1
|
Jimenez-Rondan FR, Ruggiero CH, McKinley KL, Koh J, Roberts JF, Triplett EW, Cousins RJ. Enterocyte-specific deletion of metal transporter Zip14 (Slc39a14) alters intestinal homeostasis through epigenetic mechanisms. Am J Physiol Gastrointest Liver Physiol 2023; 324:G159-G176. [PMID: 36537699 PMCID: PMC9925170 DOI: 10.1152/ajpgi.00244.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 01/31/2023]
Abstract
Zinc has anti-inflammatory properties using mechanisms that are unclear. Zip14 (Slc39a14) is a zinc transporter induced by proinflammatory stimuli and is highly expressed at the basolateral membrane of intestinal epithelial cells (IECs). Enterocyte-specific Zip14 ablation (Zip14ΔIEC) in mice was developed to study the functions of this transporter in enterocytes. This gene deletion led to increased intestinal permeability, increased IL-6 and IFNγ expression, mild endotoxemia, and intestinal dysbiosis. RNA sequencing was used for transcriptome profiling. These analyses revealed differential expression of specific intestinal proinflammatory and tight junction (TJ) genes. Binding of transcription factors, including NF-κβ, STAT3, and CDX2, to appropriate promoter sites of these genes supports the differential expression shown with chromatin immunoprecipitation assays. Total histone deacetylase (HDAC), and specifically HDAC3, activities were markedly reduced with Zip14 ablation. Intestinal organoids derived from ΔIEC mice display TJ and cytokine gene dysregulation compared with control mice. Differential expression of specific genes was reversed with zinc supplementation of the organoids. We conclude that zinc-dependent HDAC enzymes acquire zinc ions via Zip14-mediated transport and that intestinal integrity is controlled in part through epigenetic modifications.NEW & NOTEWORTHY We show that enterocyte-specific ablation of zinc transporter Zip14 (Slc39a14) results in selective dysbiosis and differential expression of tight junction proteins, claudin 1 and 2, and specific cytokines associated with intestinal inflammation. HDAC activity and zinc uptake are reduced with Zip14 ablation. Using intestinal organoids, the expression defects of claudin 1 and 2 are resolved through zinc supplementation. These novel results suggest that zinc, an essential micronutrient, influences gene expression through epigenetic mechanisms.
Collapse
Affiliation(s)
- Felix R Jimenez-Rondan
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| | - Courtney H Ruggiero
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| | - Kelley Lobean McKinley
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida
| | - John F Roberts
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Eric W Triplett
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida
| | - Robert J Cousins
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| |
Collapse
|
2
|
Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development and disease. Development 2018; 145:145/20/dev164384. [DOI: 10.1242/dev.164384] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
The GATA family of transcription factors is of crucial importance during embryonic development, playing complex and widespread roles in cell fate decisions and tissue morphogenesis. GATA proteins are essential for the development of tissues derived from all three germ layers, including the skin, brain, gonads, liver, hematopoietic, cardiovascular and urogenital systems. The crucial activity of GATA factors is underscored by the fact that inactivating mutations in most GATA members lead to embryonic lethality in mouse models and are often associated with developmental diseases in humans. In this Primer, we discuss the unique and redundant functions of GATA proteins in tissue morphogenesis, with an emphasis on their regulation of lineage specification and early organogenesis.
Collapse
Affiliation(s)
- Mathieu Tremblay
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Oraly Sanchez-Ferras
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| |
Collapse
|
3
|
Differences in DNA Methylation and Functional Expression in Lactase Persistent and Non-persistent Individuals. Sci Rep 2018; 8:5649. [PMID: 29618745 PMCID: PMC5884863 DOI: 10.1038/s41598-018-23957-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
In humans the expression of lactase changes during post-natal development, leading to phenotypes known as lactase persistence and non-persistence. Polymorphisms within the lactase gene (LCT) enhancer, in particular the −13910C > T, but also others, are linked to these phenotypes. We were interested in identifying dynamic mediators of LCT regulation, beyond the genotype at −13910C > T. To this end, we investigated two levels of lactase regulation in human intestinal samples obtained from New England children and adolescents of mixed European ancestry: differential expression of transcriptional regulators of LCT, and variations in DNA methylation, and their relation to phenotype. Variations in expression of CDX2, POU2F1, GATA4, GATA6, and HNF1α did not correlate with phenotype. However, an epigenome-wide approach using the Illumina Infinium HM450 bead chip identified a differentially methylated position in the LCT promoter where methylation levels are associated with the genotype at −13910C > T, the persistence/non-persistence phenotype and lactase enzymatic activity. DNA methylation levels at this promoter site and CpGs in the LCT enhancer are associated with genotype. Indeed, taken together they have a higher power to predict lactase phenotypes than the genotype alone.
Collapse
|
4
|
Yuan R, Zhang S, Yu J, Huang Y, Lu D, Cheng R, Huang S, Ao P, Zheng S, Hood L, Zhu X. Beyond cancer genes: colorectal cancer as robust intrinsic states formed by molecular interactions. Open Biol 2017; 7:rsob.170169. [PMID: 29118272 PMCID: PMC5717345 DOI: 10.1098/rsob.170169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/06/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) has complex pathological features that defy the linear-additive reasoning prevailing in current biomedicine studies. In pursuing a mechanistic understanding behind such complexity, we constructed a core molecular–cellular interaction network underlying CRC and investigated its nonlinear dynamical properties. The hypothesis and modelling method has been developed previously and tested in various cancer studies. The network dynamics reveal a landscape of several attractive basins corresponding to both normal intestinal phenotype and robust tumour subtypes, identified by their different molecular signatures. Comparison between the modelling results and gene expression profiles from patients collected at the second affiliated hospital of Zhejiang University is presented as validation. The numerical ‘driving’ experiment suggests that CRC pathogenesis may depend on pathways involved in gastrointestinal track development and molecules associated with mesenchymal lineage differentiation, such as Stat5, BMP, retinoic acid signalling pathways, Runx and Hox transcription families. We show that the multi-faceted response to immune stimulation and therapies, as well as different carcinogenesis and metastasis routes, can be straightforwardly understood and analysed under such a framework.
