1
|
Devuyst O, Ahn C, Barten TR, Brosnahan G, Cadnapaphornchai MA, Chapman AB, Cornec-Le Gall E, Drenth JP, Gansevoort RT, Harris PC, Harris T, Horie S, Liebau MC, Liew M, Mallett AJ, Mei C, Mekahli D, Odland D, Ong AC, Onuchic LF, P-C Pei Y, Perrone RD, Rangan GK, Rayner B, Torra R, Mustafa R, Torres VE. KDIGO 2025 Clinical Practice Guideline for the Evaluation, Management, and Treatment of Autosomal Dominant Polycystic Kidney Disease (ADPKD). Kidney Int 2025; 107:S1-S239. [PMID: 39848759 DOI: 10.1016/j.kint.2024.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 01/25/2025]
|
2
|
Baweja S, Mittal A, Thangariyal S, Subudhi PD, Gautam S, Kaul R. Unveiling the effect of estrogen receptors in alcoholic liver disease: A novel outlook. LIVER RESEARCH 2023; 7:333-341. [DOI: 10.1016/j.livres.2023.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
3
|
Ceci L, Han Y, Krutsinger K, Baiocchi L, Wu N, Kundu D, Kyritsi K, Zhou T, Gaudio E, Francis H, Alpini G, Kennedy L. Gallstone and Gallbladder Disease: Biliary Tract and Cholangiopathies. Compr Physiol 2023; 13:4909-4943. [PMID: 37358507 DOI: 10.1002/cphy.c220028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Cholestatic liver diseases are named primarily due to the blockage of bile flow and buildup of bile acids in the liver. Cholestasis can occur in cholangiopathies, fatty liver diseases, and during COVID-19 infection. Most literature evaluates damage occurring to the intrahepatic biliary tree during cholestasis; however, there may be associations between liver damage and gallbladder damage. Gallbladder damage can manifest as acute or chronic inflammation, perforation, polyps, cancer, and most commonly gallstones. Considering the gallbladder is an extension of the intrahepatic biliary network, and both tissues are lined by biliary epithelial cells that share common mechanisms and properties, it is worth further evaluation to understand the association between bile duct and gallbladder damage. In this comprehensive article, we discuss background information of the biliary tree and gallbladder, from function, damage, and therapeutic approaches. We then discuss published findings that identify gallbladder disorders in various liver diseases. Lastly, we provide the clinical aspect of gallbladder disorders in liver diseases and ways to enhance diagnostic and therapeutic approaches for congruent diagnosis. © 2023 American Physiological Society. Compr Physiol 13:4909-4943, 2023.
Collapse
Affiliation(s)
- Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Yuyan Han
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Kelsey Krutsinger
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | | | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Xu L, Yuan Y, Che Z, Tan X, Wu B, Wang C, Xu C, Xiao J. The Hepatoprotective and Hepatotoxic Roles of Sex and Sex-Related Hormones. Front Immunol 2022; 13:939631. [PMID: 35860276 PMCID: PMC9289199 DOI: 10.3389/fimmu.2022.939631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Most liver diseases, including acute liver injury, drug-induced liver injury, viral hepatitis, metabolic liver diseases, and end-stage liver diseases, are strongly linked with hormonal influences. Thus, delineating the clinical manifestation and underlying mechanisms of the “sexual dimorphism” is critical for providing hints for the prevention, management, and treatment of those diseases. Whether the sex hormones (androgen, estrogen, and progesterone) and sex-related hormones (gonadotrophin-releasing hormone, luteinizing hormone, follicle-stimulating hormone, and prolactin) play protective or toxic roles in the liver depends on the biological sex, disease stage, precipitating factor, and even the psychiatric status. Lifestyle factors, such as obesity, alcohol drinking, and smoking, also drastically affect the involving mechanisms of those hormones in liver diseases. Hormones deliver their hepatic regulatory signals primarily via classical and non-classical receptors in different liver cell types. Exogenous sex/sex-related hormone therapy may serve as a novel strategy for metabolic liver disease, cirrhosis, and liver cancer. However, the undesired hormone-induced liver injury should be carefully studied in pre-clinical models and monitored in clinical applications. This issue is particularly important for menopause females with hormone replacement therapy (HRT) and transgender populations who want to receive gender-affirming hormone therapy (GAHT). In conclusion, basic and clinical studies are warranted to depict the detailed hepatoprotective and hepatotoxic mechanisms of sex/sex-related hormones in liver disease. Prolactin holds a promising perspective in treating metabolic and advanced liver diseases.
Collapse
Affiliation(s)
- Linlin Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Yuan
- Clinical Medicine Research Institute, Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhaodi Che
- Clinical Medicine Research Institute, Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaozhi Tan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Cunchuan Wang
- Clinical Medicine Research Institute, Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chengfang Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chengfang Xu, ; Jia Xiao,
| | - Jia Xiao
- Clinical Medicine Research Institute, Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Chengfang Xu, ; Jia Xiao,
| |
Collapse
|
5
|
Aapkes SE, Bernts LHP, Barten TRM, van den Berg M, Gansevoort RT, Drenth JPH. Estrogens in polycystic liver disease: A target for future therapies? Liver Int 2021; 41:2009-2019. [PMID: 34153174 PMCID: PMC8456902 DOI: 10.1111/liv.14986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Patients suffering from polycystic liver disease (PLD) can develop large liver volumes, leading to physical and psychological complaints, reducing quality of life. There is an unmet need for new therapies in these patients. Estrogen seems to be a promising target for new therapies. In this review, we summarize the available experimental and epidemiological evidence to unravel the role of estrogens and other female hormones in PLD, to answer clinical questions and identify new targets for therapy. METHODS We identified all experimental and epidemiologial studies concerning estrogens or other female hormones and PLD, to answer pre-defined clinial questions. RESULTS Female sex is the most important risk factor for the presence and severity of disease; estrogen supplementation enhances liver growth and after menopause, liver growth decreases. Experimental studies show the presence of the estrogen receptors alfa and beta on cystic cholangiocytes, and increased in vitro growth after administration of estrogen. CONCLUSIONS Based on the available evidence, female PLD patients should be discouraged from taking estrogen-containing contraceptives or hormone replacement therapy. Since liver growth rates decline after menopause, treatment decisions should be based on measured liver growth in postmenopausal women. Finally, blockage of estrogen receptors or estrogen production is a promising target for new therapies.
