm in most preparations, but this was largely due to reduction of Jtamm; Jmamm was significantly inhibited only in the anterior intestine of fed animals. Ouabain (10-4 mol L-1), a blocker of NKA, generally reduced both Jmamm and Jsamm without effects on Jtamm in most preparations, though the anterior intestine was resistant after feeding. Barium (10-2 mol L-1), a blocker of K+ channels, inhibited Jmamm in most preparations, and Jsamm in some, without effects on Jtamm. These pharmacological results, together with responses to manipulations of serosal and mucosal Na+ and K+ concentrations, suggest that NKCC is not as important in ammonia absorption as previously believed. NH4+ appears to be taken up through barium-sensitive K+ channels on the mucosal surface. Mucosal NH4+ uptake via both NKCC and K+ channels is energized by basolateral NKA, which plays an additional role in scavenging NH4+ on the serosal surface to possibly minimize blood toxicity or enhance ion uptake and amino acid synthesis following feeding. Together with recent findings from other studies, we have provided an updated model to describe the current understanding of intestinal ammonia transport in teleost fish.
Collapse
|
17
|
Wang W, Lu H, Lu X, Wang D, Wang Z, Dai W, Wang J, Liu P. Effect of tumor necrosis factor-α on the expression of the ammonia transporter Rhcg in the brain in mice with acute liver failure. J Neuroinflammation 2018; 15:234. [PMID: 30134917 PMCID: PMC6106833 DOI: 10.1186/s12974-018-1264-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/31/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Ammonia and tumor necrosis factor-alpha (TNF-α) play important roles in the mechanisms of hepatic encephalopathy (HE). Rhesus glycoprotein C (Rhcg) is important for ammonia transport especially in the kidney. The aim of the present study was to investigate the role of Rhcg in the brain in acute liver failure (ALF) and the effect of TNF-α on Rhcg expression. METHODS ALF mouse models were generated by treatment with D-galactosamine (D-GalN) and lipopolysaccharide (LPS), or D-GalN and TNF-α. ALF induction was blocked by pretreatment with anti-TNF-α IgG. The levels of serum TNF-α were determined by ELISA. Blood ammonia and brain ammonia concentrations were detected using an ammonia assay kit. The expression and distribution of Rhcg in the brain tissues of ALF mice were examined by western blotting, real-time PCR, immunohistochemical, and immunofluorescence analyses. RESULTS Serum TNF-α levels were increased in the LPS/D-GalN group. Blood and brain ammonia were increased in the LPS/D-GalN- and TNF-α/D-GalN-induced ALF groups. Rhcg mRNA and protein levels were elevated in both ALF groups, consistent with the increase in blood and brain ammonia. Rhcg was mainly expressed in vascular endothelial cells and astrocytes. Pretreatment with anti-TNF-α IgG antibody downregulated Rhcg in brain tissues in the LPS/D-GalN group, prevented the occurrence of ALF, and reduced blood and brain ammonia levels in the LPS/D-GalN group. CONCLUSION TNF-α promoted the transport of ammonia from the blood to brain tissues and exacerbated the toxic effects of ammonia by upregulating Rhcg.
Collapse
Affiliation(s)
- Wen Wang
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Hui Lu
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Xu Lu
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Donglei Wang
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaohan Wang
- Gastroenterology and Hepatology Department, Jiangxi Provincial People's Hospital, Nanchang City, Jiangxi Province, People's Republic of China
| | - Wenying Dai
- Department of Intervention, the Sixth People's Hospital of Shenyang, Shenyang City, Liaoning Province, People's Republic of China
| | - Jinyong Wang
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Pei Liu
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, People's Republic of China. .,The Institute of Liver Diseases of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
18
|
Ming XY, Zhang X, Cao TT, Zhang LY, Qi JL, Kam NW, Tang XM, Cui YZ, Zhang BZ, Li Y, Qin YR, Guan XY. RHCG Suppresses Tumorigenicity and Metastasis in Esophageal Squamous Cell Carcinoma via Inhibiting NF-κB Signaling and MMP1 Expression. Theranostics 2018; 8:185-198. [PMID: 29290801 PMCID: PMC5743468 DOI: 10.7150/thno.21383] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022] Open
Abstract
Background and Aims: Esophageal squamous cell carcinoma (ESCC), a major histologic subtype of esophageal cancer, is increasing in incidence, but the genetic underpinnings of this disease remain unexplored. The aim of this study is to identify the recurrent genetic changes, elucidate their roles and discover new biomarkers for improving clinical management of ESCC. Methods: Western blotting and immunohistochemistry were performed to detect the expression level of RHCG. Bisulfite genomic sequencing (BGS) and methylation-specific PCR (MSP) were used to study the methylation status in the promoter region of RHCG. The tumor-suppressive effect of RHCG was determined by both in-vitro and in-vivo assays. Affymetrix cDNA microarray was used to identify the underlying molecular mechanism. Results:RHCG was frequently downregulated in ESCCs, which was significantly correlated with poor differentiation (P = 0.001), invasion (P = 0.003), lymph node metastasis (P = 0.038) and poorer prognosis (P < 0.001). Demethylation treatment and bisulfite genomic sequencing analyses revealed that the downregulation of RHCG in both ESCC cell lines and clinical samples was associated with its promoter hypermethylation. Functional assays demonstrated that RHCG could inhibit clonogenicity, cell motility, tumor formation and metastasis in mice. Further study revealed that RHCG could stabilize IκB by decreasing its phosphorylation, and subsequently inhibit NF-κB/p65 activation by blocking the nuclear translocation of p65, where it acted as a transcription regulator for the upregulation of MMP1 expression. Conclusions: Our results support the notion that RHCG is a novel tumor suppressor gene that plays an important role in the development and progression of ESCC.
Collapse
|
19
|
Abstract
Acid-base homeostasis is critical to maintenance of normal health. Renal ammonia excretion is the quantitatively predominant component of renal net acid excretion, both under basal conditions and in response to acid-base disturbances. Although titratable acid excretion also contributes to renal net acid excretion, the quantitative contribution of titratable acid excretion is less than that of ammonia under basal conditions and is only a minor component of the adaptive response to acid-base disturbances. In contrast to other urinary solutes, ammonia is produced in the kidney and then is selectively transported either into the urine or the renal vein. The proportion of ammonia that the kidney produces that is excreted in the urine varies dramatically in response to physiological stimuli, and only urinary ammonia excretion contributes to acid-base homeostasis. As a result, selective and regulated renal ammonia transport by renal epithelial cells is central to acid-base homeostasis. Both molecular forms of ammonia, NH3 and NH4+, are transported by specific proteins, and regulation of these transport processes determines the eventual fate of the ammonia produced. In this review, we discuss these issues, and then discuss in detail the specific proteins involved in renal epithelial cell ammonia transport.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
20
|
Changes in the Luminal Environment of the Colonic Epithelial Cells and Physiopathological Consequences. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:476-486. [PMID: 28082121 DOI: 10.1016/j.ajpath.2016.11.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/28/2022]
Abstract
Evidence, mostly from experimental models, has accumulated, indicating that modifications of bacterial metabolite concentrations in the large intestine luminal content, notably after changes in the dietary composition, may have important beneficial or deleterious consequences for the colonic epithelial cell metabolism and physiology in terms of mitochondrial energy metabolism, reactive oxygen species production, gene expression, DNA integrity, proliferation, and viability. Recent data suggest that for some bacterial metabolites, like hydrogen sulfide and butyrate, the extent of their oxidation in colonocytes affects their capacity to modulate gene expression in these cells. Modifications of the luminal bacterial metabolite concentrations may, in addition, affect the colonic pH and osmolarity, which are known to affect colonocyte biology per se. Although the colonic epithelium appears able to face, up to some extent, changes in its luminal environment, notably by developing a metabolic adaptive response, some of these modifications may likely affect the homeostatic process of colonic epithelium renewal and the epithelial barrier function. The contribution of major changes in the colonocyte luminal environment in pathological processes, like mucosal inflammation, preneoplasia, and neoplasia, although suggested by several studies, remains to be precisely evaluated, particularly in a long-term perspective.