Collapse
Affiliation(s)
- Ruoshi Yuan
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Suzhan Zhang
- Key Laboratory of Cancer Prevention and Intervention, Chinese Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang Province 310009, People's Republic of China.,Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Jiekai Yu
- Key Laboratory of Cancer Prevention and Intervention, Chinese Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang Province 310009, People's Republic of China.,Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Yanqin Huang
- Key Laboratory of Cancer Prevention and Intervention, Chinese Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang Province 310009, People's Republic of China.,Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Demin Lu
- Key Laboratory of Cancer Prevention and Intervention, Chinese Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang Province 310009, People's Republic of China.,Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Runtan Cheng
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Sui Huang
- Institute for Systems Biology, 401 Terry Ave. N., Seattle, WA 98109-5234, USA
| | - Ping Ao
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China .,Shanghai Center of Quantitative Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Shu Zheng
- Key Laboratory of Cancer Prevention and Intervention, Chinese Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang Province 310009, People's Republic of China.,Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Leroy Hood
- Institute for Systems Biology, 401 Terry Ave. N., Seattle, WA 98109-5234, USA
| | - Xiaomei Zhu
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China .,Shanghai Center of Quantitative Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
5
|
Fisher JB, Pulakanti K, Rao S, Duncan SA. GATA6 is essential for endoderm formation from human pluripotent stem cells. Biol Open 2017; 6:1084-1095. [PMID: 28606935 PMCID: PMC5550920 DOI: 10.1242/bio.026120] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protocols have been established that direct differentiation of human pluripotent stem cells into a variety of cell types, including the endoderm and its derivatives. This model of differentiation has been useful for investigating the molecular mechanisms that guide human developmental processes. Using a directed differentiation protocol combined with shRNA depletion we sought to understand the role of GATA6 in regulating the earliest switch from pluripotency to definitive endoderm. We reveal that GATA6 depletion during endoderm formation results in apoptosis of nascent endoderm cells, concomitant with a loss of endoderm gene expression. We show by chromatin immunoprecipitation followed by DNA sequencing that GATA6 directly binds to several genes encoding transcription factors that are necessary for endoderm differentiation. Our data support the view that GATA6 is a central regulator of the formation of human definitive endoderm from pluripotent stem cells by directly controlling endoderm gene expression. Summary: Using the differentiation of huESCs as a model for endoderm formation, we reveal that the transcription factor GATA6 regulates the onset of endoderm gene expression and is required for its viability.
Collapse
Affiliation(s)
- J B Fisher
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - K Pulakanti
- Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - S Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Blood Center of Wisconsin, Milwaukee, WI 53226, USA.,Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplant, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - S A Duncan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA .,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Múnera JO, Sundaram N, Rankin SA, Hill D, Watson C, Mahe M, Vallance JE, Shroyer NF, Sinagoga KL, Zarzoso-Lacoste A, Hudson JR, Howell JC, Chatuvedi P, Spence JR, Shannon JM, Zorn AM, Helmrath MA, Wells JM. Differentiation of Human Pluripotent Stem Cells into Colonic Organoids via Transient Activation of BMP Signaling. Cell Stem Cell 2017; 21:51-64.e6. [PMID: 28648364 PMCID: PMC5531599 DOI: 10.1016/j.stem.2017.05.020] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/28/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023]
Abstract
Gastric and small intestinal organoids differentiated from human pluripotent stem cells (hPSCs) have revolutionized the study of gastrointestinal development and disease. Distal gut tissues such as cecum and colon, however, have proved considerably more challenging to derive in vitro. Here we report the differentiation of human colonic organoids (HCOs) from hPSCs. We found that BMP signaling is required to establish a posterior SATB2+ domain in developing and postnatal intestinal epithelium. Brief activation of BMP signaling is sufficient to activate a posterior HOX code and direct hPSC-derived gut tube cultures into HCOs. In vitro, HCOs express colonic markers and contained colon-specific cell populations. Following transplantation into mice, HCOs undergo morphogenesis and maturation to form tissue that exhibits molecular, cellular, and morphologic properties of human colon. Together these data show BMP-dependent patterning of human hindgut into HCOs, which will be valuable for studying diseases including colitis and colon cancer.
Collapse
Affiliation(s)
- Jorge O Múnera
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Nambirajan Sundaram
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Scott A Rankin
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - David Hill
- University of Michigan, Ann Arbor, MI 48109, USA
| | - Carey Watson
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Maxime Mahe
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Jefferson E Vallance
- Division of Gastroenterology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Noah F Shroyer
- Division of Gastroenterology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Katie L Sinagoga
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Adrian Zarzoso-Lacoste
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Jonathan R Hudson
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Jonathan C Howell
- Division of Endocrinology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Praneet Chatuvedi
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | - John M Shannon
- Division of Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Michael A Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Division of Endocrinology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
| |
Collapse
|
7
|
Vela G, Stark P, Socha M, Sauer AK, Hagmeyer S, Grabrucker AM. Zinc in gut-brain interaction in autism and neurological disorders. Neural Plast 2015; 2015:972791. [PMID: 25878905 PMCID: PMC4386645 DOI: 10.1155/2015/972791] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/05/2015] [Indexed: 12/27/2022] Open
Abstract
A growing amount of research indicates that abnormalities in the gastrointestinal (GI) system during development might be a common factor in multiple neurological disorders and might be responsible for some of the shared comorbidities seen among these diseases. For example, many patients with Autism Spectrum Disorder (ASD) have symptoms associated with GI disorders. Maternal zinc status may be an important factor given the multifaceted effect of zinc on gut development and morphology in the offspring. Zinc status influences and is influenced by multiple factors and an interdependence of prenatal and early life stress, immune system abnormalities, impaired GI functions, and zinc deficiency can be hypothesized. In line with this, systemic inflammatory events and prenatal stress have been reported to increase the risk for ASD. Thus, here, we will review the current literature on the role of zinc in gut formation, a possible link between gut and brain development in ASD and other neurological disorders with shared comorbidities, and tie in possible effects on the immune system. Based on these data, we present a novel model outlining how alterations in the maternal zinc status might pathologically impact the offspring leading to impairments in brain functions later in life.