Collapse
Affiliation(s)
- Sophie E. Aapkes
- Department of NephrologyUniversity Medical Center GroningenUniversity Hospital GroningenGroningenthe Netherlands
| | - Lucas H. P. Bernts
- Department of Gastroenterology and HepatologyRadboud University Medical CenterNijmegenthe Netherlands
| | - Thijs R. M. Barten
- Department of Gastroenterology and HepatologyRadboud University Medical CenterNijmegenthe Netherlands
| | - Marjan van den Berg
- Department of GynaecologyUniversity Medical Center GroningenUniversity Hospital GroningenGroningenthe Netherlands
| | - Ron T. Gansevoort
- Department of NephrologyUniversity Medical Center GroningenUniversity Hospital GroningenGroningenthe Netherlands
| | - Joost P. H. Drenth
- Department of Gastroenterology and HepatologyRadboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
6
|
Abstract
Cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, are highly specialized cells residing in a complex anatomic niche where they participate in bile production and homeostasis. Cholangiocytes are damaged in a variety of human diseases termed cholangiopathies, often causing advanced liver failure. The regulation of cholangiocyte transport properties is increasingly understood, as is their anatomical and functional heterogeneity along the biliary tract. Furthermore, cholangiocytes are pivotal in liver regeneration, especially when hepatocyte regeneration is compromised. The role of cholangiocytes in innate and adaptive immune responses, a critical subject relevant to immune-mediated cholangiopathies, is also emerging. Finally, reactive ductular cells are present in many cholestatic and other liver diseases. In chronic disease states, this repair response contributes to liver inflammation, fibrosis and carcinogenesis and is a subject of intense investigation. This Review highlights advances in cholangiocyte research, especially their role in development and liver regeneration, their functional and biochemical heterogeneity, their activation and involvement in inflammation and fibrosis and their engagement with the immune system. We aim to focus further attention on cholangiocyte pathobiology and the search for new disease-modifying therapies targeting the cholangiopathies.
Collapse
|
7
|
McMillin M, DeMorrow S, Glaser S, Venter J, Kyritsi K, Zhou T, Grant S, Giang T, Greene JF, Wu N, Jefferson B, Meng F, Alpini G. Melatonin inhibits hypothalamic gonadotropin-releasing hormone release and reduces biliary hyperplasia and fibrosis in cholestatic rats. Am J Physiol Gastrointest Liver Physiol 2017; 313:G410-G418. [PMID: 28751425 PMCID: PMC5792219 DOI: 10.1152/ajpgi.00421.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 01/31/2023]
Abstract
Melatonin is a hormone produced by the pineal gland with increased circulating levels shown to inhibit biliary hyperplasia and fibrosis during cholestatic liver injury. Melatonin also has the capability to suppress the release of hypothalamic gonadotropin-releasing hormone (GnRH), a hormone that promotes cholangiocyte proliferation when serum levels are elevated. However, the interplay and contribution of neural melatonin and GnRH to cholangiocyte proliferation and fibrosis in bile duct-ligated (BDL) rats have not been investigated. To test this, cranial levels of melatonin were increased by implanting osmotic minipumps that performed an intracerebroventricular (ICV) infusion of melatonin or saline for 7 days starting at the time of BDL. Hypothalamic GnRH mRNA and cholangiocyte secretion of GnRH and melatonin were assessed. Cholangiocyte proliferation and fibrosis were measured. Primary human hepatic stellate cells (HSCs) were treated with cholangiocyte supernatants, GnRH, or the GnRH receptor antagonist cetrorelix acetate, and cell proliferation and fibrosis gene expression were assessed. Melatonin infusion reduced hypothalamic GnRH mRNA expression and led to decreased GnRH and increased melatonin secretion from cholangiocytes. Infusion of melatonin was found to reduce hepatic injury, cholangiocyte proliferation, and fibrosis during BDL-induced liver injury. HSCs supplemented with BDL cholangiocyte supernatant had increased proliferation, and this increase was reversed when HSCs were supplemented with supernatants from melatonin-infused rats. GnRH stimulated fibrosis gene expression in HSCs, and this was reversed by cetrorelix acetate cotreatment. Increasing bioavailability of melatonin in the brain may improve outcomes during cholestatic liver disease.NEW & NOTEWORTHY We have previously demonstrated that GnRH is expressed in cholangiocytes and promotes their proliferation during cholestasis. In addition, dark therapy, which increases melatonin, reduced cholangiocyte proliferation and fibrosis during cholestasis. This study expands these findings by investigating neural GnRH regulation by melatonin during BDL-induced cholestasis by infusing melatonin into the brain. Melatonin infusion reduced cholangiocyte proliferation and fibrosis, and these effects are due to GNRH receptor 1-dependent paracrine signaling between cholangiocytes and hepatic stellate cells.
Collapse
Affiliation(s)
- Matthew McMillin
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Sharon DeMorrow
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Julie Venter
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Konstantina Kyritsi
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Tianhao Zhou
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Stephanie Grant
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Thao Giang
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - John F Greene
- Department of Pathology, Baylor Scott & White Health, Temple, Texas; and
| | - Nan Wu
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Brandi Jefferson
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
- Research Foundation, Baylor Scott & White Health, Temple, Texas
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas;
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| |
Collapse
|
8
|
Thomson J, Hargrove L, Kennedy L, Demieville J, Francis H. Cellular crosstalk during cholestatic liver injury. LIVER RESEARCH 2017; 1:26-33. [PMID: 29552372 PMCID: PMC5854144 DOI: 10.1016/j.livres.2017.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The functions of the liver are very diverse. From detoxifying blood to storing glucose in the form of glycogen and producing bile to facilitate fat digestion, the liver is a very active and important organ. The liver is comprised of many varied cell types whose functions are equally diverse. Cholangiocytes line the biliary tree and aid in transporting and adjusting the composition of bile as it travels to the gallbladder. Hepatic stellate cells and portal fibroblasts are located in different areas within the liver architecture, but both contribute to the development of fibrosis upon activation after liver injury. Vascular cells, including those that constitute the peribiliary vascular plexus, are involved in functions other than blood delivery to and from the liver, such as supporting the growth of the biliary tree during development. Mast cells are normally found in healthy livers but in very low numbers. However, after injury, mast cell numbers greatly increase as they infiltrate and release factors that exacerbate the fibrotic response. While not an all-inclusive list, these cells have individual roles within the liver, but they are also able to communicate with each other by cellular crosstalk. In this review, we examine some of these pathways that can lead to an increase in the homeostatic dysfunction seen in liver injury.
