1
|
Chen CY, Wang YF, Lei L, Zhang Y. Impacts of microbiota and its metabolites through gut-brain axis on pathophysiology of major depressive disorder. Life Sci 2024; 351:122815. [PMID: 38866215 DOI: 10.1016/j.lfs.2024.122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Major depressive disorder (MDD) is characterized by a high rate of recurrence and disability, which seriously affects the quality of life of patients. That's why a deeper understanding of the mechanisms of MDD pathology is an urgent task, and some studies have found that intestinal symptoms accompany people with MDD. The microbiota-gut-brain axis is the bidirectional communication between the gut microbiota and the central nervous system, which was found to have a strong association with the pathogenesis of MDD. Previous studies have focused more on the communication between the gut and the brain through neuroendocrine, neuroimmune and autonomic pathways, and the role of gut microbes and their metabolites in depression is unclear. Metabolites of intestinal microorganisms (e.g., tryptophan, kynurenic acid, indole, and lipopolysaccharide) can participate in the pathogenesis of MDD through immune and inflammatory pathways or by altering the permeability of the gut and blood-brain barrier. In addition, intestinal microbes can communicate with intestinal neurons and glial cells to affect the integrity and function of intestinal nerves. However, the specific role of gut microbes and their metabolites in the pathogenesis of MDD is not well understood. Hence, the present review summarizes how gut microbes and their metabolites are directly or indirectly involved in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
2
|
Kong C, Yang M, Yue N, Zhang Y, Tian C, Wei D, Shi R, Yao J, Wang L, Li D. Restore Intestinal Barrier Integrity: An Approach for Inflammatory Bowel Disease Therapy. J Inflamm Res 2024; 17:5389-5413. [PMID: 39161679 PMCID: PMC11330754 DOI: 10.2147/jir.s470520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
The intestinal barrier maintained by various types of columnar epithelial cells, plays a crucial role in regulating the interactions between the intestinal contents (such as the intestinal microbiota), the immune system, and other components. Dysfunction of the intestinal mucosa is a significant pathophysiological mechanism and clinical manifestation of inflammatory bowel disease (IBD). However, current therapies for IBD primarily focus on suppressing inflammation, and no disease-modifying treatments specifically target the epithelial barrier. Given the side effects associated with chronic immunotherapy, effective alternative therapies that promote mucosal healing are highly attractive. In this review, we examined the function of intestinal epithelial barrier function and the mechanisms of behind its disruption in IBD. We illustrated the complex process of intestinal mucosal healing and proposed therapeutic approaches to promote mucosal healing strategies in IBD. These included the application of stem cell transplantation and organ-like tissue engineering approaches to generate new intestinal tissue. Finally, we discussed potential strategies to restore the function of the intestinal barrier as a treatment for IBD.
Collapse
Affiliation(s)
- Chen Kong
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Meifeng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Ningning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Chengmei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Daoru Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Ruiyue Shi
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Jun Yao
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Lisheng Wang
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Defeng Li
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
3
|
Santhosh S, Zanoletti L, Stamp LA, Hao MM, Matteoli G. From diversity to disease: unravelling the role of enteric glial cells. Front Immunol 2024; 15:1408744. [PMID: 38957473 PMCID: PMC11217337 DOI: 10.3389/fimmu.2024.1408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Enteric glial cells (EGCs) are an essential component of the enteric nervous system (ENS) and play key roles in gastrointestinal development, homeostasis, and disease. Derived from neural crest cells, EGCs undergo complex differentiation processes regulated by various signalling pathways. Being among the most dynamic cells of the digestive system, EGCs react to cues in their surrounding microenvironment and communicate with various cell types and systems within the gut. Morphological studies and recent single cell RNA sequencing studies have unveiled heterogeneity among EGC populations with implications for regional functions and roles in diseases. In gastrointestinal disorders, including inflammatory bowel disease (IBD), infections and cancer, EGCs modulate neuroplasticity, immune responses and tumorigenesis. Recent evidence suggests that EGCs respond plastically to the microenvironmental cues, adapting their phenotype and functions in disease states and taking on a crucial role. They exhibit molecular abnormalities and alter communication with other intestinal cell types, underscoring their therapeutic potential as targets. This review delves into the multifaceted roles of EGCs, particularly emphasizing their interactions with various cell types in the gut and their significant contributions to gastrointestinal disorders. Understanding the complex roles of EGCs in gastrointestinal physiology and pathology will be crucial for the development of novel therapeutic strategies for gastrointestinal disorders.
Collapse
Affiliation(s)
- Sneha Santhosh
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Zanoletti
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Leuven Institute for Single-cell Omics (LISCO), KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Prochera A, Muppirala AN, Kuziel GA, Soualhi S, Shepherd A, Sun L, Issac B, Rosenberg HJ, Karim F, Perez K, Smith KH, Archibald TH, Rakoff-Nahoum S, Hagen SJ, Rao M. Enteric glia regulate Paneth cell secretion and intestinal microbial ecology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589545. [PMID: 38659931 PMCID: PMC11042301 DOI: 10.1101/2024.04.15.589545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Glial cells of the enteric nervous system (ENS) interact closely with the intestinal epithelium and secrete signals that influence epithelial cell proliferation and barrier formation in vitro. Whether these interactions are important in vivo, however, is unclear because previous studies reached conflicting conclusions [1]. To better define the roles of enteric glia in steady state regulation of the intestinal epithelium, we characterized the glia in closest proximity to epithelial cells and found that the majority express PLP1 in both mice and humans. To test their functions using an unbiased approach, we genetically depleted PLP1+ cells in mice and transcriptionally profiled the small and large intestines. Surprisingly, glial loss had minimal effects on transcriptional programs and the few identified changes varied along the gastrointestinal tract. In the ileum, where enteric glia had been considered most essential for epithelial integrity, glial depletion did not drastically alter epithelial gene expression but caused a modest enrichment in signatures of Paneth cells, a secretory cell type important for innate immunity. In the absence of PLP1+ glia, Paneth cell number was intact, but a subset appeared abnormal with irregular and heterogenous cytoplasmic granules, suggesting a secretory deficit. Consistent with this possibility, ileal explants from glial-depleted mice secreted less functional lysozyme than controls with corresponding effects on fecal microbial composition. Collectively, these data suggest that enteric glia do not exert broad effects on the intestinal epithelium but have an essential role in regulating Paneth cell function and gut microbial ecology.
Collapse
Affiliation(s)
- Aleksandra Prochera
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Anoohya N Muppirala
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Gavin A Kuziel
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Salima Soualhi
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Amy Shepherd
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Biju Issac
- Research Computing, Department of Information Technology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Harry J Rosenberg
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Farah Karim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - Kristina Perez
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Kyle H Smith
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tonora H Archibald
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Seth Rakoff-Nahoum
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Susan J Hagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Meenakshi Rao
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
5
|
Ziegler AL, Caldwell ML, Craig SE, Hellstrom EA, Sheridan AE, Touvron MS, Pridgen TA, Magness ST, Odle J, Van Landeghem L, Blikslager AT. Enteric glial cell network function is required for epithelial barrier restitution following intestinal ischemic injury in the early postnatal period. Am J Physiol Gastrointest Liver Physiol 2024; 326:G228-G246. [PMID: 38147796 PMCID: PMC11211042 DOI: 10.1152/ajpgi.00216.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 12/28/2023]
Abstract
Ischemic damage to the intestinal epithelial barrier, such as in necrotizing enterocolitis or small intestinal volvulus, is associated with higher mortality rates in younger patients. We have recently reported a powerful pig model to investigate these age-dependent outcomes in which mucosal barrier restitution is strikingly absent in neonates but can be rescued by direct application of homogenized mucosa from older, juvenile pigs by a yet-undefined mechanism. Within the mucosa, a postnatally developing network of enteric glial cells (EGCs) is gaining recognition as a key regulator of the mucosal barrier. Therefore, we hypothesized that the developing EGC network may play an important role in coordinating intestinal barrier repair in neonates. Neonatal and juvenile jejunal mucosa recovering from surgically induced intestinal ischemia was visualized by scanning electron microscopy and the transcriptomic phenotypes were assessed by bulk RNA sequencing. EGC network density and glial activity were examined by Gene Set Enrichment Analysis, three-dimensional (3-D) volume imaging, and Western blot and its function in regulating epithelial restitution was assessed ex vivo in Ussing chamber using the glia-specific inhibitor fluoroacetate (FA), and in vitro by coculture assay. Here we refine and elaborate our translational model, confirming a neonatal phenotype characterized by a complete lack of coordinated reparative signaling in the mucosal microenvironment. Furthermore, we report important evidence that the subepithelial EGC network changes significantly over the early postnatal period and demonstrate that the proximity of a specific functional population of EGC to wounded intestinal epithelium contributes to intestinal barrier restitution following ischemic injury.NEW & NOTEWORTHY This study refines a powerful translational pig model, defining an age-dependent relationship between enteric glia and the intestinal epithelium during intestinal ischemic injury and confirming an important role for enteric glial cell (EGC) activity in driving mucosal barrier restitution. This study suggests that targeting the enteric glial network could lead to novel interventions to improve recovery from intestinal injury in neonatal patients.
Collapse
Affiliation(s)
- Amanda L Ziegler
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Madison L Caldwell
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Sara E Craig
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Emily A Hellstrom
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Anastasia E Sheridan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Melissa S Touvron
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Tiffany A Pridgen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Scott T Magness
- Joint Department of Biomedical Engineering, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Jack Odle
- Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, United States
| | - Laurianne Van Landeghem
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Anthony T Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| |
Collapse
|
6
|
Ten Hove AS, Mallesh S, Zafeiropoulou K, de Kleer JWM, van Hamersveld PHP, Welting O, Hakvoort TBM, Wehner S, Seppen J, de Jonge WJ. Sympathetic activity regulates epithelial proliferation and wound healing via adrenergic receptor α 2A. Sci Rep 2023; 13:17990. [PMID: 37863979 PMCID: PMC10589335 DOI: 10.1038/s41598-023-45160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023] Open
Abstract
Innervation of the intestinal mucosa by the sympathetic nervous system is well described but the effects of adrenergic receptor stimulation on the intestinal epithelium remain equivocal. We therefore investigated the effect of sympathetic neuronal activation on intestinal cells in mouse models and organoid cultures, to identify the molecular routes involved. Using publicly available single-cell RNA sequencing datasets we show that the α2A isoform is the most abundant adrenergic receptor in small intestinal epithelial cells. Stimulation of this receptor with norepinephrine or a synthetic specific α2A receptor agonist promotes epithelial proliferation and stem cell function, while reducing differentiation in vivo and in intestinal organoids. In an anastomotic healing mouse model, adrenergic receptor α2A stimulation resulted in improved anastomotic healing, while surgical sympathectomy augmented anastomotic leak. Furthermore, stimulation of this receptor led to profound changes in the microbial composition, likely because of altered epithelial antimicrobial peptide secretion. Thus, we established that adrenergic receptor α2A is the molecular delegate of intestinal epithelial sympathetic activity controlling epithelial proliferation, differentiation, and host defense. Therefore, this receptor could serve as a newly identified molecular target to improve mucosal healing in intestinal inflammation and wounding.