Collapse
|
21
|
Abdulnour-Nakhoul S, Le T, Rabon E, Hamm LL, Nakhoul NL. Structural determinants of NH3 and NH4+ transport by mouse Rhbg, a renal Rh glycoprotein. Am J Physiol Renal Physiol 2016; 311:F1280-F1293. [PMID: 27681563 PMCID: PMC5210199 DOI: 10.1152/ajprenal.00556.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 09/21/2016] [Indexed: 11/22/2022] Open
Abstract
Renal Rhbg is localized to the basolateral membrane of intercalated cells and is involved in NH3/NH4+ transport. The structure of Rhbg is not yet resolved; however, a high-resolution crystal structure of AmtB, a bacterial homolog of Rh, has been determined. We aligned the sequence of Rhbg to that of AmtB and identified important sites of Rhbg that may affect transport. Our analysis positioned three conserved amino acids, histidine 183 (H183), histidine 342 (H342), and tryptophan 230 (W230), within the hydrophobic pore where they presumably serve to control NH3 transport. A fourth residue, phenylalanine 128 (F128) was positioned at the upper vestibule, presumably contributing to recruitment of NH4+ We generated three mutations each of H183, H342, W230, and F128 and expressed them in frog oocytes. Immunolabeling showed that W230 and F128 mutants were localized to the cell membrane, whereas H183 and H342 staining was diffuse and mostly intracellular. To determine function, we compared measurements of NH3/NH4+ and methyl amine (MA)/methyl ammonium (MA+)-induced currents, intracellular pH, and surface pH (pHs) among oocytes expressing the mutants, Rhbg, or injected with H2O. In H183 and W230 mutants, NH4+-induced current and intracellular acidification were inhibited compared with that of Rhbg, and MA-induced intracellular alkalinization was completely absent. Expression of H183A or W230A mutants inhibited NH3/NH4+- and MA/MA+-induced decrease in pHs to the level observed in H2O-injected oocytes. Mutations of F128 did not significantly affect transport of NH3 or NH4+ These data demonstrated that mutating H183 or W230 caused loss of function but not F128. H183 and H342 may affect membrane expression of the transporter.
Collapse
Affiliation(s)
- Solange Abdulnour-Nakhoul
- Southeast Louisiana Veterans Health Care Network and Department of Medicine, Section of Nephrology, Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Trang Le
- Southeast Louisiana Veterans Health Care Network and Department of Medicine, Section of Nephrology, Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Edd Rabon
- Southeast Louisiana Veterans Health Care Network and Department of Medicine, Section of Nephrology, Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - L Lee Hamm
- Southeast Louisiana Veterans Health Care Network and Department of Medicine, Section of Nephrology, Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Nazih L Nakhoul
- Southeast Louisiana Veterans Health Care Network and Department of Medicine, Section of Nephrology, Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
22
|
Rosendahl J, Braun HS, Schrapers KT, Martens H, Stumpff F. Evidence for the functional involvement of members of the TRP channel family in the uptake of Na(+) and NH4 (+) by the ruminal epithelium. Pflugers Arch 2016; 468:1333-52. [PMID: 27184746 DOI: 10.1007/s00424-016-1835-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/14/2016] [Accepted: 05/04/2016] [Indexed: 01/14/2023]
Abstract
Large quantities of protein are degraded in the fermentative parts of the gut to ammonia, which is absorbed, detoxified to urea, and excreted, leading to formation of nitrogenous compounds such as N2O that are associated with global warming. In ruminants, channel-mediated uptake of NH4 (+) from the rumen predominates. The molecular identity of these channels remains to be clarified. Ruminal cells and epithelia from cows and sheep were investigated using patch clamp, Ussing chamber, microelectrode techniques, and qPCR. In patch clamp experiments, bovine ruminal epithelial cells expressed a conductance for NH4 (+) that could be blocked in a voltage-dependent manner by divalent cations. In the native epithelium, NH4 (+) depolarized the apical potential, acidified the cytosol and induced a rise in short-circuit current (I sc) that persisted after the removal of Na(+), was blocked by verapamil, enhanced by the removal of divalent cations, and was sensitive to certain transient receptor potential (TRP) channel modulators. Menthol or thymol stimulated the I sc in Na(+) or NH4 (+) containing solutions in a dose-dependent manner and modulated transepithelial Ca(2+) fluxes. On the level of messenger RNA (mRNA), ovine and bovine ruminal epithelium expressed TRPA1, TRPV3, TRPV4, TRPM6, and TRPM7, with any expression of TRPV6 marginal. No bands were detected for TRPV1, TRPV5, or TRPM8. Functional and molecular biological data suggest that the transport of NH4 (+), Na(+), and Ca(2+) across the rumen involves TRP channels, with TRPV3 and TRPA1 emerging as prime candidate genes. TRP channels may also contribute to the transport of NH4 (+) across other epithelia.
Collapse
Affiliation(s)
- Julia Rosendahl
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Hannah S Braun
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Katharina T Schrapers
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Holger Martens
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Friederike Stumpff
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany.
| |
Collapse
|
23
|
Osis G, Handlogten ME, Lee HW, Hering-Smith KS, Huang W, Romero MF, Verlander JW, Weiner ID. Effect of NBCe1 deletion on renal citrate and 2-oxoglutarate handling. Physiol Rep 2016; 4:e12778. [PMID: 27117802 PMCID: PMC4848728 DOI: 10.14814/phy2.12778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 12/03/2022] Open
Abstract
UNLABELLED The bicarbonate transporter, NBCe1 (SLC4A4), is necessary for at least two components of the proximal tubule contribution to acid-base homeostasis, filtered bicarbonate reabsorption, and ammonia metabolism. This study's purpose was to determine NBCe1's role in a third component of acid-base homeostasis, organic anion metabolism, by studying mice with NBCe1 deletion. Because NBCe1 deletion causes metabolic acidosis, we also examined acid-loaded wild-type adult mice to determine if the effects of NBCe1 deletion were specific to NBCe1 deletion or were a non-specific effect of the associated metabolic acidosis. Both NBCe1 KO and acid-loading decreased citrate excretion, but in contrast to metabolic acidosis alone, NBCe1 KO decreased expression of the apical citrate transporter, NaDC-1. Thus, NBCe1 expression is necessary for normal NaDC-1 expression, and NBCe1 deletion induces a novel citrate reabsorptive pathway. Second, NBCe1 KO increased 2-oxoglutarate excretion. This could not be attributed to the metabolic acidosis as experimental acidosis decreased excretion. Increased 2-oxoglutarate excretion could not be explained by changes in plasma 2-oxoglutarate levels, the glutaminase I or the glutaminase II generation pathways, 2-oxoglutarate metabolism, its putative apical 2-oxoglutarate transporter, OAT10, or its basolateral transporter, NaDC-3. IN SUMMARY (1) NBCe1 is necessary for normal proximal tubule NaDC-1 expression; (2) NBCe1 deletion results in stimulation of a novel citrate reabsorptive pathway; and (3) NBCe1 is necessary for normal 2-oxoglutarate metabolism through mechanisms independent of expression of known transport and metabolic pathways.
