1
|
Moerkens R, Mooiweer J, Ramírez-Sánchez AD, Oelen R, Franke L, Wijmenga C, Barrett RJ, Jonkers IH, Withoff S. An iPSC-derived small intestine-on-chip with self-organizing epithelial, mesenchymal, and neural cells. Cell Rep 2024; 43:114247. [PMID: 38907996 DOI: 10.1016/j.celrep.2024.114247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 06/24/2024] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived intestinal organoids are valuable tools for researching developmental biology and personalized therapies, but their closed topology and relative immature state limit applications. Here, we use organ-on-chip technology to develop a hiPSC-derived intestinal barrier with apical and basolateral access in a more physiological in vitro microenvironment. To replicate growth factor gradients along the crypt-villus axis, we locally expose the cells to expansion and differentiation media. In these conditions, intestinal epithelial cells self-organize into villus-like folds with physiological barrier integrity, and myofibroblasts and neurons emerge and form a subepithelial tissue in the bottom channel. The growth factor gradients efficiently balance dividing and mature cell types and induce an intestinal epithelial composition, including absorptive and secretory lineages, resembling the composition of the human small intestine. This well-characterized hiPSC-derived intestine-on-chip system can facilitate personalized studies on physiological processes and therapy development in the human small intestine.
Collapse
Affiliation(s)
- Renée Moerkens
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Joram Mooiweer
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Aarón D Ramírez-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Roy Oelen
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Robert J Barrett
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Iris H Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands.
| |
Collapse
|
2
|
Takahashi S, Nakagawa K, Nagata W, Koizumi A, Ishizuka T. A preliminary therapeutic study of the effects of molecular hydrogen on intestinal dysbiosis and small intestinal injury in high-fat diet-loaded senescence-accelerated mice. Nutrition 2024; 122:112372. [PMID: 38428218 DOI: 10.1016/j.nut.2024.112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 03/03/2024]
Abstract
OBJECTIVES Aging and excessive fat intake may additively induce dysbiosis of the gut microbiota and intestinal inflammatory damage. Here, we analyzed microbiota dysbiosis and intestinal injury in high-fat diet-loaded senescence-accelerated mice (SAMP8). Additionally, we examined whether treatment with molecular hydrogen could improve the intestinal environment. METHODS SAMP8 and SAMR1 (control) mice were first fed a normal diet (ND) or high-fat diet (HFD) for 10 wk (n = 10 each group). Subsequently, HFD was supplemented with a placebo jelly or hydrogen-rich jelly (HRJ) for 4 wk. After treatment, isolated small intestinal tissues were used for hematoxylin and eosin staining, immunofluorescence staining, and thiobarbituric acid reactive substances (TBARS) assay. Furthermore, we analyzed alterations in the microbiota composition in cecal feces using 16S rRNA gene analysis for microbiota profiling. Statistical analyses were performed using unpaired Student's t tests or one-way analysis of variance and Tukey's post hoc test for multiple comparisons. RESULT HFD feeding reduced the expression of caudal-related homeobox transcription factor 2 (CDX2) and 5-bromo-2'-deoxyuridine (BrdU) and enhanced malondialdehyde (MDA) levels in the small intestine of SAMP8. HRJ treatment improved the reduction in CDX2 and BrdU and enhanced MDA levels. We performed a sequence analysis of the gut microbiota at the genus level and identified 283 different bacterial genera from the 30 samples analyzed in the study. Among them, Parvibacter positively correlated with both HFD intake and aging, whereas 10 bacteria, including Anaerofustis, Anaerosporobacter, Butyricicoccus, and Ruminococcus were negatively correlated with both HFD and aging. HRJ treatment increased Lactinobactor and decreased Akkermansia, Gracilibacter, and Marvinbryantia abundance. CONCLUSION Our findings suggest that treatment with molecular hydrogen may affect microbiota profiling and suppress intestinal injury in HFD-loaded SAMP8.
Collapse
Affiliation(s)
- Sayaka Takahashi
- Department of Pharmacology of National Defense Medical College, Saitama, Japan.
| | - Keiichi Nakagawa
- Department of Pharmacology of National Defense Medical College, Saitama, Japan
| | - Wataru Nagata
- Department of Pharmacology of National Defense Medical College, Saitama, Japan
| | - Akiho Koizumi
- Department of Pharmacology of National Defense Medical College, Saitama, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology of National Defense Medical College, Saitama, Japan
| |
Collapse
|
3
|
Xie X, Geng C, Li X, Liao J, Li Y, Guo Y, Wang C. Roles of gastrointestinal polypeptides in intestinal barrier regulation. Peptides 2022; 151:170753. [PMID: 35114316 DOI: 10.1016/j.peptides.2022.170753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/17/2022]
Abstract
The intestinal barrier is a dynamic entity that is organized as a multilayer system and includes various intracellular and extracellular elements. The gut barrier functions in a coordinated manner to impede the passage of antigens, toxins, and microbiome components and simultaneously preserves the balanced development of the epithelial barrier and the immune system and the acquisition of tolerance to dietary antigens and intestinal pathogens.Numerous scientific studies have shown a significant association between gut barrier damage and gastrointestinal and extraintestinal diseases such as inflammatory bowel disease, celiac disease and hepatic fibrosis. Various internal and external factors regulate the intestinal barrier. Gastrointestinal peptides originate from enteroendocrine cells in the luminal digestive tract and are critical gut barrier regulators. Recent studies have demonstrated that gastrointestinal peptides have a therapeutic effect on digestive tract diseases, enhancing epithelial barrier activity and restoring the gut barrier. This review demonstrates the roles and mechanisms of gastrointestinal polypeptides, especially somatostatin (SST) and vasoactive intestinal peptide (VIP), in intestinal barrier regulation.
Collapse
Affiliation(s)
- Xiaoxi Xie
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; Division of Digestive Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Juan Liao
- Non-communicable Diseases Research Center, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Implication of Intestinal Barrier Dysfunction in Gut Dysbiosis and Diseases. Biomedicines 2022; 10:biomedicines10020289. [PMID: 35203499 PMCID: PMC8869546 DOI: 10.3390/biomedicines10020289] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The intestinal mucosal barrier, also referred to as intestinal barrier, is widely recognized as a critical player in gut homeostasis maintenance as it ensures the complex crosstalk between gut microbes (both commensals and pathogens) and the host immune system. Highly specialized epithelial cells constantly cope with several protective and harmful agents to maintain the multiple physiological functions of the barrier as well as its integrity. However, both genetic defects and environmental factors can break such equilibrium, thus promoting gut dysbiosis, dysregulated immune-inflammatory responses, and even the development of chronic pathological conditions. Here, we review and discuss the molecular and cellular pathways underlying intestinal barrier structural and functional homeostasis, focusing on potential alterations that may undermine this fine balance.
Collapse
|
5
|
Caudal-dependent cell positioning directs morphogenesis of the C. elegans ventral epidermis. Dev Biol 2020; 461:31-42. [PMID: 31923384 PMCID: PMC7181193 DOI: 10.1016/j.ydbio.2020.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 01/21/2023]
Abstract
Strikingly, epithelial morphogenesis remains incomplete at the end of C. elegans embryonic development; newly hatched larvae undergo extensive remodelling of their ventral epidermis during the first larval stage (L1), when newly-born epidermal cells move ventrally to complete the epidermal syncytium. Prior to this remodelling, undivided lateral seam cells produce anterior adherens junction processes that are inherited by the anterior daughter cells following an asymmetric division during L1. These adherens junction processes provide the ventral migratory route for these anterior daughters. Here, we show that these processes are perturbed in pal-1/caudal mutant animals, resulting in their inheritance by posterior, seam-fated daughters. This causes aberrant migration of seam daughter cells, disrupting the ventral epidermis. Using 4D-lineaging, we demonstrate that this larval epidermal morphogenesis defect in pal-1 mutants can be traced directly back to an initial cell positioning defect in the embryo. pal-1 expression, driven by a single intronic enhancer, is required to correctly position the seam cells in embryos such that the appropriate cell junctions support the correct migratory paths of seam daughters later in development, irrespective of their fate. Thus, during ventral epithelial remodelling in C. elegans, we show that the position of migrating cells, specified by pal-1/caudal, appears to be more important than their fate in driving morphogenesis. caudal/pal-1 is required to form the correct cell junctions during embryogenesis. Correctly placed cell junctions direct larval ventral epithelial cell migration. larval epithelial cell migration occurs independently of cell fate. Embryonic epidermal expression of pal-1 is dependent on a single intronic enhancer.
Collapse
|
6
|
Lv S, Wang N, Lv H, Yang J, Liu J, Li WP, Zhang C, Chen ZJ. The Attenuation of Trophoblast Invasion Caused by the Downregulation of EZH2 Is Involved in the Pathogenesis of Human Recurrent Miscarriage. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 14:377-387. [PMID: 30710891 PMCID: PMC6356049 DOI: 10.1016/j.omtn.2018.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/28/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022]
Abstract
Recurrent miscarriage (RM) is currently defined as two or more losses of a clinically established intrauterine pregnancy. Despite years of research, RM continues to be a clinically frustrating challenge for patients and physicians, and its etiology remains poorly understood. Accumulating evidence has suggested that epigenetic modifications are involved in early embryogenesis, and defects in epigenetic patterning contribute to the development of RM. Here, we studied the role of enhancer of zeste homolog 2 (EZH2) in the pathogenesis of RM and found that the EZH2 expression was significantly decreased in the villi from women with RM compared with that in control villi. EZH2 promoted the invasion of trophoblast cells. Moreover, EZH2 could promote epithelial-mesenchymal transition by epigenetically silencing CDX1. Both chromatin immunoprecipitation (ChIP)-PCR and dual-luciferase report assays demonstrated that EZH2 repressed CDX1 transcription via direct binding to its promoter region and then trimethylating Histone3-Lysine27. Furthermore, we discovered that progesterone, which is used extensively in the treatment of miscarriage and RM, increased the expression of EZH2 via the extracellular signaling-regulated kinase (ERK1/2) pathway. These findings revealed that EZH2 may regulate trophoblast invasion as an epigenetic factor, suggesting that EZH2 might be a potential therapeutic target for RM.