Collapse
Affiliation(s)
- Anne S Ten Hove
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands.
| | - Shilpashree Mallesh
- Department of General, Visceral-, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Konstantina Zafeiropoulou
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Janna W M de Kleer
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Patricia H P van Hamersveld
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Olaf Welting
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Theodorus B M Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Sven Wehner
- Department of General, Visceral-, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Jurgen Seppen
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands.
- Department of General, Visceral-, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
7
|
Mariant CL, Bacola G, Van Landeghem L. Mini-Review: Enteric glia of the tumor microenvironment: An affair of corruption. Neurosci Lett 2023; 814:137416. [PMID: 37572875 PMCID: PMC10967235 DOI: 10.1016/j.neulet.2023.137416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/07/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The tumor microenvironment corresponds to a complex mixture of bioactive products released by local and recruited cells whose normal functions have been "corrupted" by cues originating from the tumor, mostly to favor cancer growth, dissemination and resistance to therapies. While the immune and the mesenchymal cellular components of the tumor microenvironment in colon cancer have been under intense scrutiny over the last two decades, the influence of the resident neural cells of the gut on colon carcinogenesis has only very recently begun to draw attention. The vast majority of the resident neural cells of the gastrointestinal tract belong to the enteric nervous system and correspond to enteric neurons and enteric glial cells, both of which have been understudied in the context of colon cancer development and progression. In this review, we especially discuss available evidence on enteric glia impact on colon carcinogenesis. To highlight "corrupted" functioning in enteric glial cells of the tumor microenvironment and its repercussion on tumorigenesis, we first review the main regulatory effects of enteric glial cells on the intestinal epithelium in homeostatic conditions and we next present current knowledge on enteric glia influence on colon tumorigenesis. We particularly examine how enteric glial cell heterogeneity and plasticity require further appreciation to better understand the distinct regulatory interactions enteric glial cell subtypes engage with the various cell types of the tumor, and to identify novel biological targets to block enteric glia pro-carcinogenic signaling.
Collapse
Affiliation(s)
- Chloe L Mariant
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - Gregory Bacola
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - Laurianne Van Landeghem
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
8
|
Bubeck M, Becker C, Patankar JV. Guardians of the gut: influence of the enteric nervous system on the intestinal epithelial barrier. Front Med (Lausanne) 2023; 10:1228938. [PMID: 37692784 PMCID: PMC10485265 DOI: 10.3389/fmed.2023.1228938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023] Open
Abstract
The intestinal mucosal surface forms one of the largest areas of the body, which is in direct contact with the environment. Co-ordinated sensory functions of immune, epithelial, and neuronal cells ensure the timely detection of noxious queues and potential pathogens and elicit proportional responses to mitigate the threats and maintain homeostasis. Such tuning and maintenance of the epithelial barrier is constantly ongoing during homeostasis and its derangement can become a gateway for systemic consequences. Although efforts in understanding the gatekeeping functions of immune cells have led the way, increasing number of studies point to a crucial role of the enteric nervous system in fine-tuning and maintaining this delicate homeostasis. The identification of immune regulatory functions of enteric neuropeptides and glial-derived factors is still in its infancy, but has already yielded several intriguing insights into their important contribution to the tight control of the mucosal barrier. In this review, we will first introduce the reader to the current understanding of the architecture of the enteric nervous system and the epithelial barrier. Next, we discuss the key discoveries and cellular pathways and mediators that have emerged as links between the enteric nervous, immune, and epithelial systems and how their coordinated actions defend against intestinal infectious and inflammatory diseases. Through this review, the readers will gain a sound understanding of the current neuro-immune-epithelial mechanisms ensuring intestinal barrier integrity and maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Marvin Bubeck
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Jay V. Patankar
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
9
|
Wang Z, Qu YJ, Cui M. Modulation of stem cell fate in intestinal homeostasis, injury and repair. World J Stem Cells 2023; 15:354-368. [PMID: 37342221 PMCID: PMC10277971 DOI: 10.4252/wjsc.v15.i5.354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
The mammalian intestinal epithelium constitutes the largest barrier against the external environment and makes flexible responses to various types of stimuli. Epithelial cells are fast-renewed to counteract constant damage and disrupted barrier function to maintain their integrity. The homeostatic repair and regeneration of the intestinal epithelium are governed by the Lgr5+ intestinal stem cells (ISCs) located at the base of crypts, which fuel rapid renewal and give rise to the different epithelial cell types. Protracted biological and physicochemical stress may challenge epithelial integrity and the function of ISCs. The field of ISCs is thus of interest for complete mucosal healing, given its relevance to diseases of intestinal injury and inflammation such as inflammatory bowel diseases. Here, we review the current understanding of the signals and mechanisms that control homeostasis and regeneration of the intestinal epithelium. We focus on recent insights into the intrinsic and extrinsic elements involved in the process of intestinal homeostasis, injury, and repair, which fine-tune the balance between self-renewal and cell fate specification in ISCs. Deciphering the regulatory machinery that modulates stem cell fate would aid in the development of novel therapeutics that facilitate mucosal healing and restore epithelial barrier function.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yan-Ji Qu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Min Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
10
|
Prochera A, Rao M. Mini-Review: Enteric glial regulation of the gastrointestinal epithelium. Neurosci Lett 2023; 805:137215. [PMID: 37001854 PMCID: PMC10125724 DOI: 10.1016/j.neulet.2023.137215] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Many enteric glia are located along nerve fibers in the gut mucosa where they form close associations with the epithelium lining the gastrointestinal tract. The gut epithelium is essential for absorbing nutrients, regulating fluid flux, forming a physical barrier to prevent the entry of pathogens and toxins into the host, and participating in immune responses. Disruptions to this epithelium are linked to numerous diseases, highlighting its central importance in maintaining health. Accumulating evidence indicates that glia regulate gut epithelial homeostasis. Observations from glial-epithelial co-cultures in vitro and mouse genetic models in vivo suggest that enteric glia influence several important features of the gut epithelium including barrier integrity, ion transport, and capacity for self-renewal. Here we review the evidence for enteric glial regulation of the intestinal epithelium, with a focus on these three features of its biology.
Collapse
Affiliation(s)
- Aleksandra Prochera
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Cui C, Wang F, Zheng Y, Wei H, Peng J. From birth to death: The hardworking life of Paneth cell in the small intestine. Front Immunol 2023; 14:1122258. [PMID: 36969191 PMCID: PMC10036411 DOI: 10.3389/fimmu.2023.1122258] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Paneth cells are a group of unique intestinal epithelial cells, and they play an important role in host-microbiota interactions. At the origin of Paneth cell life, several pathways such as Wnt, Notch, and BMP signaling, affect the differentiation of Paneth cells. After lineage commitment, Paneth cells migrate downward and reside in the base of crypts, and they possess abundant granules in their apical cytoplasm. These granules contain some important substances such as antimicrobial peptides and growth factors. Antimicrobial peptides can regulate the composition of microbiota and defend against mucosal penetration by commensal and pathogenic bacteria to protect the intestinal epithelia. The growth factors derived from Paneth cells contribute to the maintenance of the normal functions of intestinal stem cells. The presence of Paneth cells ensures the sterile environment and clearance of apoptotic cells from crypts to maintain the intestinal homeostasis. At the end of their lives, Paneth cells experience different types of programmed cell death such as apoptosis and necroptosis. During intestinal injury, Paneth cells can acquire stem cell features to restore the intestinal epithelial integrity. In view of the crucial roles of Paneth cells in the intestinal homeostasis, research on Paneth cells has rapidly developed in recent years, and the existing reviews on Paneth cells have mainly focused on their functions of antimicrobial peptide secretion and intestinal stem cell support. This review aims to summarize the approaches to studying Paneth cells and introduce the whole life experience of Paneth cells from birth to death.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fangke Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yao Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Jian Peng,
| |
Collapse
|
12
|
Caillaud M, Le Dréan ME, De-Guilhem-de-Lataillade A, Le Berre-Scoul C, Montnach J, Nedellec S, Loussouarn G, Paillé V, Neunlist M, Boudin H. A functional network of highly pure enteric neurons in a dish. Front Neurosci 2023; 16:1062253. [PMID: 36685225 PMCID: PMC9853279 DOI: 10.3389/fnins.2022.1062253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/02/2022] [Indexed: 01/09/2023] Open
Abstract
The enteric nervous system (ENS) is the intrinsic nervous system that innervates the entire digestive tract and regulates major digestive functions. Recent evidence has shown that functions of the ENS critically rely on enteric neuronal connectivity; however, experimental models to decipher the underlying mechanisms are limited. Compared to the central nervous system, for which pure neuronal cultures have been developed for decades and are recognized as a reference in the field of neuroscience, an equivalent model for enteric neurons is lacking. In this study, we developed a novel model of highly pure rat embryonic enteric neurons with dense and functional synaptic networks. The methodology is simple and relatively fast. We characterized enteric neurons using immunohistochemical, morphological, and electrophysiological approaches. In particular, we demonstrated the applicability of this culture model to multi-electrode array technology as a new approach for monitoring enteric neuronal network activity. This in vitro model of highly pure enteric neurons represents a valuable new tool for better understanding the mechanisms involved in the establishment and maintenance of enteric neuron synaptic connectivity and functional networks.
