1
|
Rickman OJ, Guignard E, Chabanon T, Bertoldi G, Auberson M, Hummler E. Tmprss2 maintains epithelial barrier integrity and transepithelial sodium transport. Life Sci Alliance 2024; 7:e202302304. [PMID: 38171596 PMCID: PMC10765116 DOI: 10.26508/lsa.202302304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
The mouse cortical collecting duct cell line presents a tight epithelium with regulated ion and water transport. The epithelial sodium channel (ENaC) is localized in the apical membrane and constitutes the rate-limiting step for sodium entry, thereby enabling transepithelial transport of sodium ions. The membrane-bound serine protease Tmprss2 is co-expressed with the alpha subunit of ENaC. αENaC gene expression followed the Tmprss2 expression, and the absence of Tmprss2 resulted not only in down-regulation of αENaC gene and protein expression but also in abolished transepithelial sodium transport. In addition, RNA-sequencing analyses unveiled drastic down-regulation of the membrane-bound protease CAP3/St14, the epithelial adhesion molecule EpCAM, and the tight junction proteins claudin-7 and claudin-3 as also confirmed by immunohistochemistry. In summary, our data clearly demonstrate a dual role of Tmprss2 in maintaining not only ENaC-mediated transepithelial but also EpCAM/claudin-7-mediated paracellular barrier; the tight epithelium of the mouse renal mCCD cells becomes leaky. Our working model proposes that Tmprss2 acts via CAP3/St14 on EpCAM/claudin-7 tight junction complexes and through regulating transcription of αENaC on ENaC-mediated sodium transport.
Collapse
Affiliation(s)
- Olivia J Rickman
- https://ror.org/019whta54 Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Emma Guignard
- https://ror.org/019whta54 Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Thomas Chabanon
- https://ror.org/019whta54 Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Giovanni Bertoldi
- https://ror.org/019whta54 Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Muriel Auberson
- https://ror.org/019whta54 Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- https://ror.org/019whta54 Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Liu X, Xi C, Li W, Su H, Yang H, Bai Z, Tian Y, Song S. Moringa oleifera Leaves Protein Enhances Intestinal Permeability by Activating TLR4 Upstream Signaling and Disrupting Tight Junctions. Int J Mol Sci 2023; 24:16425. [PMID: 38003615 PMCID: PMC10671199 DOI: 10.3390/ijms242216425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Changes in intestinal mucosal barrier permeability lead to antigen sensitization and mast cell-mediated allergic reactions, which are considered to play important roles in the occurrence and development of food allergies. It has been suggested that protein causes increased intestinal permeability via mast cell degranulation, and we investigated the effect of camellia Moringa oleifera leaves protein on intestinal permeability and explored its role in the development of food allergies. The current study investigated the effect of M. oleifera leaves protein on intestinal permeability through assessments of transepithelial electrical resistance (TEER) and transmembrane transport of FITC-dextran by Caco-2 cells. The expression levels of Toll-like receptor 4 (TLR4), IL-8, Occludin, Claudin-1, and perimembrane protein family (ZO-1) were detected by real-time PCR and Western blotting. The effect of M. oleifera leaves protein on intestinal permeability was verified in mice in vivo. The serum fluorescence intensity was measured using the FITC-dextran tracer method, and the expression of tight junction proteins was detected using Western blotting. The results showed that M. oleifera leaves protein widened the gaps between Caco-2 cells, reduced transmembrane resistance, and increased permeability. This protein also reduced the mRNA and protein levels of Occludin, Claudin-1, and ZO-1. Animal experiments showed that intestinal permeability was increased, and that the expression of the tight junction proteins Occludin and Claudin-1 were downregulated in mice. This study shows that M. oleifera leaves protein has components that increase intestinal permeability, decrease tight junction protein expression, promote transmembrane transport in Caco-2 cells, and increase intestinal permeability in experimental animals. The finding that M. oleifera leaves active protein increases intestinal permeability suggests that this protein may be valuable for the prevention, diagnosis, and treatment of M. oleifera leaves allergy.
Collapse
Affiliation(s)
- Xiaoxue Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (C.X.); (W.L.); (H.S.); (H.Y.)
| | - Chuyu Xi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (C.X.); (W.L.); (H.S.); (H.Y.)
| | - Wenjie Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (C.X.); (W.L.); (H.S.); (H.Y.)
| | - Hairan Su
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (C.X.); (W.L.); (H.S.); (H.Y.)
| | - Hao Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (C.X.); (W.L.); (H.S.); (H.Y.)
| | - Zhongbin Bai
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China;
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China;
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shuang Song
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (C.X.); (W.L.); (H.S.); (H.Y.)
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China;
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Hua H, Liu L, Zhu T, Cheng F, Qian H, Shen F, Liu Y. Healthy regulation of Tibetan Brassica rapa L. polysaccharides on alleviating hyperlipidemia: A rodent study. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100171. [PMID: 37179738 PMCID: PMC10172908 DOI: 10.1016/j.fochms.2023.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/27/2023] [Accepted: 04/08/2023] [Indexed: 05/15/2023]
Abstract
Hyperlipidemia is a common metabolic disorder, which can lead to obesity, hypertension, diabetes, atherosclerosis and other diseases. Studies have shown that polysaccharides absorbed by the intestinal tract can regulate blood lipids and facilitate the growth of intestinal flora. This article aims to investigate whether Tibetan turnip polysaccharide (TTP) plays a protective role in blood lipid and intestinal health via hepatic and intestinal axes. Here we show that TTP helps to reduce the size of adipocytes and the accumulation of liver fat, playing a dose-dependent effect on ADPN levels, suggesting an effect on lipid metabolism regulation. Meantime, TTP intervention results in the downregulation of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and serum inflammatory factors (interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α)), implying that TTP suppresses the progression of inflammation in the body. The expression of key enzymes associated with cholesterol and triglyceride synthesis, such as 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), cholesterol 7α-hydroxylase (CYP7A1), peroxisome proliferator-activated receptors γ (PPARγ), acetyl-CoA carboxylase (ACC), fatty acid synthetase (FAS) and sterol-regulatory element binding proteins-1c (SREBP-1c), can be modulated by TTP. Furthermore, TTP also alleviates the damage to intestinal tissues caused by high-fat diet, restores the integrity of the intestinal barrier, improves the composition and abundance of the intestinal flora and increases the levels of SCFAs. This study provides a theoretical basis for the regulation of body rhythm by functional foods and potential intervention in patients with hyperlipidemia.