Collapse
Affiliation(s)
- Shijian Lv
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Na Wang
- Obstetrical Department, Obstetrics and Gynecology Hospital of Fudan University, No. 128, Shenyang Road, Yangpu District, Shanghai 200090, China
| | - Hong Lv
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jieqiong Yang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jianwei Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Wei-Ping Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Ji'nan, Shandong 250014, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| |
Collapse
|
7
|
Ito S, Okuda S, Abe M, Fujimoto M, Onuki T, Nishimura T, Takeichi M. Induced cortical tension restores functional junctions in adhesion-defective carcinoma cells. Nat Commun 2017; 8:1834. [PMID: 29184140 PMCID: PMC5705652 DOI: 10.1038/s41467-017-01945-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 10/27/2017] [Indexed: 11/08/2022] Open
Abstract
Normal epithelial cells are stably connected to each other via the apical junctional complex (AJC). AJCs, however, tend to be disrupted during tumor progression, and this process is implicated in cancer dissemination. Here, using colon carcinoma cells that fail to form AJCs, we investigated molecular defects behind this failure through a search for chemical compounds that could restore AJCs, and found that microtubule-polymerization inhibitors (MTIs) were effective. MTIs activated GEF-H1/RhoA signaling, causing actomyosin contraction at the apical cortex. This contraction transmitted force to the cadherin-catenin complex, resulting in a mechanosensitive recruitment of vinculin to cell junctions. This process, in turn, recruited PDZ-RhoGEF to the junctions, leading to the RhoA/ROCK/LIM kinase/cofilin-dependent stabilization of the junctions. RhoGAP depletion mimicked these MTI-mediated processes. Cells that normally organize AJCs did not show such MTI/RhoA sensitivity. Thus, advanced carcinoma cells require elevated RhoA activity for establishing robust junctions, which triggers tension-sensitive reorganization of actin/adhesion regulators.
Collapse
Affiliation(s)
- Shoko Ito
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Satoru Okuda
- Laboratoty for In Vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Masako Abe
- Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Mari Fujimoto
- Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Tetsuo Onuki
- Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Tamako Nishimura
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
8
|
Kong J, Whelan KA, Laczkó D, Dang B, Caro Monroig A, Soroush A, Falcone J, Amaravadi RK, Rustgi AK, Ginsberg GG, Falk GW, Nakagawa H, Lynch JP. Autophagy levels are elevated in barrett's esophagus and promote cell survival from acid and oxidative stress. Mol Carcinog 2016; 55:1526-1541. [PMID: 26373456 PMCID: PMC4794420 DOI: 10.1002/mc.22406] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 08/11/2015] [Accepted: 08/17/2015] [Indexed: 12/17/2022]
Abstract
Autophagy is a highly conserved mechanism that is activated during cellular stress. We hypothesized that autophagy may be induced by acid reflux, which causes injury, and inflammation, and therefore, contributes to the pathogenesis of Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Currently, the role of autophagy in BE and EAC is poorly studied. We quantitatively define autophagy levels in human BE cell lines, a transgenic mouse model of BE, and human BE, and EAC biopsies. Human non-dysplastic BE had the highest basal number of autophagic vesicles (AVs), while AVs were reduced in normal squamous cells and dysplastic BE cells, and nearly absent in EAC. To demonstrate a functional role for autophagy in BE pathogenesis, normal squamous (STR), non-dysplastic BE (CPA), dysplastic BE (CPD), and EAC (OE19) cell lines were exposed to an acid pulse (pH 3.5) followed by incubation in the presence or absence of chloroquine, an autophagy inhibitor. Acid exposure increased reactive oxygen species (ROS) levels in STR and CPA cells. Chloroquine alone had a small impact on intracellular ROS or cell survival. However, combination of chloroquine with the acid pulse resulted in a significant increase in ROS levels at 6 h in STR and CPA cells, and increased cell death in all cell lines. These findings establish increased numbers of AVs in human BE compared to normal squamous or EAC, and suggest that autophagy functions to improve cell survival after acid reflux injury. Autophagy may thus play a critical role in BE pathogenesis and progression. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jianping Kong
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly A Whelan
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dorottya Laczkó
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brendan Dang
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Angeliz Caro Monroig
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ali Soroush
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John Falcone
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K Amaravadi
- Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, and the Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anil K Rustgi
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gregory G Ginsberg
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gary W Falk
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hiroshi Nakagawa
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John P Lynch
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
9
|
Olsen J, Eiholm S, Kirkeby LT, Espersen MLM, Jess P, Gögenür I, Olsen J, Troelsen JT. CDX2 downregulation is associated with poor differentiation and MMR deficiency in colon cancer. Exp Mol Pathol 2015; 100:59-66. [PMID: 26551082 DOI: 10.1016/j.yexmp.2015.11.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/04/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Homeobox genes are often deregulated in cancer and can have both oncogenic and tumor-suppressing potential. The Caudal-related homeobox transcription factor 2 (CDX2) is an intestine-specific transcription factor. CDX2 has been implicated in differentiation, proliferation, cell adhesion, and migration. In this study, we investigated CDX2 mRNA and protein expression in relation to the clinicopathological characteristics of colon cancer, including mismatch repair status and recurrence risk. METHODS Tumor samples were obtained from colon cancer patients. Biopsies from tumor tissue and normal adjacent tissue were fixed in liquid nitrogen for RNA extraction or in formalin and paraffin embedded (FFPE) for immunohistochemical staining. CDX2 mRNA expression was evaluated by RT-qPCR. FFPE sections were stained for MLH1, MSH2, MSH6, PMS2, and CDX2. RESULTS A total of 191 patient samples were included in the study and analyzed by immunohistochemistry. Of these samples, 97 were further evaluated by RT-qPCR. There was no significant difference in CDX2 mRNA expression between tumor and normal tissues. CDX2 mRNA expression was significantly lower in right-sided tumors (p<0.05), poorly differentiated tumors (p<0.05), and MMR-deficient tumors (p<0.05). Similarly, CDX2 protein expression was more often low or absent in right-sided tumors (p<0.01), poorly differentiated tumors (p<0.001), and MMR-deficient tumors (p<0.001). Low CDX2 protein or mRNA expression was not associated with recurrence risk. CONCLUSION We found that CDX2 downregulation is associated with MMR deficiency, right-sided tumors, and poor differentiation at both the mRNA and protein level. Whether CDX2 plays an active role in tumor progression in MSI/MMR-deficient tumors remains to be elucidated.
Collapse
Affiliation(s)
- J Olsen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark; Department of Surgery, Koege-Roskilde University Hospital, Køgevej 7-13, DK-4000, Roskilde, Denmark.
| | - S Eiholm
- Department of Pathology, Roskilde University Hospital, Køgevej 7-13, DK-4000, Roskilde, Denmark.
| | - L T Kirkeby
- Department of Surgery, Koege-Roskilde University Hospital, Køgevej 7-13, DK-4000, Roskilde, Denmark.
| | - M L M Espersen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark; The Molecular Unit, Department of Pathology, Herlev University Hospital, Herlev Ringvej 75, DK-2730, Herlev, Denmark.
| | - P Jess
- Department of Surgery, Koege-Roskilde University Hospital, Køgevej 7-13, DK-4000, Roskilde, Denmark.
| | - I Gögenür
- Department of Surgery, Koege-Roskilde University Hospital, Køgevej 7-13, DK-4000, Roskilde, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark.
| | - J Olsen
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark.
| | - J T Troelsen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark.
| |
Collapse
|
10
|
Kong J, Sai H, Crissey MAS, Jhala N, Falk GW, Ginsberg GG, Abrams JA, Nakagawa H, Wang K, Rustgi AK, Wang TC, Lynch JP. Immature myeloid progenitors promote disease progression in a mouse model of Barrett's-like metaplasia. Oncotarget 2015; 6:32980-3005. [PMID: 26460825 PMCID: PMC4741744 DOI: 10.18632/oncotarget.5431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/02/2015] [Indexed: 01/06/2023] Open
Abstract
Cdx2, an intestine specific transcription factor, is expressed in Barrett's esophagus (BE). We sought to determine if esophageal Cdx2 expression would accelerate the onset of metaplasia in the L2-IL-1β transgenic mouse model for Barrett's-like metaplasia. The K14-Cdx2::L2-IL-1β double transgenic mice had half as many metaplastic nodules as control L2-IL-1β mice. This effect was not due to a reduction in esophageal IL-1β mRNA levels nor diminished systemic inflammation. The diminished metaplasia was due to an increase in apoptosis in the K14-Cdx2::L2-IL-1β mice. Fluorescence activated cell sorting of immune cells infiltrating the metaplasia identified a population of CD11b+Gr-1+ cells that are significantly reduced in K14-Cdx2::L2-IL-1β mice. These cells have features of immature granulocytes and have immune-suppressing capacity. We demonstrate that the apoptosis in K14-Cdx2::L2-IL-1β mice is CD8+ T cell dependent, which CD11b+Gr-1+ cells are known to inhibit. Lastly, we show that key regulators of CD11b+Gr-1+ cell development, IL-17 and S100A9, are significantly diminished in the esophagus of K14-Cdx2::L2-IL-1β double transgenic mice. We conclude that metaplasia development in this mouse model for Barrett's-like metaplasia requires suppression of CD8+ cell dependent apoptosis, likely mediated by immune-suppressing CD11b+Gr-1+ immature myeloid cells.
Collapse
Affiliation(s)
- Jianping Kong
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hong Sai
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary Ann S. Crissey
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nirag Jhala
- Department of Pathology, Temple University, Philadelphia, PA, USA
| | - Gary W. Falk
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory G. Ginsberg
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julian A. Abrams
- Division of Gastroenterology, Columbia University, New York, NY, USA
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth Wang
- Division of Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Anil K. Rustgi
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy C. Wang
- Division of Gastroenterology, Columbia University, New York, NY, USA
| | - John P. Lynch
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Zheng JB, Qiao LN, Sun XJ, Qi J, Ren HL, Wei GB, Zhou PH, Yao JF, Zhang L, Jia PB. Overexpression of caudal-related homeobox transcription factor 2 inhibits the growth of transplanted colorectal tumors in nude mice. Mol Med Rep 2015; 12:3409-3415. [PMID: 26005051 PMCID: PMC4526061 DOI: 10.3892/mmr.2015.3838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 04/15/2015] [Indexed: 12/13/2022] Open
Abstract
Caudal-related homeobox transcription factor 2 (CDX2) is a transcription factor, which is specifically expressed in the adult intestine. It is essential for the development and homeostasis of the intestinal epithelium and its functions as a tumor suppressor have been demonstrated in the adult colon. The present study aimed to examine the inhibitory effects of the overexpression of CDX2 on subcutaneously-transplanted tumors, derived from LoVo colon cancer cells, in nude mice, and to provide experimental evidence for the biotherapy of colon cancer. A pEGFP-C1-CDX2 eukaryotic expression vector was transfected into the LoVo cells via lipofection, and LoVo cells stably-expressing CDX2 (pEGFP-C1-CDX2 cells) were obtained using G418 selection. A nude mouse subcutaneously-transplanted tumor model was established by inoculating the nude mice with the pEGFP-C1-CDX2 cells, and the effects of overexpression of CDX2 on transplanted tumor growth in the LoVo cells were observed. Western blotting results demonstrated that the protein expression of CDX2 in the LoVo cells was higher in the pEGFP-C1-CDX2 cell group, compared with that in the pEGFP-C1 cell group and the untreated cell group. At 20 days post-inoculation with either pEGFP-C1-CDX2 or pEGFP-C1, the transplanted tumor masses were significantly lower in the pEGFP-C1-CDX2 group, compared with those in the pEGFP-C1 and untreated groups. Immunohistochemistry revealed that the expression levels of CDX2 and matrix metalloproteinase-2 (MMP-2) were detected in each group, and the protein expression of CDX2 was increased in the tumor tissues from the nude mice in the pEGFP-C1-CDX2 group. However the expression of MMP-2 was downregulated in the tumor tissues of the nude mice in the pEGFP-C1-CDX2 group. Taken together, these data suggested that pEGFP-C1-CDX2 cells exhibited suppressed tumor growth in vivo. Overexpression of CDX2 was observed in transplanted tumors in the pEGFP-C1-CDX2 group, and the gene expression of MMP-2 was reduced. These results indicate that CDX2 inhibited the growth of colorectal tumor cells, possibly by downregulating the gene expression.