Collapse
Affiliation(s)
- Martial Caillaud
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France,*Correspondence: Martial Caillaud,
| | - Morgane E. Le Dréan
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | | | - Catherine Le Berre-Scoul
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Jérôme Montnach
- Nantes Université, CNRS, INSERM, L’institut du Thorax, Nantes, France
| | - Steven Nedellec
- Nantes Université, CHU Nantes, CNRS, INSERM, BioCore, US16, SFR Bonamy, Nantes, France
| | - Gildas Loussouarn
- Nantes Université, CNRS, INSERM, L’institut du Thorax, Nantes, France
| | - Vincent Paillé
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Michel Neunlist
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Hélène Boudin
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| |
Collapse
|
13
|
de Guilhem de Lataillade A, Caillaud M, Oullier T, Naveilhan P, Pellegrini C, Tolosa E, Neunlist M, Rolli-Derkinderen M, Gelpi E, Derkinderen P. LRRK2 expression in normal and pathologic human gut and in rodent enteric neural cell lines. J Neurochem 2023; 164:193-209. [PMID: 36219522 DOI: 10.1111/jnc.15704] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/01/2022] [Accepted: 09/15/2022] [Indexed: 02/04/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) gene, which is the gene most commonly associated with Parkinson's disease (PD), is also a susceptibility gene for Crohn's disease, thereby suggesting that LRRK2 may sit at the crossroads of gastrointestinal inflammation, Parkinson's, and Crohn's disease. LRRK2 protein has been studied intensely in both CNS neurons and in immune cells, but there are only few studies on LRRK2 in the enteric nervous system (ENS). LRRK2 is present in ENS ganglia and the existing studies on LRRK2 expression in colonic biopsies from PD subjects have yielded conflicting results. Herein, we propose to extend these findings by studying in more details LRRK2 expression in the ENS. LRRK2 expression was evaluated in full thickness segments of colon of 16 Lewy body, 12 non-Lewy body disorders cases, and 3 non-neurodegenerative controls and in various enteric neural cell lines. We showed that, in addition to enteric neurons, LRRK2 is constitutively expressed in enteric glial cells in both fetal and adult tissues. LRRK2 immunofluorescence intensity in the myenteric ganglia was not different between Lewy body and non-Lewy body disorders. Additionally, we identified the cAMP pathway as a key signaling pathway involved in the regulation of LRRK2 expression and phosphorylation in the enteric glial cells. Our study is the first detailed characterization of LRRK2 in the ENS and the first to show that enteric glial cells express LRRK2. Our findings provide a basis to unravel the functions of LRRK2 in the ENS and to further investigate the pathological changes in enteric synucleinopathies.
Collapse
Affiliation(s)
| | - Martial Caillaud
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Thibauld Oullier
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Philippe Naveilhan
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Carolina Pellegrini
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eduardo Tolosa
- Parkinson disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | - Michel Neunlist
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Malvyne Rolli-Derkinderen
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobank-Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain.,Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Pascal Derkinderen
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| |
Collapse
|
14
|
Reed CB, Feltri ML, Wilson ER. Peripheral glia diversity. J Anat 2022; 241:1219-1234. [PMID: 34131911 PMCID: PMC8671569 DOI: 10.1111/joa.13484] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Recent years have seen an evolving appreciation for the role of glial cells in the nervous system. As we move away from the typical neurocentric view of neuroscience, the complexity and variability of central nervous system glia is emerging, far beyond the three main subtypes: astrocytes, oligodendrocytes, and microglia. Yet the diversity of the glia found in the peripheral nervous system remains rarely discussed. In this review, we discuss the developmental origin, morphology, and function of the different populations of glia found in the peripheral nervous system, including: myelinating Schwann cells, Remak Schwann cells, repair Schwann cells, satellite glia, boundary cap-derived glia, perineurial glia, terminal Schwann cells, glia found in the skin, olfactory ensheathing cells, and enteric glia. The morphological and functional heterogeneity of glia found in the periphery reflects the diverse roles the nervous system performs throughout the body. Further, it highlights a complexity that should be appreciated and considered when it comes to a complete understanding of the peripheral nervous system in health and disease.
Collapse
Affiliation(s)
- Chelsey B. Reed
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| | - M. Laura Feltri
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| | - Emma R. Wilson
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| |
Collapse
|
15
|
The Enteric Glia and Its Modulation by the Endocannabinoid System, a New Target for Cannabinoid-Based Nutraceuticals? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196773. [PMID: 36235308 PMCID: PMC9570628 DOI: 10.3390/molecules27196773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
The enteric nervous system (ENS) is a part of the autonomic nervous system that intrinsically innervates the gastrointestinal (GI) tract. Whereas enteric neurons have been deeply studied, the enteric glial cells (EGCs) have received less attention. However, these are immune-competent cells that contribute to the maintenance of the GI tract homeostasis through supporting epithelial integrity, providing neuroprotection, and influencing the GI motor function and sensation. The endogenous cannabinoid system (ECS) includes endogenous classical cannabinoids (anandamide, 2-arachidonoylglycerol), cannabinoid-like ligands (oleoylethanolamide (OEA) and palmitoylethanolamide (PEA)), enzymes involved in their metabolism (FAAH, MAGL, COX-2) and classical (CB1 and CB2) and non-classical (TRPV1, GPR55, PPAR) receptors. The ECS participates in many processes crucial for the proper functioning of the GI tract, in which the EGCs are involved. Thus, the modulation of the EGCs through the ECS might be beneficial to treat some dysfunctions of the GI tract. This review explores the role of EGCs and ECS on the GI tract functions and dysfunctions, and the current knowledge about how EGCs may be modulated by the ECS components, as possible new targets for cannabinoids and cannabinoid-like molecules, particularly those with potential nutraceutical use.
Collapse
|
16
|
Progatzky F, Pachnis V. The role of enteric glia in intestinal immunity. Curr Opin Immunol 2022; 77:102183. [DOI: 10.1016/j.coi.2022.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
|
17
|
Adhesion of Gastric Cancer Cells to the Enteric Nervous System: Comparison between the Intestinal Type and Diffuse Type of Gastric Cancer. Cancers (Basel) 2022; 14:cancers14143296. [PMID: 35884357 PMCID: PMC9313246 DOI: 10.3390/cancers14143296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. The enteric nervous system (ENS) has been suggested to be involved in cancer development and spread. Objective: To analyze the GC cell adhesion to the ENS in a model of co-culture of gastric ENS with GC cells. Methods: Primary culture of gastric ENS (pcgENS), derived from a rat embryo stomach, was developed. The adhesion of GC cells to pcgENS was studied using a co-culture model. The role of N-Cadherin, a cell-adhesion protein, was evaluated. Results: Compared to intestinal-type GC cells, the diffuse-type GC cancer cells showed higher adhesion to pcgENS (55.9% ± 1.075 vs. 38.9% ± 0.6611, respectively, p < 0.001). The number of diffuse-type GC cells adherent to pcgENS was significantly lower in neuron-free pcgENS compared to neuron-containing pcgENS (p = 0.0261 and 0.0329 for AGS and MKN45, respectively). Confocal microscopy showed that GC cells adhere preferentially to the neurons of the pcgENS. N-Cadherin blockage resulted in significantly decreased adhesion of the GC cells to the pcgENS (p < 0.01). Conclusion: These results suggest a potential role of enteric neurons in the dissemination of GC cells, especially of the diffuse-type, partly through N-Cadherin.
Collapse
|
18
|
Yang YH, Qian W, Hou XH, Dai CB. Bifidobacterium bifidum and Bacteroides fragilis Induced Differential Immune Regulation of Enteric Glial Cells Subjected to Exogenous Inflammatory Stimulation. Inflammation 2022; 45:2388-2405. [PMID: 35776290 DOI: 10.1007/s10753-022-01700-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
Enteric glial cells (EGCs) are involved in intestinal inflammation. In this study, we will investigate how Bifidobacterium bifidum (B.b.) and Bacteroides fragilis (B.f.) influence EGC regulation. After pretreatment with lipopolysaccharide (LPS) and interferon-γ (IFN-γ), the expressions of major histocompatibility complex class II (MHC-II), CD80, CD86, glial cell line-derived neurotrophic factor (GDNF), toll-like receptor 2 (TLR-2), and tumor necrosis factor-α (TNF-α) in EGCs were detected using polymerase chain reaction and western blot after co-culture with the supernatants of B.b. or B.f. (multiplicity of infection, 40:1 or 80:1). Finally, EGCs were co-cultured with naive CD4+ T cells, and the expressions of interleukin (IL)-2, IL-4, IL-10, and IL-17 in supernatant were measured using enzyme-linked immunosorbent assay (ELISA). The mRNA expressions of MHC-II and CD86 in EGCs were increased after combined stimulation with LPS and IFN-γ. The expressions of MHC-II, GDNF, TLR-2, and TNF-α were all significantly upregulated in stimulated EGCs. The B.b. supernatant downregulated the expressions of MHC-II, GDNF, TLR-2, and TNF-α in stimulated EGCs, whereas the B.f. supernatant upregulated TLR-2 expression and downregulated MHC-II expression. The expressions of IL-4, IL-2, and IL-17 after co-culture of naive CD4+ T cells and stimulated EGCs were significantly increased. The supernatant of B.b. or B.f. downregulated the expressions of these cytokines. The low-concentration B.b. supernatant upregulated IL-10 expression. Conclusions B.b. and B.f. may influence intestinal inflammation by regulating MHC-II, GDNF, TLR-2, and TNF-α expression in EGCs and IL-4, IL-2, IL-17, and IL-10 secretion.
Collapse
Affiliation(s)
- Yan-Hua Yang
- Division of Gastroenterology, Affiliated RenHe Hospital of Three Gorges University, Yichang, 443001, China
- Division of Gastroenterology, Central Hospital of Enshi Autonomous Prefecture, Hubei Province, Enshi, 445000, China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Hua Hou
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chi-Bing Dai
- Division of Gastroenterology, Affiliated RenHe Hospital of Three Gorges University, Yichang, 443001, China.
| |
Collapse
|
19
|
Opioid Use, Gut Dysbiosis, Inflammation, and the Nervous System. J Neuroimmune Pharmacol 2022; 17:76-93. [PMID: 34993905 DOI: 10.1007/s11481-021-10046-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022]
Abstract
Opioid use disorder (OUD) is defined as the chronic use or misuse of prescribed or illicitly obtained opioids and is characterized by clinically significant impairment. The etiology of OUD is multifactorial as it is influenced by genetics, environmental factors, stress response and behavior. Given the profound role of the gut microbiome in health and disease states, in recent years there has been a growing interest to explore interactions between the gut microbiome and the central nervous system as a causal link and potential therapeutic source for OUD. This review describes the role of the gut microbiome and opioid-induced immunopathological disturbances at the gut epithelial surface, which collectively contribute to OUD and perpetuate the vicious cycle of addiction and relapse.