Collapse
Affiliation(s)
- Guillermo Vela
- Zinpro Corporation, Eden Prairie, MN 55344, USA
- Autismo ABP, 64639 Monterrey, NL, Mexico
| | - Peter Stark
- Zinpro Corporation, Eden Prairie, MN 55344, USA
| | | | - Ann Katrin Sauer
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, 89081 Ulm, Germany
| | - Simone Hagmeyer
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, 89081 Ulm, Germany
| | - Andreas M. Grabrucker
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, 89081 Ulm, Germany
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
8
|
Functional significance of single nucleotide polymorphisms in the lactase gene in diverse US patients and evidence for a novel lactase persistence allele at -13909 in those of European ancestry. J Pediatr Gastroenterol Nutr 2015; 60:182-91. [PMID: 25625576 PMCID: PMC4308731 DOI: 10.1097/mpg.0000000000000595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Recent data from mainly homogeneous European and African populations implicate a 140-bp region 5' to the transcriptional start site of LCT (the lactase gene) as a regulatory site for lactase persistence and nonpersistence. Because there are no studies of US nonhomogeneous populations, we performed genotype/phenotype analysis of the -13910 and -22018 LCT single nucleotide polymorphisms (SNPs) in New England children, mostly of European ancestry. METHODS Duodenal biopsies were processed for disaccharidase activities, RNA quantification by reverse transcription polymerase chain reaction (RT-PCR), allelic expression ratios by PCR, and genotyping and SNP analysis. Results were compared with clinical information. RESULTS Lactase activity and mRNA levels, and sucrase-to-lactase ratios of enzyme activity and mRNA, showed robust correlations with genotype. None of the other LCT SNPs showed as strong a correlation with enzyme or mRNA levels as did -13910. Data were consistent, with the -13910 being the causal sequence variant instead of -22018. Four individuals heterozygous for -13910T/C had allelic expression patterns similar to individuals with -13910C/C genotypes; of these, 2 showed equal LCT expression from the 2 alleles and a novel variant (-13909C>A) associated with lactase persistence. CONCLUSIONS The identification of -13910C/C genotype is likely to predict lactase nonpersistence, consistent with prior published studies. A -13910T/T genotype will frequently, but not perfectly, predict lactase persistence in this mixed European-ancestry population; a -13910T/C genotype will not predict the phenotype. A long, rare haplotype in 2 individuals with -13910T/C genotype but equal allele-specific expression contains a novel lactase persistence allele present at -13909.
Collapse
|
9
|
Middendorp S, Schneeberger K, Wiegerinck CL, Mokry M, Akkerman RDL, van Wijngaarden S, Clevers H, Nieuwenhuis EES. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 2014; 32:1083-91. [PMID: 24496776 DOI: 10.1002/stem.1655] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/21/2013] [Accepted: 12/28/2013] [Indexed: 12/22/2022]
Abstract
Differentiation and specialization of epithelial cells in the small intestine are regulated in two ways. First, there is differentiation along the crypt-villus axis of the intestinal stem cells into absorptive enterocytes, Paneth, goblet, tuft, enteroendocrine, or M cells, which is mainly regulated by WNT. Second, there is specialization along the cephalocaudal axis with different absorptive and digestive functions in duodenum, jejunum, and ileum that is controlled by several transcription factors such as GATA4. However, so far it is unknown whether location-specific functional properties are intrinsically programmed within stem cells or if continuous signaling from mesenchymal cells is necessary to maintain the location-specific identity of the small intestine. Using the pure epithelial organoid technique, we show that region-specific gene expression profiles are conserved throughout long-term cultures of both mouse and human intestinal stem cells and correlated with differential Gata4 expression. Furthermore, the human organoid culture system demonstrates that Gata4-regulated gene expression is only allowed in absence of WNT signaling. These data show that location-specific function is intrinsically programmed in the adult stem cells of the small intestine and that their differentiation fate is independent of location-specific extracellular signals. In light of the potential future clinical application of small intestine-derived organoids, our data imply that it is important to generate GATA4-positive and GATA4-negative cultures to regenerate all essential functions of the small intestine.
Collapse
Affiliation(s)
- Sabine Middendorp
- Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Walker EM, Thompson CA, Kohlnhofer BM, Faber ML, Battle MA. Characterization of the developing small intestine in the absence of either GATA4 or GATA6. BMC Res Notes 2014; 7:902. [PMID: 25495347 PMCID: PMC4307969 DOI: 10.1186/1756-0500-7-902] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/28/2014] [Indexed: 11/10/2022] Open
Abstract
Background Studies of adult mice lacking either GATA4 or GATA6 in the small intestine demonstrate roles for these factors in small intestinal biology. Deletion of Gata4 in the adult mouse intestine revealed an essential role for GATA4 in jejunal function. Deletion of Gata6 in the adult mouse ileum alters epithelial cell types and ileal enterocyte gene expression. The effect of deletion of Gata4 or Gata6 alone during embryonic small intestinal development, however, has not been examined. We recently demonstrated that loss of both factors in double conditional knockout embryos causes severe defects in jejunal development. Therefore, the goal of this study is to provide phenotypic analysis of the small intestine of single Gata4 and Gata6 conditional knockout embryos. Results Villin-Cre was used to delete Gata4 or Gata6 in the developing intestinal epithelium. Elimination of either GATA4 or GATA6 in the jejunum, where these factors are co-expressed, caused changes in enterocyte and enteroendocrine cell gene expression. Ectopic expression of markers of the ileal-specific bile acid metabolism pathway was induced in GATA4-deficient jejunum but not in GATA6-deficient jejunum. A subtle increase in goblet cells was also identified in jejunum of both mutants. In GATA6-deficient embryonic ileum, villus length was altered, and enterocyte gene expression was perturbed including ectopic expression of the colon marker Car1. Goblet cells were increased, and enteroendocrine cells were decreased. Conclusions Overall, we show that aspects of the phenotypes observed in the small intestine of adult Gata4 and Gata6 conditional knockout mice emerge during development. The effect of eliminating GATA6 from the developing ileum was greater than that of eliminating either GATA4 or GATA6 from the developing jejunum likely reflecting functional redundancy between these factors in the jejunum. Although GATA4 and GATA6 functions overlap, our data also suggest unique functions for GATA4 and GATA6 within the developing intestine. GATA4 likely operates independently of GATA6 within the jejunum to regulate jejunal versus ileal enterocyte identity and consequently jejunal physiology. GATA6 likely regulates enteroendocrine cell differentiation cell autonomously whereas GATA4 affects this population indirectly. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-902) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Michele A Battle