Collapse
Affiliation(s)
- Jian-Bao Zheng
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li-Na Qiao
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xue-Jun Sun
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jie Qi
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Hai-Liang Ren
- Department of General Surgery, The Third Hospital of Chengdu, Chengdu, Sichuan 610031, P.R. China
| | - Guang-Bing Wei
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Pei-Hua Zhou
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jian-Feng Yao
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li Zhang
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Peng-Bo Jia
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
12
|
Wu X, Conlin VS, Morampudi V, Ryz NR, Nasser Y, Bhinder G, Bergstrom KS, Yu HB, Waterhouse CCM, Buchan AMJ, Popescu OE, Gibson WT, Waschek JA, Vallance BA, Jacobson K. Vasoactive intestinal polypeptide promotes intestinal barrier homeostasis and protection against colitis in mice. PLoS One 2015; 10:e0125225. [PMID: 25932952 PMCID: PMC4416880 DOI: 10.1371/journal.pone.0125225] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/22/2015] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease is a chronic gastrointestinal inflammatory disorder associated with changes in neuropeptide expression and function, including vasoactive intestinal peptide (VIP). VIP regulates intestinal vasomotor and secretomotor function and motility; however, VIP's role in development and maintenance of colonic epithelial barrier homeostasis is unclear. Using VIP deficient (VIPKO) mice, we investigated VIP's role in epithelial barrier homeostasis, and susceptibility to colitis. Colonic crypt morphology and epithelial barrier homeostasis were assessed in wildtype (WT) and VIPKO mice, at baseline. Colitic responses were evaluated following dinitrobenzene sulfonic acid (DNBS) or dextran-sodium sulfate (DSS) exposure. Mice were also treated with exogenous VIP. At baseline, VIPKO mice exhibited distorted colonic crypts, defects in epithelial cell proliferation and migration, increased apoptosis, and altered permeability. VIPKO mice also displayed reduced goblet cell numbers, and reduced expression of secreted goblet cell factors mucin 2 and trefoil factor 3. These changes were associated with reduced expression of caudal type homeobox 2 (Cdx2), a master regulator of intestinal function and homeostasis. DNBS and DSS-induced colitis were more severe in VIPKO than WT mice. VIP treatment rescued the phenotype, protecting VIPKO mice against DSS colitis, with results comparable to WT mice. In conclusion, VIP plays a crucial role in the development and maintenance of colonic epithelial barrier integrity under physiological conditions and promotes epithelial repair and homeostasis during colitis.
Collapse
Affiliation(s)
- Xiujuan Wu
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria S. Conlin
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Vijay Morampudi
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Natasha R. Ryz
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Yasmin Nasser
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Ganive Bhinder
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirk S. Bergstrom
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, United States of America
| | - Hong B. Yu
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Oana E. Popescu
- Department of Pathology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - William T. Gibson
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - James A. Waschek
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, United States of America
| | - Bruce A. Vallance
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevan Jacobson
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
13
|
Hartman KG, Bortner JD, Falk GW, Ginsberg GG, Jhala N, Yu J, Martín MG, Rustgi AK, Lynch JP. Modeling human gastrointestinal inflammatory diseases using microphysiological culture systems. Exp Biol Med (Maywood) 2014; 239:1108-23. [PMID: 24781339 PMCID: PMC4156523 DOI: 10.1177/1535370214529388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal illnesses are a significant health burden for the US population, with 40 million office visits each year for gastrointestinal complaints and nearly 250,000 deaths. Acute and chronic inflammations are a common element of many gastrointestinal diseases. Inflammatory processes may be initiated by a chemical injury (acid reflux in the esophagus), an infectious agent (Helicobacter pylori infection in the stomach), autoimmune processes (graft versus host disease after bone marrow transplantation), or idiopathic (as in the case of inflammatory bowel diseases). Inflammation in these settings can contribute to acute complaints (pain, bleeding, obstruction, and diarrhea) as well as chronic sequelae including strictures and cancer. Research into the pathophysiology of these conditions has been limited by the availability of primary human tissues or appropriate animal models that attempt to physiologically model the human disease. With the many recent advances in tissue engineering and primary human cell culture systems, it is conceivable that these approaches can be adapted to develop novel human ex vivo systems that incorporate many human cell types to recapitulate in vivo growth and differentiation in inflammatory microphysiological environments. Such an advance in technology would improve our understanding of human disease progression and enhance our ability to test for disease prevention strategies and novel therapeutics. We will review current models for the inflammatory and immunological aspects of Barrett's esophagus, acute graft versus host disease, and inflammatory bowel disease and explore recent advances in culture methodologies that make these novel microphysiological research systems possible.
Collapse
Affiliation(s)
- Kira G Hartman
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - James D Bortner
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gary W Falk
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gregory G Ginsberg
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nirag Jhala
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jian Yu
- Departments of Pathology and Radiation Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Martín G Martín
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Anil K Rustgi
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John P Lynch
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
14
|
Chu M, Wang L, Wang H, Shen T, Yang Y, Sun Y, Tang N, Ni T, Zhu J, Mailman RB, Wang Y. A novel role of CDX1 in embryonic epicardial development. PLoS One 2014; 9:e103271. [PMID: 25068460 PMCID: PMC4113346 DOI: 10.1371/journal.pone.0103271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/30/2014] [Indexed: 12/26/2022] Open
Abstract
The molecular mechanism that regulates epicardial development has yet to be understood. In this study, we explored the function of CDX1, a Caudal-related family member, in epicardial epithelial-to-mesenchymal transition (EMT) and in the migration and the differentiation of epicardium-derived progenitors into vascular smooth muscle cells. We detected a transient expression of CDX1 in murine embryonic hearts at 11.5 days post coitum (dpc). Using a doxycycline-inducible CDX1 mouse model, primary epicardium, and ex vivo heart culture, we further demonstrated that ectopic expression of CDX1 promoted epicardial EMT. In addition, a low-dose CDX1 induction led to enhanced migration and differentiation of epicardium-derived cells into α-SMA+ vascular smooth muscles. In contrast, either continued high-level induction of CDX1 or CDX1 deficiency attenuated the ability of epicardium-derived cells to migrate and to mature into smooth muscles induced by TGF-β1. Further RNA-seq analyses showed that CDX1 induction altered the transcript levels of genes involved in neuronal development, angiogenesis, and cell adhesions required for EMT. Our data have revealed a previously undefined role of CDX1 during epicardial development, and suggest that transient expression of CDX1 promotes epicardial EMT, whereas subsequent down-regulation of CDX1 after 11.5 dpc in mice is necessary for further subepicardial invasion of EPDCs and contribution to coronary vascular endothelium or smooth muscle cells.
Collapse
MESH Headings
- Animals
- Cell Adhesion/genetics
- Cell Differentiation/genetics
- Cell Line
- Cell Movement/genetics
- Cells, Cultured
- Coronary Vessel Anomalies/genetics
- Embryonic Stem Cells
- Endothelium, Vascular/metabolism
- Epithelial-Mesenchymal Transition/genetics
- Gene Expression
- Gene Expression Regulation, Developmental
- Heart/embryology
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Mice
- Mice, Transgenic
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Neurogenesis/genetics
- Organogenesis/genetics
- Pericardium/embryology
- Pericardium/metabolism
- Phenotype
Collapse
Affiliation(s)
- Min Chu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Libo Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Huan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ting Shen
- State Key Laboratory of Genetics Engineering & MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanqin Yang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Yun Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Nannan Tang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ting Ni
- State Key Laboratory of Genetics Engineering & MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Richard B. Mailman
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Yuan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
15
|
Olsen J, Espersen MLM, Jess P, Kirkeby LT, Troelsen JT. The clinical perspectives of CDX2 expression in colorectal cancer: a qualitative systematic review. Surg Oncol 2014; 23:167-76. [PMID: 25126956 DOI: 10.1016/j.suronc.2014.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/05/2014] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Homeobox genes are often deregulated in cancer. They can have both oncogenic and tumor-suppressing potential. The Caudal-related homeobox transcription factor 2 (CDX2) is an intestine-specific transcription factor. It is implicated in differentiation, proliferation, cell-adhesion, and migration. CDX2 has been proposed as a tumor suppressor in colorectal cancer but its role is still controversial. This systematic review were undertaken in order to clarify CDX2s role in colorectal cancer. METHODS A literature search was performed in the MEDLINE database from 1966 to February 2014. Only studies in which all or a part of the experimental design were performed on human colorectal cancer tissue were included. Thus, studies solely performed in cell-lines or animal models were excluded. RESULTS Fifty-two articles of relevance were identified. CDX2 expression was rarely lost in colorectal cancers, however the expression pattern may often be heterogeneous within the tumor and can be selectively down regulated at the invasive front and in tumor buddings. Loss of CDX2 expression is probably correlated to tumor grade, stage, right-sided tumor location, MMR-deficiency, CIMP, and BRAF mutations. The CDX2 gene is rarely mutated but the locus harboring the gene is often amplified and may suggest CDX2 as a linage-survival oncogene. CDX2 might be implicated in cell proliferation and migration through cross-talk with the Wnt-signaling pathway, tumor-stroma proteins, and inflammatory cytokines. CONCLUSION A clear role for CDX2 expression in colorectal cancer remains to be elucidated, and it might differ in relation to the underlying molecular pathways leading to the cancer formation.