Collapse
Affiliation(s)
- Hanyi Hua
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Lin Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Tao Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Fengyue Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Corresponding author at: School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Fanglin Shen
- Fudan University, China
- School of Environmental Engineering, Wuxi University, Wuxi 214105, China
- Corresponding author at: School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yu Liu
- Departments of Orthopaedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214062, China
- Corresponding author at: School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Saha K, Subramenium Ganapathy A, Wang A, Michael Morris N, Suchanec E, Ding W, Yochum G, Koltun W, Nighot M, Ma T, Nighot P. Autophagy Reduces the Degradation and Promotes Membrane Localization of Occludin to Enhance the Intestinal Epithelial Tight Junction Barrier against Paracellular Macromolecule Flux. J Crohns Colitis 2023; 17:433-449. [PMID: 36219473 PMCID: PMC10069622 DOI: 10.1093/ecco-jcc/jjac148] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Functional loss of the gut epithelium's paracellular tight junction [TJ] barrier and defective autophagy are factors potentiating inflammatory bowel disease [IBD]. Previously, we showed the role of autophagy in enhancing the intestinal TJ barrier via pore-forming claudin-2 degradation. How autophagy regulates the TJ barrier-forming proteins remains unknown. Here, we investigated the role of autophagy in the regulation of occludin, a principal TJ component involved in TJ barrier enhancement. RESULTS Autophagy induction using pharmacological activators and nutrient starvation increased total occludin levels in intestinal epithelial cells, mouse colonocytes and human colonoids. Autophagy induction enriched membrane occludin levels and reduced paracellular permeability of macromolecules. Autophagy-mediated TJ barrier enhancement was contingent on the presence of occludin as OCLN-/- nullified its TJ barrier-enhancing effect against macromolecular flux. Autophagy inhibited the constitutive degradation of occludin by preventing its caveolar endocytosis from the membrane and protected against inflammation-induced TJ barrier loss. Autophagy enhanced the phosphorylation of ERK-1/2 and inhibition of these kinases in Caco-2 cells and human colonic mucosa prevented the macromolecular barrier-enhancing effects of autophagy. In vivo, autophagy induction by rapamycin enhanced occludin levels in wild-type mouse intestines and protected against lipopolysaccharide- and tumour necrosis factor-α-induced TJ barrier loss. Disruption of autophagy with acute Atg7 knockout in adult mice decreased intestinal occludin levels, increasing baseline colonic TJ permeability and exacerbating the effect of experimental colitis. CONCLUSION Our data suggest a novel role of autophagy in promoting the intestinal TJ barrier by increasing occludin levels in an ERK1/2 mitogen-activated protein kinase-dependent mechanism.
Collapse
Affiliation(s)
- Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ashwinkumar Subramenium Ganapathy
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Alexandra Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nathan Michael Morris
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Eric Suchanec
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Wei Ding
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Meghali Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Thomas Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
5
|
Higashi T, Saito AC, Fukazawa Y, Furuse M, Higashi AY, Ono M, Chiba H. EpCAM proteolysis and release of complexed claudin-7 repair and maintain the tight junction barrier. J Cell Biol 2022; 222:213688. [PMID: 36378161 PMCID: PMC9671161 DOI: 10.1083/jcb.202204079] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
TJs maintain the epithelial barrier by regulating paracellular permeability. Since TJs are under dynamically fluctuating intercellular tension, cells must continuously survey and repair any damage. However, the underlying mechanisms allowing cells to sense TJ damage and repair the barrier are not yet fully understood. Here, we showed that proteinases play an important role in the maintenance of the epithelial barrier. At TJ break sites, EpCAM-claudin-7 complexes on the basolateral membrane become accessible to apical membrane-anchored serine proteinases (MASPs) and the MASPs cleave EpCAM. Biochemical data and imaging analysis suggest that claudin-7 released from EpCAM contributes to the rapid repair of damaged TJs. Knockout (KO) of MASPs drastically reduced barrier function and live-imaging of TJ permeability showed that MASPs-KO cells exhibited increased size, duration, and frequency of leaks. Together, our results reveal a novel mechanism of TJ maintenance through the localized proteolysis of EpCAM at TJ leaks, and provide a better understanding of the dynamic regulation of epithelial permeability.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan,Correspondence to Tomohito Higashi:
| | - Akira C. Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan,Department of Physiological Sciences, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Atsuko Y. Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Masahiro Ono
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
6
|
Ronaghan NJ, Soo M, Pena U, Tellis M, Duan W, Tabatabaei-Zavareh N, Kramer P, Hou J, Moraes TJ. M1-like, but not M0- or M2-like, macrophages, reduce RSV infection of primary bronchial epithelial cells in a media-dependent fashion. PLoS One 2022; 17:e0276013. [PMID: 36228018 PMCID: PMC9560600 DOI: 10.1371/journal.pone.0276013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common childhood infection that in young infants can progress into severe bronchiolitis and pneumonia. Disease pathogenesis results from both viral mediated and host immune processes of which alveolar macrophages play an important part. Here, we investigated the role of different types of alveolar macrophages on RSV infection using an in vitro co-culture model involving primary tissue-derived human bronchial epithelial cells (HBECs) and human blood monocyte-derived M0-like, M1-like, or M2-like macrophages. It was hypothesized that the in vitro model would recapitulate previous in vivo findings of a protective effect of macrophages against RSV infection. It was found that macrophages maintained their phenotype for the 72-hour co-culture time period and the bronchial epithelial cells were unaffected by the macrophage media. HBEC infection with RSV was decreased by M1-like macrophages but enhanced by M0- or M2-like macrophages. The medium used during the co-culture also impacted the outcome of the infection. This work demonstrates that alveolar macrophage phenotypes may have differential roles during epithelial RSV infection, and demonstrates that an in vitro co-culture model could be used to further investigate the roles of macrophages during bronchial viral infection.