Collapse
Affiliation(s)
- Gunars Osis
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Mary E Handlogten
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | | | - Weitao Huang
- Renal Division, Tulane University College of Medicine, New Orleans, Louisiana
| | - Michael F Romero
- Department of Physiology & Biomedical Engineering and Nephrology & Hypertension, Mayo Clinic College Of Medicine, Rochester, Minnesota
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
24
|
Xiang R, Oddy VH, Archibald AL, Vercoe PE, Dalrymple BP. Epithelial, metabolic and innate immunity transcriptomic signatures differentiating the rumen from other sheep and mammalian gastrointestinal tract tissues. PeerJ 2016; 4:e1762. [PMID: 26989612 PMCID: PMC4793311 DOI: 10.7717/peerj.1762] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/14/2016] [Indexed: 12/20/2022] Open
Abstract
Background. Ruminants are successful herbivorous mammals, in part due to their specialized forestomachs, the rumen complex, which facilitates the conversion of feed to soluble nutrients by micro-organisms. Is the rumen complex a modified stomach expressing new epithelial (cornification) and metabolic programs, or a specialised stratified epithelium that has acquired new metabolic activities, potentially similar to those of the colon? How has the presence of the rumen affected other sections of the gastrointestinal tract (GIT) of ruminants compared to non-ruminants? Methods. Transcriptome data from 11 tissues covering the sheep GIT, two stratified epithelial and two control tissues, was analysed using principal components to cluster tissues based on gene expression profile similarity. Expression profiles of genes along the sheep GIT were used to generate a network to identify genes enriched for expression in different compartments of the GIT. The data from sheep was compared to similar data sets from two non-ruminants, pigs (closely related) and humans (more distantly related). Results. The rumen transcriptome clustered with the skin and tonsil, but not the GIT transcriptomes, driven by genes from the epidermal differentiation complex, and genes encoding stratified epithelium keratins and innate immunity proteins. By analysing all of the gene expression profiles across tissues together 16 major clusters were identified. The strongest of these, and consistent with the high turnover rate of the GIT, showed a marked enrichment of cell cycle process genes (P = 1.4 E-46), across the whole GIT, relative to liver and muscle, with highest expression in the caecum followed by colon and rumen. The expression patterns of several membrane transporters (chloride, zinc, nucleosides, amino acids, fatty acids, cholesterol and bile acids) along the GIT was very similar in sheep, pig and humans. In contrast, short chain fatty acid uptake and metabolism appeared to be different between the species and different between the rumen and colon in sheep. The importance of nitrogen and iodine recycling in sheep was highlighted by the highly preferential expression of SLC14A1-urea (rumen), RHBG-ammonia (intestines) and SLC5A5-iodine (abomasum). The gene encoding a poorly characterized member of the maltase-glucoamylase family (MGAM2), predicted to play a role in the degradation of starch or glycogen, was highly expressed in the small and large intestines. Discussion. The rumen appears to be a specialised stratified cornified epithelium, probably derived from the oesophagus, which has gained some liver-like and other specialized metabolic functions, but probably not by expression of pre-existing colon metabolic programs. Changes in gene transcription downstream of the rumen also appear have occurred as a consequence of the evolution of the rumen and its effect on nutrient composition flowing down the GIT.
Collapse
Affiliation(s)
| | - Victor Hutton Oddy
- NSW Department of Primary Industries, Beef Industry Centre, University of New England , Armidale, NSW , Australia
| | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush , UK
| | - Phillip E Vercoe
- School of Animal Biology and Institute of Agriculture, The University of Western Australia , Perth, Western Australia , Australia
| | | |
Collapse
|
25
|
Adlimoghaddam A, Boeckstaens M, Marini AM, Treberg JR, Brassinga AKC, Weihrauch D. Ammonia excretion in Caenorhabditis elegans: mechanism and evidence of ammonia transport of the Rhesus protein CeRhr-1. ACTA ACUST UNITED AC 2015; 218:675-83. [PMID: 25740900 DOI: 10.1242/jeb.111856] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The soil-dwelling nematode Caenorhabditis elegans is a bacteriovorous animal, excreting the vast majority of its nitrogenous waste as ammonia (25.3±1.2 µmol gFW(-1) day(-1)) and very little urea (0.21±0.004 µmol gFW(-1) day(-1)). Although these roundworms have been used for decades as genetic model systems, very little is known about their strategy to eliminate the toxic waste product ammonia from their bodies into the environment. The current study provides evidence that ammonia is at least partially excreted via the hypodermis. Starvation reduced the ammonia excretion rates by more than half, whereas mRNA expression levels of the Rhesus protein CeRhr-2, V-type H(+)-ATPase (subunit A) and Na(+)/K(+)-ATPase (α-subunit) decreased correspondingly. Moreover, ammonia excretion rates were enhanced in media buffered to pH 5 and decreased at pH 9.5. Inhibitor experiments, combined with enzyme activity measurements and mRNA expression analyses, further suggested that the excretion mechanism involves the participation of the V-type H(+)-ATPase, carbonic anhydrase, Na(+)/K(+)-ATPase, and a functional microtubule network. These findings indicate that ammonia is excreted, not only by apical ammonia trapping, but also via vesicular transport and exocytosis. Exposure to 1 mmol l(-1) NH4Cl caused a 10-fold increase in body ammonia and a tripling of ammonia excretion rates. Gene expression levels of CeRhr-1 and CeRhr-2, V-ATPase and Na(+)/K(+)-ATPase also increased significantly in response to 1 mmol l(-1) NH4Cl. Importantly, a functional expression analysis showed, for the first time, ammonia transport capabilities for CeRhr-1 in a phylogenetically ancient invertebrate system, identifying these proteins as potential functional precursors to the vertebrate ammonia-transporting Rh-glycoproteins.
Collapse
Affiliation(s)
- Aida Adlimoghaddam
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2
| | - Mélanie Boeckstaens
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, Gosselies 6041, Belgium
| | - Anna-Maria Marini
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, Gosselies 6041, Belgium
| | - Jason R Treberg
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2 Faculty of Human Ecology, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2
| | | | - Dirk Weihrauch
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2
| |
Collapse
|
26
|
Takeda K, Takemasa T. Expression of ammonia transporters Rhbg and Rhcg in mouse skeletal muscle and the effect of 6-week training on these proteins. Physiol Rep 2015; 3:3/10/e12596. [PMID: 26471760 PMCID: PMC4632962 DOI: 10.14814/phy2.12596] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The purposes of our study were to examine (1) Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg) expressions in mouse skeletal muscle; and (2) the effect of 6-week training on Rhbg and Rhcg expressions. The levels of Rhbg and Rhcg expressions were much higher in the soleus (Sol) than in the plantaris (Pla) or gastrocnemius (Gas). Immunofluorescence microscopy demonstrated that Rhbg colocalizes with dystrophin, a plasma membrane protein marker, whereas Rhcg colocalizes with CD31, a vascular endothelial cell marker. In a 6-week swim training study, we set up two different training groups. Endurance (END) group underwent swim training without load for 30 min and exercise time was increased by 30 min every 2 weeks. High-intensity interval training (HIIT) group underwent 10–12 sets of swim training at 20 sec per set and intervals of 10 sec, with a load of 10% body weight. After 6 weeks of training, all mice performed exhaustive swimming performance test (PT), with 9% of body weight to exhaustion. HIIT group could significantly swim more and showed significantly lower blood ammonia level compared with control (CON) group at immediately after PT. Rhbg and Rhcg levels did not change after 6 weeks in both END and HIIT groups. Our results indicate that ammonia transporters are more abundant in slow fiber than fast fiber muscles and 6 weeks swim training suppresses blood ammonia elevation induced by high-intensity exercise with performance improvement, although the levels of ammonia transporter proteins does not change.