Collapse
Affiliation(s)
- J Olsen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark; Department of Surgery, Roskilde University Hospital, Roskilde Sygehus, Køgevej 7-13, DK-4000 Roskilde, Denmark.
| | - M L M Espersen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark; The Molecular Unit, Department of Pathology, Herlev University Hospital, DK-2730 Herlev, Denmark.
| | - P Jess
- Department of Surgery, Roskilde University Hospital, Roskilde Sygehus, Køgevej 7-13, DK-4000 Roskilde, Denmark.
| | - L T Kirkeby
- Department of Surgery, Roskilde University Hospital, Roskilde Sygehus, Køgevej 7-13, DK-4000 Roskilde, Denmark.
| | - J T Troelsen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| |
Collapse
|
16
|
Ku HJ, Kim HY, Kim HH, Park HJ, Cheong JH. Bile acid increases expression of the histamine-producing enzyme, histidine decarboxylase, in gastric cells. World J Gastroenterol 2014; 20:175-182. [PMID: 24415870 PMCID: PMC3886006 DOI: 10.3748/wjg.v20.i1.175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/16/2013] [Accepted: 10/18/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of bile acid on the expression of histidine decarboxylase (HDC), which is a major enzyme involved in histamine production, and gene expression of gastric transcription factors upon cooperative activation.
METHODS: HDC expression was examined by immunohistochemistry, reverse transcriptase polymerase chain reaction, and promoter assay in human gastric precancerous tissues, normal stomach tissue, and gastric cancer cell lines. The relationship between gastric precancerous state and HDC expression induced by bile acid was determined. The association between the expression of HDC and various specific transcription factors in gastric cells was also evaluated. MKN45 and AGS human gastric carcinoma cell lines were transfected with farnesoid X receptor (FXR), small heterodimer partner (SHP), and caudal-type homeodomain transcription factor (CDX)1 expression plasmids. The effects of various transcription factors on HDC expression were monitored by luciferase-reporter promoter assay.
RESULTS: Histamine production and secretion in the stomach play critical roles in gastric acid secretion and in the pathogenesis of gastric diseases. Here, we show that bile acid increased the expression of HDC, which is a rate-limiting enzyme of the histamine production pathway. FXR was found to be a primary regulatory transcription factor for bile acid-induced HDC expression. In addition, the transcription factors CDX1 and SHP synergistically enhanced bile acid-induced elevation of HDC gene expression. We confirmed similar expression patterns for HDC, CDX1, and SHP in patient tissues.
CONCLUSION: HDC production in the stomach is associated with bile acid exposure and its related transcriptional regulation network of FXR, SHP, and CDX1.
Collapse
|
17
|
Zulueta A, Caretti A, Signorelli P, Dall'Olio F, Trinchera M. Transcriptional control of the
B3GALT5
gene by a retroviral promoter and methylation of distant regulatory elements. FASEB J 2013; 28:946-55. [DOI: 10.1096/fj.13-236273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Aida Zulueta
- Department of Health SciencesSan Paolo HospitalUniversity of MilanMilanItaly
| | - Anna Caretti
- Department of Health SciencesSan Paolo HospitalUniversity of MilanMilanItaly
| | - Paola Signorelli
- Department of Health SciencesSan Paolo HospitalUniversity of MilanMilanItaly
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES)University of BolognaBolognaItaly
| | - Marco Trinchera
- Department of Medicine Clinical and Experimental (DMCS)University of InsubriaVareseItaly
| |
Collapse
|
18
|
Ashley N, Yeung TM, Bodmer WF. Stem cell differentiation and lumen formation in colorectal cancer cell lines and primary tumors. Cancer Res 2013; 73:5798-809. [PMID: 23867471 DOI: 10.1158/0008-5472.can-13-0454] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Single cancer stem-like cells (CSC) from colorectal cancers can be functionally identified by their ability to form large lumen-containing colonies in three-dimensional Matrigel cultures. These colonies contain the three types of differentiated colorectal epithelial cells, and single cells obtained from them can reproduce themselves and form tumors efficiently in immunodeficient mice. In this study, we show how hypoxia affects these CSC-derived lumens to control differentiation of stem-like cells and enterocytes via the homeobox gene CDX1. Lumens were identified by F-actin staining and they expressed many characteristics associated with normal differentiated intestinal epithelium, including brush border enzymes, polarization, and tight junctions. RNA interference-mediated silencing of CDX1 reduced lumen formation. Inhibitory effects of hypoxia on lumen formation and stem cell differentiation, including suppression of CDX1 expression, could be mimicked by inhibiting prolyl-hydroxylases that activate HIF1, suggesting that HIF1 is a critical mediator of the effects of hypoxia in this setting. Cell line-derived lumens were phenotypically indistinguishable from colorectal tumor glandular structures used by pathologists to grade tumor differentiation. Parallel results to those obtained with established cell lines were seen with primary cultures from fresh tumors. This in vitro approach to functional characterization of CSCs and their differentiation offers a valid model to study colorectal tumor differentiation and differentiation of colorectal CSCs, with additional uses to enable high-throughput screening for novel anticancer compounds.
Collapse
Affiliation(s)
- Neil Ashley
- Authors' Affiliation: Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | |
Collapse
|
19
|
Heverhagen AE, Geis C, Fendrich V, Ramaswamy A, Montalbano R, Di Fazio P, Bartsch DK, Ocker M, Quint K. Embryonic transcription factors CDX2 and Oct4 are overexpressed in neuroendocrine tumors of the ileum: a pilot study. Eur Surg Res 2013; 51:14-20. [PMID: 23887079 DOI: 10.1159/000353612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 06/11/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND Neuroendocrine tumors (NETs) of the ileum are rare submucosal tumors that are often diagnosed at advanced stages with metastatic spread to the liver causing a carcinoid syndrome. They present as solitary or multiple tumors. In NETs, loss of sequences on chromosomes 11, 16, 18 and 22 or gain of sequences on chromosomes 17 and 19 has been described. In this study we explored the expression of two novel candidate genes, CDX2 and Oct4, in NETs of the ileum and analyzed whether the molecular expression pattern correlates with the clinical phenotype (solitary/multiple tumors). METHODS Data from all patients who underwent surgery for a NET of the ileum between 2000 and 2010 were retrieved from a prospective database. For each patient, frozen normal and tumor tissue was used for the comparison of gene expression levels of two putative cancer stem cell markers, CDX2 and Oct4, using real-time PCR (rtPCR). Serial slides from paraffin blocks were used for immunohistochemistry. Gene expression was compared between normal and tumor tissue as well as between solitary and multiple tumors. RESULTS 78 patients were identified. In rtPCR, a statistically significant higher expression of CDX2 in tumor tissue (p < 0.001) compared to normal tissue was found. The expression of Oct4 was elevated in the tumors, but did not reach the level of significance (p = 0.155). The expression of both candidate genes was confirmed immunohistochemically and showed a nuclear expression pattern. There was no difference in expression between solitary and multiple tumors or between tumors that had already spread to the liver. CONCLUSION CDX2 is overexpressed in ileum NETs, thus playing a role in the tumorigenesis of these rare tumors. Since expression does not correlate with clinical stage or phenotype, it might be an early event in tumor development.
Collapse
Affiliation(s)
- A E Heverhagen
- Department of Visceral, Thoracic and Vascular Surgery, Philipp University of Marburg, Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Methylation-dependent activation of CDX1 through NF-κB: a link from inflammation to intestinal metaplasia in the human stomach. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:487-98. [PMID: 22749770 DOI: 10.1016/j.ajpath.2012.04.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/16/2012] [Accepted: 04/12/2012] [Indexed: 02/07/2023]
Abstract
The caudal homeobox factor 1 (CDX1) is an essential transcription factor for intestinal differentiation. Its aberrant expression in intestinal metaplasia of the upper gastrointestinal tract is a hallmark within the gastritis-metaplasia-carcinoma sequence. CDX1 expression is influenced by certain pathways, such as Wnt, Ras, or NF-κB signaling; however, these pathways alone cannot explain the transient expression of CDX1 in intestinal metaplasia or the molecular inactivation mechanism of its loss in cases of advanced gastric cancer. In this study, we investigated the epigenetic inactivation of CDX1 by promoter methylation, as well as the functional link of CDX1 promoter methylation to the inflammatory NF-κB signaling pathway. We identified methylation-dependent NF-κB binding to the CDX1 promoter and quantified it using competitive electrophoretic mobility shift assays and chromatin immunoprecipitation. A methylated CDX1 promoter was associated with closed chromatin structure, reduced NF-κB binding, and transcriptional silencing. Along the gastritis-metaplasia-carcinoma sequence, we observed a biphasic pattern of tumor necrosis factor-α (TNF-α) protein expression and an inverse biphasic pattern of CDX1 promoter methylation; both are highly consistent with CDX1 protein expression. The stages of hyper-, hypo-, and hyper-methylation patterns of the CDX1 promoter were inversely correlated with the NF-κB signaling activity along this sequence. In conclusion, these functionally interacting events drive CDX1 expression and contribute to intestinal metaplasia, epithelial dedifferentiation, and carcinogenesis in the human stomach.
Collapse
|
21
|
Hinkel I, Duluc I, Martin E, Guenot D, Freund JN, Gross I. Cdx2 controls expression of the protocadherin Mucdhl, an inhibitor of growth and β-catenin activity in colon cancer cells. Gastroenterology 2012; 142:875-885.e3. [PMID: 22202456 DOI: 10.1053/j.gastro.2011.12.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 11/28/2011] [Accepted: 12/09/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS The intestine-specific homeobox transcription factor Cdx2 is an important determinant of intestinal identity in the embryonic endoderm and regulates the balance between proliferation and differentiation in the adult intestinal epithelium. Human colon tumors often lose Cdx2 expression, and heterozygous inactivation of Cdx2 in mice increases colon tumorigenesis. We sought to identify Cdx2 target genes to determine how it contributes to intestinal homeostasis. METHODS We used expression profiling analysis to identify genes that are regulated by Cdx2 in colon cancer cells lines. Regulation and function of a potential target gene were further investigated using various cell assays. RESULTS In colon cancer cell lines, Cdx2 directly regulated the transcription of the gene that encodes the protocadherin Mucdhl. Mucdhl localized to the apex of differentiated cells in the intestinal epithelium, and its expression was reduced in most human colon tumors. Overexpression of Mucdhl inhibited low-density proliferation of colon cancer cells and reduced tumor formation in nude mice. One isoform of Mucdhl interacted with β-catenin and inhibited its transcriptional activity. CONCLUSIONS The transcription factor Cdx2 activates expression of the protocadherin Mucdhl, which interacts with β-catenin and regulates activities of intestinal cells. Loss of Cdx2 expression in colon cancer cells might reduce expression of Mucdhl and thereby lead to tumor formation.