Collapse
Affiliation(s)
- Natalie J. Ronaghan
- STEMCELL Technologies Canada Inc., Vancouver, British Columbia, Canada
- Program of Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Mandy Soo
- STEMCELL Technologies Canada Inc., Vancouver, British Columbia, Canada
| | - Uriel Pena
- STEMCELL Technologies Canada Inc., Vancouver, British Columbia, Canada
| | - Marisa Tellis
- STEMCELL Technologies Canada Inc., Vancouver, British Columbia, Canada
| | - Wenming Duan
- Program of Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | - Philipp Kramer
- STEMCELL Technologies Canada Inc., Vancouver, British Columbia, Canada
| | - Juan Hou
- STEMCELL Technologies Canada Inc., Vancouver, British Columbia, Canada
| | - Theo J. Moraes
- Program of Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
7
|
Negi S, Hashimoto-Hill S, Alenghat T. Neonatal microbiota-epithelial interactions that impact infection. Front Microbiol 2022; 13:955051. [PMID: 36090061 PMCID: PMC9453604 DOI: 10.3389/fmicb.2022.955051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
Despite modern therapeutic developments and prophylactic use of antibiotics during birth or in the first few months of life, enteric infections continue to be a major cause of neonatal mortality and morbidity globally. The neonatal period is characterized by initial intestinal colonization with microbiota and concurrent immune system development. It is also a sensitive window during which perturbations to the environment or host can significantly impact colonization by commensal microbes. Extensive research has demonstrated that these early life alterations to the microbiota can lead to enhanced susceptibility to enteric infections and increased systemic dissemination in newborns. Various contributing factors continue to pose challenges in prevention and control of neonatal enteric infections. These include alterations in the gut microbiota composition, impaired immune response, and effects of maternal factors. In addition, there remains limited understanding for how commensal microbes impact host-pathogen interactions in newborns. In this review, we discuss the recent recognition of initial microbiota-epithelial interactions that occur in neonates and can regulate susceptibility to intestinal infection. These studies suggest the development of neonatal prophylactic or therapeutic regimens that include boosting epithelial defense through microbiota-directed interventions.
Collapse
|
8
|
Baggio CH, Shang J, Gordon MH, Stephens M, von der Weid PY, Nascimento AM, Román Y, Cipriani TR, MacNaughton WK. The dietary fibre rhamnogalacturonan improves intestinal epithelial barrier function in a microbiota-independent manner. Br J Pharmacol 2021; 179:337-352. [PMID: 34784647 DOI: 10.1111/bph.15739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Dietary fibre comprises a complex group of polysaccharides that are indigestible but are fermented by gut microbiota, promoting beneficial effects to the intestinal mucosa indirectly through the production of short chain fatty acids. We found that a polysaccharide, rhamnogalacturonan (RGal), from the plant Acmella oleracea, has direct effects on intestinal epithelial barrier function. Our objective was to determine the mechanism whereby RGal enhances epithelial barrier function. EXPERIMENTAL APPROACH Monolayers of colonic epithelial cell lines (Caco-2, T84) and of human primary cells from organoids were mounted in Ussing chambers to assess barrier function. The cellular mechanism of RGal effects on barrier function was determined using inhibitors of TLR-4 and PKC isoforms. KEY RESULTS Apically applied RGal (1000 μg/ml) significantly enhanced barrier function as shown by increased transepithelial electrical resistance (TER) and reduced fluorescein isothiocyanate (FITC)-dextran flux in Caco-2, T84 and human primary cell monolayers, and accelerated tight junction reassembly in Caco-2 cells in a calcium switch assay. RGal also reversed the barrier-damaging effects of inflammatory cytokines on FITC-dextran flux and preserved the tight junction distribution of occludin. RGal activated TLR4 in TLR4-expressing HEK reporter cells, an effect that was significantly inhibited by the TLR4 inhibitor, C34. The effect of RGal was also dependent on PKC, specifically the isoforms PKCd and PKCζ. CONCLUSION AND IMPLICATIONS RGal enhances intestinal epithelial barrier function through activation of TLR4 and PKC signaling pathways. Elucidation of RGal mechanisms of action could lead to new, dietary approaches to enhance mucosal healing in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Cristiane H Baggio
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Judie Shang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Marilyn H Gordon
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Matthew Stephens
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | - Adamara M Nascimento
- Department of Biochemistry, Universidade Federal do Acre, Rio Branco, AC, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Yony Román
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Thales R Cipriani
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Wallace K MacNaughton
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Mulberroside A from Cortex Mori Enhanced Gut Integrity in Diabetes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6655555. [PMID: 34104203 PMCID: PMC8159636 DOI: 10.1155/2021/6655555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/07/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Background Diabetic endotoxemia has been recognized as one of the hallmarks of type 2 diabetes mellitus (T2DM). Recent findings suggest that gut leak plays a pivotal role in diabetic endotoxemia. Cortex Mori (CM) has been widely applied in China to ameliorate development of T2DM, but its effect on endotoxemia is unknown. Methods The study was constructed with two parts: (1) in vivo study of CM on diabetic endotoxemia in db/db mice. Eight C57BL/6 mice were set as normal control; (2) in vitro study of mulberroside A (MBA) from CM on diabetic endotoxemia. Potential mechanism of MBA on ameliorating diabetic endotoxemia was also explored. Results The present study found that CM water extract decreased levels of blood glucose, ameliorated liver and renal damage in db/db mice, and ameliorated diabetic endotoxemia (p < 0.01). We also found that the water extract enhanced gut integrity and decreased gut inflammatory protein ICAM-1 expression in db/db mice as detected by H&E staining and immunohistochemistry methods. In the in vitro study, MBA decreased levels of MDA and ROS induced by LPS (p < 0.01) and enhanced the integrity of gut epithelial barrier (p < 0.01). Conclusions We found that Cortex Mori and its active component mulberroside A could ameliorate diabetic endotoxemia by preserving gut integrity.