Collapse
Affiliation(s)
- Joanne Thomson
- Research, Central Texas Veterans Healthcare System, TX, USA
| | - Laura Hargrove
- Medicine, Texas A&M Health Science Center, Temple, TX, USA
| | - Lindsey Kennedy
- Research, Central Texas Veterans Healthcare System, TX, USA
- Medicine, Texas A&M Health Science Center, Temple, TX, USA
| | | | - Heather Francis
- Research, Central Texas Veterans Healthcare System, TX, USA
- Digestive Disease Research Center, Baylor Scott & White Health, TX, USA
- Medicine, Texas A&M Health Science Center, Temple, TX, USA
| |
Collapse
|
9
|
Hall C, Sato K, Wu N, Zhou T, Kyritsi K, Meng F, Glaser S, Alpini G. Regulators of Cholangiocyte Proliferation. Gene Expr 2017; 17:155-171. [PMID: 27412505 PMCID: PMC5494439 DOI: 10.3727/105221616x692568] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cholangiocytes, a small population of cells within the normal liver, have been the focus of a significant amount of research over the past two decades because of their involvement in cholangiopathies such as primary sclerosing cholangitis and primary biliary cholangitis. This article summarizes landmark studies in the field of cholangiocyte physiology and aims to provide an updated review of biliary pathogenesis. The historical approach of rodent extrahepatic bile duct ligation and the relatively recent utilization of transgenic mice have led to significant discoveries in cholangiocyte pathophysiology. Cholangiocyte physiology is a complex system based on heterogeneity within the biliary tree and a number of signaling pathways that serve to regulate bile composition. Studies have expanded the list of neuropeptides, neurotransmitters, and hormones that have been shown to be key regulators of proliferation and biliary damage. The peptide histamine and hormones, such as melatonin and angiotensin, angiotensin, as well as numerous sex hormones, have been implicated in cholangiocyte proliferation during cholestasis. Numerous pathways promote cholangiocyte proliferation during cholestasis, and there is growing evidence to suggest that cholangiocyte proliferation may promote hepatic fibrosis. These pathways may represent significant therapeutic potential for a subset of cholestatic liver diseases that currently lack effective therapies.
Collapse
Affiliation(s)
- Chad Hall
- *Research, Central Texas Veterans Health Care System, Temple, TX, USA
- †Baylor Scott & White Digestive Disease Research Center, Temple, TX, USA
- ‡Department of Surgery, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| | - Keisaku Sato
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
| | - Nan Wu
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
| | - Tianhao Zhou
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
| | | | - Fanyin Meng
- *Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
- ¶Department of Medicine, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| | - Shannon Glaser
- *Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
- ¶Department of Medicine, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| | - Gianfranco Alpini
- ‡Department of Surgery, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
- ¶Department of Medicine, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| |
Collapse
|
10
|
Fernández-Martínez E. Cholestasis, Contraceptives, and Free Radicals. LIVER PATHOPHYSIOLOGY 2017:239-258. [DOI: 10.1016/b978-0-12-804274-8.00018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Mikolajczyk AE, Te HS, Chapman AB. Gastrointestinal Manifestations of Autosomal-Dominant Polycystic Kidney Disease. Clin Gastroenterol Hepatol 2017; 15:17-24. [PMID: 27374006 DOI: 10.1016/j.cgh.2016.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is the most commonly inherited kidney disease, and the fourth most common cause of end-stage renal disease. ADPKD is a systemic disorder, associated with numerous extrarenal manifestations, including polycystic liver disease, the most common gastrointestinal manifestation, and diverticular disease, inguinal, and ventral hernias, pancreatic cysts, and large bile duct abnormalities. All of these gastrointestinal manifestations play a significant role in disease burden in ADPKD, particularly in the later decades of life. Thus, as ADPKD becomes more recognized, it is important for gastroenterologists to be knowledgeable of this monogenic disorder's effects on the digestive system.
Collapse
Affiliation(s)
- Adam E Mikolajczyk
- Center for Liver Diseases, The University of Chicago Medicine, Chicago, Illinois.
| | - Helen S Te
- Center for Liver Diseases, The University of Chicago Medicine, Chicago, Illinois
| | - Arlene B Chapman
- Section of Nephrology, The University of Chicago Medicine, Chicago, Illinois
| |
Collapse
|
12
|
Chebib FT, Jung Y, Heyer CM, Irazabal MV, Hogan MC, Harris PC, Torres VE, El-Zoghby ZM. Effect of genotype on the severity and volume progression of polycystic liver disease in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2016; 31:952-60. [PMID: 26932689 DOI: 10.1093/ndt/gfw008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 01/07/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The autosomal dominant polycystic kidney disease (APDKD) genotype influences renal phenotype severity but its effect on polycystic liver disease (PLD) is unknown. Here we analyzed the influence of genotype on liver phenotype severity. METHODS Clinical data were retrieved from electronic records of patients who were mutation screened with the available liver imaging (n = 434). Liver volumes were measured by stereology (axial or coronal images) and adjusted to height (HtLV). RESULTS Among the patients included, 221 (50.9%) had truncating PKD1 (PKD1-T), 141 (32.5%) nontruncating PKD1 (PKD1-NT) and 72 (16.6%) PKD2 mutations. Compared with PKD1-NT and PKD2, patients with PKD1-T had greater height-adjusted total kidney volumes (799 versus 610 and 549 mL/m; P < 0.001). HtLV was not different (1042, 1095 and 1058 mL/m; P = 0.64) between the three groups, but females had greater HtLVs compared with males (1114 versus 1015 mL/m; P < 0.001). Annualized median liver growth rates were 1.68, 1.5 and 1.24% for PKD1-T, PKD1-NT and PKD2 mutations, respectively (P = 0.49), and remained unaffected by the ADPKD genotype when adjusted for age, gender and baseline HtLV. Females <48 years of age had higher annualized growth rates compared with those who were older (2.65 versus 0.09%; P < 0.001). After age 48 years, 58% of females with severe PLD had regression of HtLV, while HtLV continued to increase in males. CONCLUSIONS In contrast to the renal phenotype, the ADPKD genotype was not associated with the severity or growth rate of PLD in ADKPD patients. This finding, along with gender influence, indicates that modifiers beyond the disease gene significantly influence the liver phenotype.