Collapse
|
20
|
Palikuqi B, Rispal J, Klein O. Good Neighbors: The Niche that Fine Tunes Mammalian Intestinal Regeneration. Cold Spring Harb Perspect Biol 2022; 14:a040865. [PMID: 34580119 PMCID: PMC9159262 DOI: 10.1101/cshperspect.a040865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The intestinal epithelium undergoes continuous cellular turnover, making it an attractive model to study tissue renewal and regeneration. Intestinal stem cells (ISCs) can both self-renew and differentiate along all epithelial cell lineages. Decisions about which fate to pursue are controlled by a balance between high Wnt signaling at the crypt bottom, where Lgr5 + ISCs reside, and increasing bone morphogenetic protein (BMP) levels toward the villus, where differentiated cells are located. Under stress conditions, epithelial cells in the intestine are quite plastic, with dedifferentiation, the reversal of cell fate from a differentiated cell to a more stem-like cell, allowing for most mature epithelial cell types to acquire stem cell-like properties. The ISC niche, mainly made up of mesenchymal, immune, enteric neuronal, and endothelial cells, plays a central role in maintaining the physiological function of the intestine. Additionally, the immune system and the microbiome play an essential role in regulating intestinal renewal. The development of various mouse models, organoid co-cultures and single-cell technologies has led to advances in understanding signals emanating from the mesenchymal niche. Here, we review how intestinal regeneration is driven by stem cell self-renewal and differentiation, with an emphasis on the niche that fine tunes these processes in both homeostasis and injury conditions.
Collapse
Affiliation(s)
- Brisa Palikuqi
- Program in Craniofacial Biology and Department of Orofacial Sciences
| | - Jérémie Rispal
- Program in Craniofacial Biology and Department of Orofacial Sciences
| | - Ophir Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences
- Program in Craniofacial Biology and Department of Orofacial Sciences
| |
Collapse
|
21
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
22
|
Almeida PP, de Moraes Thomasi BB, Menezes ÁC, Da Cruz BO, da Silva Costa N, Brito ML, D'Avila Pereira A, Castañon CR, Degani VAN, Magliano DC, Knauf C, Tavares-Gomes AL, Stockler-Pinto MB. 5/6 nephrectomy affects enteric glial cells and promotes impaired antioxidant defense in the colonic neuromuscular layer. Life Sci 2022; 298:120494. [PMID: 35339510 DOI: 10.1016/j.lfs.2022.120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
AIMS Chronic kidney disease (CKD) produces multiple repercussions in the gastrointestinal tract (GIT), such as alterations in motility, gut microbiota, intestinal permeability, and increased oxidative stress. However, despite enteric glial cells (EGC) having important neural and immune features in GIT physiology, their function in CKD remains unknown. The present study investigates colonic glial markers, inflammation, and antioxidant parameters in a CKD model. MAIN METHODS A 5/6 nephrectomized rat model was used to induce CKD in rats and Sham-operated animals as a control to suppress. Biochemical measures in plasma and neuromuscular layer such as glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity were carried out. Kidney histopathology was evaluated. Colon morphology analysis and glial fibrillary acid protein (GFAP), connexin-43 (Cx43), nuclear factor-kappa B (NF-κB) p65, and GPx protein expression were performed. KEY FINDINGS The CKD group exhibited dilated tubules and tubulointerstitial fibrosis in the reminiscent kidney (p = 0.0002). CKD rats showed higher SOD activity (p = 0.004) in plasma, with no differences in neuromuscular layer (p = 0.9833). However, GPx activity was decreased in the CKD group in plasma (p = 0.013) and neuromuscular layer (p = 0.0338). Morphological analysis revealed alterations in colonic morphometry with inflammatory foci in the submucosal layer and neuromuscular layer straightness in CKD rats (p = 0.0291). In addition, GFAP, Cx43, NF-κBp65 protein expression were increased, and GPx decreased in the neuromuscular layer of the CKD group (p < 0.05). SIGNIFICANCE CKD animals present alterations in colonic cytoarchitecture and decreased layer thickness. Moreover, CKD affects the enteric glial network of the neuromuscular layer, associated with decreased antioxidant activity and inflammation.
Collapse
Affiliation(s)
- Patricia Pereira Almeida
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | | | - Ágatha Cristie Menezes
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Beatriz Oliveira Da Cruz
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Nathalia da Silva Costa
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Michele Lima Brito
- Nutrition Graduation, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | - Cecília Ribeiro Castañon
- Clinic and Animal Reproduction Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | - D'Angelo Carlo Magliano
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Morphology Department, Biomedical Institute, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Claude Knauf
- Institut de Recherche en Santé Digestive, Université Paul Sabatier (UPS), Toulouse, France
| | - Ana Lúcia Tavares-Gomes
- Neuroscience Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Nutrition Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
23
|
Yang H, Li S, Le W. Intestinal Permeability, Dysbiosis, Inflammation and Enteric Glia Cells: The Intestinal Etiology of Parkinson’s Disease. Aging Dis 2022; 13:1381-1390. [PMID: 36186124 PMCID: PMC9466983 DOI: 10.14336/ad.2022.01281] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
The scientific and medical communities are becoming more aware of the substantial relationship between the function of the central nervous system (CNS) and the state of the gut environment. Parkinson's disease (PD) is a neurodegenerative disorder that affects the nigrostriatal pathway in the midbrain, presenting not only motor symptoms but also various non-motor manifestations, including neuropsychiatric symptoms and gastrointestinal (GI) symptoms. Over time, our knowledge of PD has progressed from the detection of midbrain dopaminergic deficits to the identification of a multifaceted disease with a variety of central and peripheral manifestations, with increased attention to the intestinal tract. Accumulating evidence has revealed that intestinal disorders are not only the peripheral consequence of PD pathogenesis, but also the possible pathological initiator decades before it progresses to the CNS. Here, we summarized recent research findings on the involvement of the intestinal environment in PD, with an emphasis on the involvement of the intestinal barrier, microbiome and its metabolites, inflammation, and enteric glial cells
Collapse
Affiliation(s)
- Huijia Yang
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Song Li
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.
- Department of Neurology and Institute of Neurology, Sichuan Academy of Medical Science-Sichuan Provincial Hospital, Chengdu, China.
- Correspondence should be addressed to: Prof. Weidong Le, Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China. E-mail: .
| |
Collapse
|
24
|
Casini A, Mancinelli R, Mammola CL, Pannarale L, Chirletti P, Onori P, Vaccaro R. Distribution of α-synuclein in normal human jejunum and its relations with the chemosensory and neuroendocrine system. Eur J Histochem 2021; 65. [PMID: 34726359 PMCID: PMC8581552 DOI: 10.4081/ejh.2021.3310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Alpha-synuclein (α-syn) is a presynaptic neuronal protein and its structural alterations play an important role in the pathogenesis of neurodegenerative diseases, such as Parkinson’s disease (PD). It has been originally described in the brain and aggregated α-syn has also been found in the peripheral nerves including the enteric nervous system (ENS) of PD patients. ENS is a network of neurons and glia found in the gut wall which controls gastrointestinal function independently from the central nervous system. Moreover, two types of epithelial cells are crucial in the creation of an interface between the lumen and the ENS: they are the tuft cells and the enteroendocrine cells (EECs). In addition, the abundant enteric glial cells (EGCs) in the intestinal mucosa play a key role in controlling the intestinal epithelial barrier. Our aim was to localize and characterize the presence of α-syn in the normal human jejunal wall. Surgical specimens of proximal jejunum were collected from patients submitted to pancreaticoduodenectomy and intestinal sections underwent immunohistochemical procedure. Alpha-syn has been found both at the level of the ENS and the epithelial cells. To characterize α-syn immunoreactive epithelial cells, we used markers such as choline acetyltransferase (ChAT), useful for the identification of tuft cells. Then we evaluated the co-presence of α-syn with serotonin (5-HT), expressed in EECs. Finally, we used the low-affinity nerve growth factor receptor (p75NTR), to detect peripheral EGCs. The presence of α-syn has been demonstrated in EECs, but not in the tuft cells. Additionally, p75NTR has been highlighted in EECs of the mucosal layer and co-localized with α-syn in EECs but not with ChAT-positive cells. These findings suggest that α-syn could play a possible role in synaptic transmission of the ENS and may contribute to maintain the integrity of the epithelial barrier of the small intestine through EECs.
Collapse
Affiliation(s)
- Arianna Casini
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza Università of Rome.
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza Università of Rome.
| | - Caterina Loredana Mammola
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza Università of Rome.
| | - Luigi Pannarale
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza Università of Rome.
| | - Piero Chirletti
- Department of Surgical Sciences, Sapienza University of Rome.
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza Università of Rome.
| | - Rosa Vaccaro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza Università of Rome.
| |
Collapse
|
25
|
Reale O, Bodi D, Huguet A, Fessard V. Role of enteric glial cells in the toxicity of phycotoxins: Investigation with a tri-culture intestinal cell model. Toxicol Lett 2021; 351:89-98. [PMID: 34461197 DOI: 10.1016/j.toxlet.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
Abstract
Lipophilic phycotoxins are secondary metabolites produced by phytoplankton. They can accumulate in edible filtering-shellfish and cause human intoxications, particularly gastrointestinal symptoms. Up to now, the in vitro intestinal effects of these toxins have been mainly investigated on simple monolayers of intestinal cells such as the enterocyte-like Caco-2 cell line. Recently, the combination of Caco-2 cells with mucus secreting HT29-MTX cell line has been also used to mimic the complexity of the human intestinal epithelium. Besides, enteric glial cells (EGC) from the enteric nervous system identified in the gut mucosa have been largely shown to be involved in gut functions. Therefore, using a novel model integrating Caco-2 and HT29-MTX cells co-cultured on inserts with EGC seeded in the basolateral compartment, we examined the toxicological effects of two phycotoxins, pectenotoxin-2 (PTX2) and okadaic acid (OA). Cell viability, morphology, barrier integrity, inflammation, barrier crossing, and the response of some specific glial markers were evaluated using a broad set of methodologies. The toxicity of PTX2 was depicted by a slight decrease of viability and integrity as well as a slight increase of inflammation of the Caco-2/HT29-MTX co-cultures. PTX2 induced some modifications of EGC morphology. OA induced IL-8 release and decreased viability and integrity of Caco-2/HT29-MTX cell monolayers. EGC viability was slightly affected by OA. The presence of EGC reinforced barrier integrity and reduced the inflammatory response of the epithelial barrier following OA exposure. The release of GDNF and BDNF gliomediators by EGC could be implicated in the protection observed.