Collapse
|
10
|
Weström B, Arévalo Sureda E, Pierzynowska K, Pierzynowski SG, Pérez-Cano FJ. The Immature Gut Barrier and Its Importance in Establishing Immunity in Newborn Mammals. Front Immunol 2020; 11:1153. [PMID: 32582216 PMCID: PMC7296122 DOI: 10.3389/fimmu.2020.01153] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
The gut is an efficient barrier which protects against the passage of pathogenic microorganisms and potential harmful macromolecules into the body, in addition to its primary function of nutrient digestion and absorption. Contrary to the restricted macromolecular passage in adulthood, enhanced transfer takes place across the intestines during early life, due to the high endocytic capacity of the immature intestinal epithelial cells during the fetal and/or neonatal periods. The timing and extent of this enhanced endocytic capacity is dependent on animal species, with a prominent non-selective intestinal macromolecular transfer in newborn ungulates, e.g., pigs, during the first few days of life, and a selective transfer of mainly immunoglobulin G (IgG), mediated by the FcRn receptor, in suckling rodents, e.g., rats and mice. In primates, maternal IgG is transferred during fetal life via the placenta, and intestinal macromolecular transfer is largely restricted in human neonates. The period of intestinal macromolecular transmission provides passive immune protection through the transfer of IgG antibodies from an immune competent mother; and may even have extra-immune beneficial effects on organ maturation in the offspring. Moreover, intestinal transfer during the fetal/neonatal periods results in increased exposure to microbial and food antigens which are then presented to the underlying immune system, which is both naïve and immature. This likely stimulates the maturation of the immune system and shifts the response toward tolerance induction instead of activation or inflammation, as usually seen in adulthood. Ingestion of mother's milk and the dietary transition to complex food at weaning, as well as the transient changes in the gut microbiota during the neonatal period, are also involved in the resulting immune response. Any disturbances in timing and/or balance of these parallel processes, i.e., intestinal epithelial maturation, luminal microbial colonization and mucosal immune maturation due to, e.g., preterm birth, infection, antibiotic use or nutrient changes during the neonatal period, might affect the establishment of the immune system in the infant. This review will focus on how differing developmental processes in the intestinal epithelium affect the macromolecular passage in different species and the possible impact of such passage on the establishment of immunity during the critical perinatal period in young mammals.
Collapse
Affiliation(s)
- Björn Weström
- Department of Biology, Lund University, Lund, Sweden
| | - Ester Arévalo Sureda
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Centre, Gembloux Agro-Biotech, University of Liège, Gembloux, Belgium
| | - Kateryna Pierzynowska
- Department of Biology, Lund University, Lund, Sweden
- Department of Animal Physiology, Kielanowski Institute of Animal Physiology and Nutrition, Jablonna, Poland
| | - Stefan G. Pierzynowski
- Department of Biology, Lund University, Lund, Sweden
- Department of Medical Biology, Institute of Rural Health, Lublin, Poland
| | - Francisco-José Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), Santa Coloma de Gramenet, Spain
| |
Collapse
|
11
|
Membrane-anchored serine proteases as regulators of epithelial function. Biochem Soc Trans 2020; 48:517-528. [PMID: 32196551 PMCID: PMC9869603 DOI: 10.1042/bst20190675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Cleavage of proteins in the extracellular milieu, including hormones, growth factors and their receptors, ion channels, and various cell adhesion and extracellular matrix molecules, plays a key role in the regulation of cell behavior. Among more than 500 proteolytic enzymes encoded by mammalian genomes, membrane-anchored serine proteases (MASPs), which are expressed on the surface of epithelial cells of all major organs, are excellently suited to mediate signal transduction across the epithelia and are increasingly being recognized as important regulators of epithelial development, function, and disease [ 1-3]. In this minireview, we summarize current knowledge of the in vivo roles of MASPs in acquisition and maintenance of some of the defining functions of epithelial tissues, such as barrier formation, ion transport, and sensory perception.
Collapse
|
12
|
Kriaa A, Jablaoui A, Mkaouar H, Akermi N, Maguin E, Rhimi M. Serine proteases at the cutting edge of IBD: Focus on gastrointestinal inflammation. FASEB J 2020; 34:7270-7282. [PMID: 32307770 DOI: 10.1096/fj.202000031rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
Serine proteases have been long recognized to coordinate many physiological processes and play key roles in regulating the inflammatory response. Accordingly, their dysregulation has been regularly associated with several inflammatory disorders and suggested as a central mechanism in the pathophysiology of digestive inflammation. So far, studies addressing the proteolytic homeostasis in the gut have mainly focused on host serine proteases as candidates of interest, while largely ignoring the potential contribution of their bacterial counterparts. The human gut microbiota comprises a complex ecosystem that contributes to host health and disease. Yet, our understanding of microbially produced serine proteases and investigation of whether they are causally linked to IBD is still in its infancy. In this review, we highlight recent advances in the emerging roles of host and bacterial serine proteases in digestive inflammation. We also discuss the application of available tools in the gut to monitor disease-related serine proteases. An exhaustive representation and understanding of such functional potential would help in closing existing gaps in mechanistic knowledge.