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
11
|
Walker EM, Thompson CA, Battle MA. GATA4 and GATA6 regulate intestinal epithelial cytodifferentiation during development. Dev Biol 2014; 392:283-94. [PMID: 24929016 PMCID: PMC4149467 DOI: 10.1016/j.ydbio.2014.05.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/06/2014] [Accepted: 05/21/2014] [Indexed: 11/18/2022]
Abstract
The intestinal epithelium performs vital roles in organ function by absorbing nutrients and providing a protective barrier. The zinc-finger containing transcription factors GATA4 and GATA6 regulate enterocyte gene expression and control regional epithelial cell identity in the adult intestinal epithelium. Although GATA4 and GATA6 are expressed in the developing intestine, loss of either factor alone during the period of epithelial morphogenesis and cytodifferentiation fails to disrupt these processes. Therefore, we tested the hypothesis that GATA4 and GATA6 function redundantly to control these aspects of intestinal development. We used Villin-Cre, which deletes specifically in the intestinal epithelium during the period of villus development and epithelial cytodifferentiation, to generate Gata4Gata6 double conditional knockout embryos. Mice lacking GATA4 and GATA6 in the intestinal epithelium died within 24h of birth. At E18.5, intestinal villus architecture and epithelial cell populations were altered. Enterocytes were lost, and goblet cells were increased. Proliferation was also increased in GATA4-GATA6 deficient intestinal epithelium. Although villus morphology appeared normal at E16.5, the first time at which both Gata4 and Gata6 were efficiently reduced, changes in expression of markers of enterocytes, goblet cells, and proliferative cells were detected. Moreover, goblet cell number was increased at E16.5. Expression of the Notch ligand Dll1 and the Notch target Olfm4 were reduced in mutant tissue indicating decreased Notch signaling. Finally, we found that GATA4 occupies chromatin near the Dll1 transcription start site suggesting direct regulation of Dll1 by GATA4. We demonstrate that GATA4 and GATA6 play an essential role in maintaining proper intestinal epithelial structure and in regulating intestinal epithelial cytodifferentiation. Our data highlight a novel role for GATA factors in fine tuning Notch signaling during intestinal epithelial development to repress goblet cell differentiation.
Collapse
Affiliation(s)
- Emily M Walker
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA
| | - Cayla A Thompson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA
| | - Michele A Battle
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.
| |
Collapse
|
12
|
Aronson BE, Stapleton KA, Krasinski SD. Role of GATA factors in development, differentiation, and homeostasis of the small intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2014; 306:G474-90. [PMID: 24436352 PMCID: PMC3949026 DOI: 10.1152/ajpgi.00119.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The small intestinal epithelium develops from embryonic endoderm into a highly specialized layer of cells perfectly suited for the digestion and absorption of nutrients. The development, differentiation, and regeneration of the small intestinal epithelium require complex gene regulatory networks involving multiple context-specific transcription factors. The evolutionarily conserved GATA family of transcription factors, well known for its role in hematopoiesis, is essential for the development of endoderm during embryogenesis and the renewal of the differentiated epithelium in the mature gut. We review the role of GATA factors in the evolution and development of endoderm and summarize our current understanding of the function of GATA factors in the mature small intestine. We offer perspective on the application of epigenetics approaches to define the mechanisms underlying context-specific GATA gene regulation during intestinal development.
Collapse
Affiliation(s)
- Boaz E. Aronson
- 1Division of Gastroenterology and Nutrition, Department of Medicine, Children's Hospital Boston, and Harvard Medical School, Boston, Massachusetts; ,2Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Kelly A. Stapleton
- 1Division of Gastroenterology and Nutrition, Department of Medicine, Children's Hospital Boston, and Harvard Medical School, Boston, Massachusetts;
| | - Stephen D. Krasinski
- 1Division of Gastroenterology and Nutrition, Department of Medicine, Children's Hospital Boston, and Harvard Medical School, Boston, Massachusetts; ,3Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| |
Collapse
|
13
|
Vandenbon A, Kumagai Y, Teraguchi S, Amada KM, Akira S, Standley DM. A Parzen window-based approach for the detection of locally enriched transcription factor binding sites. BMC Bioinformatics 2013; 14:26. [PMID: 23331723 PMCID: PMC3602658 DOI: 10.1186/1471-2105-14-26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 01/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identification of cis- and trans-acting factors regulating gene expression remains an important problem in biology. Bioinformatics analyses of regulatory regions are hampered by several difficulties. One is that binding sites for regulatory proteins are often not significantly over-represented in the set of DNA sequences of interest, because of high levels of false positive predictions, and because of positional restrictions on functional binding sites with regard to the transcription start site. RESULTS We have developed a novel method for the detection of regulatory motifs based on their local over-representation in sets of regulatory regions. The method makes use of a Parzen window-based approach for scoring local enrichment, and during evaluation of significance it takes into account GC content of sequences. We show that the accuracy of our method compares favourably to that of other methods, and that our method is capable of detecting not only generally over-represented regulatory motifs, but also locally over-represented motifs that are often missed by standard motif detection approaches. Using a number of examples we illustrate the validity of our approach and suggest applications, such as the analysis of weaker binding sites. CONCLUSIONS Our approach can be used to suggest testable hypotheses for wet-lab experiments. It has potential for future analyses, such as the prediction of weaker binding sites. An online application of our approach, called LocaMo Finder (Local Motif Finder), is available at http://sysimm.ifrec.osaka-u.ac.jp/tfbs/locamo/.