Collapse
Affiliation(s)
- Océane Reale
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (Anses), Fougères Laboratory, 10B Rue Claude Bourgelat, 35306, Fougères Cedex, France
| | - Dorina Bodi
- Unit Contaminants, German Federal Institute for Risk Assessment, Department Safety in the Food Chain, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Antoine Huguet
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (Anses), Fougères Laboratory, 10B Rue Claude Bourgelat, 35306, Fougères Cedex, France
| | - Valérie Fessard
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (Anses), Fougères Laboratory, 10B Rue Claude Bourgelat, 35306, Fougères Cedex, France.
| |
Collapse
|
26
|
Chachar S, Chen J, Qin Y, Wu X, Yu H, Zhou Q, Fan X, Wang C, Brownell I, Xiao Y. Reciprocal signals between nerve and epithelium: how do neurons talk with epithelial cells? AMERICAN JOURNAL OF STEM CELLS 2021; 10:56-67. [PMID: 34849302 PMCID: PMC8610808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Most epithelium tissues continuously undergo self-renewal through proliferation and differentiation of epithelial stem cells (known as homeostasis), within a specialized stem cell niche. In highly innervated epithelium, peripheral nerves compose perineural niche and support stem cell homeostasis by releasing a variety of neurotransmitters, hormones, and growth factors and supplying trophic factors to the stem cells. Emerging evidence has shown that both sensory and motor nerves can regulate the fate of epithelial stem cells, thus influencing epithelium homeostasis. Understanding the mechanism of crosstalk between epithelial stem cells and neurons will reveal the important role of the perineural niche in physiological and pathological conditions. Herein, we review recent discoveries of the perineural niche in epithelium mainly in tissue homeostasis, with a limited touch in wound repair and pathogenesis.
Collapse
Affiliation(s)
- Sadaruddin Chachar
- Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
- Department of Biotechnology, Faculty of Crop Production, Sindh Agriculture UniversityTandojam 70060, Pakistan
| | - Jing Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang UniversityHangzhou 310016, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang UniversityHaining 314400, Zhejiang, China
| | - Yumei Qin
- School of Food Science and Bioengineering, Zhejiang Gongshang UniversityHangzhou 310018, Zhejiang, China
| | - Xia Wu
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
| | - Haiyan Yu
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
| | - Qiang Zhou
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
| | - Xiaojiao Fan
- School of Pharmacy, Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Chaochen Wang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang UniversityHangzhou 310016, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang UniversityHaining 314400, Zhejiang, China
| | - Isaac Brownell
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda 20892, Maryland, USA
| | - Ying Xiao
- Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
| |
Collapse
|
27
|
Wang YJ, Jia QL, Li L, Wang XX, Ling JH. Progress in understanding of relationship between gut microbiota and gastrointestinal motility. Shijie Huaren Xiaohua Zazhi 2021; 29:1020-1025. [DOI: 10.11569/wcjd.v29.i17.1020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal motility disorders are a group of common clinical disorders in which abnormal gastrointestinal motility is the major pathogenesis, including irritable bowel syndrome, functional dyspepsia, and diabetic gastroparesis. With the rapid development of microbial sequencing technology in the past 10 years, the understanding of the gut microbiota has greatly improved, and it is generally found that patients with gastrointestinal motility diseases have gut microbiota disorders. Some progress has been made on the correlation between gut microbiota and gastrointestinal motility. This review aims to elucidate the relationship between gut microbiota and gastrointestinal motility and the mechanism of their interaction.
Collapse
Affiliation(s)
- Yu-Jiao Wang
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Qing-Ling Jia
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Li Li
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xiang-Xiang Wang
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Jiang-Hong Ling
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| |
Collapse
|
28
|
Seguella L, Gulbransen BD. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat Rev Gastroenterol Hepatol 2021; 18:571-587. [PMID: 33731961 PMCID: PMC8324524 DOI: 10.1038/s41575-021-00423-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
One of the most transformative developments in neurogastroenterology is the realization that many functions normally attributed to enteric neurons involve interactions with enteric glial cells: a large population of peripheral neuroglia associated with enteric neurons throughout the gastrointestinal tract. The notion that glial cells function solely as passive support cells has been refuted by compelling evidence that demonstrates that enteric glia are important homeostatic cells of the intestine. Active signalling mechanisms between enteric glia and neurons modulate gastrointestinal reflexes and, in certain circumstances, function to drive neuroinflammatory processes that lead to long-term dysfunction. Bidirectional communication between enteric glia and immune cells contributes to gastrointestinal immune homeostasis, and crosstalk between enteric glia and cancer stem cells regulates tumorigenesis. These neuromodulatory and immunomodulatory roles place enteric glia in a unique position to regulate diverse gastrointestinal disease processes. In this Review, we discuss current concepts regarding enteric glial development, heterogeneity and functional roles in gastrointestinal pathophysiology and pathophysiology, with a focus on interactions with neurons and immune cells. We also present a working model to differentiate glial states based on normal function and disease-induced dysfunctions.
Collapse
Affiliation(s)
- Luisa Seguella
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Brian D Gulbransen
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
29
|
Abud HE, Chan WH, Jardé T. Source and Impact of the EGF Family of Ligands on Intestinal Stem Cells. Front Cell Dev Biol 2021; 9:685665. [PMID: 34350179 PMCID: PMC8327171 DOI: 10.3389/fcell.2021.685665] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/27/2021] [Indexed: 12/27/2022] Open
Abstract
Epidermal Growth Factor (EGF) has long been known for its role in promoting proliferation of intestinal epithelial cells. EGF is produced by epithelial niche cells at the base of crypts in vivo and is routinely added to the culture medium to support the growth of intestinal organoids ex vivo. The recent identification of diverse stromal cell populations that reside underneath intestinal crypts has enabled the characterization of key growth factor cues supplied by these cells. The nature of these signals and how they are delivered to drive intestinal epithelial development, daily homeostasis and tissue regeneration following injury are being investigated. It is clear that aside from EGF, other ligands of the family, including Neuregulin 1 (NRG1), have distinct roles in supporting the function of intestinal stem cells through the ErbB pathway.
Collapse
Affiliation(s)
- Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Wing Hei Chan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
30
|
Rose EC, Odle J, Blikslager AT, Ziegler AL. Probiotics, Prebiotics and Epithelial Tight Junctions: A Promising Approach to Modulate Intestinal Barrier Function. Int J Mol Sci 2021; 22:6729. [PMID: 34201613 PMCID: PMC8268081 DOI: 10.3390/ijms22136729] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Disruptions in the intestinal epithelial barrier can result in devastating consequences and a multitude of disease syndromes, particularly among preterm neonates. The association between barrier dysfunction and intestinal dysbiosis suggests that the intestinal barrier function is interactive with specific gut commensals and pathogenic microbes. In vitro and in vivo studies demonstrate that probiotic supplementation promotes significant upregulation and relocalization of interepithelial tight junction proteins, which form the microscopic scaffolds of the intestinal barrier. Probiotics facilitate some of these effects through the ligand-mediated stimulation of several toll-like receptors that are expressed by the intestinal epithelium. In particular, bacterial-mediated stimulation of toll-like receptor-2 modulates the expression and localization of specific protein constituents of intestinal tight junctions. Given that ingested prebiotics are robust modulators of the intestinal microbiota, prebiotic supplementation has been similarly investigated as a potential, indirect mechanism of barrier preservation. Emerging evidence suggests that prebiotics may additionally exert a direct effect on intestinal barrier function through mechanisms independent of the gut microbiota. In this review, we summarize current views on the effects of pro- and prebiotics on the intestinal epithelial barrier as well as on non-epithelial cell barrier constituents, such as the enteric glial cell network. Through continued investigation of these bioactive compounds, we can maximize their therapeutic potential for preventing and treating gastrointestinal diseases associated with impaired intestinal barrier function and dysbiosis.
Collapse
Affiliation(s)
- Elizabeth C. Rose
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (E.C.R.); (A.T.B.)
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27607, USA;
| | - Anthony T. Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (E.C.R.); (A.T.B.)
| | - Amanda L. Ziegler
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (E.C.R.); (A.T.B.)
| |
Collapse
|
31
|
Nutraceuticals and Enteric Glial Cells. Molecules 2021; 26:molecules26123762. [PMID: 34205534 PMCID: PMC8234579 DOI: 10.3390/molecules26123762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
Until recently, glia were considered to be a structural support for neurons, however further investigations showed that glial cells are equally as important as neurons. Among many different types of glia, enteric glial cells (EGCs) found in the gastrointestinal tract, have been significantly underestimated, but proved to play an essential role in neuroprotection, immune system modulation and many other functions. They are also said to be remarkably altered in different physiopathological conditions. A nutraceutical is defined as any food substance or part of a food that provides medical or health benefits, including prevention and treatment of the disease. Following the description of these interesting peripheral glial cells and highlighting their role in physiological and pathological changes, this article reviews all the studies on the effects of nutraceuticals as modulators of their functions. Currently there are only a few studies available concerning the effects of nutraceuticals on EGCs. Most of them evaluated molecules with antioxidant properties in systemic conditions, whereas only a few studies have been performed using models of gastrointestinal disorders. Despite the scarcity of studies on the topic, all agree that nutraceuticals have the potential to be an interesting alternative in the prevention and/or treatment of enteric gliopathies (of systemic or local etiology) and their associated gastrointestinal conditions.