Collapse
Affiliation(s)
- Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Yeonsoon Jung
- Division of Nephrology, Kosin University College of Medicine, Busan, South Korea
| | - Christina M Heyer
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Maria V Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Marie C Hogan
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Ziad M El-Zoghby
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
13
|
Sun Y, Haapanen K, Li B, Zhang W, Van de Water J, Gershwin ME. Women and primary biliary cirrhosis. Clin Rev Allergy Immunol 2016; 48:285-300. [PMID: 25241227 DOI: 10.1007/s12016-014-8449-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Primary biliary cirrhosis occurs more frequently in women, and previous studies indicated that the average age of primary biliary cirrhosis (PBC) onset makes pregnancy in PBC patients uncommon. However, more recently, improved diagnostic testing has enabled detection of PBC in younger women, including those of childbearing age. This has led investigators to become increasingly interested in the relationship between the ontogeny of PBC and pregnancy. Published cases indicate that the typical age for pregnant women to be diagnosed with PBC is in the early 30s, and that during gestation, pruritus and jaundice are the most common symptoms. During gestation, susceptible women may experience onset of PBC resulting from the drastic changes in female hormones; this would include not only the mitochondrial damage due to accumulation of bile acids but also changes in the immune response during the different stages of pregnancy that might play an important role in the breakdown of self-tolerance. The mechanisms underlying the potential relationship between PBC and pregnancy warrant further investigation. For women first diagnosed with PBC during gestation, or those for whom first appearance of a flare up occurs during and postpartum, investigation of the immune response throughout gestation could provide new avenues for immunologic therapeutic intervention and the discovery of new treatment strategies for PBC.
Collapse
Affiliation(s)
- Ying Sun
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| | | | | | | | | | | |
Collapse
|
14
|
Mancinelli R, Glaser S, Francis H, Carpino G, Franchitto A, Vetuschi A, Sferra R, Pannarale L, Venter J, Meng F, Alpini G, Onori P, Gaudio E. Ischemia reperfusion of the hepatic artery induces the functional damage of large bile ducts by changes in the expression of angiogenic factors. Am J Physiol Gastrointest Liver Physiol 2015; 309:G865-73. [PMID: 26451003 PMCID: PMC4669349 DOI: 10.1152/ajpgi.00015.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023]
Abstract
Liver transplantation and cholangiocarcinoma induce biliary dysfunction following ischemia reperfusion (IR). The function of the intrahepatic biliary tree is regulated by both autocrine and paracrine factors. The aim of the study was to demonstrate that IR-induced damage of cholangiocytes is associated with altered expression of biliary angiogenic factors. Normal and bile duct ligation rats underwent 24-h sham or hepatic reperfusion after 30 min of transient occlusion of the hepatic artery (HAIR) or portal vein (PVIR) before collecting liver blocks and cholangiocyte RNA or protein. We evaluated liver histology, biliary apoptosis, proliferation and expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2 in liver sections and isolated small and large cholangiocytes. Normal rat intrahepatic cholangiocyte cultures (NRICC) were maintained under standard conditions in normoxic or under a hypoxic atmosphere for 4 h and then transferred to normal conditions for selected times. Subsequently, we measured changes in biliary proliferation and apoptosis and the expression of VEGF-A/C and VEGFR-2/3. In vivo, HAIR (but not PVIR) induced damage of large bile ducts and decreased proliferation and secretin-stimulated cAMP levels. HAIR-induced damage of large bile ducts was associated with increased expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2. In vitro, under hypoxic conditions, there was increased apoptosis and reduced proliferation of NRICC concomitant with enhanced expression of VEGF-A/C and VEGFR-2/3. The functional damage of large bile ducts by HAIR and hypoxia is associated with increased expression of angiogenic factors in small cholangiocytes, presumably due to a compensatory mechanism in response to biliary damage.
Collapse
Affiliation(s)
- Romina Mancinelli
- 1Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy;
| | - Shannon Glaser
- 2Research, Central Texas Veterans Health Care System, Temple, Texas; ,3Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, College of Medicine, Temple, Texas;
| | - Heather Francis
- 2Research, Central Texas Veterans Health Care System, Temple, Texas; ,3Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, College of Medicine, Temple, Texas;
| | - Guido Carpino
- 1Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy;
| | - Antonio Franchitto
- 1Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy; ,6Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
| | - Antonella Vetuschi
- 5Department of Biotechnological and Applied Clinical Sciences, University of L′Aquila, L′Aquila, Italy;
| | - Roberta Sferra
- 5Department of Biotechnological and Applied Clinical Sciences, University of L′Aquila, L′Aquila, Italy;
| | - Luigi Pannarale
- 1Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy;
| | - Julie Venter
- 4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, College of Medicine, Temple, Texas;
| | - Fanyin Meng
- 2Research, Central Texas Veterans Health Care System, Temple, Texas; ,3Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, College of Medicine, Temple, Texas;
| | - Gianfranco Alpini
- 2Research, Central Texas Veterans Health Care System, Temple, Texas; ,3Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, College of Medicine, Temple, Texas;
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy;
| | - Eugenio Gaudio
- 1Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy;
| |
Collapse
|
15
|
Afroze SH, Munshi MK, Martínez AK, Uddin M, Gergely M, Szynkarski C, Guerrier M, Nizamutdinov D, Dostal D, Glaser S. Activation of the renin-angiotensin system stimulates biliary hyperplasia during cholestasis induced by extrahepatic bile duct ligation. Am J Physiol Gastrointest Liver Physiol 2015; 308:G691-701. [PMID: 25678505 PMCID: PMC4398845 DOI: 10.1152/ajpgi.00116.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 01/08/2015] [Indexed: 01/31/2023]
Abstract
Cholangiocyte proliferation is regulated in a coordinated fashion by many neuroendocrine factors through autocrine and paracrine mechanisms. The renin-angiotensin system (RAS) is known to play a role in the activation of hepatic stellate cells and blocking the RAS attenuates hepatic fibrosis. We investigated the role of the RAS during extrahepatic cholestasis induced by bile duct ligation (BDL). In this study, we used normal and BDL rats that were treated with control, angiotensin II (ANG II), or losartan for 2 wk. In vitro studies were performed in a primary rat cholangiocyte cell line (NRIC). The expression of renin, angiotensin-converting enzyme, angiotensinogen, and angiotensin receptor type 1 was evaluated by immunohistochemistry (IHC), real-time PCR, and FACs and found to be increased in BDL compared with normal rat. The levels of ANG II were evaluated by ELISA and found to be increased in serum and conditioned media of cholangiocytes from BDL compared with normal rats. Treatment with ANG II increased biliary mass and proliferation in both normal and BDL rats. Losartan attenuated BDL-induced biliary proliferation. In vitro, ANG II stimulated NRIC proliferation via increased intracellular cAMP levels and activation of the PKA/ERK/CREB intracellular signaling pathway. ANG II stimulated a significant increase in Sirius red staining and IHC for fibronectin that was blocked by angiotensin receptor blockade. In vitro, ANG II stimulated the gene expression of collagen 1A1, fibronectin 1, and IL-6. These results indicate that cholangiocytes express a local RAS and that ANG II plays an important role in regulating biliary proliferation and fibrosis during extraheptic cholestasis.