Collapse
Affiliation(s)
- Kohei Takeda
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Tohru Takemasa
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
27
|
Caner T, Abdulnour-Nakhoul S, Brown K, Islam MT, Hamm LL, Nakhoul NL. Mechanisms of ammonia and ammonium transport by rhesus-associated glycoproteins. Am J Physiol Cell Physiol 2015; 309:C747-58. [PMID: 26354748 DOI: 10.1152/ajpcell.00085.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/02/2015] [Indexed: 01/24/2023]
Abstract
In this study we characterized ammonia and ammonium (NH3/NH4(+)) transport by the rhesus-associated (Rh) glycoproteins RhAG, Rhbg, and Rhcg expressed in Xenopus oocytes. We used ion-selective microelectrodes and two-electrode voltage clamp to measure changes in intracellular pH, surface pH, and whole cell currents induced by NH3/NH4(+) and methyl amine/ammonium (MA/MA(+)). These measurements allowed us to define signal-specific signatures to distinguish NH3 from NH4(+) transport and to determine how transport of NH3 and NH4(+) differs among RhAG, Rhbg, and Rhcg. Our data indicate that expression of Rh glycoproteins in oocytes generally enhanced NH3/NH4(+) transport and that cellular changes induced by transport of MA/MA(+) by Rh proteins were different from those induced by transport of NH3/NH4(+). Our results support the following conclusions: 1) RhAG and Rhbg transport both the ionic NH4(+) and neutral NH3 species; 2) transport of NH4(+) is electrogenic; 3) like Rhbg, RhAG transport of NH4(+) masks NH3 transport; and 4) Rhcg is likely to be a predominantly NH3 transporter, with no evidence of enhanced NH4(+) transport by this transporter. The dual role of Rh proteins as NH3 and NH4(+) transporters is a unique property and may be critical in understanding how transepithelial secretion of NH3/NH4(+) occurs in the renal collecting duct.
Collapse
Affiliation(s)
- Tolga Caner
- Section of Nephrology, Department of Medicine, and Department of Physiology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Solange Abdulnour-Nakhoul
- Section of Nephrology, Department of Medicine, and Department of Physiology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Karen Brown
- Section of Nephrology, Department of Medicine, and Department of Physiology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - M Toriqul Islam
- Section of Nephrology, Department of Medicine, and Department of Physiology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - L Lee Hamm
- Section of Nephrology, Department of Medicine, and Department of Physiology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Nazih L Nakhoul
- Section of Nephrology, Department of Medicine, and Department of Physiology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
28
|
Polak K, Acierno MM, Raj K, Mizukami K, Siegel DL, Giger U. Dog erythrocyte antigen 1: mode of inheritance and initial characterization. Vet Clin Pathol 2015; 44:369-79. [PMID: 26291052 DOI: 10.1111/vcp.12284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The dog erythrocyte antigen (DEA) 1 blood group system remains poorly defined. OBJECTIVES The purpose of the study was to determine the DEA 1 mode of inheritance and to characterize the DEA 1 antigen and alloantibodies. ANIMALS Canine research colony families, clinic canine patients, and DEA 1.2+ blood bank dogs were studied. METHODS Canine blood was typed by flow cytometry and immunochromatographic strips using anti-DEA 1 monoclonal antibodies. Gel column experiments with polyclonal and immunoblotting with monoclonal anti-DEA 1 antibodies were performed to analyze select samples. Cross-reactivity of human typing reagents against canine RBC and one monoclonal anti-DEA 1 antibody against human RBC panels was assessed. RESULTS Typing of 12 families comprising 144 dogs indicated an autosomal dominant inheritance with ≥ 4 alleles: DEA 1- (0) and DEA 1+ weak (1+), intermediate (2+), and strong (3+ and 4+). Samples from 6 dogs previously typed as DEA 1.2+ were typed as DEA 1+ or DEA 1- using monoclonal antibodies. Human typing reagents produced varied reactions in tube agglutination experiments against DEA 1+ and DEA 1- RBC. Polypeptide bands were not detected on immunoblots using a monoclonal anti-DEA 1 antibody, therefore the anti-DEA 1 antibody may be specific for conformational epitopes lost during processing. CONCLUSIONS The autosomal dominant inheritance of DEA 1 with ≥ 4 alleles indicates a complex blood group system; the antigenicity of each DEA 1+ type will need to be determined. The biochemical nature of the DEA 1 antigen(s) appears different from human blood group systems tested.
Collapse
Affiliation(s)
- Klaudia Polak
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michelle M Acierno
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karthik Raj
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keijiro Mizukami
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Don L Siegel
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Urs Giger
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Zhang W, Ogando DG, Bonanno JA, Obukhov AG. Human SLC4A11 Is a Novel NH3/H+ Co-transporter. J Biol Chem 2015; 290:16894-905. [PMID: 26018076 DOI: 10.1074/jbc.m114.627455] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Indexed: 12/13/2022] Open
Abstract
SLC4A11 has been proposed to be an electrogenic membrane transporter, permeable to Na(+), H(+) (OH(-)), bicarbonate, borate, and NH4 (+). Recent studies indicate, however, that neither bicarbonate or borate is a substrate. Here, we examined potential NH4 (+), Na(+), and H(+) contributions to electrogenic ion transport through SLC4A11 stably expressed in Na(+)/H(+) exchanger-deficient PS120 fibroblasts. Inward currents observed during exposure to NH4Cl were determined by the [NH3]o, not [NH4 (+)]o, and current amplitudes varied with the [H(+)] gradient. These currents were relatively unaffected by removal of Na(+), K(+), or Cl(-) from the bath but could be reduced by inclusion of NH4Cl in the pipette solution. Bath pH changes alone did not generate significant currents through SLC4A11, except immediately following exposure to NH4Cl. Reversal potential shifts in response to changing [NH3]o and pHo suggested an NH3/H(+)-coupled transport mode for SLC4A11. Proton flux through SLC4A11 in the absence of ammonia was relatively small, suggesting that ammonia transport is of more physiological relevance. Methylammonia produced currents similar to NH3 but with reduced amplitude. Estimated stoichiometry of SLC4A11 transport was 1:2 (NH3/H(+)). NH3-dependent currents were insensitive to 10 μM ethyl-isopropyl amiloride or 100 μM 4,4'- diisothiocyanatostilbene-2,2'-disulfonic acid. We propose that SLC4A11 is an NH3/2H(+) co-transporter exhibiting unique characteristics.
Collapse
Affiliation(s)
- Wenlin Zhang
- From the School of Optometry, Indiana University Bloomington, Bloomington, Indiana 47405 and
| | - Diego G Ogando
- From the School of Optometry, Indiana University Bloomington, Bloomington, Indiana 47405 and
| | - Joseph A Bonanno
- From the School of Optometry, Indiana University Bloomington, Bloomington, Indiana 47405 and
| | - Alexander G Obukhov
- the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
30
|
Rubino JG, Zimmer AM, Wood CM. Intestinal ammonia transport in freshwater and seawater acclimated rainbow trout (Oncorhynchus mykiss): evidence for a Na+ coupled uptake mechanism. Comp Biochem Physiol A Mol Integr Physiol 2014; 183:45-56. [PMID: 25545914 DOI: 10.1016/j.cbpa.2014.12.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 12/23/2022]
Abstract
In vitro gut sac experiments were performed on freshwater and 60% seawater acclimated trout (Oncorhynchus mykiss) under treatments designed to discern possible mechanisms of intestinal ammonia transport. Seawater acclimation increased ammonia flux rate into the serosal saline (Jsamm) in the anterior intestine, however it did not alter Jsamm in the mid- or posterior intestine suggesting similar mechanisms of ammonia handling in freshwater and seawater fish. Both fluid transport rate (FTR) and Jsamm were inhibited in response to basolateral ouabain treatment, suggesting a linkage of ammonia uptake to active transport, possibly coupled to fluid transport processes via solvent drag. Furthermore, decreases in FTR and Jsamm caused by low Na(+) treatment indicated a Na(+) linked transport mechanism. Mucosal bumetanide (10(-4) M) had no impact on FTR, yet decreased Jsamm in the anterior and mid-intestine, suggesting NH4(+) substitution for K(+) on an apical NKCC, and at least a partial uncoupling of ammonia transport from fluid transport. Additional treatments (amiloride, 5-(N-ethyl-N-isopropyl)amiloride (EIPA), phenamil, bafilomycin, 4',6-diamidino-2-phenylindole (DAPI), high sodium) intended to disrupt alternative routes of Na(+) uptake yielded no change in FTR or Jsamm, suggesting the absence of direct competition between Na(+) and ammonia for transport. Finally, [(14)C]methylamine permeability (PMA) measurements indicated the likely presence of an intestinal Rh-mediated ammonia transport system, as increasing NH4Cl (0, 1, 5 mmol l(-1)) concentrations reduced PMA, suggesting competition for transport through Rh proteins. Overall, the data presented in this paper provide some of the first insights into mechanisms of teleost intestinal ammonia transport.