Collapse
|
32
|
High-fat diet impairs duodenal barrier function and elicits glia-dependent changes along the gut-brain axis that are required for anxiogenic and depressive-like behaviors. J Neuroinflammation 2021; 18:115. [PMID: 33993886 PMCID: PMC8126158 DOI: 10.1186/s12974-021-02164-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mood and metabolic disorders are interrelated and may share common pathological processes. Autonomic neurons link the brain with the gastrointestinal tract and constitute a likely pathway for peripheral metabolic challenges to affect behaviors controlled by the brain. The activities of neurons along these pathways are regulated by glia, which exhibit phenotypic shifts in response to changes in their microenvironment. How glial changes might contribute to the behavioral effects of consuming a high-fat diet (HFD) is uncertain. Here, we tested the hypothesis that anxiogenic and depressive-like behaviors driven by consuming a HFD involve compromised duodenal barrier integrity and subsequent phenotypic changes to glia and neurons along the gut-brain axis. METHODS C57Bl/6 male mice were exposed to a standard diet or HFD for 20 weeks. Bodyweight was monitored weekly and correlated with mucosa histological damage and duodenal expression of tight junction proteins ZO-1 and occludin at 0, 6, and 20 weeks. The expression of GFAP, TLR-4, BDNF, and DCX were investigated in duodenal myenteric plexus, nodose ganglia, and dentate gyrus of the hippocampus at the same time points. Dendritic spine number was measured in cultured neurons isolated from duodenal myenteric plexuses and hippocampi at weeks 0, 6, and 20. Depressive and anxiety behaviors were also assessed by tail suspension, forced swimming, and open field tests. RESULTS HFD mice exhibited duodenal mucosa damage with marked infiltration of immune cells and decreased expression of ZO-1 and occludin that coincided with increasing body weight. Glial expression of GFAP and TLR4 increased in parallel in the duodenal myenteric plexuses, nodose ganglia, and hippocampus in a time-dependent manner. Glial changes were associated with a progressive decrease in BDNF, and DCX expression, fewer neuronal dendritic spines, and anxiogenic/depressive symptoms in HFD-treated mice. Fluorocitrate (FC), a glial metabolic poison, abolished these effects both in the enteric and central nervous systems and prevented behavioral alterations at week 20. CONCLUSIONS HFD impairs duodenal barrier integrity and produces behavioral changes consistent with depressive and anxiety phenotypes. HFD-driven changes in both peripheral and central nervous systems are glial-dependent, suggesting a potential glial role in the alteration of the gut-brain signaling that occurs during metabolic disorders and psychiatric co-morbidity.
Collapse
|
33
|
Meir M, Kannapin F, Diefenbacher M, Ghoreishi Y, Kollmann C, Flemming S, Germer CT, Waschke J, Leven P, Schneider R, Wehner S, Burkard N, Schlegel N. Intestinal Epithelial Barrier Maturation by Enteric Glial Cells Is GDNF-Dependent. Int J Mol Sci 2021; 22:1887. [PMID: 33672854 PMCID: PMC7917776 DOI: 10.3390/ijms22041887] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Enteric glial cells (EGCs) of the enteric nervous system are critically involved in the maintenance of intestinal epithelial barrier function (IEB). The underlying mechanisms remain undefined. Glial cell line-derived neurotrophic factor (GDNF) contributes to IEB maturation and may therefore be the predominant mediator of this process by EGCs. Using GFAPcre x Ai14floxed mice to isolate EGCs by Fluorescence-activated cell sorting (FACS), we confirmed that they synthesize GDNF in vivo as well as in primary cultures demonstrating that EGCs are a rich source of GDNF in vivo and in vitro. Co-culture of EGCs with Caco2 cells resulted in IEB maturation which was abrogated when GDNF was either depleted from EGC supernatants, or knocked down in EGCs or when the GDNF receptor RET was blocked. Further, TNFα-induced loss of IEB function in Caco2 cells and in organoids was attenuated by EGC supernatants or by recombinant GDNF. These barrier-protective effects were blunted when using supernatants from GDNF-deficient EGCs or by RET receptor blockade. Together, our data show that EGCs produce GDNF to maintain IEB function in vitro through the RET receptor.
Collapse
Affiliation(s)
- Michael Meir
- Department of General, Visceral, Vascular and Pediatric Surgery University Hospital Würzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, Germany; (M.M.); (F.K.); (Y.G.); (C.K.); (S.F.); (C.-T.G.); (N.B.)
| | - Felix Kannapin
- Department of General, Visceral, Vascular and Pediatric Surgery University Hospital Würzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, Germany; (M.M.); (F.K.); (Y.G.); (C.K.); (S.F.); (C.-T.G.); (N.B.)
| | - Markus Diefenbacher
- Department of Biochemistry and Molecular Biochemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
| | - Yalda Ghoreishi
- Department of General, Visceral, Vascular and Pediatric Surgery University Hospital Würzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, Germany; (M.M.); (F.K.); (Y.G.); (C.K.); (S.F.); (C.-T.G.); (N.B.)
| | - Catherine Kollmann
- Department of General, Visceral, Vascular and Pediatric Surgery University Hospital Würzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, Germany; (M.M.); (F.K.); (Y.G.); (C.K.); (S.F.); (C.-T.G.); (N.B.)
| | - Sven Flemming
- Department of General, Visceral, Vascular and Pediatric Surgery University Hospital Würzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, Germany; (M.M.); (F.K.); (Y.G.); (C.K.); (S.F.); (C.-T.G.); (N.B.)
| | - Christoph-Thomas Germer
- Department of General, Visceral, Vascular and Pediatric Surgery University Hospital Würzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, Germany; (M.M.); (F.K.); (Y.G.); (C.K.); (S.F.); (C.-T.G.); (N.B.)
| | - Jens Waschke
- Department of Anatomy and Cell Biology University of Munich, Pettenkoferstrasse 11, 80336 Munich, Germany;
| | - Patrick Leven
- Department of Surgery, University Clinic Bonn, Venusberg-Campus 1, 53105 Bonn, Germany; (P.L.); (R.S.); (S.W.)
| | - Reiner Schneider
- Department of Surgery, University Clinic Bonn, Venusberg-Campus 1, 53105 Bonn, Germany; (P.L.); (R.S.); (S.W.)
| | - Sven Wehner
- Department of Surgery, University Clinic Bonn, Venusberg-Campus 1, 53105 Bonn, Germany; (P.L.); (R.S.); (S.W.)
| | - Natalie Burkard
- Department of General, Visceral, Vascular and Pediatric Surgery University Hospital Würzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, Germany; (M.M.); (F.K.); (Y.G.); (C.K.); (S.F.); (C.-T.G.); (N.B.)
| | - Nicolas Schlegel
- Department of General, Visceral, Vascular and Pediatric Surgery University Hospital Würzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, Germany; (M.M.); (F.K.); (Y.G.); (C.K.); (S.F.); (C.-T.G.); (N.B.)
| |
Collapse
|
34
|
Hageman JH, Heinz MC, Kretzschmar K, van der Vaart J, Clevers H, Snippert HJG. Intestinal Regeneration: Regulation by the Microenvironment. Dev Cell 2021; 54:435-446. [PMID: 32841594 DOI: 10.1016/j.devcel.2020.07.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023]
Abstract
Damage to the intestinal stem cell niche can result from mechanical stress, infections, chronic inflammation or cytotoxic therapies. Progenitor cells can compensate for insults to the stem cell population through dedifferentiation. The microenvironment modulates this regenerative response by influencing the activity of signaling pathways, including Wnt, Notch, and YAP/TAZ. For instance, mesenchymal cells and immune cells become more abundant after damage and secrete signaling molecules that promote the regenerative process. Furthermore, regeneration is influenced by the nutritional state, microbiome, and extracellular matrix. Here, we review how all these components cooperate to restore epithelial homeostasis in the intestine after injury.
Collapse
Affiliation(s)
- Joris H Hageman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Maria C Heinz
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Kai Kretzschmar
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Mildred-Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Jelte van der Vaart
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Hugo J G Snippert
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
35
|
Schwarzmueller L, Bril O, Vermeulen L, Léveillé N. Emerging Role and Therapeutic Potential of lncRNAs in Colorectal Cancer. Cancers (Basel) 2020; 12:E3843. [PMID: 33352769 PMCID: PMC7767007 DOI: 10.3390/cancers12123843] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Maintenance of the intestinal epithelium is dependent on the control of stem cell (SC) proliferation and differentiation. The fine regulation of these cellular processes requires a complex dynamic interplay between several signaling pathways, including Wnt, Notch, Hippo, EGF, Ephrin, and BMP/TGF-β. During the initiation and progression of colorectal cancer (CRC), key events, such as oncogenic mutations, influence these signaling pathways, and tilt the homeostatic balance towards proliferation and dedifferentiation. Therapeutic strategies to specifically target these deregulated signaling pathways are of particular interest. However, systemic blocking or activation of these pathways poses major risks for normal stem cell function and tissue homeostasis. Interestingly, long non-coding RNAs (lncRNAs) have recently emerged as potent regulators of key cellular processes often deregulated in cancer. Because of their exceptional tissue and tumor specificity, these regulatory RNAs represent attractive targets for cancer therapy. Here, we discuss how lncRNAs participate in the maintenance of intestinal homeostasis and how they can contribute to the deregulation of each signaling pathway in CRC. Finally, we describe currently available molecular tools to develop lncRNA-targeted cancer therapies.
Collapse
Affiliation(s)
- Laura Schwarzmueller
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.S.); (O.B.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Oscar Bril
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.S.); (O.B.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.S.); (O.B.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Nicolas Léveillé
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.S.); (O.B.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
36
|
Enteric Glia at the Crossroads between Intestinal Immune System and Epithelial Barrier: Implications for Parkinson Disease. Int J Mol Sci 2020; 21:ijms21239199. [PMID: 33276665 PMCID: PMC7730281 DOI: 10.3390/ijms21239199] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Over recent years, several investigations have suggested that Parkinson’s disease (PD) can be regarded as the consequence of a bowel disorder. Indeed, gastrointestinal symptoms can occur at all stages of this neurodegenerative disease and in up to a third of cases, their onset can precede the involvement of the central nervous system. Recent data suggest that enteric glial cells (EGCs) may play a major role in PD-related gastrointestinal disturbances, as well as in the development and progression of the central disease. In addition to their trophic and structural functions, EGCs are crucial for the homeostatic control of a wide range of gastrointestinal activities. The main purpose of this review was to provide a detailed overview of the role of EGCs in intestinal PD-associated alterations, with particular regard for their participation in digestive and central inflammation as well as the dynamic interactions between glial cells and intestinal epithelial barrier. Accumulating evidence suggests that several pathological intestinal conditions, associated with an impairment of barrier permeability, may trigger dysfunctions of EGCs and their shift towards a proinflammatory phenotype. The reactive gliosis is likely responsible for PD-related neuroinflammation and the associated pathological changes in the ENS. Thus, ameliorating the efficiency of mucosal barrier, as well as avoiding IEB disruption and the related reactive gliosis, might theoretically prevent the onset of PD or, at least, counteract its progression.