Collapse
Affiliation(s)
- Syeda H. Afroze
- 2Scott & White Digestive Disease Research Center, Temple, Texas; and
| | | | - Allyson K. Martínez
- 3Department of Internal Medicine, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Mohammad Uddin
- 3Department of Internal Medicine, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Maté Gergely
- 3Department of Internal Medicine, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Claudia Szynkarski
- 3Department of Internal Medicine, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Micheleine Guerrier
- 3Department of Internal Medicine, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Damir Nizamutdinov
- 3Department of Internal Medicine, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - David Dostal
- 3Department of Internal Medicine, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Shannon Glaser
- Central Texas Veterans Health Care System, Temple, Texas; Scott & White Digestive Disease Research Center, Temple, Texas; and Department of Internal Medicine, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas
| |
Collapse
|
16
|
Franchitto A, Onori P, Renzi A, Carpino G, Mancinelli R, Alvaro D, Gaudio E. Recent advances on the mechanisms regulating cholangiocyte proliferation and the significance of the neuroendocrine regulation of cholangiocyte pathophysiology. ANNALS OF TRANSLATIONAL MEDICINE 2014; 1:27. [PMID: 25332971 DOI: 10.3978/j.issn.2305-5839.2012.10.03] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/15/2012] [Indexed: 12/14/2022]
Abstract
Cholangiocytes are epithelial cells lining the biliary epithelium. Cholangiocytes play several key roles in the modification of ductal bile and are also the target cells in chronic cholestatic liver diseases (i.e., cholangiopathies) such as PSC, PBC, polycystic liver disease (PCLD) and cholangiocarcinoma (CCA). During these pathologies, cholangiocytes (which in normal condition are in a quiescent state) begin to proliferate acquiring phenotypes of neuroendocrine cells, and start secreting different cytokines, growth factors, neuropeptides, and hormones to modulate cholangiocytes proliferation and interaction with the surrounding environment, trying to reestablish the balance between proliferation/loss of cholangiocytes for the maintenance of biliary homeostasis. The purpose of this review is to summarize the recent findings on the mechanisms regulating cholangiocyte proliferation and the significance of the neuroendocrine regulation of cholangiocyte pathophysiology. To clarify the mechanisms of action of these factors we will provide new potential strategies for the management of chronic liver diseases.
Collapse
Affiliation(s)
- Antonio Franchitto
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome "Sapienza", Rome, Italy ; 2 Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy ; 3 Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 4 Department of Health Science, University of Rome "Foro Italico", Italy ; 5 Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza, University of Rome "Sapienza", Rome, Italy
| | - Paolo Onori
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome "Sapienza", Rome, Italy ; 2 Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy ; 3 Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 4 Department of Health Science, University of Rome "Foro Italico", Italy ; 5 Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza, University of Rome "Sapienza", Rome, Italy
| | - Anastasia Renzi
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome "Sapienza", Rome, Italy ; 2 Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy ; 3 Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 4 Department of Health Science, University of Rome "Foro Italico", Italy ; 5 Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza, University of Rome "Sapienza", Rome, Italy
| | - Guido Carpino
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome "Sapienza", Rome, Italy ; 2 Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy ; 3 Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 4 Department of Health Science, University of Rome "Foro Italico", Italy ; 5 Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza, University of Rome "Sapienza", Rome, Italy
| | - Romina Mancinelli
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome "Sapienza", Rome, Italy ; 2 Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy ; 3 Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 4 Department of Health Science, University of Rome "Foro Italico", Italy ; 5 Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza, University of Rome "Sapienza", Rome, Italy
| | - Domenico Alvaro
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome "Sapienza", Rome, Italy ; 2 Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy ; 3 Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 4 Department of Health Science, University of Rome "Foro Italico", Italy ; 5 Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza, University of Rome "Sapienza", Rome, Italy
| | - Eugenio Gaudio
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome "Sapienza", Rome, Italy ; 2 Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy ; 3 Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 4 Department of Health Science, University of Rome "Foro Italico", Italy ; 5 Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
17
|
Gonçalves JO, Tannuri ACA, Coelho MCM, Bendit I, Tannuri U. Dynamic expression of desmin, α-SMA and TGF-β1 during hepatic fibrogenesis induced by selective bile duct ligation in young rats. ACTA ACUST UNITED AC 2014; 47:850-7. [PMID: 25140817 PMCID: PMC4181220 DOI: 10.1590/1414-431x20143679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/29/2014] [Indexed: 01/11/2023]
Abstract
We previously described a selective bile duct ligation model to elucidate the process
of hepatic fibrogenesis in children with biliary atresia or intrahepatic biliary
stenosis. Using this model, we identified changes in the expression of alpha
smooth muscle actin (α-SMA) both in the obstructed
parenchyma and in the hepatic parenchyma adjacent to the obstruction. However, the
expression profiles of desmin and TGF-β1, molecules
known to be involved in hepatic fibrogenesis, were unchanged when analyzed by
semiquantitative polymerase chain reaction (RT-PCR). Thus, the molecular mechanisms
involved in the modulation of liver fibrosis in this experimental model are not fully
understood. This study aimed to evaluate the molecular changes in an experimental
model of selective bile duct ligation and to compare the gene expression changes
observed in RT-PCR and in real-time quantitative PCR (qRT‐PCR). Twenty-eight Wistar
rats of both sexes and weaning age (21-23 days old) were used. The rats were
separated into groups that were assessed 7 or 60 days after selective biliary duct
ligation. The expression of desmin, α-SMA and
TGF-β1 was examined in tissue from hepatic parenchyma with
biliary obstruction (BO) and in hepatic parenchyma without biliary obstruction (WBO),
using RT-PCR and qRT‐PCR. The results obtained in this study using these two methods
were significantly different. The BO parenchyma had a more severe fibrogenic
reaction, with increased α-SMA and TGF-β1
expression after 7 days. The WBO parenchyma presented a later, fibrotic response,
with increased desmin expression 7 days after surgery and increased
α-SMA 60 days after surgery. The qRT‐PCR technique was more
sensitive to expression changes than the semiquantitative method.