Collapse
Affiliation(s)
- Julian G Rubino
- McMaster University, Life Sciences Building, Department of Biology, Hamilton, Ontario L8S 4K1, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada.
| | - Alex M Zimmer
- McMaster University, Life Sciences Building, Department of Biology, Hamilton, Ontario L8S 4K1, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada
| | - Chris M Wood
- McMaster University, Life Sciences Building, Department of Biology, Hamilton, Ontario L8S 4K1, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada; Dept. of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
31
|
Weiner ID, Verlander JW. Ammonia transport in the kidney by Rhesus glycoproteins. Am J Physiol Renal Physiol 2014; 306:F1107-20. [PMID: 24647713 PMCID: PMC4024734 DOI: 10.1152/ajprenal.00013.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/14/2014] [Indexed: 12/26/2022] Open
Abstract
Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4(+) with a new model in which specific and regulated transport of both NH3 and NH4(+) across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville Florida; and Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville Florida; and
| |
Collapse
|
32
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Lee HW, Verlander JW, Handlogten ME, Han KH, Weiner ID. Effect of collecting duct-specific deletion of both Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg) on renal response to metabolic acidosis. Am J Physiol Renal Physiol 2013; 306:F389-400. [PMID: 24338819 DOI: 10.1152/ajprenal.00176.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Rhesus (Rh) glycoproteins, Rh B and Rh C Glycoprotein (Rhbg and Rhcg, respectively), are ammonia-specific transporters expressed in renal distal nephron and collecting duct sites that are necessary for normal rates of ammonia excretion. The purpose of the current studies was to determine the effect of their combined deletion from the renal collecting duct (CD-Rhbg/Rhcg-KO) on basal and acidosis-stimulated acid-base homeostasis. Under basal conditions, urine pH and ammonia excretion and serum HCO3(-) were similar in control (C) and CD-Rhbg/Rhcg-KO mice. After acid-loading for 7 days, CD-Rhbg/Rhcg-KO mice developed significantly more severe metabolic acidosis than did C mice. Acid loading increased ammonia excretion, but ammonia excretion increased more slowly in CD-Rhbg/Rhcg-KO and it was significantly less than in C mice on days 1-5. Urine pH was significantly more acidic in CD-Rhbg/Rhcg-KO mice on days 1, 3, and 5 of acid loading. Metabolic acidosis increased phosphenolpyruvate carboxykinase (PEPCK) and Na(+)/H(+) exchanger NHE-3 and decreased glutamine synthetase (GS) expression in both genotypes, and these changes were significantly greater in CD-Rhbg/Rhcg-KO than in C mice. We conclude that 1) Rhbg and Rhcg are critically important in the renal response to metabolic acidosis; 2) the significantly greater changes in PEPCK, NHE-3, and GS expression in acid-loaded CD-Rhbg/Rhcg-KO compared with acid-loaded C mice cause the role of Rhbg and Rhcg to be underestimated quantitatively; and 3) in mice with intact Rhbg and Rhcg expression, metabolic acidosis does not induce maximal changes in PEPCK, NHE-3, and GS expression despite the presence of persistent metabolic acidosis.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Div. of Nephrology, Hypertension, and Transplantation, Univ. of Florida College of Medicine, PO Box 100224, Gainesville, FL 32610.
| | | | | | | | | |
Collapse
|
34
|
Characteristics of mammalian Rh glycoproteins (SLC42 transporters) and their role in acid-base transport. Mol Aspects Med 2013; 34:629-37. [PMID: 23506896 DOI: 10.1016/j.mam.2012.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/16/2012] [Indexed: 01/06/2023]
Abstract
The mammalian Rh glycoproteins belong to the solute transporter family SLC42 and include RhAG, present in red blood cells, and two non-erythroid members RhBG and RhCG that are expressed in various tissues, including kidney, liver, skin and the GI tract. The Rh proteins in the red blood cell form an "Rh complex" made up of one D-subunit, one CE-subunit and two RhAG subunits. The Rh complex has a well-known antigenic effect but also contributes to the stability of the red cell membrane. RhBG and RhCG are related to the NH4(+) transporters of the yeast and bacteria but their exact function is yet to be determined. This review describes the expression and molecular properties of these membrane proteins and their potential role as NH3/NH4(+) and CO2 transporters. The likelihood that these proteins transport gases such as CO2 or NH3 is novel and significant. The review also describes the physiological importance of these proteins and their relevance to human disease.
Collapse
|
35
|
Lee HW, Verlander JW, Handlogten ME, Han KH, Cooke PS, Weiner ID. Expression of the rhesus glycoproteins, ammonia transporter family members, RHCG and RHBG in male reproductive organs. Reproduction 2013; 146:283-96. [PMID: 23904565 DOI: 10.1530/rep-13-0154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The rhesus glycoproteins, Rh B glycoprotein (RHBG) and Rh C glycoprotein (RHCG), are recently identified ammonia transporters. Rhcg expression is necessary for normal male fertility, but its specific cellular expression is unknown, and Rhbg has not been reported to be expressed in the male reproductive tract. This study sought to determine the specific cellular expression of Rhcg, to determine whether Rhbg is expressed in the male reproductive tract, and, if so, to determine which cells express Rhbg using real-time RT-PCR, immunoblot analysis, and immunohistochemistry. Both Rhbg and Rhcg were expressed throughout the male reproductive tract. In the testis, high levels of Rhbg were expressed in Leydig cells, and Rhcg was expressed in spermatids during the later stages of their maturation (steps 13-16) in stages I-VIII of the seminiferous epithelium cycle. In the epididymis, basolateral Rhbg was present in narrow cells in the initial segment, in principal cells in the upper corpus, and in clear cells throughout the epididymis. Apical Rhcg immunolabel was present in principal cells in the caput and upper corpus epididymidis and in clear cells in the middle and lower corpus and cauda epididymidis. In the vas deferens, apical Rhcg immunolabel and basolateral Rhbg immunolabel were present in some principal cells and colocalized with H(+)-ATPase immunolabel. We conclude that both Rhbg and Rhcg are highly expressed in specific cells in the male reproductive tract where they can contribute to multiple components of male fertility.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Department of Medicine, University of Florida College of Medicine, P.O. Box 100224, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
36
|
Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, Tomé D. Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host. Pharmacol Res 2013. [DOI: 10.1016/j.phrs.2012.11.005] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, Tomé D. Re-print of "Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host". Pharmacol Res 2013; 69:114-26. [PMID: 23318949 DOI: 10.1016/j.phrs.2013.01.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alimentary and endogenous proteins are mixed in the small intestinal lumen with the microbiota. Although experimental evidences suggest that the intestinal microbiota is able to incorporate and degrade some of the available amino acids, it appears that the microbiota is also able to synthesize amino acids raising the view that amino acid exchange between the microbiota and host can proceed in both directions. Although the net result of such exchanges remains to be determined, it is likely that a significant part of the amino acids recovered from the alimentary proteins are used by the microbiota. In the large intestine, where the density of bacteria is much higher than in the small intestine and the transit time much longer, the residual undigested luminal proteins and peptides can be degraded in amino acids by the microbiota. These amino acids cannot be absorbed to a significant extent by the colonic epithelium, but are precursors for the synthesis of numerous metabolic end products in reactions made by the microbiota. Among these products, some like short-chain fatty acids and organic acids are energy substrates for the colonic mucosa and several peripheral tissues while others like sulfide and ammonia can affect the energy metabolism of colonic epithelial cells. More work is needed to clarify the overall effects of the intestinal microbiota on nitrogenous compound metabolism and consequences on gut and more generally host health.