Collapse
Affiliation(s)
- Aicha Kriaa
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Amin Jablaoui
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Héla Mkaouar
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Nizar Akermi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Emmanuelle Maguin
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| |
Collapse
|
13
|
Varadarajan S, Stephenson RE, Miller AL. Multiscale dynamics of tight junction remodeling. J Cell Sci 2019; 132:132/22/jcs229286. [PMID: 31754042 DOI: 10.1242/jcs.229286] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epithelial cells form tissues that generate biological barriers in the body. Tight junctions (TJs) are responsible for maintaining a selectively permeable seal between epithelial cells, but little is known about how TJs dynamically remodel in response to physiological forces that challenge epithelial barrier function, such as cell shape changes (e.g. during cell division) or tissue stretching (e.g. during developmental morphogenesis). In this Review, we first introduce a framework to think about TJ remodeling across multiple scales: from molecular dynamics, to strand dynamics, to cell- and tissue-scale dynamics. We then relate knowledge gained from global perturbations of TJs to emerging information about local TJ remodeling events, where transient localized Rho activation and actomyosin-mediated contraction promote TJ remodeling to repair local leaks in barrier function. We conclude by identifying emerging areas in the field and propose ideas for future studies that address unanswered questions about the mechanisms that drive TJ remodeling.
Collapse
Affiliation(s)
- Saranyaraajan Varadarajan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Rachel E Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
14
|
Richter JF, Hildner M, Schmauder R, Turner JR, Schumann M, Reiche J. Occludin knockdown is not sufficient to induce transepithelial macromolecule passage. Tissue Barriers 2019; 7:1612661. [PMID: 31161924 DOI: 10.1080/21688370.2019.1608759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Occludin, a tight junction protein, has been reported to regulate barrier function - particularly the leak pathway for larger solutes - in epithelia. Therefore, we aimed to precisely define its role in macromolecule passage at single cell-cell junctions. A combination of varying occludin expression by transient and stable knockdown including systematic seeding strategies was employed to achieve a broad and defined pattern of variance in occludin expression over epithelia. This variance model enabled us to examine occludin function in the leak pathway using global and local analysis, i.e. to analyze macromolecule flux across epithelia and macromolecule passage at single-cell level. Macromolecular flux was found not to correlate with occludin expression in intestinal epithelial cells. In fact, by spatially resolving macromolecular permeation sites using a recently developed method we uncovered leaky cell junctions at the edge of Transwells resulting in increased passage. This demonstrates that rare leaks can determine net flux of macromolecules across epithelia while the vast majority of cellular junctions do not contribute significantly. Hence, concomitant local analysis of macromolecule passage across epithelial barriers is indispensable for interpretation of global flux data. By combining this new approach with cell culture models of the leak pathway, we can present evidence that lack of occludin is not sufficient to stimulate the epithelial leak pathway.
Collapse
Affiliation(s)
- Jan F Richter
- a Institute of Anatomy II , Jena University Hospital , Jena , Germany
| | - Markus Hildner
- a Institute of Anatomy II , Jena University Hospital , Jena , Germany
| | - Ralf Schmauder
- b Institute of Physiology II , Jena University Hospital , Jena , Germany
| | - Jerrold R Turner
- c Department of Pathology , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Michael Schumann
- d Dept. of Gastroenterology, Infectious Diseases and Rheumatology , Campus Benjamin Franklin, Charité - University medicine Berlin , Berlin , Germany
| | - Juliane Reiche
- e Institute of Biochemistry II , Jena University Hospital , Jena , Germany
| |
Collapse
|
15
|
Wong M, Ganapathy AS, Suchanec E, Laidler L, Ma T, Nighot P. Intestinal epithelial tight junction barrier regulation by autophagy-related protein ATG6/beclin 1. Am J Physiol Cell Physiol 2019; 316:C753-C765. [PMID: 30892937 DOI: 10.1152/ajpcell.00246.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A defective tight junction (TJ) barrier is a key pathogenic factor for inflammatory bowel disease. Previously, we have shown that autophagy, a cell survival mechanism, enhances intestinal epithelial TJ barrier function. Autophagy-related protein-6 (ATG6/beclin 1), a key protein in the autophagy pathway, also plays a role in the endocytic pathway. The constitutive role of beclin 1 in the intestinal TJ barrier is not known. In Caco-2 cells, beclin 1 was found to be coimmunoprecipitated with the TJ protein occludin and colocalized with occludin on the membrane. Treatment of Caco-2 cells with beclin 1 peptide [transactivating regulatory protein (Tat)-beclin 1] reduced TJ barrier function. Activation of beclin 1 increased occludin endocytosis and reduced total occludin protein level. In contrast, beclin 1 siRNA transfection enhanced Caco-2 TJ barrier function. In pharmacologic and genetic autophagy inhibition studies, the constitutive function of beclin 1 in the TJ barrier was found to be autophagy independent. However, de novo induction of autophagy with starvation or rapamycin prevented Tat-beclin 1-induced increase in TJ permeability and reduction in occludin level. Induction of autophagy also resulted in reduced beclin 1-occludin association. In mouse colon, beclin 1 colocalized with occludin on the epithelial membrane. Perfusion of mouse colon with beclin 1 peptide caused an increase in colonic TJ permeability that was prevented by in vivo induction of autophagy. These findings show that beclin 1 plays a constitutive, autophagy-independent role in the regulation of intestinal TJ barrier function via endocytosis of occludin. Autophagy terminates constitutive beclin 1 function in the TJ barrier and enhances the TJ barrier.