Collapse
|
37
|
Xue NN, He M, Li Y, Wu JZ, Du WW, Wu XM, Yang ZZ, Zhang CG, Li QY, Xiao H. Periplaneta americana extract promotes intestinal mucosa repair of ulcerative colitis in rat. Acta Cir Bras 2020; 35:e202001002. [PMID: 33237174 PMCID: PMC7709898 DOI: 10.1590/s0102-865020200100000002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To investigate the mechanism of Periplaneta americana extract promoting intestinal mucosal repair of OXZ-induced colitis in rat. METHODS All experiments used an equal number of male and female SD rats (n=48). We injected OXZ into the colon to induce UC rat model. To determine the optimal concentration of P. Americana's extract (PA-40), it was classified into low (L), medium (M), and high (H) doses. After OXZ treatment, each drug was administered by enema for 7 consecutive days. Rats were divided into the following 6 groups: (1) Saline treatment group (NC), (2) OXZ treatment UC model group (MC), (3) OXZ + budesonide group (BUN), (4) OXZ + PA-40 L group, (5) OXZ + PA-40 M group, (6) OXZ + PA-40 H group. Disease activity index (DAI) scores, colon length, histopathological score, serum cytokine level (IL-4, IL-10, iNOS, tNOS), and amount of MPO, EGF, IL-13 in colonic mucosa were measured. RESULTS PA treatment had a significant healing effect on the OXZ-colitis model and significantly reduced the lesioned area, especially in the PA-40H groups. PA treatment did not alter the expression of IL-10 and MPO level, but increased EGF (epidermal growth factor) and decrease IL-13 in the colonic tissue. PA inhibited the rise of NOSs (nitric oxide synthase) and decreased the serum IL-4 level. CONCLUSIONS The data suggest that Periplaneta americana extract may be a potential compound for the treatment of colonic lesions. The mechanism may be related to inhibiting the secretion of IL-13 and promoting the formation of EGF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qi-yan Li
- The First People's Hospital of Yunnan Province, China
| | | |
Collapse
|
38
|
Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol 2020; 22:39-53. [PMID: 32958874 DOI: 10.1038/s41580-020-0278-0] [Citation(s) in RCA: 317] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 01/08/2023]
Abstract
Intestinal stem cells at the bottom of crypts fuel the rapid renewal of the different cell types that constitute a multitasking tissue. The intestinal epithelium facilitates selective uptake of nutrients while acting as a barrier for hostile luminal contents. Recent discoveries have revealed that the lineage plasticity of committed cells - combined with redundant sources of niche signals - enables the epithelium to efficiently repair tissue damage. New approaches such as single-cell transcriptomics and the use of organoid models have led to the identification of the signals that guide fate specification of stem cell progeny into the six intestinal cell lineages. These cell types display context-dependent functionality and can adapt to different requirements over their lifetime, as dictated by their microenvironment. These new insights into stem cell regulation and fate specification could aid the development of therapies that exploit the regenerative capacity and functionality of the gut.
Collapse
|
39
|
Gonzales J, Le Berre-Scoul C, Dariel A, Bréhéret P, Neunlist M, Boudin H. Semaphorin 3A controls enteric neuron connectivity and is inversely associated with synapsin 1 expression in Hirschsprung disease. Sci Rep 2020; 10:15119. [PMID: 32934297 PMCID: PMC7492427 DOI: 10.1038/s41598-020-71865-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/30/2020] [Indexed: 12/27/2022] Open
Abstract
Most of the gut functions are controlled by the enteric nervous system (ENS), a complex network of enteric neurons located throughout the wall of the gastrointestinal tract. The formation of ENS connectivity during the perinatal period critically underlies the establishment of gastrointestinal motility, but the factors involved in this maturation process remain poorly characterized. Here, we examined the role of Semaphorin 3A (Sema3A) on ENS maturation and its potential implication in Hirschsprung disease (HSCR), a developmental disorder of the ENS with impaired colonic motility. We found that Sema3A and its receptor Neuropilin 1 (NRP1) are expressed in the rat gut during the early postnatal period. At the cellular level, NRP1 is expressed by enteric neurons, where it is particularly enriched at growth areas of developing axons. Treatment of primary ENS cultures and gut explants with Sema3A restricts axon elongation and synapse formation. Comparison of the ganglionic colon of HSCR patients to the colon of patients with anorectal malformation shows reduced expression of the synaptic molecule synapsin 1 in HSCR, which is inversely correlated with Sema3A expression. Our study identifies Sema3A as a critical regulator of ENS connectivity and provides a link between altered ENS connectivity and HSCR.
Collapse
Affiliation(s)
- Jacques Gonzales
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Catherine Le Berre-Scoul
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Anne Dariel
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France.,Pediatric Surgery Department, Hôpital Timone-Enfants, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Paul Bréhéret
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Michel Neunlist
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Hélène Boudin
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France.
| |
Collapse
|
40
|
Snyder J, Wang CM, Zhang AQ, Li Y, Luchan J, Hosic S, Koppes R, Carrier RL, Koppes A. Materials and Microenvironments for Engineering the Intestinal Epithelium. Ann Biomed Eng 2020; 48:1916-1940. [DOI: 10.1007/s10439-020-02470-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
|
41
|
Valès S, Bacola G, Biraud M, Touvron M, Bessard A, Geraldo F, Dougherty KA, Lashani S, Bossard C, Flamant M, Duchalais E, Marionneau-Lambot S, Oullier T, Oliver L, Neunlist M, Vallette FM, Van Landeghem L. Tumor cells hijack enteric glia to activate colon cancer stem cells and stimulate tumorigenesis. EBioMedicine 2019; 49:172-188. [PMID: 31662289 PMCID: PMC6945247 DOI: 10.1016/j.ebiom.2019.09.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Colon cancer stem cells (CSCs), considered responsible for tumor initiation and cancer relapse, are constantly exposed to regulatory cues emanating from neighboring cells present in the tumor microenvironment. Among these cells are enteric glial cells (EGCs) that are potent regulators of the epithelium functions in a healthy intestine. However, whether EGCs impact CSC-driven tumorigenesis remains unknown. METHODS Impact of human EGC primary cultures or a non-transformed EGC line on CSCs isolated from human primary colon adenocarcinomas or colon cancer cell lines with different p53, MMR system and stemness status was determined using murine xenograft models and 3D co-culture systems. Supernatants of patient-matched human primary colon adenocarcinomas and non-adjacent healthy mucosa were used to mimic tumor versus healthy mucosa secretomes and compare their effects on EGCs. FINDINGS Our data show that EGCs stimulate CSC expansion and ability to give rise to tumors via paracrine signaling. Importantly, only EGCs that were pre-activated by tumor epithelial cell-derived soluble factors increased CSC tumorigenicity. Pharmacological inhibition of PGE2 biosynthesis in EGCs or IL-1 knockdown in tumor epithelial cells prevented EGC acquisition of a pro-tumorigenic phenotype. Inhibition of PGE2 receptor EP4 and EGFR in CSCs inhibited the effects of tumor-activated EGCs. INTERPRETATION Altogether, our results show that EGCs, once activated by the tumor, acquire a pro-tumorigenic phenotype and stimulate CSC-driven tumorigenesis via a PGE2/EP4/EGFR-dependent pathway. FUNDING This work was supported by grants from the French National Cancer Institute, La Ligue contre le Cancer, the 'Région des Pays de la Loire' and the UNC Lineberger Comprehensive Cancer Center.
Collapse
Affiliation(s)
- Simon Valès
- Bretagne Loire University, Nantes University, INSERM 1235, IMAD, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Gregory Bacola
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Mandy Biraud
- Bretagne Loire University, Nantes University, INSERM 1235, IMAD, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Mélissa Touvron
- Bretagne Loire University, Nantes University, INSERM 1235, IMAD, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Anne Bessard
- Bretagne Loire University, Nantes University, INSERM 1235, IMAD, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Fanny Geraldo
- Nantes University, INSERM 1232, CRCINA, Nantes, France
| | - Kelsie A. Dougherty
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Shaian Lashani
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | - Mathurin Flamant
- Nantes University Hospital, Nantes, France,Jules Verne Clinic, Nantes, France
| | - Emilie Duchalais
- Bretagne Loire University, Nantes University, INSERM 1235, IMAD, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France,Nantes University Hospital, Nantes, France
| | | | | | - Lisa Oliver
- Nantes University, INSERM 1232, CRCINA, Nantes, France,Nantes University Hospital, Nantes, France
| | - Michel Neunlist
- Bretagne Loire University, Nantes University, INSERM 1235, IMAD, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France,Nantes University Hospital, Nantes, France
| | | | - Laurianne Van Landeghem
- Bretagne Loire University, Nantes University, INSERM 1235, IMAD, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA,Corresponding author at: North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, CB# 8401, Raleigh, NC 27607, USA.
| |
Collapse
|
42
|
Di ZS, Yang ZJ, Zhu MJ, Wang FF, Li LS, Xu JD. Regulation of intestinal epithelial barrier by and dysfunction of intestinal glial cells. Shijie Huaren Xiaohua Zazhi 2019; 27:1013-1021. [DOI: 10.11569/wcjd.v27.i16.1013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The enteric glia is an important component of the enteric nervous system and forms a broad network in the mucosa of the gastrointestinal tract. Enteric glial cells (EGC) are located in all layers of the intestinal wall and respond to neurotransmitters and neuromodulators through signal transduction pathways. The enteric nervous system interacts with resident glial cells in the gut, and there is increasing evidence that EGC are involved in the regulation of epithelial function. Epithelial cells have important absorption and secretion functions and are also involved in the formation of intestinal epithelial barrier. Studies have found that the enteric glia is not only involved in the regulation of gastrointestinal motility and epithelial barrier function, but also in the formation of cellular molecular bridges between intestinal neurons, enteroendocrine cells, immune cells, and epithelial cells. This article reviews the recent progress in the understanding of the role of EGC in the intestinal barrier and defense functions.