Collapse
Affiliation(s)
- J O Gonçalves
- Laboratório de Pesquisa em Cirurgia Pediátrica (LIM-30), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - A C A Tannuri
- Laboratório de Pesquisa em Cirurgia Pediátrica (LIM-30), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M C M Coelho
- Laboratório de Pesquisa em Cirurgia Pediátrica (LIM-30), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - I Bendit
- Laboratório de Pesquisa em Cirurgia Pediátrica (LIM-30), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - U Tannuri
- Laboratório de Pesquisa em Cirurgia Pediátrica (LIM-30), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
18
|
Immunomodulatory effects by oral contraceptives in normal and cholestatic female rats: Role of cytokines. Int Immunopharmacol 2014; 21:10-9. [DOI: 10.1016/j.intimp.2014.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 03/11/2014] [Accepted: 03/31/2014] [Indexed: 01/10/2023]
|
19
|
Han Y, Glaser S, Meng F, Francis H, Marzioni M, McDaniel K, Alvaro D, Venter J, Carpino G, Onori P, Gaudio E, Alpini G, Franchitto A. Recent advances in the morphological and functional heterogeneity of the biliary epithelium. Exp Biol Med (Maywood) 2013; 238:549-65. [PMID: 23856906 DOI: 10.1177/1535370213489926] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the recent advances related to the heterogeneity of different-sized bile ducts with regard to the morphological and phenotypical characteristics, and the differential secretory, apoptotic and proliferative responses of small and large cholangiocytes to gastrointestinal hormones/peptides, neuropeptides and toxins. We describe several in vivo and in vitro models used for evaluating biliary heterogeneity. Subsequently, we discuss the heterogeneous proliferative and apoptotic responses of small and large cholangiocytes to liver injury and the mechanisms regulating the differentiation of small into large (more differentiated) cholangiocytes. Following a discussion on the heterogeneity of stem/progenitor cells in the biliary epithelium, we outline the heterogeneity of bile ducts in human cholangiopathies. After a summary section, we discuss the future perspectives that will further advance the field of the functional heterogeneity of the biliary epithelium.
Collapse
Affiliation(s)
- Yuyan Han
- Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Piccinato CA, Rosa GJM, N’Jai AU, Jefcoate CR, Wiltbank MC. Estradiol and progesterone exhibit similar patterns of hepatic gene expression regulation in the bovine model. PLoS One 2013; 8:e73552. [PMID: 24069207 PMCID: PMC3775788 DOI: 10.1371/journal.pone.0073552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023] Open
Abstract
Female sex steroid hormones, estradiol-17β (E2-17β) and progesterone (P4) regulate reproductive function and gene expression in a broad range of tissues. Given the central role of the liver in regulating homeostasis including steroid hormone metabolism, we sought to understand how E2-17β and P4 interact to affect global gene expression in liver. Ovariectomized cows (n = 8) were randomly assigned to 4 treatment groups applied in a replicated Latin Square design: 1) No hormone supplementation, 2) E2-17β treatment (ear implant), 3) P4 treatment (intravaginal inserts), and 4) E2-17β combined with P4. After 14 d of treatment, liver biopsies were collected, allowing 28 d intervals between periods. Changes in gene expression in the liver biopsies were monitored using bovine-specific arrays. Treatment with E2-17β altered expression of 479 genes, P4 472 genes, and combined treatment significantly altered expression of 468 genes. In total, 578 genes exhibited altered expression including a remarkable number (346 genes) that responded similarly to E2-17β, P4, or combined treatment. Additional evidence for similar gene expression actions of E2-17ß and/or P4 were: principal component analysis placed almost every treatment array at a substantial distance from controls; Venn diagrams indicated overall treatment effects for most regulated genes; clustering analysis indicated the two major clusters had all treatments up-regulating (172 genes) or down-regulating (173 genes) expression. Thus, unexpectedly, common biological pathways were regulated by E2-17β and/or P4 in liver. This indicates that the mechanism of action of these steroid hormones in the liver might be either indirect or might occur through non-genomic pathways. This unusual pattern of gene expression in response to steroid hormones is consistent with the idea that there are classical and non-classical tissue-specific responses to steroid hormone actions. Future studies are needed to elucidate putative mechanism(s) responsible for overlapping actions of E2-17β and P4 on the liver transcriptome.
Collapse
Affiliation(s)
- Carla A. Piccinato
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Guilherme J. M. Rosa
- Department of Animal Sciences, and Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Alhaji U. N’Jai
- Department of Pathobiological Sciences and Molecular & Environmental Toxicology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Colin R. Jefcoate
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Pharmacology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Milo C. Wiltbank
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Dairy Science, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
21
|
Jensen K, Afroze S, Ueno Y, Rahal K, Frenzel A, Sterling M, Guerrier M, Nizamutdinov D, Dostal DE, Meng F, Glaser SS. Chronic nicotine exposure stimulates biliary growth and fibrosis in normal rats. Dig Liver Dis 2013; 45:754-61. [PMID: 23587498 PMCID: PMC3800482 DOI: 10.1016/j.dld.2013.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/05/2013] [Accepted: 02/27/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Epidemiological studies have indicated smoking to be a risk factor for the progression of liver diseases. Nicotine is the chief addictive substance in cigarette smoke and has powerful biological properties throughout the body. Nicotine has been implicated in a number of disease processes, including increased cell proliferation and fibrosis in several organ systems. AIMS The aim of this study was to evaluate the effects of chronic administration of nicotine on biliary proliferation and fibrosis in normal rats. METHODS In vivo, rats were treated with nicotine by osmotic minipumps for two weeks. Proliferation, α7-nicotinic receptor and profibrotic expression were evaluated in liver tissue, cholangiocytes and a polarized cholangiocyte cell line (normal rat intrahepatic cholangiocyte). Nicotine-dependent activation of the Ca(2+)/IP3/ERK 1/2 intracellular signalling pathway was also evaluated in normal rat intrahepatic cholangiocyte. RESULTS Cholangiocytes express α7-nicotinic receptor. Chronic administration of nicotine to normal rats stimulated biliary proliferation and profibrotic gene and protein expression such as alpha-smooth muscle actin and fibronectin 1. Activation of α7-nicotinic receptor stimulated Ca(2+)/ERK1/2-dependent cholangiocyte proliferation. CONCLUSION Chronic exposure to nicotine contributes to biliary fibrosis by activation of cholangiocyte proliferation and expression of profibrotic genes. Modulation of α7-nicotinic receptor signalling axis may be useful for the management of biliary proliferation and fibrosis during cholangiopathies.