Collapse
|
22
|
Math1/Atoh1 contributes to intestinalization of esophageal keratinocytes by inducing the expression of Muc2 and Keratin-20. Dig Dis Sci 2012; 57:845-57. [PMID: 22147253 PMCID: PMC3407817 DOI: 10.1007/s10620-011-1998-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 11/22/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Esophageal intestinal metaplasia, also known as Barrett's esophagus, is the replacement of the normal epithelium with one that resembles the intestine morphologically. Generally, this includes intestinal mucin-secreting goblet cells. Barrett's esophagus is an important risk factor for adenocarcinoma development. In-vitro models for Barrett's esophagus have not, to date, focused on the induction of goblet cells in Barrett's epithelium. AIMS To explore the contribution of Math1/Atoh1 to induction of Barrett's esophagus and intestinal mucin-secreting goblet cells from normal human esophageal epithelium. METHODS We explored the level and pattern of Math1/Atoh1 mRNA and protein expression in human Barrett's esophagus. Then, using retroviral-mediated gene expression, we induced Math1 mRNA and protein expression in a human esophageal keratinocyte cell line. We evaluated the effects of this ectopic Math1 expression on cell proliferation and gene expression patterns in cells cultured under two-dimensional and three-dimensional tissue-engineering conditions. RESULTS Math1/Atoh1 mRNA and protein are detected in human Barrett's esophagus specimens, but the mRNA levels vary substantially. In the keratinocyte expression studies, we observed that Math1/Atoh1 ectopic expression significantly reduced cell proliferation and altered cell morphology. Moreover, Math1/Atoh1 expression is associated with a more intestinalized gene expression pattern that is distinct from that reported in after studies using other intestinal transcription factors. Most significantly, we observe the induction of the Barrett's esophagus markers Mucin-2 and Keratin-20 with Math1/Atoh1 expression. CONCLUSIONS We conclude that ectopic Math1/Atoh1 expression makes unique contributions to intestinalization of the esophageal epithelium in Barrett's esophagus.
Collapse
|
23
|
Cox2 and β-catenin/T-cell factor signaling intestinalize human esophageal keratinocytes when cultured under organotypic conditions. Neoplasia 2012; 13:792-805. [PMID: 21969813 DOI: 10.1593/neo.11788] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/14/2011] [Accepted: 07/18/2011] [Indexed: 12/12/2022] Open
Abstract
The incidence of esophageal adenocarcinoma (EAC) is rising in the United States. An important risk factor for EAC is the presence of Barrett esophagus (BE). BE is the replacement of normal squamous esophageal epithelium with a specialized columnar epithelium in response to chronic acid and bile reflux. However, the emergence of BE from squamous keratinocytes has not yet been demonstrated. Our research has focused on this. Wnt and cyclooxygenase 2 (Cox2) are two pathways whose activation has been associated with BE and progression to EAC, but their role has not been tested experimentally. To explore their contribution, we engineered a human esophageal keratinocyte cell line to express either a dominant-active Wnt effector CatCLef or a Cox2 complementary DNA. In a two-dimensional culture environment, Cox2 expression increases cell proliferation and migration, but neither transgene induces known BE markers. In contrast, when these cells were placed into three-dimensional organotypic culture conditions, we observed more profound effects. CatCLef-expressing cells were more proliferative, developed a thicker epithelium, and upregulated Notch signaling and several BE markers including NHE2. Cox2 expression also increased cell proliferation and induced a thicker epithelium. More importantly, we observed cysts form within the epithelium, filled with intestinal mucins including Muc5B and Muc17. This suggests that Cox2 expression in a three-dimensional culture environment induces a lineage of mucin-secreting cells and supports an important causal role for Cox2 in BE pathogenesis. We conclude that in vitro modeling of BE pathogenesis can be improved by enhancing Wnt signaling and Cox2 activity and using three-dimensional organotypic culture conditions.
Collapse
|
24
|
Kong J, Crissey MA, Funakoshi S, Kreindler JL, Lynch JP. Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrett's esophagus. PLoS One 2011; 6:e18280. [PMID: 21494671 PMCID: PMC3071814 DOI: 10.1371/journal.pone.0018280] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/24/2011] [Indexed: 01/27/2023] Open
Abstract
Barrett's esophagus (BE) is an intestinal metaplasia that occurs in the setting of chronic acid and bile reflux and is associated with a risk for adenocarcinoma. Expression of intestine-specific transcription factors in the esophagus likely contributes to metaplasia development. Our objective was to explore the effects of an intestine-specific transcription factor when expressed in the mouse esophageal epithelium. Transgenic mice were derived in which the transcription factor Cdx2 is expressed in squamous epithelium using the murine Keratin-14 gene promoter. Effects of the transgene upon cell proliferation and differentiation, gene expression, and barrier integrity were explored. K14-Cdx2 mice express the Cdx2 transgene in esophageal squamous tissues. Cdx2 expression was associated with reduced basal epithelial cell proliferation and altered cell morphology. Ultrastructurally two changes were noted. Cdx2 expression was associated with dilated space between the basal cells and diminished cell-cell adhesion caused by reduced Desmocollin-3 mRNA and protein expression. This compromised epithelial barrier function, as the measured trans-epithelial electrical resistance (TEER) of the K14-Cdx2 epithelium was significantly reduced compared to controls (1189 Ohm*cm(2) ±343.5 to 508 Ohm*cm(2)±92.48, p = 0.0532). Secondly, basal cells with features of a transitional cell type, intermediate between keratinocytes and columnar Barrett's epithelial cells, were observed. These cells had reduced keratin bundles and increased endoplasmic reticulum levels, suggesting the adoption of secretory-cell features. Moreover, at the ultrastructural level they resembled "Distinctive" cells associated with multilayered epithelium. Treatment of the K14-Cdx2 mice with 5'-Azacytidine elicited expression of BE-associated genes including Cdx1, Krt18, and Slc26a3/Dra, suggesting the phenotype could be advanced under certain conditions. We conclude that ectopic Cdx2 expression in keratinocytes alters cell proliferation, barrier function, and differentiation. These altered cells represent a transitional cell type between normal squamous and columnar BE cells. The K14-Cdx2 mice represent a useful model to study progression from squamous epithelium to BE.
Collapse
Affiliation(s)
- Jianping Kong
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mary Ann Crissey
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shinsuke Funakoshi
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James L. Kreindler
- Division of Pulmonary Medicine, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - John P. Lynch
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
25
|
The role of CDX2 in intestinal homeostasis and inflammation. Biochim Biophys Acta Mol Basis Dis 2010; 1812:283-9. [PMID: 21126581 DOI: 10.1016/j.bbadis.2010.11.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 12/17/2022]
Abstract
Many transcription factors are known to control transcription at several promoters, while others are only active at a few places. However, due to their importance in controlling cellular functions, aberrant transcription factor function and inappropriate gene regulation have been shown to play a causal role in a large number of diseases and developmental disorders. Inflammatory bowel disease (IBD) is characterized by a chronically inflamed mucosa caused by dysregulation of the intestinal immune homeostasis. The aetiology of IBD is thought to be a combination of genetic and environmental factors, including luminal bacteria. The Caudal-related homeobox transcription factor 2 (CDX2) is critical in early intestinal differentiation and has been implicated as a master regulator of the intestinal homeostasis and permeability in adults. When expressed, CDX2 modulates a diverse set of processes including cell proliferation, differentiation, cell adhesion, migration, and tumorigenesis. In addition to these critical cellular processes, there is increasing evidence for linking CDX2 to intestinal inflammation. The aim of the present paper was to review the current knowledge of CDX2 in regulation of the intestinal homeostasis and further to reveal its potential role in inflammation.
Collapse
|
26
|
Funakoshi S, Kong J, Crissey MA, Dang L, Dang D, Lynch JP. Intestine-specific transcription factor Cdx2 induces E-cadherin function by enhancing the trafficking of E-cadherin to the cell membrane. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1054-67. [PMID: 20671195 PMCID: PMC2993167 DOI: 10.1152/ajpgi.00297.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cdx2 is an intestine-specific transcription factor required for normal intestinal epithelium development. Cdx2 regulates the expression of intestine-specific genes and induces cell adhesion and columnar morphogenesis. Cdx2 also has tumor-suppressor properties, including the reduction of colon cancer cell proliferation and cell invasion, the latter due to its effects on cell adhesion. E-cadherin is a cell adhesion protein required for adherens junction formation and the establishment of intestinal cell polarity. The objective of this study was to elucidate the mechanism by which Cdx2 regulates E-cadherin function. Two colon cancer cell lines were identified in which Cdx2 expression was associated with increased cell-cell adhesion and diminished cell migration. In both cell lines, Cdx2 did not directly alter E-cadherin levels but increased its trafficking to the cell membrane compartment. Cdx2 enhanced this trafficking by altering receptor tyrosine kinase (RTK) activity. Cdx2 expression diminished phosphorylated Abl and phosphorylated Rac levels, which are downstream effectors of RTKs. Specific chemical inhibition or short interfering RNA (shRNA) knockdown of c-Abl kinase phenocopied Cdx2's cell-cell adhesion effects. In Colo 205 cells, Cdx2 reduced PDGF receptor and IGF-I receptor activation. This was mediated by caveolin-1, which was induced by Cdx2. Targeted shRNA knockdown of caveolin-1 restored PDGF receptor and reversed E-cadherin membrane trafficking, despite Cdx2 expression. We conclude that Cdx2 regulates E-cadherin function indirectly by disrupting RTK activity and enhancing E-cadherin trafficking to the cell membrane compartment. This novel mechanism advances Cdx2's prodifferentiation and antitumor properties and suggests that Cdx2 may broadly regulate RTK activity in normal intestinal epithelium by modulating membrane trafficking of proteins.