Collapse
Affiliation(s)
- Anne-Marie Davila
- UMR 914 INRA/AgroParisTech, Nutrition Physiology and Ingestive Behavior, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4(+) and 2 HCO3(-) for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3(-)-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4(+) trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4(+)-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K(+), and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, NF/SGVHS, Gainesville, Florida, USA.
| | | |
Collapse
|
39
|
Rodela TM, Esbaugh AJ, Weihrauch D, Veauvy CM, McDonald MD, Gilmour KM, Walsh PJ. Revisiting the effects of crowding and feeding in the gulf toadfish, Opsanus beta: the role of Rhesus glycoproteins in nitrogen metabolism and excretion. J Exp Biol 2012; 215:301-13. [DOI: 10.1242/jeb.061879] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SUMMARY
Models of branchial transport in teleosts have been reshaped by the recent discovery of Rhesus (Rh) glycoproteins, a family of proteins that facilitate the movement of NH3 across cell membranes. This study examines the effects of crowding and feeding on ammonia excretion in gulf toadfish (Opsanus beta) within the context of Rh glycoproteins and the ammonia-fixing enzyme, glutamine synthetase (GS). Four Rh isoforms (Rhag, Rhbg, Rhcg1 and Rhcg2) were isolated from toadfish. Tissue distributions showed higher levels of mRNA expression in the gills and liver, moderate levels in the intestine and lower levels in the stomach. Crowding significantly lowered branchial Rh expression and ammonia excretion rates in fasted toadfish. A comparison of Rh expression in the digestive tract revealed relatively low levels of Rhcg1 and Rhcg2 in the stomach and high mRNA abundance of Rhbg, Rhcg1 and Rhcg2 in the intestine of fasted, crowded toadfish. We speculate that these trends may reduce secretion and enhance absorption, respectively, to minimize the amount of ammonia that is lost through gastrointestinal routes. By contrast, these patterns of expression were modified in response to an exogenous ammonia load via feeding. Post-prandial ammonia excretion rates were elevated twofold, paralleled by similar increases in branchial Rhcg1 mRNA, gastric Rhcg1 mRNA and mRNA of all intestinal Rh isoforms. These changes were interpreted as an attempt to increase post-prandial ammonia excretion rates into the environment owing to a gradient created by elevated circulating ammonia concentrations and acidification of the digestive tract. Overall, we provide evidence that toadfish modulate both the expression of Rh isoforms and urea synthesis pathways to tightly control and regulate nitrogen excretion.
Collapse
Affiliation(s)
- Tamara M. Rodela
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Andrew J. Esbaugh
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Clémence M. Veauvy
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA
| | - M. Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA
| | - Kathleen M. Gilmour
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Patrick J. Walsh
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
40
|
Schäfer R, Schnaidt M, Klaffschenkel RA, Siegel G, Schüle M, Rädlein MA, Hermanutz-Klein U, Ayturan M, Buadze M, Gassner C, Danielyan L, Kluba T, Northoff H, Flegel WA. Expression of blood group genes by mesenchymal stem cells. Br J Haematol 2011; 153:520-8. [PMID: 21418181 PMCID: PMC3080447 DOI: 10.1111/j.1365-2141.2011.08652.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Incompatible blood group antigens are highly immunogenic and can cause graft rejections. Focusing on distinct carbohydrate- and protein-based membrane structures, defined by blood group antigens, we investigated human bone marrow-derived mesenchymal stem cells (MSCs) cultured in human serum. The presence of H (CD173), ABO, RhD, RhCE, RhAG, Kell, urea transporter type B (SLC14A1, previously known as JK), and Duffy antigen receptor of chemokines (DARC) was evaluated at the levels of genome, transcriptome and antigen. Fucosyltransferase-1 (FUT1), RHCE, KEL, SLC14A1 (JK) and DARC mRNA were transcribed in MSCs. FUT1 mRNA transcription was lost during differentiation. The mRNA transcription of SLC14A1 (JK) decreased during chondrogenic differentiation, while that of DARC increased during adipogenic differentiation. All MSCs synthesized SLC14A1 (JK) but no DARC protein. However, none of the protein antigens tested occurred on the surface, indicating a lack of associated protein function in the membrane. As A and B antigens are neither expressed nor adsorbed, concerns of ABO compatibility with human serum supplements during culture are alleviated. The H antigen expression by GD2dim+ MSCs identified two distinct MSC subpopulations and enabled their isolation. We hypothesize that GD2(dim+) H(+) MSCs retain a better 'stemness'. Because immunogenic blood group antigens are lacking, they cannot affect MSC engraftment in vivo, which is promising for clinical applications.
Collapse
Affiliation(s)
- Richard Schäfer
- Institute of Clinical and Experimental Transfusion Medicine (IKET), University Hospital Tübingen, Germany
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Martina Schnaidt
- Institute of Clinical and Experimental Transfusion Medicine (IKET), University Hospital Tübingen, Germany
| | - Roland A. Klaffschenkel
- Institute of Clinical and Experimental Transfusion Medicine (IKET), University Hospital Tübingen, Germany
| | - Georg Siegel
- Institute of Clinical and Experimental Transfusion Medicine (IKET), University Hospital Tübingen, Germany
| | - Michael Schüle
- Institute of Clinical and Experimental Transfusion Medicine (IKET), University Hospital Tübingen, Germany
| | - Maria Anna Rädlein
- Institute of Clinical and Experimental Transfusion Medicine (IKET), University Hospital Tübingen, Germany
| | - Ursula Hermanutz-Klein
- Institute of Clinical and Experimental Transfusion Medicine (IKET), University Hospital Tübingen, Germany
| | - Miriam Ayturan
- Institute of Clinical and Experimental Transfusion Medicine (IKET), University Hospital Tübingen, Germany
| | - Marine Buadze
- Institute of Clinical and Experimental Transfusion Medicine (IKET), University Hospital Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Germany
| | | | - Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital Tübingen, Germany
| | - Torsten Kluba
- Department of Orthopaedics, University Hospital Tübingen, Germany
| | - Hinnak Northoff
- Institute of Clinical and Experimental Transfusion Medicine (IKET), University Hospital Tübingen, Germany
| | - Willy A. Flegel
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| |
Collapse
|
41
|
Weiner ID, Verlander JW. Role of NH3 and NH4+ transporters in renal acid-base transport. Am J Physiol Renal Physiol 2011; 300:F11-23. [PMID: 21048022 PMCID: PMC3023229 DOI: 10.1152/ajprenal.00554.2010] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/01/2010] [Indexed: 11/22/2022] Open
Abstract
Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | |
Collapse
|
42
|
Endre ZH, Pickering JW, Storer MK, Hu WP, Moorhead KT, Allardyce R, McGregor DO, Scotter JM. Breath ammonia and trimethylamine allow real-time monitoring of haemodialysis efficacy. Physiol Meas 2010; 32:115-30. [PMID: 21149927 DOI: 10.1088/0967-3334/32/1/008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Non-invasive monitoring of breath ammonia and trimethylamine using Selected-ion-flow-tube mass spectroscopy (SIFT-MS) could provide a real-time alternative to current invasive techniques. Breath ammonia and trimethylamine were monitored by SIFT-MS before, during and after haemodialysis in 20 patients. In 15 patients (41 sessions), breath was collected hourly into Tedlar bags and analysed immediately (group A). During multiple dialyses over 8 days, five patients breathed directly into the SIFT-MS analyser every 30 min (group B). Pre- and post-dialysis direct breath concentrations were compared with urea reduction, Kt/V and creatinine concentrations. Dialysis decreased breath ammonia, but a transient increase occurred mid treatment in some patients. Trimethylamine decreased more rapidly than reported previously. Pre-dialysis breath ammonia correlated with pre-dialysis urea in group B (r(2) = 0.71) and with change in urea (group A, r(2) = 0.24; group B, r(2) = 0.74). In group B, ammonia correlated with change in creatinine (r(2) = 0.35), weight (r(2) = 0.52) and Kt/V (r(2) = 0.30). The ammonia reduction ratio correlated with the urea reduction ratio (URR) (r(2) = 0.42) and Kt/V (r(2) = 0.38). Pre-dialysis trimethylamine correlated with Kt/V (r(2) = 0.21), and the trimethylamine reduction ratio with URR (r(2) = 0.49) and Kt/V (r(2) = 0.36). Real-time breath analysis revealed previously unmeasurable differences in clearance kinetics of ammonia and trimethylamine. Breath ammonia is potentially useful in assessment of dialysis efficacy.