Collapse
Affiliation(s)
- Morgan Wong
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | | | - Eric Suchanec
- Department of Medicine, College of Medicine, Pennsylvania State University , Hershey, Pennsylvania
| | - Laura Laidler
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Thomas Ma
- Department of Medicine, College of Medicine, Pennsylvania State University , Hershey, Pennsylvania
| | - Prashant Nighot
- Department of Medicine, College of Medicine, Pennsylvania State University , Hershey, Pennsylvania
| |
Collapse
|
16
|
Harrer A, Bücker R, Boehm M, Zarzecka U, Tegtmeyer N, Sticht H, Schulzke JD, Backert S. Campylobacter jejuni enters gut epithelial cells and impairs intestinal barrier function through cleavage of occludin by serine protease HtrA. Gut Pathog 2019; 11:4. [PMID: 30805031 PMCID: PMC6373145 DOI: 10.1186/s13099-019-0283-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/01/2019] [Indexed: 01/17/2023] Open
Abstract
Campylobacter jejuni secretes HtrA (high temperature requirement protein A), a serine protease that is involved in virulence. Here, we investigated the interaction of HtrA with the host protein occludin, a tight junction strand component. Immunofluorescence studies demonstrated that infection of polarized intestinal Caco-2 cells with C. jejuni strain 81-176 resulted in a redistribution of occludin away from the tight junctions into the cytoplasm, an effect that was also observed in human biopsies during acute campylobacteriosis. Occludin knockout Caco-2 cells were generated by CRISPR/Cas9 technology. Inactivation of this gene affected the polarization of the cells in monolayers and transepithelial electrical resistance (TER) was reduced, compared to wild-type Caco-2 cells. Although tight junctions were still being formed, occludin deficiency resulted in a slight decrease of the tight junction plaque protein ZO-1, which was redistributed off the tight junction into the lateral plasma membrane. Adherence of C. jejuni to Caco-2 cell monolayers was similar between the occludin knockout compared to wild-type cells, but invasion was enhanced, indicating that deletion of occludin allowed larger numbers of bacteria to pass the tight junctions and to reach basal membranes to target the fibronectin receptor followed by cell entry. Finally, we discovered that purified C. jejuni HtrA cleaves recombinant occludin in vitro to release a 37 kDa carboxy-terminal fragment. The same cleavage fragment was observed in Western blots upon infection of polarized Caco-2 cells with wild-type C. jejuni, but not with isogenic ΔhtrA mutants. HtrA cleavage was mapped to the second extracellular loop of occludin, and a putative cleavage site was identified. In conclusion, HtrA functions as a secreted protease targeting the tight junctions, which enables the bacteria by cleaving occludin and subcellular redistribution of other tight junction proteins to transmigrate using a paracellular mechanism and subsequently invade epithelial cells.
Collapse
Affiliation(s)
- Aileen Harrer
- 1Division of Microbiology, Dept. of Biology, University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Roland Bücker
- 2Institut für Klinische Physiologie, Med. Klinik m.S. Gastroenterologie, Infektiologie und Rheumatologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Manja Boehm
- 1Division of Microbiology, Dept. of Biology, University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Urszula Zarzecka
- 1Division of Microbiology, Dept. of Biology, University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany.,4Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Nicole Tegtmeyer
- 1Division of Microbiology, Dept. of Biology, University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Heinrich Sticht
- 3Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg D Schulzke
- 2Institut für Klinische Physiologie, Med. Klinik m.S. Gastroenterologie, Infektiologie und Rheumatologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Steffen Backert
- 1Division of Microbiology, Dept. of Biology, University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
17
|
Pierzynowski SG, Gregory PC, Filip R, Woliński J, Pierzynowska KG. Glucose homeostasis dependency on acini-islet-acinar (AIA) axis communication: a new possible pathophysiological hypothesis regarding diabetes mellitus. Nutr Diabetes 2018; 8:55. [PMID: 30293998 PMCID: PMC6174155 DOI: 10.1038/s41387-018-0062-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 02/08/2023] Open
Abstract
Studies have highlighted the existence of two intra-pancreatic axes of communication: one involved in the regulation of enzyme production by insulin-the insular-acinar axis; and another involved in the regulation of insulin release by pancreatic enzymes-the acini-insular axis. Previous studies by our laboratory show that pancreatic enzymes can affect blood glucose homeostasis and insulin secretion independently of their digestive functions, both from the gut lumen and probably from the blood. As a result we would like to introduce here the concept of acini-islet-acinar (AIA) axis communication (feedback), which could play an important role in the development of obesity and diabetes type 2. The AIA feedback links the endocrine and exocrine parts of the pancreas and emphasizes the essential role that the pancreas plays, as a single organ, in the regulation of glucose homeostasis by amylase most probably in gut epithelium and by insulin and glucagon in peripheral blood.
Collapse
Affiliation(s)
- Stefan G Pierzynowski
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden. .,Anara AB/SGPlus, Alfågelgränden 24, 23132, Trelleborg, Sweden. .,PROF/Vitanano Sp.z o.o., Woronieckiego 1a-13, 20491, Lublin, Poland. .,Department of Medical Biology., Inst, Rural Medicine, Jaczewskiego 2, 20950, Lublin, Poland. .,Innovation Centre - STB, Skarszewska 23, 83100, Tczew, Poland.
| | - Peter C Gregory
- PROF/Vitanano Sp.z o.o., Woronieckiego 1a-13, 20491, Lublin, Poland
| | - Rafał Filip
- Department of Gastroenterology with IBD Unit of Clinical Hospital 2, University of Rzeszow, Lwowska 60, Rzeszow, 35301, Poland
| | - Jarosław Woliński
- Department of Animal Physiology, The Kielanowski Institute of Animal Nutrition and Physiology Polish Academy of Sciences, Instytucka 3, 05110, Jabłonna, Poland
| | - Kateryna Goncharova Pierzynowska
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden. .,Anara AB/SGPlus, Alfågelgränden 24, 23132, Trelleborg, Sweden. .,PROF/Vitanano Sp.z o.o., Woronieckiego 1a-13, 20491, Lublin, Poland. .,Innovation Centre - STB, Skarszewska 23, 83100, Tczew, Poland.