Collapse
Affiliation(s)
- Shinsuke Funakoshi
- 1Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| | - Jianping Kong
- 1Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| | - Mary Ann Crissey
- 1Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| | - Long Dang
- 2Division of Hematology/Oncology, Department of Internal Medicine, University of Florida, Gainesville, Florida; and
| | - Duyen Dang
- 3Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - John P. Lynch
- 1Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| |
Collapse
|
27
|
Abstract
Barrett's oesophagus is the replacement of normal squamous oesophageal epithelium with an intestinalized columnar epithelium. Although some insight has been gained as to what Barrett's oesophagus is, how this columnar epithelium emerges from within a stratified squamous epithelium remains an unanswered question. We have sought to determine whether oesophageal keratinocytes can be trans-differentiated into Barrett's oesophagus cells. Using an Affymetrix microarray, we found unexpectedly that gene-expression patterns in the Barrett's oesophagus were only slightly more similar to the normal small intestine than they were to the normal oesophagus. Thus gene-expression patterns suggest significant molecular similarities remain between Barrett's oesophagus cells and normal squamous oesophageal epithelium, despite their histological resemblance with intestine. We next determined whether directed expression of intestine-specific transcription factors could induce intestinalization of keratinocytes. Retroviral-mediated Cdx2 (Caudal-type homeobox 2) expression in immortalized human oesophageal keratinocytes engineered with human telomerase reverse transcriptase (EPC2-hTERT cells) could be established transiently, but not maintained, and was associated with a reduction in cell proliferation. Co-expression of cyclin D1 rescued proliferation in the Cdx2-expressing cells, but co-expression of dominant-negative p53 did not. Cdx2 expression in the EPC2-hTERT.D1 cells did not induce intestinalization. However, when combined with treatments that induce chromatin remodelling, there was a significant induction of Barrett's oesophagus-associated genes. Studies are ongoing to determine whether other intestinal transcription factors, either alone or in combination, can provoke greater intestinalization of oesophageal keratinocytes. We conclude that, on the basis of gene-expression patterns, Barrett's oesophagus epithelial cells may represent an intermediate between oesophageal keratinocytes and intestinal epithelial cells. Moreover, our findings suggest that it may be possible to induce Barrett's oesophagus epithelial cells from oesophageal keratinocytes by altering the expression of certain critical genes.
Collapse
|
28
|
Stairs DB, Kong J, Lynch JP. Cdx genes, inflammation, and the pathogenesis of intestinal metaplasia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:231-70. [PMID: 21075347 PMCID: PMC6005371 DOI: 10.1016/b978-0-12-381280-3.00010-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intestinal metaplasia (IM) is a biologically interesting and clinically relevant condition in which one differentiated type of epithelium is replaced by another that is morphologically similar to normal intestinal epithelium. Two classic examples of this are gastric IM and Barrett's esophagus (BE). In both, a chronic inflammatory microenvironment, provoked either by Helicobacter pylori infection of the stomach or acid and bile reflux into the esophagus, precedes the metaplasia. The Caudal-related homeodomain transcription factors Cdx1 and Cdx2 are critical regulators of the normal intestinal epithelial cell phenotype. Ectopic expression of Cdx1 and Cdx2 occurs in both gastric IM as well as in BE. This expression precedes the onset of the metaplasia and implies a causal role for these factors in this process. We review the observations regarding the role of chronic inflammation and the Cdx transcription factors in the pathogenesis of gastric IM and BE.
Collapse
Affiliation(s)
- Douglas B Stairs
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
29
|
Fu Z, Kim J, Vidrich A, Sturgill TW, Cohn SM. Intestinal cell kinase, a MAP kinase-related kinase, regulates proliferation and G1 cell cycle progression of intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2009; 297:G632-40. [PMID: 19696144 PMCID: PMC2763805 DOI: 10.1152/ajpgi.00066.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal cell kinase (ICK), originally cloned from the intestine and expressed in the intestinal crypt epithelium, is a highly conserved serine/threonine protein kinase that is similar to mitogen-activated protein kinases (MAPKs) in the catalytic domain and requires dual phosphorylation within a MAPK-like TDY motif for full activation. Despite these similarities to MAPKs, the biological functions of ICK remain unknown. In this study, we report that suppression of ICK expression in cultured intestinal epithelial cells by short hairpin RNA (shRNA) interference significantly impaired cellular proliferation and induced features of gene expression characteristic of colonic or enterocytic differentiation. Downregulation of ICK altered expression of cell cycle regulators (cyclin D1, c-Myc, and p21(Cip1/WAF1)) of G(1)-S transition, consistent with the G(1) cell cycle delay induced by ICK shRNA. ICK deficiency also led to a significant decrease in the expression and/or activity of p70 ribosomal protein S6 kinase (S6K1) and eukaryotic initiation factor 4E (eIF4E), concomitant with reduced expression of their upstream regulators, the mammalian target of rapamycin (mTOR) and the regulatory associated protein of mTOR (Raptor). Furthermore, ICK interacts with the mTOR/Raptor complex in vivo and phosphorylates Raptor in vitro. These results suggest that disrupting ICK function may downregulate protein translation of specific downstream targets of eIF4E and S6K1 such as cyclin D1 and c-Myc through the mTOR/Raptor signaling pathway. Taken together, our findings demonstrate an important role for ICK in proliferation and differentiation of intestinal epithelial cells.
Collapse
Affiliation(s)
- Zheng Fu
- Digestive Health Center of Excellence, Univ. of Virginia Health System, PO Box 800708, Charlottesville, VA 22908, USA.
| | - Jungeun Kim
- 1Digestive Health Center of Excellence and Department of Medicine and
| | - Alda Vidrich
- 1Digestive Health Center of Excellence and Department of Medicine and
| | - Thomas W. Sturgill
- 2Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Steven M. Cohn
- 1Digestive Health Center of Excellence and Department of Medicine and
| |
Collapse
|
30
|
Guo RJ, Funakoshi S, Lee HH, Kong J, Lynch JP. The intestine-specific transcription factor Cdx2 inhibits beta-catenin/TCF transcriptional activity by disrupting the beta-catenin-TCF protein complex. Carcinogenesis 2009; 31:159-66. [PMID: 19734199 DOI: 10.1093/carcin/bgp213] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cdx2 is an intestine-specific transcription factor known to regulate proliferation and differentiation. We have reported previously that Cdx2 limits the proliferation of human colon cancer cells by inhibiting the transcriptional activity of the beta-catenin-T-cell factor (TCF) bipartite complex. Herein we further elucidate this mechanism. Studies with a classic Cdx2 target gene and a canonical Wnt/beta-catenin/TCF reporter suggest that Cdx2 regulates these promoters by distinctly different processes. Specifically, inhibition of beta-catenin/TCF activity by Cdx2 does not require Cdx2 transcriptional activity. Instead, Cdx2 binds beta-catenin and disrupts its interaction with the DNA-binding TCF factors, thereby silencing beta-catenin/TCF target gene expression. Using Cdx2 mutants, we map the Cdx2 domains required for the inhibition of beta-catenin/TCF activity. We identify a subdomain in the N-terminus that is highly conserved and when mutated significantly reduces Cdx2 inhibition of beta-catenin/TCF transcriptional activity. Mutation of this subdomain also abrogates Cdx2's anti-proliferative effects in colon cancer cells. In summary, we conclude that Cdx2 binds beta-catenin and disrupts the beta-catenin-TCF complex. Considering the pivotal role of beta-catenin/TCF activity in driving proliferation of normal intestinal epithelial and colon cancer cells, our findings suggest a novel mechanism for Cdx2-mediated regulation of Wnt/beta-catenin signaling and cell proliferation.
Collapse
Affiliation(s)
- Rong-Jun Guo
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
31
|
Sun YG, Wang XW, Yang SM, Zhou G, Wang WQ, Wang HB, Wang RQ, Fang DC. Inhibition of nucleostemin upregulates CDX2 expression in HT29 cells in response to bile acid exposure: implications in the pathogenesis of Barrett's esophagus. J Gastrointest Surg 2009; 13:1430-9. [PMID: 19449081 DOI: 10.1007/s11605-009-0899-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/15/2009] [Indexed: 01/31/2023]
Abstract
BACKGROUND Barrett's esophagus (BE), a squamous-to-columnar metaplasia, may originate from growth-promoting mutations in metaplastic stem cells. Nucleostemin is a protein highly expressed in undifferentiated embryonic stem cells. The objectives of this study were to explore the potential role of nucleostemin in the pathogenesis of BE METHODS: The expression profiles of 30,968 genes were compared between BE and normal esophageal tissues (n = 6 in each group) by using oligo microarray. Three siRNA plasmid expression vectors against nucleostemin, pRNAi-1, pRNAi-2, and pRNAi-3, were constructed and transfected into HT29 cells. In addition, HT29 cells were exposed to 100-1,000 microM chenodeoxycholic acid (CDC), a bile acid, for 2, 12, and 24 h, and then messenger RNA and protein expressions of nucleostemin and CDX2 were determined by reverse-transcriptase polymerase chain reaction and Western blotting. RESULTS Four hundred and twenty-six differentially expressed genes were detected in BE; 142 were upregulated and 284 downregulated. Nucleostemin was downregulated while CDX2 was upregulated. In vitro, all the recombinant plasmids inhibited the nucleostemin expression in transfected HT29 cells, with pRNAi-1 being the most effective. CDX2 expression was significantly increased in pRNAi-1-transfected HT29 cells, compared with that in the empty plasmid (pRNAT-U6.1/Neo) transfected or untransfected HT29 cells. In addition, CDX2 expression was increased whereas nucleostemin expression was decreased in a dose- and time-dependent manner in HT29 cells treated with CDC. CONCLUSION These findings suggest that the inhibition of nucleostemin expression in "esophageal stem cells" in response to bile acid exposure may be involved in the pathogenesis of BE through upregulating CDX2 expression.
Collapse
Affiliation(s)
- Yong-Gang Sun
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kong J, Nakagawa H, Isariyawongse BK, Funakoshi S, Silberg DG, Rustgi AK, Lynch JP. Induction of intestinalization in human esophageal keratinocytes is a multistep process. Carcinogenesis 2009; 30:122-30. [PMID: 18845559 PMCID: PMC2722140 DOI: 10.1093/carcin/bgn227] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/28/2008] [Accepted: 09/24/2008] [Indexed: 12/22/2022] Open
Abstract
Barrett's esophagus (BE) is the replacement of normal squamous esophageal mucosa with an intestinalized columnar epithelium. The molecular mechanisms underlying its development are not understood. Cdx2 is an intestine-specific transcription factor that is ectopically expressed in BE, but its role in this process is unclear. Herein, we describe a novel cell culture model for BE. Retroviral-mediated Cdx2 expression in immortalized human esophageal keratinocytes [EPC-human telomerase reverse transcriptase (hTERT)] could transiently be established but not maintained and was associated with a reduction in cell proliferation. Coexpression of cyclin D1, but not a dominant-negative p53, rescued proliferation in the Cdx2-expressing cells. Cdx2 expression in the EPC-hTERT.D1 cells decreased cell proliferation but did not induce intestinalization. We investigated for other treatments to enhance intestinalization and found that acidic culture conditions uniformly killed EPC-hTERT.D1.Cdx2 cells. However, treatment with 5-aza-2-deoxycytidine (5-AzaC) to demethylate epigenetically silenced genes did appear to be tolerated. Multiple Cdx2 target genes, markers of intestinal differentiation and markers of BE, were induced by this 5-AzaC treatment. More interestingly, the expression level of several of these genes was enhanced only in the EPC-hTERT.D1-Cdx2 cells treated with 5-AzaC. Two of these, SLC26a3/DRA (downregulated in adenoma) and Na+/H+ exchanger 2 (NHE2), were not previously known to be elevated in BE; however, we confirmed their elevation in BE tissue samples. 5-AzaC treatment also induced cell senescence, even at low doses. We conclude that ectopic proliferation signals, alterations in epigenetic gene regulation and the inhibition of tumor suppressor mechanisms are required for Cdx2-mediated intestinalization of human esophageal keratinocytes in BE.