Collapse
Affiliation(s)
- Z H Endre
- Christchurch Kidney Research Group, Department of Medicine, University of Otago, Christchurch, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Andriamihaja M, Davila AM, Eklou-Lawson M, Petit N, Delpal S, Allek F, Blais A, Delteil C, Tomé D, Blachier F. Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1030-7. [PMID: 20689060 DOI: 10.1152/ajpgi.00149.2010] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hyperproteic diets are used in human nutrition to obtain body weight reduction. Although increased protein ingestion results in an increased transfer of proteins from the small to the large intestine, there is little information on the consequences of the use of such diets on the composition of large intestine content and on epithelial cell morphology and metabolism. Rats were fed for 15 days with either a normoproteic (NP, 14% protein) or a hyperproteic isocaloric diet (HP, 53% protein), and absorptive colonocytes were observed by electron microscopy or isolated for enzyme activity studies. The colonic luminal content was recovered for biochemical analysis. Absorbing colonocytes were characterized by a 1.7-fold reduction in the height of the brush-border membranes (P = 0.0001) after HP diet consumption when compared with NP. This coincided in the whole colon content of HP animals with a 1.8-fold higher mass content (P = 0.0020), a 2.2-fold higher water content (P = 0.0240), a 5.2-fold higher protease activity (P = 0.0104), a 5.5-fold higher ammonia content (P = 0.0008), and a more than twofold higher propionate, valerate, isobutyrate, and isovalerate content (P < 0.05). The basal oxygen consumption of colonocytes was similar in the NP and HP groups, but ammonia was found to provoke a dose-dependent decrease of oxygen consumption in the isolated absorbing colonocytes. The activity of glutamine synthetase (which condenses ammonia and glutamate) was found to be much higher in colonocytes than in small intestine enterocytes and was 1.6-fold higher (P = 0.0304) in colonocytes isolated from HP animals than NP. Glutaminase activity remained unchanged. Thus hyperproteic diet ingestion causes marked changes both in the luminal environment of colonocytes and in the characteristics of these cells, demonstrating that hyperproteic diet interferes with colonocyte metabolism and morphology. Possible causal relationships between energy metabolism, reduced height of colonocyte brush-border membranes, and reduced water absorption are discussed.
Collapse
Affiliation(s)
- Mireille Andriamihaja
- Institut National de Recherche Agronomique, AgroParisTech, Centre de Recherche en Nutrition Humaine-Ile de France, UMR 914 Physiologie de Nutrition et du Comportement Alimentaire, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The traditional dogma has been that all gases diffuse through all membranes simply by dissolving in the lipid phase of the membrane. Although this mechanism may explain how most gases move through most membranes, it is now clear that some membranes have no demonstrable gas permeability, and that at least two families of membrane proteins, the aquaporins (AQPs) and the Rhesus (Rh) proteins, can each serve as pathways for the diffusion of both CO2 and NH3. The knockout of RhCG in the renal collecting duct leads to the predicted consequences in acid–base physiology, providing a clear-cut role for at least one gas channel in the normal physiology of mammals. In our laboratory, we have found that surface-pH (pHS) transients provide a sensitive approach for detecting CO2 and NH3 movement across the cell membranes of Xenopus oocytes. Using this approach, we have found that each tested AQP and Rh protein has its own characteristic CO2/NH3 permeability ratio, which provides the first demonstration of gas selectivity by a channel. Our preliminary AQP1 data suggest that all the NH3 and less than half of the CO2 move along with H2O through the four monomeric aquapores. The majority of CO2 takes an alternative route through AQP1, possibly the central pore at the four-fold axis of symmetry. Preliminary data with two Rh proteins, bacterial AmtB and human erythroid RhAG, suggest a similar story, with all the NH3 moving through the three monomeric NH3 pores and the CO2 taking a separate route, perhaps the central pore at the three-fold axis of symmetry. The movement of different gases via different pathways is likely to underlie the gas selectivity that these channels exhibit.
Collapse
Affiliation(s)
- Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4970, USA.
| |
Collapse
|
45
|
Bishop JM, Verlander JW, Lee HW, Nelson RD, Weiner AJ, Handlogten ME, Weiner ID. Role of the Rhesus glycoprotein, Rh B glycoprotein, in renal ammonia excretion. Am J Physiol Renal Physiol 2010; 299:F1065-77. [PMID: 20719974 DOI: 10.1152/ajprenal.00277.2010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rh B glycoprotein (Rhbg) is a member of the Rh glycoprotein family of ammonia transporters. In the current study, we examine Rhbg's role in basal and acidosis-stimulated acid-base homeostasis. Metabolic acidosis induced by HCl administration increased Rhbg expression in both the cortex and outer medulla. To test the functional significance of increased Rhbg expression, we used a Cre-loxP approach to generate mice with intercalated cell-specific Rhbg knockout (IC-Rhbg-KO). On normal diet, intercalated cell-specific Rhbg deletion did not alter urine ammonia excretion, pH, or titratable acid excretion significantly, but it did decrease glutamine synthetase expression in the outer medulla significantly. After metabolic acidosis was induced, urinary ammonia excretion was significantly less in IC-Rhbg-KO than in control (C) mice on days 2-4 of acid loading, but not on day 5. Urine pH and titratable acid excretion and dietary acid intake did not differ significantly between acid-loaded IC-Rhcg-KO and C mice. In IC-Rhbg-KO mice, acid loading increased connecting segment (CNT) cell and outer medullary collecting duct principal cell Rhbg expression. In both C and IC-Rhbg-KO mice, acid loading decreased glutamine synthetase in both the cortex and outer medulla; the decrease on day 3 was similar in IC-Rhbg-KO and C mice, but on day 5 it was significantly greater in IC-Rhbg-KO than in C mice. We conclude 1) intercalated cell Rhbg contributes to acidosis-stimulated renal ammonia excretion, 2) Rhbg in CNT and principal cells may contribute to renal ammonia excretion, and 3) decreased glutamine synthetase expression may enable normal rates of ammonia excretion under both basal conditions and on day 5 of acid loading in IC-Rhbg-KO mice.
Collapse
Affiliation(s)
- Jesse M Bishop
- Div. of Nephrology, Hypertension, and Transplantation, P.O. Box 100224, Univ. of Florida College of Medicine, Gainesville, FL 32610-0224, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Han KH, Lee SY, Kim WY, Shin JA, Kim J, Weiner ID. Expression of ammonia transporter family members, Rh B glycoprotein and Rh C glycoprotein, in the developing rat kidney. Am J Physiol Renal Physiol 2010; 299:F187-98. [PMID: 20392801 PMCID: PMC2904167 DOI: 10.1152/ajprenal.00607.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 04/10/2010] [Indexed: 11/22/2022] Open
Abstract
Ammonia metabolism is a primary component of acid-base homeostasis but is incompletely developed at time of birth. Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg) are recently recognized ammonia transporter family members expressed in the mammalian kidney. This study's purpose was to establish the expression and localization of Rhbg and Rhcg during kidney development. We examined kidneys from fetal days 16 (E16), 18 (E18), and 20 (E20), and from the first 21 days of postnatal development. Rhbg was expressed initially at E18, with expression only in the connecting tubule (CNT); at E20, Rhbg was expressed in both the CNT and the medullary collecting duct (MCD). In contrast, Rhcg was first expressed at E16 with basal expression in the ureteric bud; at E18, it was expressed in a subset of CNT cells with an apical pattern, followed by apical and basolateral expression in the MCD at E20. In the cortex, Rhbg and Rhcg expression increased in the CNT before expression in the cortical collecting duct during fetal development. In the MCD, both Rhbg and Rhcg expression was initially in cells in the papillary tip, with gradual removal from the tip during the late fetal period and transition during the early neonatal period to an adult pattern with predominant expression in the outer MCD and only rare expression in cells in the initial inner MCD. Double-labeling with intercalated cell-specific markers identified that Rhbg and Rhcg were expressed initially in CNT cells, CNT A-type intercalated cells and non-A, non-B intercalated cells, and in MCD A-type intercalated cells. We conclude that expression of Rhbg and Rhcg parallels intercalated cell development and that immature Rhbg and Rhcg expression at birth contributes to incomplete ammonia excretion capacity.