| |
Collapse
|
18
|
London NR, Tharakan A, Mendiola M, Sussan TE, Chen M, Dobzanski A, Lane AP, Sidhaye V, Biswal S, Ramanathan M. Deletion of Nrf2 enhances susceptibility to eosinophilic sinonasal inflammation in a murine model of rhinosinusitis. Int Forum Allergy Rhinol 2018; 9:114-119. [PMID: 30281933 DOI: 10.1002/alr.22222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 11/05/2022]
Abstract
BACKGROUND Oxidative stress exacerbates lower airway diseases including asthma and chronic obstructive pulmonary disease (COPD); however, its role in upper airway (sinonasal) chronic inflammatory disorders is less clear. Nuclear erythroid 2 p45-related factor (Nrf2) is an endogenous mechanism that upon activation invokes an antioxidant response pathway via nuclear translocation and upregulation of cytoprotective genes. We sought to determine whether deletion of Nrf2 enhances susceptibility to allergic sinonasal inflammation in vivo. METHODS Nrf2-/- mice were subjected to the ovalbumin (Ova)-induced murine model of rhinosinusitis and indices of sinonasal inflammation and epithelial barrier dysfunction were assessed. RESULTS We show that deletion of Nrf2 results in enhances indices of allergen-induced sinonasal inflammation including aggravated eosinophil accumulation and goblet cell hyperplasia. An exaggerated increase in epithelial derived inflammatory cytokines including interleukin 33 (IL-33) and thymic stromal lymphopoietin (TSLP) was observed in the nasal lavage fluid and sinonasal mucosal tissue of Nrf2-/- mice. Furthermore, Nrf2-/- mice showed heightened Ova-induced barrier dysfunction as measured by serum albumin accumulation in nasal lavage fluid of mice. CONCLUSION These data show that the endogenous Nrf2 pathway limits Ova-induced sinonasal inflammation, epithelial derived inflammatory cytokine production, and epithelial barrier dysfunction in vivo and identify a potential therapeutic target in the management of allergic sinonasal inflammatory disorders. This is the first study to our knowledge which shows that Nrf2 regulates allergic inflammation in the sinonasal cavity in vivo.
Collapse
Affiliation(s)
- Nyall R London
- Johns Hopkins Department of Otolaryngology-Head and Neck Surgery, Baltimore, MD
| | - Anuj Tharakan
- Johns Hopkins Department of Otolaryngology-Head and Neck Surgery, Baltimore, MD
| | - Michelle Mendiola
- Johns Hopkins Department of Otolaryngology-Head and Neck Surgery, Baltimore, MD
| | - Thomas E Sussan
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Mengfei Chen
- Johns Hopkins Department of Otolaryngology-Head and Neck Surgery, Baltimore, MD
| | - Alex Dobzanski
- Johns Hopkins Department of Otolaryngology-Head and Neck Surgery, Baltimore, MD
| | - Andrew P Lane
- Johns Hopkins Department of Otolaryngology-Head and Neck Surgery, Baltimore, MD
| | - Venkataramana Sidhaye
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Shyam Biswal
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | |
Collapse
|
19
|
Hatayama S, Shimohata T, Amano S, Kido J, Nguyen AQ, Sato Y, Kanda Y, Tentaku A, Fukushima S, Nakahashi M, Uebanso T, Mawatari K, Takahashi A. Cellular Tight Junctions Prevent Effective Campylobacter jejuni Invasion and Inflammatory Barrier Disruption Promoting Bacterial Invasion from Lateral Membrane in Polarized Intestinal Epithelial Cells. Front Cell Infect Microbiol 2018; 8:15. [PMID: 29441328 PMCID: PMC5797580 DOI: 10.3389/fcimb.2018.00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/12/2018] [Indexed: 01/23/2023] Open
Abstract
Campylobacter jejuni invasion is closely related to C. jejuni pathogenicity. The intestinal epithelium contains polarized epithelial cells that form tight junctions (TJs) to provide a physical barrier against bacterial invasion. Previous studies indicated that C. jejuni invasion of non-polarized cells involves several cellular features, including lipid rafts. However, the dynamics of C. jejuni invasion of polarized epithelial cells are not fully understood. Here we investigated the interaction between C. jejuni invasion and TJ formation to characterize the mechanism of C. jejuni invasion in polarized epithelial cells. In contrast to non-polarized epithelial cells, C. jejuni invasion was not affected by depletion of lipid rafts in polarized epithelial cells. However, depletion of lipid rafts significantly decreased C. jejuni invasion in TJ disrupted cells or basolateral infection and repair of cellular TJs suppressed lipid raft-mediated C. jejuni invasion in polarized epithelial cells. In addition, pro-inflammatory cytokine, TNF-α treatment that induce TJ disruption promote C. jejuni invasion and lipid rafts depletion significantly reduced C. jejuni invasion in TNF-α treated cells. These data demonstrated that TJs prevent C. jejuni invasion from the lateral side of epithelial cells, where they play a main part in bacterial invasion and suggest that C. jejuni invasion could be increased in inflammatory condition. Therefore, maintenance of TJs integrity should be considered important in the development of novel therapies for C. jejuni infection.