Collapse
Affiliation(s)
- Kendal Jensen
- Scott & White Healthcare - Digestive Disease Research Center, Temple, Texas USA
| | - Syeda Afroze
- Scott & White Healthcare - Digestive Disease Research Center, Temple, Texas USA
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kinan Rahal
- Texas A&M Health Science Center College of Medicine and Scott and White Healthcare Department of Internal Medicine, Division of Gastroenterology, Temple, Texas USA
| | - Amber Frenzel
- Undergraduate Research Program, Texas Bioscience Institute-Temple College, Temple, Texas USA
| | - Melanie Sterling
- Undergraduate Research Program, Texas Bioscience Institute-Temple College, Temple, Texas USA
| | - Micheleine Guerrier
- Scott & White Healthcare - Digestive Disease Research Center, Temple, Texas USA
| | - Damir Nizamutdinov
- Central Texas Veterans Health Care System, Temple, Texas USA
- Texas A&M Health Science Center College of Medicine and Scott and White Healthcare Department of Internal Medicine, Division of Molecular Cardiology, Temple, Texas USA
| | - David E. Dostal
- Central Texas Veterans Health Care System, Temple, Texas USA
- Texas A&M Health Science Center College of Medicine and Scott and White Healthcare Department of Internal Medicine, Division of Molecular Cardiology, Temple, Texas USA
| | - Fanyin Meng
- Central Texas Veterans Health Care System, Temple, Texas USA
- Scott & White Healthcare - Digestive Disease Research Center, Temple, Texas USA
- Texas A&M Health Science Center College of Medicine and Scott and White Healthcare Department of Internal Medicine, Division of Gastroenterology, Temple, Texas USA
| | - Shannon S. Glaser
- Central Texas Veterans Health Care System, Temple, Texas USA
- Scott & White Healthcare - Digestive Disease Research Center, Temple, Texas USA
- Texas A&M Health Science Center College of Medicine and Scott and White Healthcare Department of Internal Medicine, Division of Gastroenterology, Temple, Texas USA
| |
Collapse
|
22
|
Onori P, Mancinelli R, Franchitto A, Carpino G, Renzi A, Brozzetti S, Venter J, Francis H, Glaser S, Jefferson DM, Alpini G, Gaudio E. Role of follicle-stimulating hormone on biliary cyst growth in autosomal dominant polycystic kidney disease. Liver Int 2013; 33:914-25. [PMID: 23617956 PMCID: PMC4064944 DOI: 10.1111/liv.12177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 03/11/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by the progressive development of renal and hepatic cysts. Follicle-stimulating hormone (FSH) has been demonstrated to be a trophic factor for biliary cells in normal rats and experimental cholestasis induced by bile duct ligation (BDL). AIMS To assess the effect of FSH on cholangiocyte proliferation during ADPKD using both in vivo and in vitro models. METHODS Evaluation of FSH receptor (FSHR), FSH, phospho-extracellular-regulated kinase (pERK) and c-myc expression in liver fragments from normal patients and patients with ADPKD. In vitro, we studied proliferating cell nuclear antigen (PCNA) and cAMP levels in a human immortalized, non-malignant cholangiocyte cell line (H69) and in an immortalized cell line obtained from the epithelium lining the hepatic cysts from the patients with ADPKD (LCDE) with or without transient silencing of the FSH gene. RESULTS Follicle-stimulating hormone is linked to the active proliferation of the cystic wall and to the localization of p-ERK and c-myc. This hormone sustains the biliary growth by activation of the cAMP/ERK signalling pathway. CONCLUSION These results showed that FSH has an important function in cystic growth acting on the cAMP pathway, demonstrating that it provides a target for medical therapy of hepatic cysts during ADPKD.