Collapse
Affiliation(s)
- Alexis Vandenbon
- Laboratory of Systems Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Src family kinase inhibitor PP2 accelerates differentiation in human intestinal epithelial cells. Biochem Biophys Res Commun 2012; 430:1195-200. [PMID: 23274493 DOI: 10.1016/j.bbrc.2012.12.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022]
Abstract
The proto-oncogene Src is an important protein tyrosine kinase involved in signaling pathways that control cell adhesion, growth, migration and survival. Here, we investigated the involvement of Src family kinases (SFKs) in human intestinal cell differentiation. We first observed that Src activity peaked in early stages of Caco-2/15 cell differentiation. Inhibition of SFKs with PP2, a selective SFK inhibitor, accelerated the overall differentiation program. Interestingly, all polarization and terminal differentiation markers tested, including sucrase-isomaltase, lactase-phlorizin hydrolase and E and Li-cadherins were found to be significantly up-regulated after only 3 days of treatment in the newly differentiating cells. Further investigation of the effects of PP2 revealed a significant up-regulation of the two main intestinal epithelial cell-specific transcription factors Cdx2 and HNF1α and a reduction of polycomb PRC2-related epigenetic repressing activity as measured by a decrease in H3K27me3, two events closely related to the control of cell terminal differentiation in the intestine. Taken together, these data suggest that SFKs play a key role in the control of intestinal epithelial cell terminal differentiation.
Collapse
|
15
|
Intestinal GATA4 deficiency protects from diet-induced hepatic steatosis. J Hepatol 2012; 57:1061-8. [PMID: 22750465 PMCID: PMC3477492 DOI: 10.1016/j.jhep.2012.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/04/2012] [Accepted: 06/22/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS GATA4, a zinc finger domain transcription factor, is critical for jejunal identity. Mice with an intestine-specific GATA4 deficiency (GATA4iKO) are resistant to diet-induced obesity and insulin resistance. Although they have decreased intestinal lipid absorption, hepatic de novo lipogenesis is inhibited. Here, we investigated dietary lipid-dependent and independent effects on the development of steatosis and fibrosis in GATA4iKO mice. METHODS GATA4iKO and control mice were fed a Western-type diet (WTD) or a methionine and choline-deficient diet (MCDD) for 20 and 3 weeks, respectively. Functional effects of GATA4iKO on diet-induced liver steatosis were investigated. RESULTS WTD-but not MCDD-fed GATA4iKO mice showed lower hepatic concentrations of triglycerides, free fatty acids, and thiobarbituric acid reactive species and had reduced expression of lipogenic as well as fibrotic genes compared with controls. Reduced nuclear sterol regulatory element-binding protein-1c protein levels were accompanied by lower lipogenic gene expression. Oil red O and Sirius Red staining of liver sections confirmed the observed reduction in hepatic lipid accumulation and fibrosis. Immunohistochemical staining revealed an increased number of jejunal glucagon-like peptide 1 (GLP-1) positive cells in GATA4iKO mice. Consequently, we found enhanced phosphorylation of hepatic AMP-activated protein kinase and acetyl-CoA carboxylase alpha. CONCLUSIONS Our results provide strong indications for a protective effect of intestinal GATA4 deficiency on the development of hepatic steatosis and fibrosis via GLP-1, thereby blocking hepatic de novo lipogenesis.
Collapse
Key Words
- dnl, de novo lipogenesis
- tg, triglycerides
- nafld, non-alcoholic fatty liver disease
- wtd, western-type diet
- acc, acetyl-coa carboxylase alpha
- mcdd, methionine and choline-deficient diet
- glp-1, glucagon-like peptide-1
- iis, ileal interposition surgery
- gata4iko, intestine-specific gata4 deficiency
- alt, alanine aminotransferase
- ast, aspartate transaminase
- ldh, lactate dehydrogenase
- ffa, free fatty acids
- tbars, thiobarbituric acid reactive substances
- ampk, amp-activated protein kinase
- p, phosphorylated
- p38, p38 mitogen-activated protein kinase
- pparg, peroxisome proliferator-activated receptor gamma
- α-sma, alpha-smooth muscle actin
- srebp-1c, sterol regulatory element-binding protein-1c
- hsc, hepatic stellate cells
- gata4
- non-alcoholic fatty liver disease
- glp-1
- ileal interposition surgery
- de novo lipogenesis
Collapse
|
16
|
Thomson ABR, Chopra A, Clandinin MT, Freeman H. Recent advances in small bowel diseases: Part I. World J Gastroenterol 2012; 18:3336-52. [PMID: 22807604 PMCID: PMC3396187 DOI: 10.3748/wjg.v18.i26.3336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/05/2012] [Accepted: 04/13/2012] [Indexed: 02/06/2023] Open
Abstract
As is the case in all parts of gastroenterology and hepatology, there have been many advances in our knowledge and understanding of small intestinal diseases. Over 1000 publications were reviewed for 2008 and 2009, and the important advances in basic science as well as clinical applications were considered. In Part I of this Editorial Review, seven topics are considered: intestinal development; proliferation and repair; intestinal permeability; microbiotica, infectious diarrhea and probiotics; diarrhea; salt and water absorption; necrotizing enterocolitis; and immunology/allergy. These topics were chosen because of their importance to the practicing physician.