Collapse
Affiliation(s)
- Sho Hatayama
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Sachie Amano
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Junko Kido
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Anh Q Nguyen
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Yuri Sato
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Yuna Kanda
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Aya Tentaku
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Shiho Fukushima
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Mutsumi Nakahashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| |
Collapse
|
20
|
Qingchang Wenzhong Decoction Attenuates DSS-Induced Colitis in Rats by Reducing Inflammation and Improving Intestinal Barrier Function via Upregulating the MSP/RON Signalling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4846876. [PMID: 29234405 PMCID: PMC5660811 DOI: 10.1155/2017/4846876] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
Ulcerative colitis (UC) is a chronic, nonspecific, inflammatory disease for which an effective treatment is lacking. Our previous study found that Qingchang Wenzhong Decoction (QCWZD) can significantly improve the clinical symptoms of UC and ameliorate dextran sulphate sodium- (DSS-) induced ulcerative colitis in rats by downregulating the IP10/CXCR3 axis-mediated inflammatory response. The purpose of the present study was to further explore the mechanism of QCWZD for UC in rats models, which were established by 7-day administration of 4.5% dextran sulphate sodium solution. QCWZD was administered daily for 7 days; then we determined the serum macrophage-stimulating protein concentration (MSP) and recepteur d'origine nantais (RON) expression and its downstream proteins (protein kinase B [Akt], phosphorylated [p] Akt, occludin, zona occluden- [ZO-] 1, and claudin-2) in colon tissue using Western blotting and quantitative polymerase chain reaction. In DSS-induced UC, QCWZD significantly alleviated colitis-associated inflammation, upregulated serum MSP expression and RON expression in the colon, reduced the pAkt levels, promoted colonic occluding and ZO-1 expression, and depressed claudin-2 expression. In conclusion, the MSP/RON signalling pathway plays an important role in the pathogenesis of UC by involving the inflammatory response and improving intestinal barrier function. QCWZD appears to attenuate DSS-induced UC in rats by upregulating the MSP/RON signalling pathway.
Collapse
|
21
|
Lahey KA, Ronaghan NJ, Shang J, Dion SP, Désilets A, Leduc R, MacNaughton WK. Signaling pathways induced by serine proteases to increase intestinal epithelial barrier function. PLoS One 2017; 12:e0180259. [PMID: 28671992 PMCID: PMC5495298 DOI: 10.1371/journal.pone.0180259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/13/2017] [Indexed: 12/30/2022] Open
Abstract
Changes in barrier function of the gastrointestinal tract are thought to contribute to the inflammatory bowel diseases Crohn's disease and ulcerative colitis. Previous work in our lab demonstrated that apical exposure of intestinal epithelial cell lines to serine proteases results in an increase in transepithelial electrical resistance (TER). However, the underlying mechanisms governing this response are unclear. We aimed to determine the requirement for proteolytic activity, epidermal growth factor receptor (EGFR) activation, and downstream intracellular signaling in initiating and maintaining enhanced barrier function following protease treatment using a canine intestinal epithelial cell line (SCBN). We also examined the role of phosphorylation of myosin regulatory light chain on the serine protease-induced increase in TER through. It was found that proteolytic activity of the serine proteases trypsin and matriptase is required to initiate and maintain the protease-mediated increase in TER. We also show that MMP-independent EGFR activation is essential to the sustained phase of the protease response, and that Src kinases may mediate EGFR transactivation. PI3-K and ERK1/2 signaling were important in reaching a maximal increase in TER following protease stimulation; however, their upstream activators are yet to be determined. CK2 inhibition prevented the increase in TER induced by serine proteases. The bradykinin B(2) receptor was not involved in the change in TER in response to serine proteases, and no change in phosphorylation of MLC was observed after trypsin or matriptase treatment. Taken together, our data show a requirement for ongoing proteolytic activity, EGFR transactivation, as well as downstream PI3-K, ERK1/2, and CK2 signaling in protease-mediated barrier enhancement of intestinal epithelial cells. The pathways mediating enhanced barrier function by proteases may be novel therapeutic targets for intestinal disorders characterized by disrupted epithelial barrier function.
Collapse
Affiliation(s)
- Kelcie A. Lahey
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Natalie J. Ronaghan
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Judie Shang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Sébastien P. Dion
- Département de Pharmacologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Antoine Désilets
- Département de Pharmacologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Leduc
- Département de Pharmacologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Wallace K. MacNaughton
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Guo H, Xu Y, Huang W, Zhou H, Zheng Z, Zhao Y, He B, Zhu T, Tang S, Zhu Q. Kuwanon G Preserves LPS-Induced Disruption of Gut Epithelial Barrier In Vitro. Molecules 2016; 21:molecules21111597. [PMID: 27879681 PMCID: PMC6272946 DOI: 10.3390/molecules21111597] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/13/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
Defects in the gut epithelial barrier have now been recognized to be responsible for diabetic endotoxemia. In everyday life, Mulberry leaf tea is widely used in Asian nations due to its proposed benefits to health and control of diabetes. Evidence indicates the potential role of Kuwanon G (KWG), a component from Morus alba L., on blocking the gut epithelial barrier. In lipopolysaccharides (LPS)-damaged Caco-2 cells, it was found that KWG increased the viability of cells in a concentration-dependent manner. KWG administration significantly elevated the anti-oxidant abilities via increasing ratio of superoxidase dismutase (SOD)/malondialdehyde (MDA) and decreasing reactive oxygen species (ROS) within the cells. During KWG incubation, pro-inflammatory cytokines including interleukin (IL)-1β and tumor necrosis factor (TNF)-α were significantly reduced, tight junction proteins including zonula occludens (ZO)-1, intercellular adhesion molecule (ICAM)-1 and Occludin were dramatically increased as detected by immunofluorescence assay, trans-epithelial electrical resistance was significantly increased and the transmission of albumin-fluorescein isothiocyanate (FITC) across the barrier was decreased. In conclusion, the present study demonstrated that KWG could ameliorate LPS-induced disruption of the gut epithelial barrier by increasing cell viability and tight junction between cells, and decreasing pro-inflammatory cytokines and oxidative damage.
Collapse
Affiliation(s)
- Hengli Guo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
| | - Wei Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- Affiliated Hospital of Southwest Medical University, Luzhou 640000, China.
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- Macau Institute for Applied Research in Medicine and Health, Avenida Wai Long, Taipa, Macao, China.
| | - Zhaoguang Zheng
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou 510760, China.
| | - Yonghua Zhao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
| | - Bao He
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou 510760, China.
| | - Tingting Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- Affiliated Hospital of Southwest Medical University, Luzhou 640000, China.
| | - Shanshan Tang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
| | - Quan Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou 510760, China.
| |
Collapse
|