Collapse
Affiliation(s)
- Zhi-Shan Di
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Ze-Jun Yang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Min-Jia Zhu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Fei-Fei Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Li-Sheng Li
- School of Basic Medicine, Capital Medical University, Beijing 100069, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
43
|
Persistent Increased Enteric Glial Expression of S100β is Associated With Low-grade Inflammation in Patients With Diverticular Disease. J Clin Gastroenterol 2019. [PMID: 29517710 DOI: 10.1097/mcg.0000000000001011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diverticular disease (DD) is a common gastrointestinal inflammatory disorder associated with an enteric neuropathy. Although enteric glial cells (EGCs) are essential regulators of intestinal inflammation and motility functions, their contribution to the pathophysiology of DD remains unclear. Therefore, we analyzed the expression of specific EGC markers in patients with DD. MATERIALS AND METHODS Expression of the glial markers S100β, GFAP, Sox10, and Connexin 43 was analyzed by real-time quantitative PCR in colonic specimens of patients with DD and in that of controls. Protein expression levels of S100β, GFAP, and Connexin 43 were further analyzed using immunohistochemistry in the submucosal and myenteric plexus of patients with DD and in that of controls. Expression of the inflammatory cytokines tumor necrosis factor-α and interleukin-6 was quantified using qPCR, and infiltration of CD3+ lymphocytes was determined using immunohistochemistry. RESULTS Expression of S100β was increased in the submucosal and myenteric plexus of patients with DD compared with that in controls, whereas expression of other glial factors remained unchanged. This increased expression of S100β was correlated to CD3+ lymphocytic infiltrates in patients with DD, whereas no correlation was observed in controls. CONCLUSIONS DD is associated with limited but significant alterations of the enteric glial network. The increased expression of S100β is associated with a persistent low-grade inflammation reported in patients with DD, further emphasizing the role of EGCs in intestinal inflammation.
Collapse
|
44
|
Walsh KT, Zemper AE. The Enteric Nervous System for Epithelial Researchers: Basic Anatomy, Techniques, and Interactions With the Epithelium. Cell Mol Gastroenterol Hepatol 2019; 8:369-378. [PMID: 31108231 PMCID: PMC6718943 DOI: 10.1016/j.jcmgh.2019.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 02/08/2023]
Abstract
The intestinal epithelium does not function in isolation, but interacts with many components including the Enteric Nervous System (ENS). Understanding ENS and intestinal epithelium interactions requires multidisciplinary approaches to uncover cells involved, mechanisms used, and the ultimate influence on intestinal physiology. This review is intended to serve as a reference for epithelial biologists interested in studying these interactions. With this in mind, this review aims to summarize the basic anatomy of the epithelium and ENS, mechanisms by which they interact, and techniques used to study these interactions. We highlight in vitro, ex vivo and in vivo techniques. Additionally, ENS influence on epithelial proliferation and gene expression within stem and differentiated cells as well as gastrointestinal cancer are discussed.
Collapse
Key Words
- 5-ht, 5-hydroxytryptamine
- 5-ht3r, 5-hydroxytryptamine 3 receptor
- ach, acetylcholine
- aitc, allyl isothicyanate
- cpi, crypt proliferation index
- eec, enteroendocrine cell
- ens, enteric nervous system
- gi, gastrointestinal
- hio, human intestinal organoid
- isc, intestinal stem cell
- lgr5, leucine-rich repeat–containing g protein–coupled receptor
- ne, norepinephrine
- ngf, nerve growth factor
- si, small intestine
- ta, transit-amplifying
Collapse
Affiliation(s)
- Kathleen T. Walsh
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon,Institute of Neuroscience, University of Oregon, Eugene, Oregon,Department of Biology, University of Oregon, Eugene, Oregon
| | - Anne E. Zemper
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon,Department of Biology, University of Oregon, Eugene, Oregon,Correspondence Address correspondence to: Anne E. Zemper, PhD, University of Oregon, 218 Streisinger Hall, 1370 Franklin Boulevard, Eugene, Oregon 97401. fax: (541) 346–6056.
| |
Collapse
|
45
|
Vergnolle N, Cirillo C. Neurons and Glia in the Enteric Nervous System and Epithelial Barrier Function. Physiology (Bethesda) 2019; 33:269-280. [PMID: 29897300 DOI: 10.1152/physiol.00009.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intestinal epithelial barrier is the largest exchange surface between the body and the external environment. Its functions are regulated by luminal, and also internal, components including the enteric nervous system. This review summarizes current knowledge about the role of the digestive "neuronal-glial-epithelial unit" on epithelial barrier function.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse , France.,Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Carla Cirillo
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse , France.,Laboratory for Enteric Neuroscience, TARGID, University of Leuven , Leuven , Belgium
| |
Collapse
|
46
|
Abstract
The intestinal epithelium withstands continuous mechanical, chemical and biological insults despite its single-layered, simple epithelial structure. The crypt-villus tissue architecture in combination with rapid cell turnover enables the intestine to act both as a barrier and as the primary site of nutrient uptake. Constant tissue replenishment is fuelled by continuously dividing stem cells that reside at the bottom of crypts. These cells are nurtured and protected by specialized epithelial and mesenchymal cells, and together constitute the intestinal stem cell niche. Intestinal stem cells and early progenitor cells compete for limited niche space and, therefore, the ability to retain or regain stemness. Those cells unable to do so differentiate to one of six different mature cell types and move upwards towards the villus, where they are shed into the intestinal lumen after 3-5 days. In this Review, we discuss the signals, cell types and mechanisms that control homeostasis and regeneration in the intestinal epithelium. We investigate how the niche protects and instructs intestinal stem cells, which processes drive differentiation of mature cells and how imbalance in key signalling pathways can cause human disease.
Collapse
|
47
|
Chesné J, Cardoso V, Veiga-Fernandes H. Neuro-immune regulation of mucosal physiology. Mucosal Immunol 2019; 12:10-20. [PMID: 30089849 DOI: 10.1038/s41385-018-0063-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Mucosal barriers constitute major body surfaces that are in constant contact with the external environment. Mucosal sites are densely populated by a myriad of distinct neurons and immune cell types that sense, integrate and respond to multiple environmental cues. In the recent past, neuro-immune interactions have been reported to play central roles in mucosal health and disease, including chronic inflammatory conditions, allergy and infectious diseases. Discrete neuro-immune cell units act as building blocks of this bidirectional multi-tissue cross-talk, ensuring mucosal tissue health and integrity. Herein, we will focus on reciprocal neuro-immune interactions in the airways and intestine. Such neuro-immune cross-talk maximizes sensing and integration of environmental aggressions, which can be considered an important paradigm shift in our current views of mucosal physiology and immune regulation.
Collapse
Affiliation(s)
- Julie Chesné
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038, Lisboa, Portugal
| | - Vânia Cardoso
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038, Lisboa, Portugal
| | | |
Collapse
|
48
|
Sharkey KA, Beck PL, McKay DM. Neuroimmunophysiology of the gut: advances and emerging concepts focusing on the epithelium. Nat Rev Gastroenterol Hepatol 2018; 15:765-784. [PMID: 30069036 DOI: 10.1038/s41575-018-0051-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epithelial lining of the gastrointestinal tract serves as the interface for digestion and absorption of nutrients and water and as a defensive barrier. The defensive functions of the intestinal epithelium are remarkable considering that the gut lumen is home to trillions of resident bacteria, fungi and protozoa (collectively, the intestinal microbiota) that must be prevented from translocation across the epithelial barrier. Imbalances in the relationship between the intestinal microbiota and the host lead to the manifestation of diseases that range from disorders of motility and sensation (IBS) and intestinal inflammation (IBD) to behavioural and metabolic disorders, including autism and obesity. The latest discoveries shed light on the sophisticated intracellular, intercellular and interkingdom signalling mechanisms of host defence that involve epithelial and enteroendocrine cells, the enteric nervous system and the immune system. Together, they maintain homeostasis by integrating luminal signals, including those derived from the microbiota, to regulate the physiology of the gastrointestinal tract in health and disease. Therapeutic strategies are being developed that target these signalling systems to improve the resilience of the gut and treat the symptoms of gastrointestinal disease.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada. .,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada. .,Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada. .,Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| | - Paul L Beck
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada.,Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada.,Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada.,Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derek M McKay
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
49
|
Santos AJM, Lo YH, Mah AT, Kuo CJ. The Intestinal Stem Cell Niche: Homeostasis and Adaptations. Trends Cell Biol 2018; 28:1062-1078. [PMID: 30195922 DOI: 10.1016/j.tcb.2018.08.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
The intestinal epithelium is a rapidly renewing cellular compartment. This constant regeneration is a hallmark of intestinal homeostasis and requires a tightly regulated balance between intestinal stem cell (ISC) proliferation and differentiation. Since intestinal epithelial cells directly contact pathogenic environmental factors that continuously challenge their integrity, ISCs must also actively divide to facilitate regeneration and repair. Understanding niche adaptations that maintain ISC activity during homeostatic renewal and injury-induced intestinal regeneration is therefore a major and ongoing focus for stem cell biology. Here, we review recent concepts and propose an active interconversion of the ISC niche between homeostasis and injury-adaptive states that is superimposed upon an equally dynamic equilibrium between active and reserve ISC populations.
Collapse
Affiliation(s)
- António J M Santos
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuan-Hung Lo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda T Mah
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
50
|
Weichselbaum L, Klein OD. The intestinal epithelial response to damage. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1205-1211. [PMID: 30194677 DOI: 10.1007/s11427-018-9331-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/01/2018] [Indexed: 12/27/2022]
Abstract
The constant renewal of the intestinal epithelium is fueled by intestinal stem cells (ISCs) lying at the base of crypts, and these ISCs continuously give rise to transit-amplifying progenitor cells during homeostasis. Upon injury and loss of ISCs, the epithelium has the ability to regenerate by the dedifferentiation of progenitor cells that then regain stemness and repopulate the pool of ISCs. Epithelial cells receive cues from immune cells, mesenchymal cells and the microbiome to maintain homeostasis. This review focuses on the response of the epithelium to damage and the interplay between the different intestinal compartments.
Collapse
Affiliation(s)
- Laura Weichselbaum
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, 94143, USA.,Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, 6041, Belgium.,Laboratory of Experimental Gastroenterology, Université libre de Bruxelles, Brussels, 1070, Belgium
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, 94143, USA. .,Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|