Collapse
|
17
|
Benoit YD, Lepage MB, Khalfaoui T, Tremblay E, Basora N, Carrier JC, Gudas LJ, Beaulieu JF. Polycomb repressive complex 2 impedes intestinal cell terminal differentiation. J Cell Sci 2012; 125:3454-63. [PMID: 22467857 DOI: 10.1242/jcs.102061] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The crypt-villus axis constitutes the functional unit of the small intestine, where mature absorptive cells are confined to the villi, and stem cells and transit amplifying and differentiating cells are restricted to the crypts. The polycomb group (PcG) proteins repress differentiation and promote self-renewal in embryonic stem cells. PcGs prevent transcriptional activity by catalysing epigenetic modifications, such as the covalent addition of methyl groups on histone tails, through the action of the polycomb repressive complex 2 (PRC2). Although a role for PcGs in the preservation of stemness characteristics is now well established, recent evidence suggests that they may also be involved in the regulation of differentiation. Using intestinal epithelial cell models that recapitulate the enterocytic differentiation programme, we generated a RNAi-mediated stable knockdown of SUZ12, which constitutes a cornerstone for PRC2 assembly and functionality, in order to analyse intestinal cell proliferation and differentiation. Expression of SUZ12 was also investigated in human intestinal tissues, revealing the presence of SUZ12 in most proliferative epithelial cells of the crypt and an increase in its expression in colorectal cancers. Moreover, PRC2 disruption led to a significant precocious expression of a number of terminal differentiation markers in intestinal cell models. Taken together, our data identified a mechanism whereby PcG proteins participate in the repression of the enterocytic differentiation program, and suggest that a similar mechanism exists in situ to slow down terminal differentiation in the transit amplifying cell population.
Collapse
Affiliation(s)
- Yannick D Benoit
- CIHR Team on the Digestive Epithelium, Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen H, Fang Y, Tevebaugh W, Orlando RC, Shaheen NJ, Chen X. Molecular mechanisms of Barrett's esophagus. Dig Dis Sci 2011; 56:3405-20. [PMID: 21984436 PMCID: PMC3750118 DOI: 10.1007/s10620-011-1885-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/16/2011] [Indexed: 12/11/2022]
Abstract
Barrett's esophagus (BE) is defined as the metaplastic conversion of esophageal squamous epithelium to intestinalized columnar epithelium. As a premalignant lesion of esophageal adenocarcinoma (EAC), BE develops as a result of chronic gastroesophageal reflux disease (GERD). Many studies have been conducted to understand the molecular mechanisms of this disease. This review summarizes recent results involving squamous and intestinal transcription factors, signaling pathways, stromal factors, microRNAs, and other factors in the development of BE. A conceptual framework is proposed to guide future studies. We expect elucidation of the molecular mechanisms of BE to help in the development of improved management of GERD, BE, and EAC.
Collapse
Affiliation(s)
- Hao Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Yu Fang
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Whitney Tevebaugh
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Roy C. Orlando
- Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7080, USA
| | - Nicholas J. Shaheen
- Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7080, USA
| | - Xiaoxin Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA,Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7080, USA,Corresponding authors: Xiaoxin Luke Chen, MD, PhD, Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA. Tel: 919-530-6425; Fax: 919-530-7780;
| |
Collapse
|
19
|
Beuling E, Baffour-Awuah NYA, Stapleton KA, Aronson BE, Noah TK, Shroyer NF, Duncan SA, Fleet JC, Krasinski SD. GATA factors regulate proliferation, differentiation, and gene expression in small intestine of mature mice. Gastroenterology 2011; 140:1219-1229.e1-2. [PMID: 21262227 PMCID: PMC3541694 DOI: 10.1053/j.gastro.2011.01.033] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 12/14/2010] [Accepted: 01/10/2011] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS GATA transcription factors regulate proliferation, differentiation, and gene expression in multiple organs. GATA4 is expressed in the proximal 85% of the small intestine and regulates the jejunal-ileal gradient in absorptive enterocyte gene expression. GATA6 is co-expressed with GATA4 but also is expressed in the ileum; its function in the mature small intestine is unknown. METHODS We investigated the function of GATA6 in small intestine using adult mice with conditional, inducible deletion of Gata6, or Gata6 and Gata4, specifically in the intestine. RESULTS In ileum, deletion of Gata6 caused a decrease in crypt cell proliferation and numbers of enteroendocrine and Paneth cells, an increase in numbers of goblet-like cells in crypts, and altered expression of genes specific to absorptive enterocytes. In contrast to ileum, deletion of Gata6 caused an increase in numbers of Paneth cells in jejunum and ileum. Deletion of Gata6 and Gata4 resulted in a jejunal and duodenal phenotype that was nearly identical to that in the ileum after deletion of Gata6 alone, revealing common functions for GATA6 and GATA4. CONCLUSIONS GATA transcription factors are required for crypt cell proliferation, secretory cell differentiation, and absorptive enterocyte gene expression in the small intestinal epithelium.
Collapse
Affiliation(s)
- Eva Beuling
- Division of Gastroenterology and Nutrition, Department of Medicine, Children's Hospital Boston, Boston, MA 02115, USA
| | - Nana Yaa A. Baffour-Awuah
- Division of Gastroenterology and Nutrition, Department of Medicine, Children's Hospital Boston, Boston, MA 02115, USA
| | - Kelly A. Stapleton
- Division of Gastroenterology and Nutrition, Department of Medicine, Children's Hospital Boston, Boston, MA 02115, USA
| | - Boaz E. Aronson
- Division of Gastroenterology and Nutrition, Department of Medicine, Children's Hospital Boston, Boston, MA 02115, USA
| | - Taeko K. Noah
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital; and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Noah F. Shroyer
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital; and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Stephen A. Duncan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - James C. Fleet
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907, USA
| | - Stephen D. Krasinski
- Division of Gastroenterology and Nutrition, Department of Medicine, Children's Hospital Boston, Boston, MA 02115, USA.,Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
20
|
Patankar JV, Chandak PG, Obrowsky S, Pfeifer T, Diwoky C, Uellen A, Sattler W, Stollberger R, Hoefler G, Heinemann A, Battle M, Duncan S, Kratky D, Levak-Frank S. Loss of intestinal GATA4 prevents diet-induced obesity and promotes insulin sensitivity in mice. Am J Physiol Endocrinol Metab 2011; 300:E478-88. [PMID: 21177287 PMCID: PMC3163292 DOI: 10.1152/ajpendo.00457.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transcriptional regulation of small intestinal gene expression controls plasma total cholesterol (TC) and triglyceride (TG) levels, which are major determinants of metabolic diseases. GATA4, a zinc finger domain transcription factor, is critical for jejunal identity, and intestinal GATA4 deficiency leads to a jejunoileal transition. Although intestinal GATA4 ablation is known to misregulate jejunal gene expression, its pathophysiological impact on various components of metabolic syndrome remains unknown. Here, we used intestine-specific GATA4 knockout (GATA4iKO) mice to dissect the contribution of GATA4 on obesity development. We challenged adult GATA4iKO mice and control littermates with a Western-type diet (WTD) for 20 wk. Our findings show that WTD-fed GATA4iKO mice are resistant to diet-induced obesity. Accordingly, plasma TG and TC levels are markedly decreased. Intestinal lipid absorption in GATA4iKO mice was strongly reduced, whereas luminal lipolysis was unaffected. GATA4iKO mice displayed a greater glucagon-like peptide-1 (GLP-1) release on normal chow and even after long-term challenge with WTD remained glucose sensitive. In summary, our findings show that the absence of intestinal GATA4 has a beneficial effect on decreasing intestinal lipid absorption causing resistance to hyperlipidemia and obesity. In addition, we show that increased GLP-1 release in GATA4iKO mice decreases the risk for development of insulin resistance.