Collapse
Affiliation(s)
- Ki-Hwan Han
- Department of Anatomy, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
47
|
Lee HW, Verlander JW, Bishop JM, Nelson RD, Handlogten ME, Weiner ID. Effect of intercalated cell-specific Rh C glycoprotein deletion on basal and metabolic acidosis-stimulated renal ammonia excretion. Am J Physiol Renal Physiol 2010; 299:F369-79. [PMID: 20462967 DOI: 10.1152/ajprenal.00120.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rh C glycoprotein (Rhcg) is an NH(3)-specific transporter expressed in both intercalated cells (IC) and principal cells (PC) in the renal collecting duct. Recent studies show that deletion of Rhcg from both intercalated and principal cells inhibits both basal and acidosis-stimulated renal ammonia excretion. The purpose of the current studies was to better understand the specific role of Rhcg expression in intercalated cells in basal and metabolic acidosis-stimulated renal ammonia excretion. We generated mice with intercalated cell-specific Rhcg deletion (IC-Rhcg-KO) using Cre-loxP techniques; control (C) mice were floxed Rhcg but Cre negative. Under basal conditions, IC-Rhcg-KO and C mice excreted urine with similar ammonia content and pH. Mice were then acid loaded by adding HCl to their diet. Ammonia excretion after acid loading increased similarly in IC-Rhcg-KO and C mice during the first 2 days of acid loading but on day 3 was significantly less in IC-Rhcg-KO than in C mice. During the first 2 days of acid loading, urine was significantly more acidic in IC-Rhcg-KO mice than in C mice; there was no difference on day 3. In IC-Rhcg-KO mice, acid loading increased principal cell Rhcg expression in both the cortex and outer medulla as well as expression of another ammonia transporter, Rh glycoprotein B (Rhbg), in principal cells in the outer medulla. We conclude that 1) Rhcg expression in intercalated cells is necessary for the normal renal response to metabolic acidosis; 2) principal cell Rhcg contributes to both basal and acidosis-stimulated ammonia excretion; and 3) adaptations in Rhbg expression occur in response to acid-loading.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
48
|
Huang CH, Ye M. The Rh protein family: gene evolution, membrane biology, and disease association. Cell Mol Life Sci 2010; 67:1203-18. [PMID: 19953292 PMCID: PMC11115862 DOI: 10.1007/s00018-009-0217-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/10/2009] [Accepted: 11/12/2009] [Indexed: 11/25/2022]
Abstract
The Rh (Rhesus) genes encode a family of conserved proteins that share a structural fold of 12 transmembrane helices with members of the major facilitator superfamily. Interest in this family has arisen from the discovery of Rh factor's involvement in hemolytic disease in the fetus and newborn, and of its homologs widely expressed in epithelial tissues. The Rh factor and Rh-associated glycoprotein (RhAG), with epithelial cousins RhBG and RhCG, form four subgroups conferring upon vertebrates a genealogical commonality. The past decade has heralded significant advances in understanding the phylogenetics, allelic diversity, crystal structure, and biological function of Rh proteins. This review describes recent progress on this family and the molecular insights gleaned from its gene evolution, membrane biology, and disease association. The focus is on its long evolutionary history and surprising structural conservation from prokaryotes to humans, pointing to the importance of its functional role, related to but distinct from ammonium transport proteins.
Collapse
Affiliation(s)
- Cheng-Han Huang
- Laboratory of Biochemistry and Molecular Genetics, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | | |
Collapse
|
49
|
Wilkinson DJ, Smeeton NJ, Watt PW. Ammonia metabolism, the brain and fatigue; revisiting the link. Prog Neurobiol 2010; 91:200-19. [PMID: 20138956 DOI: 10.1016/j.pneurobio.2010.01.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 01/27/2010] [Accepted: 01/29/2010] [Indexed: 12/15/2022]
Abstract
This review addresses the ammonia fatigue theory in light of new evidence from exercise and disease studies and aims to provide a view of the role of ammonia during exercise. Hyperammonemia is a condition common to pathological liver disorders and intense or exhausting exercise. In pathology, hyperammonemia is linked to impairment of normal brain function and the onset of the neurological condition, hepatic encephalopathy. Elevated blood ammonia concentrations arise due to a diminished capacity for removal via the liver and lead to increased exposure of organs, such as the brain, to the toxic effects of ammonia. High levels of brain ammonia can lead to deleterious alterations in astrocyte morphology, cerebral energy metabolism and neurotransmission, which may in turn impact on the functioning of important signalling pathways within the neuron. Such changes are believed to contribute to the disturbances in neuropsychological function, in particular the learning, memory, and motor control deficits observed in animal models of liver disease and also patients with cirrhosis. Hyperammonemia in exercise occurs as a result of an increased production by contracting muscle, through adenosine monophosphate (AMP) deamination (the purine nucleotide cycle) and branched chain amino acid (BCAA) deamination prior to oxidation. Plasma concentrations of ammonia during exercise often achieve or exceed those measured in liver disease patients, resulting in increased cerebral uptake. In this article we propose that exercise-induced hyperammonemia may lead to concomitant disturbances in brain function, potentially through similar mechanisms underpinning pathology, which may impact on performance as fatigue or reduced function, especially during extreme exercise.
Collapse
Affiliation(s)
- Daniel J Wilkinson
- Department of Sport and Exercise Science, Chelsea School, University of Brighton, 30 Carlisle Road, Eastbourne, UK.
| | | | | |
Collapse
|
50
|
Tipsmark CK, Sørensen KJ, Madsen SS. Aquaporin expression dynamics in osmoregulatory tissues of Atlantic salmon during smoltification and seawater acclimation. J Exp Biol 2010; 213:368-79. [DOI: 10.1242/jeb.034785] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SUMMARY
Osmotic balance in fish is maintained through the coordinated regulation of water and ion transport performed by epithelia in intestine, kidney and gill. In the current study, six aquaporin (AQP) isoforms found in Atlantic salmon (Salmo salar) were classified and their tissue specificity and mRNA expression in response to a hyperosmotic challenge and during smoltification were examined. While AQP-1a was generic, AQP-1b had highest expression in kidney and AQP-3 was predominantly found in oesophagus, gill and muscle. Two novel teleost isoforms, AQP-8a and -8b, were expressed specifically in liver and intestinal segments, respectively. AQP-10 was predominantly expressed in intestinal segments, albeit at very low levels. Transfer from freshwater (FW) to seawater (SW) induced elevated levels of intestinal AQP-1a, -1b and -8b mRNA, whereas only AQP-8b was stimulated during smoltification. In kidney, AQP-1a, -3 and -10 were elevated in SW whereas AQP-1b was reduced compared with FW levels. Correspondingly, renal AQP-1a and -10 peaked during smoltification in April and March, respectively, as AQP-1b and AQP-3 declined. In the gill, AQP-1a and AQP-3 declined in SW whereas AQP-1b increased. Gill AQP-1a and -b peaked in April, whereas AQP-3 declined through smoltification. These reciprocal isoform shifts in renal and gill tissues may be functionally linked with the changed role of these organs in FW compared with SW. The presence and observed dynamics of the AQP-8b isoform specifically in intestinal sections suggest that this is a key water channel responsible for water uptake in the intestinal tract of seawater salmonids.
Collapse
Affiliation(s)
- C. K. Tipsmark
- Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - K. J. Sørensen
- Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - S. S. Madsen
- Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|