Collapse
Affiliation(s)
- Jianping Kong
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hiroshi Nakagawa
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brandon K. Isariyawongse
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinsuke Funakoshi
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Debra G. Silberg
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, USA
- AstraZeneca LP, Wilmington, DE 19850-5437, USA
| | - Anil K. Rustgi
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John P. Lynch
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Funakoshi S, Ezaki T, Kong J, Guo RJ, Lynch JP. Repression of the desmocollin 2 gene expression in human colon cancer cells is relieved by the homeodomain transcription factors Cdx1 and Cdx2. Mol Cancer Res 2008; 6:1478-90. [PMID: 18819935 DOI: 10.1158/1541-7786.mcr-07-2161] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Desmosomes are intracellular junctions that provide strong cell-cell adhesion in epithelia and cardiac muscle. Their disruption causes several human diseases and contributes to the epithelial-to-mesenchymal transition observed in cancer. Desmocollin 2 (DSC2) is a cadherin superfamily member and a critical component of desmosomes found in intestinal epithelium. However, the mechanism regulating DSC2 gene expression in intestinal cells is not known. Cdx1 and Cdx2 are homeodomain transcription factors that regulate intestine-specific gene expression. Cdx expression in the past has been associated with the induction of desmosomes. We now show that the DSC2 gene is a transcriptional target for Cdx1 and Cdx2. Colon cancer cell lines retaining Cdx2 expression typically express DSC2. Restoration of Cdx expression in Colo 205 cells induced DSC2 mRNA and protein and the formation of desmosomes. The 5'-flanking region of the DSC2 promoter contains two consensus Cdx-binding sites. Electrophoretic mobility shift assays show that Cdx1 and Cdx2 bind these sites in vitro, and chromatin immunoprecipitation confirmed Cdx2 binding in vivo. DSC2 promoter truncations established that these regions are Cdx responsive. The truncations also identify a region of the promoter in which potent transcriptional repressors act. This repressor activity is relieved by Cdx binding. We conclude that the homeodomain transcription factors Cdx1 and Cdx2 regulate DSC2 gene expression in intestinal epithelia by reversing the actions of a transcriptional repressor. The regulation of desmosomal junctions by Cdx contributes to normal intestinal epithelial columnar morphology and likely antagonizes the epithelial-to-mesenchymal transition necessary for the metastasis of colon cancer cells in humans.
Collapse
Affiliation(s)
- Shinsuke Funakoshi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
34
|
Park MJ, Kim KH, Kim HY, Kim K, Cheong J. Bile acid induces expression of COX-2 through the homeodomain transcription factor CDX1 and orphan nuclear receptor SHP in human gastric cancer cells. Carcinogenesis 2008; 29:2385-93. [PMID: 18775915 DOI: 10.1093/carcin/bgn207] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The caudal-related homeobox gene, CDX1, encodes for an intestinal-specific transcription factor and is involved in the induction of intestinal metaplasia (IM) of the stomach in gastric cancer. Gastric IM induced by bile reflux is a precancerous gastric adenocarcinomal lesion and has been associated with the induction of cyclooxygenase-2 (COX-2). In this study, we demonstrate the molecular mechanisms underlying the transcriptional regulation of COX-2 by bile acid in gastric cells. We noted that the ectopic expression of CDX1 enhanced COX-2 gene expression and that bile acid was associated with the induction of CDX1 expression. Furthermore, the induction of CDX1 by bile acid was mediated by the orphan nuclear receptor, small heterodimer partner (SHP). Finally, it was verified that the expression of COX-2, CDX1, SHP and CCAAT element-binding protein beta messenger RNA in human IM lesions were significantly higher than in lesions associated with gastritis. Collectively, these results reveal that bile acid induces an increase in the gene expression of COX-2 via the sequential transcriptional induction of SHP and CDX1 in precancerous lesions of human gastric cancer.
Collapse
Affiliation(s)
- Min Jung Park
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | | | | | | | | |
Collapse
|
35
|
Souza RF, Krishnan K, Spechler SJ. Acid, bile, and CDX: the ABCs of making Barrett's metaplasia. Am J Physiol Gastrointest Liver Physiol 2008; 295:G211-8. [PMID: 18556417 DOI: 10.1152/ajpgi.90250.2008] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Barrett's esophagus, a squamous-to-columnar cell metaplasia that develops as a result of chronic gastroesophageal reflux disease (GERD), is a risk factor for esophageal adenocarcinoma. The molecular events underlying the pathogenesis of Barrett's metaplasia are poorly understood, but recent studies suggest that interactions among developmental signaling pathways, morphogenetic factors, and Caudal homeobox (Cdx) genes play key roles. Strong expression of Cdx genes normally is found in the intestine but not in the esophagus and stomach. When mice are genetically engineered so that their gastric cells express Cdx, the stomach develops a metaplastic, intestinal-type epithelium similar to that of Barrett's esophagus. Exposure to acid and bile has been shown to activate the Cdx promoter in certain esophageal cell lines, and Cdx expression has been found in inflamed esophageal squamous epithelium and in the specialized intestinal metaplasia of Barrett's esophagus. Barrett's metaplasia must be sustained by stem cells, which might be identified by putative, intestinal stem cell markers like leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and doublecortin and CaM kinase-like-1 (DCAMKL-1). Emerging concepts in tumor biology suggest that Barrett's cancers may develop from growth-promoting mutations in metaplastic stem cells or their progenitor cell progeny. This report reviews the roles of developmental signaling pathways and the Cdx genes in the development of normal gut epithelia and the potential mechanisms whereby GERD may induce the esophageal expression of Cdx genes and other morphogenetic factors that mediate the development of Barrett's metaplasia. The role of stem cells in the development of metaplasia and in carcinogenesis and the potential for therapies directed at those stem cells also is addressed.
Collapse
Affiliation(s)
- Rhonda F Souza
- Department of Medicine, Veterans Affairs North Texas Health Care System and the University of Texas Southwestern Medical School, USA.
| | | | | |
Collapse
|
36
|
Calabro AR, Konsoula R, Barile FA. Evaluation of in vitro cytotoxicity and paracellular permeability of intact monolayers with mouse embryonic stem cells. Toxicol In Vitro 2008; 22:1273-84. [PMID: 18468840 DOI: 10.1016/j.tiv.2008.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 12/14/2022]
Abstract
Mouse embryonic stem (mES) cells were induced to form intact monolayers in cell culture inserts, using combinations of extracellular matrix (ECM) components and growth factors (GFs). Progressive formation of intact monolayers was monitored using transepithelial electrical resistance (TEER) and passage of paracellular permeability (PP) markers. The mES cells were initially inoculated on inactivated mouse embryonic fibroblasts (MEFs) plus leukemia inhibitory factor (LIF). At 75% confluence, cells were passaged in the absence of MEF and LIF to stimulate formation of rounded multicellular aggregates (MA). After 4 days, cultures containing MA were transferred to culture inserts coated with ECM components only, and grown in the presence of selected individual GFs. An additional 10-14 days revealed confluent monolayers with TEER values of 500-700 ohms cm2 (Omega cm2). Monolayers grown on inserts coated with ECM components, such as fibronectin or collagen-IV, in the presence of epidermal growth factor or keratinocyte growth factor in the medium, yielded the highest TEER measurements when compared to cultures grown without GFs or ECM. Acute cytotoxicity (AC) studies with confluent monolayers of mES cells in 96-well plates indicated that there is a high correlation (R2=0.91) between cell viability and TEER for 24-h exposure time. Also, decrease in TEER is inversely proportional with increase in PP of markers. In comparison to standardized Registry of Cytotoxicity (RC) data and TEER measurements, MTT IC50 values for mES cells are lower. Thus, at equivalent concentrations for the same chemicals, cell viability decreases before the integrity of the monolayer is compromised. This system represents a novel approach for the manipulation of mES cells toward specific intact monolayers, as an in vitro model for biological monolayer formation, and most importantly, for applications to cytotoxicity testing.
Collapse
Affiliation(s)
- Anthony R Calabro
- St. John's University College of Pharmacy and Allied Health Professions, Department of Pharmaceutical Sciences, Toxicology Division, 8000 Utopia Parkway, Queens, NY 11439, United States
| | | | | |
Collapse
|
37
|
The homeodomain transcription factor Cdx1 does not behave as an oncogene in normal mouse intestine. Neoplasia 2008; 10:8-19. [PMID: 18231635 DOI: 10.1593/neo.07703] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/17/2007] [Accepted: 10/17/2007] [Indexed: 02/07/2023] Open
Abstract
The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium.
Collapse
|
38
|
Ezaki T, Guo RJ, Li H, Reynolds AB, Lynch JP. The homeodomain transcription factors Cdx1 and Cdx2 induce E-cadherin adhesion activity by reducing beta- and p120-catenin tyrosine phosphorylation. Am J Physiol Gastrointest Liver Physiol 2007; 293:G54-65. [PMID: 17463179 DOI: 10.1152/ajpgi.00533.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The homeodomain transcription factors Cdx1 and Cdx2 are regulators of intestine-specific gene expression. They also regulate intestinal cell differentiation and proliferation; however, these effects are poorly understood. Previously, we have shown that expression of Cdx1 or Cdx2 in human Colo 205 cells induces a mature colonocyte morphology characterized by the induction of a polarized, columnar shape with apical microvilli and strong cell-cell adhesion. To elucidate the mechanism underlying this phenomenon, we investigated the adherens junction complex. Cdx1 or Cdx2 expression reduced Colo 205 cell migration and invasion in vitro, suggesting a physiologically significant change in cadherin function. However, Cdx expression did not significantly effect E-cadherin, alpha-, beta-, or gamma-catenin, or p120-catenin protein levels. Additionally, no alteration in their intracellular distribution was observed. Cdx expression did not alter the coprecipitation of beta-catenin with E-cadherin; however, it did reduce p120-catenin-E-cadherin coprecipitation. Tyrosine phosphorylation of beta- and p120-catenin is known to disrupt E-cadherin-mediated cell adhesion and is associated with robust p120-catenin/E-cadherin interactions. We specifically investigated beta- and p120-catenin for tyrosine phosphorylation and found that it was significantly diminished by Cdx1 or Cdx2 expression. We restored beta- and p120-catenin tyrosine phosphorylation in Cdx2-expressing cells by knocking down the expression of protein tyrosine phosphatase 1B and noted a significant decline in cell-cell adhesion. We conclude that Cdx expression in Colo 205 cells induces E-cadherin-dependent cell-cell adhesion by reducing beta- and p120-catenin tyrosine phosphorylation. Ascertaining the mechanism for this novel Cdx effect may improve our understanding of the regulation of cell-cell adhesion in the colonic epithelium.