Collapse
Affiliation(s)
- Jay V Patankar
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/3, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lussier CR, Brial F, Roy SAB, Langlois MJ, Verdu EF, Rivard N, Perreault N, Boudreau F. Loss of hepatocyte-nuclear-factor-1alpha impacts on adult mouse intestinal epithelial cell growth and cell lineages differentiation. PLoS One 2010; 5:e12378. [PMID: 20808783 PMCID: PMC2927538 DOI: 10.1371/journal.pone.0012378] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 07/28/2010] [Indexed: 12/19/2022] Open
Abstract
Background and Aims Although Hnf1α is crucial for pancreas and liver functions, it is believed to play a limited functional role for intestinal epithelial functions. The aim of this study was to assess the consequences of abrogating Hnf1α on the maintenance of adult small intestinal epithelial functions. Methodology/Principal Findings An Hnf1α knockout mouse model was used. Assessment of histological abnormalities, crypt epithelial cell proliferation, epithelial barrier, glucose transport and signalling pathways were measured in these animals. Changes in global gene expression were also analyzed. Mice lacking Hnf1α displayed increased crypt proliferation and intestinalomegaly as well as a disturbance of intestinal epithelial cell lineages production during adult life. This phenotype was associated with a decrease of the mucosal barrier function and lumen-to-blood glucose delivery. The mammalian target of rapamycin (mTOR) signalling pathway was found to be overly activated in the small intestine of adult Hnf1α mutant mice. The intestinal epithelium of Hnf1α null mice displayed a reduction of the enteroendocrine cell population. An impact was also observed on proper Paneth cell differentiation with abnormalities in the granule exocytosis pathway. Conclusions/Significance Together, these results unravel a functional role for Hnf1α in regulating adult intestinal growth and sustaining the functions of intestinal epithelial cell lineages.
Collapse
Affiliation(s)
- Carine R. Lussier
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - François Brial
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sébastien A. B. Roy
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marie-Josée Langlois
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Elena F. Verdu
- Division of Gastroenterology, McMaster University, Hamilton, Ontario, Canada
| | - Nathalie Rivard
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Perreault
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - François Boudreau
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- * E-mail:
| |
Collapse
|
22
|
D'Angelo A, Bluteau O, Garcia-Gonzalez MA, Gresh L, Doyen A, Garbay S, Robine S, Pontoglio M. Hepatocyte nuclear factor 1alpha and beta control terminal differentiation and cell fate commitment in the gut epithelium. Development 2010; 137:1573-82. [PMID: 20388655 DOI: 10.1242/dev.044420] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The intestinal epithelium is a complex system characterized by massive and continuous cell renewal and differentiation. In this context, cell-type-specific transcription factors are thought to play a crucial role by modulating specific transcription networks and signalling pathways. Hnf1alpha and beta are closely related atypical homeoprotein transcription factors expressed in several epithelia, including the gut. With the use of a conditional inactivation system, we generated mice in which Hnf1b is specifically inactivated in the intestinal epithelium on a wild-type or Hnf1a(-/-) genetic background. Whereas the inactivation of Hnf1a or Hnf1b alone did not lead to any major intestinal dysfunction, the concomitant inactivation of both genes resulted in a lethal phenotype. Double-mutant animals had defective differentiation and cell fate commitment. The expression levels of markers of all the differentiated cell types, both enterocytes and secretory cells, were affected. In addition, the number of goblet cells was increased, whereas mature Paneth cells were missing. At the molecular level, we show that Hnf1alpha and beta act upstream of the Notch pathway controlling directly the expression of two crucial components: Jag1 and Atoh1. We demonstrate that the double-mutant mice present with a defect in intestinal water absorption and that Hnf1alpha and beta directly control the expression of Slc26a3, a gene whose mutations are associated with chloride diarrhoea in human patients. Our study identifies new direct target genes of the Hnf1 transcription factors and shows that they play crucial roles in both defining cell fate and controlling terminal functions in the gut epithelium.
Collapse
Affiliation(s)
- Anna D'Angelo
- Expression Génique, Développement et Maladies Equipe 26/ INSERM U567/ CNRS UMR 8104 / Université Paris-Descartes Institut Cochin Dpt. Génétique et Développement, 75014 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Integrin alpha8beta1 regulates adhesion, migration and proliferation of human intestinal crypt cells via a predominant RhoA/ROCK-dependent mechanism. Biol Cell 2009; 101:695-708. [PMID: 19527220 PMCID: PMC2782361 DOI: 10.1042/bc20090060] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background. Integrins are transmembrane αβ heterodimer receptors that function as structural and functional bridges between the cytoskeleton and ECM (extracellular matrix) molecules. The RGD (arginine-glycine-aspartate tripeptide motif)-dependent integrin α8β1 has been shown to be involved in various cell functions in neuronal and mesenchymal-derived cell types. Its role in epithelial cells remains unknown. Results. Integrin α8β1 was found to be expressed in the crypt cell population of the human intestine but was absent from differentiating and mature epithelial cells of the villus. The function of α8β1 in epithelial crypt cells was investigated at the cellular level using normal HIECs (human intestinal epithelial cells). Specific knockdown of α8 subunit expression using an shRNA (small-hairpin RNA) approach showed that α8β1 plays important roles in RGD-dependent cell adhesion, migration and proliferation via a RhoA/ROCK (Rho-associated kinase)-dependent mechanism as demonstrated by active RhoA quantification and pharmacological inhibition of ROCK. Moreover, loss of α8β1, through RhoA/ROCK, impairs FA (focal adhesion) complex integrity as demonstrated by faulty vinculin recruitment. Conclusions. Integrin α8β1 is expressed in epithelial cells. In intestinal crypt cells, α8β1 is closely involved in the regulation of adhesion, migration and cell proliferation via a predominant RhoA/ROCK-dependent mechanism. These results suggest an important role for this integrin in intestinal crypt cell homoeostasis.
Collapse
|
24
|
Lactose digestion and the evolutionary genetics of lactase persistence. Hum Genet 2008; 124:579-91. [PMID: 19034520 DOI: 10.1007/s00439-008-0593-6] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 11/06/2008] [Indexed: 12/11/2022]
Abstract
It has been known for some 40 years that lactase production persists into adult life in some people but not in others. However, the mechanism and evolutionary significance of this variation have proved more elusive, and continue to excite the interest of investigators from different disciplines. This genetically determined trait differs in frequency worldwide and is due to cis-acting polymorphism of regulation of lactase gene expression. A single nucleotide polymorphism located 13.9 kb upstream from the lactase gene (C-13910 > T) was proposed to be the cause, and the -13910*T allele, which is widespread in Europe was found to be located on a very extended haplotype of 500 kb or more. The long region of haplotype conservation reflects a recent origin, and this, together with high frequencies, is evidence of positive selection, but also means that -13910*T might be an associated marker, rather than being causal of lactase persistence itself. Doubt about function was increased when it was shown that the original SNP did not account for lactase persistence in most African populations. However, the recent discovery that there are several other SNPs associated with lactase persistence in close proximity (within 100 bp), and that they all reside in a piece of sequence that has enhancer function in vitro, does suggest that they may each be functional, and their occurrence on different haplotype backgrounds shows that several independent mutations led to lactase persistence. Here we provide access to a database of worldwide distributions of lactase persistence and of the C-13910*T allele, as well as reviewing lactase molecular and population genetics and the role of selection in determining present day distributions of the lactase persistence phenotype.
Collapse
|
25
|
Abstract
We have previously reported that dietary fructose rapidly induces jejunal sucrase–isomaltase (SI) gene expression in rats. In this study, we confirmed in mice that SI mRNA was induced 6 h after force-feeding fructose, but not glucose. Using the chromatin immunoprecipitation assay, we revealed that histones H3 and H4 on the promoter/enhancer regions of the SI gene in mice given fructose were highly acetylated, compared with those given glucose or water. These results suggest that acute induction of SI gene expression by dietary fructose is associated with acetylation of histones H3 and H4 on the SI gene.
Collapse
|
26
|
Beuling E, Bosse T, aan de Kerk DJ, Piaseckyj CM, Fujiwara Y, Katz SG, Orkin SH, Grand RJ, Krasinski SD. GATA4 mediates gene repression in the mature mouse small intestine through interactions with friend of GATA (FOG) cofactors. Dev Biol 2008; 322:179-89. [PMID: 18692040 DOI: 10.1016/j.ydbio.2008.07.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/01/2008] [Accepted: 07/17/2008] [Indexed: 12/23/2022]
Abstract
GATA4, a transcription factor expressed in the proximal small intestine but not in the distal ileum, maintains proximal-distal distinctions by multiple processes involving gene repression, gene activation, and cell fate determination. Friend of GATA (FOG) is an evolutionarily conserved family of cofactors whose members physically associate with GATA factors and mediate GATA-regulated repression in multiple tissues. Using a novel, inducible, intestine-specific Gata4 knock-in model in mice, in which wild-type GATA4 is specifically inactivated in the small intestine, but a GATA4 mutant that does not bind FOG cofactors (GATA4ki) continues to be expressed, we found that ileal-specific genes were significantly induced in the proximal small intestine (P<0.01); in contrast, genes restricted to proximal small intestine and cell lineage markers were unaffected, indicating that GATA4-FOG interactions contribute specifically to the repression function of GATA4 within this organ. Fog1 mRNA displayed a proximal-distal pattern that parallels that of Gata4, and FOG1 protein was co-expressed with GATA4 in intestinal epithelial cells, implicating FOG1 as the likely mediator of GATA4 function in the small intestine. Our data are the first to indicate FOG function and expression in the mammalian small intestine.
Collapse
Affiliation(s)
- Eva Beuling
- School of Medicine, Erasmus University Rotterdam, Rotterdam, 3000DR, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Klapper M, Böhme M, Nitz I, Döring F. Transcriptional regulation of the fatty acid binding protein 2 (FABP2) gene by the hepatic nuclear factor 1 alpha (HNF-1alpha). Gene 2008; 416:48-52. [PMID: 18440731 DOI: 10.1016/j.gene.2008.02.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/17/2008] [Accepted: 02/29/2008] [Indexed: 12/29/2022]
Abstract
The human fatty acid binding protein (FABP2) is involved in intestinal absorption and intracellular trafficking of long-chain fatty acids. Here we investigate transcriptional regulation of FABP2 by the endodermal hepatic nuclear factor 1 alpha (HNF-1alpha). In electromobility shift and supershift assays we show the presence of two adjacent HNF-1alpha binding sites within the FABP2 promoter regions -185 to -165 and -169 to -149. HNF-1alpha activates an FABP2 promoter luciferase construct by 3.5 and 20-fold in Caco-2 and Hela cells, respectively. Mutational analysis of HNF-1alpha elements resulted in about 50% reduction of basal and HNF-1alpha induced activity of FABP2 promoter constructs, predominantly caused by deletion of the -185 to -165 site. Thus, our data suggest a major role of HNF-1alpha in control of FABP2 expression in intestine via a functional HNF-1alpha recognition element within FABP2 promoter region -185 to -165.
Collapse
Affiliation(s)
- Maja Klapper
- Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel, Germany.
| | | | | | | |
Collapse
|