Collapse
Affiliation(s)
- Toshihiko Ezaki
- Division of Gastroenterology/650 CRB, Department of Medicine, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
39
|
Gross I, Duluc I, Benameur T, Calon A, Martin E, Brabletz T, Kedinger M, Domon-Dell C, Freund JN. The intestine-specific homeobox gene Cdx2 decreases mobility and antagonizes dissemination of colon cancer cells. Oncogene 2007; 27:107-15. [PMID: 17599044 DOI: 10.1038/sj.onc.1210601] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gravity of colorectal cancer is mainly due to the capacity of tumor cells to migrate out of the tumor mass to invade the stroma and disseminate as metastases. The acquisition of a migratory phenotype also occurs during wound healing. Here, we show that several features characterizing invasive colon tumor cells are shared by migrating cells during wound repair in vitro. In particular, the expression of the intestine-specific transcription factor Cdx2, a key gene for intestinal identity downregulated in invasive cancer cells, is reduced during wound healing in vitro. Transcription factors involved in epithelial-mesenchymal transition such as Snail and Slug are upregulated during wound healing and are able to repress Cdx2 transcription. In vitro, forced expression of Cdx2 in human colon cancer cell lines retarded wound repair and reduced migration, whereas inhibition of Cdx2 expression by RNA interference enhanced migration. In vivo, forced expression of Cdx2 opposed tumor cells spreading in nude mice xenografted at three different sites. These data provide evidence that Cdx2 antagonizes the process of tumor cell dissemination, and they suggest that this homeobox gene might represent a new therapeutic target against metastatic spreading of colon cancer.
Collapse
Affiliation(s)
- I Gross
- INSERM, U682, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dang LH, Chen F, Knock SA, Huang EH, Feng J, Appelman HD, Dang DT. CDX2 does not suppress tumorigenicity in the human gastric cancer cell line MKN45. Oncogene 2006; 25:2048-59. [PMID: 16331267 DOI: 10.1038/sj.onc.1209243] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CDX2 is a Drosophila caudal-related homeobox transcription factor that is expressed specifically in the intestine. In mice, ectopic expression of CDX2 in the gastric mucosa gives rise to intestinal metaplasia and in one model, gastric carcinoma. In humans, increased CDX2 expression is associated with gastric intestinal metaplasia and tubular adenocarcinomas. These patterns of expression have shown that CDX2 is important for the initiation of intestinal metaplasia in the gastric mucosa, but the role of CDX2 in established gastric cancer remains unclear. We sought to determine whether CDX2 contributes to tumorigenic potential in established gastric cancer. The CDX2 gene in MKN45 gastric carcinoma cells was disrupted using targeted homologous recombination. The resulting CDX2-/- cells are essentially identical to their parental cells, with the exception of CDX2 ablation. We found no significant differences in the proliferation of CDX2-/- cells compared to CDX2+/+ cells, in vitro or in vivo. Molecular analyses show that loss of CDX2 predominantly altered the expression of genes involved in intestinal glandular differentiation and adhesion. However, there were no microscopic differences in tumor differentiation. We conclude that disruption of CDX2 in MKN45 cells does not significantly affect their tumorigenic potential.
Collapse
Affiliation(s)
- L H Dang
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-0682, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Dang LH, Chen F, Ying C, Chun SY, Knock SA, Appelman HD, Dang DT. CDX2 has tumorigenic potential in the human colon cancer cell lines LOVO and SW48. Oncogene 2006; 25:2264-72. [PMID: 16314840 DOI: 10.1038/sj.onc.1209247] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CDX2 is a Drosophila caudal-related homeobox transcription factor that is important for the establishment and maintenance of intestinal epithelial cells. CDX2 is a marker of colon cancer, with strong staining in up to 90% of colonic adenocarcinomas. CDX2 heterozygous-null mice develop colonic neoplasms, which have suggested that CDX2 is a tumor suppressor. However, CDX2 has not been reported to affect xenograft growth. Furthermore, CDX2 is rarely mutated in colon cancer, which has led to suggestions that it may play only a minor role as a tumor suppressor in colon cancer. To understand the functional contributions of CDX2 to colon cancer, we disrupted CDX2 in LOVO and SW48 human colon cancer cell lines by targeted homologous recombination. Consistent with the literature, disruption of CDX2 enhanced anchorage-dependent cell proliferation. However, homozygous loss of CDX2 led to significant inhibition of anchorage-independent growth in LOVO cells, and cell lethality in SW48 cells. Further analyses revealed that disruption of CDX2 led to anchorage-independent G1 to S growth arrest and anoikis. In vivo xenograft studies confirmed that disruption of CDX2 inhibited LOVO tumor growth. These data demonstrate that CDX2 mediates anchorage-independent growth and survival. Thus, CDX2 has tumorigenic potential in the human colon cancer cell lines LOVO and SW48.
Collapse
Affiliation(s)
- L H Dang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109-0682, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Escaffit F, Paré F, Gauthier R, Rivard N, Boudreau F, Beaulieu JF. Cdx2 modulates proliferation in normal human intestinal epithelial crypt cells. Biochem Biophys Res Commun 2006; 342:66-72. [PMID: 16480684 DOI: 10.1016/j.bbrc.2006.01.128] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 01/26/2006] [Indexed: 11/23/2022]
Abstract
The homeobox gene Cdx2 is involved in the regulation of the expression of intestine specific markers such as sucrase-isomaltase and lactase-phlorizin hydrolase. Previous studies performed with immortalized or transformed intestinal cell lines have provided evidence that Cdx2 can promote morphological and functional differentiation in these experimental models. However, no data exist concerning the implication of this factor in normal human intestinal cell physiology. In the present work, we have investigated the role of Cdx2 in normal human intestinal epithelial crypt (HIEC) cells that lack this transcription factor. The establishment of HIEC cells expressing Cdx2 in an inducible manner shows that forced expression of Cdx2 significantly alters the proliferation of intestinal crypt cells and stimulates dipeptidylpeptidase IV expression but is not sufficient to trigger intestinal terminal differentiation. These observations suggest that Cdx2 requires additional factors to activate the enterocyte differentiation program in normal undifferentiated cells.
Collapse
Affiliation(s)
- Fabrice Escaffit
- CIHR Group on Functional Development and Physiopathology of the Digestive Tract, Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Que., Canada J1H 5N4
| | | | | | | | | | | |
Collapse
|
43
|
Yoshida H, Broaddus R, Cheng W, Xie S, Naora H. Deregulation of the HOXA10 homeobox gene in endometrial carcinoma: role in epithelial-mesenchymal transition. Cancer Res 2006; 66:889-97. [PMID: 16424022 DOI: 10.1158/0008-5472.can-05-2828] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Homeobox genes encode transcription factors that control cell differentiation and play essential roles in developmental patterning. Increasing evidence indicates that many homeobox genes are aberrantly expressed in cancers, and that their deregulation significantly contributes to tumor progression. The homeobox gene HOXA10 controls uterine organogenesis during embryonic development and functional endometrial differentiation in the adult. We investigated whether HOXA10 expression is deregulated in endometrial carcinomas, and how counteracting this aberrant expression modifies tumor behavior. We found that down-regulation of HOXA10 expression in endometrial carcinomas strongly correlates with increased tumor grade and is associated with methylation of the HOXA10 promoter. Enforced expression of HOXA10 in endometrial carcinoma cells inhibited invasive behavior in vitro and tumor dissemination in nude mice. The inhibitory effect of HOXA10 on invasive behavior was attributable at least in part to the ability of HOXA10 to induce expression of the epithelial cell adhesion molecule E-cadherin by down-regulating expression of Snail, a repressor of E-cadherin gene transcription. These findings reveal a novel role for HOXA10 deregulation in the progression of endometrial carcinoma by promoting epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Hiroyuki Yoshida
- Department of Molecular Therapeutics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
44
|
Gendron FP, Mongrain S, Laprise P, McMahon S, Dubois CM, Blais M, Asselin C, Rivard N. The CDX2 transcription factor regulates furin expression during intestinal epithelial cell differentiation. Am J Physiol Gastrointest Liver Physiol 2006; 290:G310-8. [PMID: 16239403 DOI: 10.1152/ajpgi.00217.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CDX2, a member of the caudal family of transcription factors, is involved in enterocyte lineage specification. CDX2 activates many intestine-specific genes, such as sucrase-isomaltase and lactase-phlorizin hydrolase (LPH), and adhesion proteins, namely, LI-cadherin and claudin-2. In this study, we show that the proprotein convertase furin, involved in proteolytic maturation of proprotein substrates including LPH and cell surface proteins, is a CDX2 target. Indeed, expression of the rat furin homolog was induced 1.5-fold, as determined by microarray experiments that compared control with CDX2-expressing intestinal epithelial cells (IEC-6). As determined by transient transfection assays in Caco-2/15 cells, the furin P1 promoter 1.3-kb fragment between SacI and NheI was essential for CDX2 transcriptional activation. Electrophoretic mobility shift/supershift assays followed by site-specific mutagenesis and chromatin immunoprecipitation identified the CDX DNA-binding site (CBS)2 sequence from nt -1827 to -1821 as the major CBS involved in furin P1 promoter activation. Increased furin mRNA and protein expression correlated with both CDX2 expression and intestinal epithelial cell differentiation. In addition, furin mRNAs were detected predominantly in differentiated epithelial cells of the villus, as determined by in situ hybridization. Treatment of Caco-2/15 cells with a furin inhibitor led to inhibition of LPH activity. Morphological differentiation of enterocyte-like features in Caco-2/15 such as epithelial cell polarity and brush-border formation were strongly attenuated by furin inhibition. These results suggest that CDX2 regulates furin expression in intestinal epithelial cells. Furin may be important in modulating the maturation and/or activation of key factors involved in enterocyte differentiation.
Collapse
Affiliation(s)
- Fernand-Pierre Gendron
- Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada J1H5N4
| | | | | | | | | | | | | | | |
Collapse
|