Collapse
Affiliation(s)
- Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome ‘Sapienza’, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome ‘Sapienza’, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome ‘Sapienza’, Rome, Italy,Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy
| | - Guido Carpino
- Department of Health Science, University of Rome ‘Foro Italico’, Rome, Italy
| | - Anastasia Renzi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome ‘Sapienza’, Rome, Italy
| | - Stefania Brozzetti
- Department of Surgical Sciences, University of Rome ‘Sapienza’, Rome, Italy
| | - Julie Venter
- Scott & White Digestive Disease Research Center, Central Texas Veterans Health Care System and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Heather Francis
- Scott & White Digestive Disease Research Center, Central Texas Veterans Health Care System and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Shannon Glaser
- Scott & White Digestive Disease Research Center, Central Texas Veterans Health Care System and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | | | - Gianfranco Alpini
- Scott & White Digestive Disease Research Center, Central Texas Veterans Health Care System and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome ‘Sapienza’, Rome, Italy
| |
Collapse
|
23
|
Renzi A, DeMorrow S, Onori P, Carpino G, Mancinelli R, Meng F, Venter J, White M, Franchitto A, Francis H, Han Y, Ueno Y, Dusio G, Jensen KJ, Greene JJ, Glaser S, Gaudio E, Alpini G. Modulation of the biliary expression of arylalkylamine N-acetyltransferase alters the autocrine proliferative responses of cholangiocytes in rats. Hepatology 2013; 57:1130-41. [PMID: 23080076 PMCID: PMC3566412 DOI: 10.1002/hep.26105] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 10/03/2012] [Indexed: 12/15/2022]
Abstract
UNLABELLED Secretin stimulates ductal secretion by interacting with secretin receptor (SR) activating cyclic adenosine 3',5'-monophosphate/cystic fibrosis transmembrane conductance regulator/chloride bicarbonate anion exchanger 2 (cAMP⇒CFTR⇒Cl(-) /HCO 3- AE2) signaling that is elevated by biliary hyperplasia. Cholangiocytes secrete several neuroendocrine factors regulating biliary functions by autocrine mechanisms. Melatonin inhibits biliary growth and secretin-stimulated choleresis in cholestatic bile-duct-ligated (BDL) rats by interaction with melatonin type 1 (MT1) receptor through down-regulation of cAMP-dependent signaling. No data exist regarding the role of melatonin synthesized locally by cholangiocytes in the autocrine regulation of biliary growth and function. In this study, we evaluated the (1) expression of arylalkylamine N-acetyltransferase (AANAT; the rate-limiting enzyme for melatonin synthesis from serotonin) in cholangiocytes and (2) effect of local modulation of biliary AANAT expression on the autocrine proliferative/secretory responses of cholangiocytes. In the liver, cholangiocytes (and, to a lesser extent, BDL hepatocytes) expressed AANAT. AANAT expression and melatonin secretion (1) increased in BDL, compared to normal rats and BDL rats treated with melatonin, and (2) decreased in normal and BDL rats treated with AANAT Vivo-Morpholino, compared to controls. The decrease in AANAT expression, and subsequent lower melatonin secretion by cholangiocytes, was associated with increased biliary proliferation and increased SR, CFTR, and Cl(-) /HCO 3- AE2 expression. Overexpression of AANAT in cholangiocyte cell lines decreased the basal proliferative rate and expression of SR, CFTR, and Cl(-) /HCO 3- AE2 and ablated secretin-stimulated biliary secretion in these cells. CONCLUSION Local modulation of melatonin synthesis may be important for management of the balance between biliary proliferation/damage that is typical of cholangiopathies. (HEPATOLOGY 2013).
Collapse
Affiliation(s)
- Anastasia Renzi
- Department of Medicine, Division of Gastroenterology, Scott & White Healthcare and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University “Sapienza”, Rome, Italy
| | - Sharon DeMorrow
- Scott & White Digestive Disease Research Center, College of Medicine, Temple, TX 76504,Department of Medicine, Division of Gastroenterology, Scott & White Healthcare and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Paolo Onori
- Department of Biotechnological and Applied Clinical Sciences, State University of L’Aquila, Italy
| | - Guido Carpino
- Department of Health Sciences, University of Rome “Foro Italico”, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University “Sapienza”, Rome, Italy
| | - Fanyin Meng
- Scott & White Digestive Disease Research Center, College of Medicine, Temple, TX 76504,Department of Medicine, Division of Gastroenterology, Scott & White Healthcare and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Division of Research and Education, Scott & White Healthcare and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Julie Venter
- Department of Medicine, Division of Gastroenterology, Scott & White Healthcare and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Mellanie White
- Department of Medicine, Division of Gastroenterology, Scott & White Healthcare and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University “Sapienza”, Rome, Italy,Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
| | - Heather Francis
- Scott & White Digestive Disease Research Center, College of Medicine, Temple, TX 76504,Department of Medicine, Division of Gastroenterology, Scott & White Healthcare and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Division of Research and Education, Scott & White Healthcare and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Yuyan Han
- Department of Medicine, Division of Gastroenterology, Scott & White Healthcare and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Giuseppina Dusio
- Division of Research and Education, Scott & White Healthcare and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Kendal J Jensen
- Department of Medicine, Division of Gastroenterology, Scott & White Healthcare and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - John J Greene
- Division of Pathology, Scott & White Healthcare and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Shannon Glaser
- Division of Research, Central Texas Veterans Health Care System, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, College of Medicine, Temple, TX 76504,Department of Medicine, Division of Gastroenterology, Scott & White Healthcare and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University “Sapienza”, Rome, Italy
| | - Gianfranco Alpini
- Division of Research, Central Texas Veterans Health Care System, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, College of Medicine, Temple, TX 76504,Department of Medicine, Division of Gastroenterology, Scott & White Healthcare and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| |
Collapse
|
24
|
Francis H, DeMorrow S, Venter J, Onori P, White M, Gaudio E, Francis T, Greene JF, Tran S, Meininger CJ, Alpini G. Inhibition of histidine decarboxylase ablates the autocrine tumorigenic effects of histamine in human cholangiocarcinoma. Gut 2012; 61:753-64. [PMID: 21873469 PMCID: PMC3244572 DOI: 10.1136/gutjnl-2011-300007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND In several tumours the endogenous activity of histidine decarboxylase (HDC), the enzyme stimulating histamine synthesis, sustains the autocrine trophic effect of histamine on cancer progression. Cholangiocarcinoma is a biliary cancer with limited treatment options. Histamine interacts with four G-protein coupled receptors, H1-H4 histamine receptors (HRs). OBJECTIVE To determine the effects of histamine stimulation and inhibition of histamine synthesis (by modulation of HDC) on cholangiocarcinoma growth. METHODS In vitro studies were performed using multiple human cholangiocarcinoma lines. The expression levels of the histamine synthetic machinery and HRs were evaluated along with the effects of histamine stimulation and inhibition on cholangiocarcinoma proliferation. A xenograft tumour model was used to measure tumour volume after treatment with histamine or inhibition of histamine synthesis by manipulation of HDC. Vascular endothelial growth factor (VEGF) expression was measured in cholangiocarcinoma cells concomitant with the evaluation of the expression of CD31 in endothelial cells in the tumour microenvironment. RESULTS Cholangiocarcinoma cells display (1) enhanced HDC and decreased monoamine oxidase B expression resulting in increased histamine secretion; and (2) increased expression of H1-H4 HRs. Inhibition of HDC and antagonising H1HR decreased histamine secretion in Mz-ChA-1 cells. Long-term treatment with histamine increased proliferation and VEGF expression in cholangiocarcinoma that was blocked by HDC inhibitor and the H1HR antagonist. In nude mice, histamine increased tumour growth (up to 25%) and VEGF expression whereas inhibition of histamine synthesis (by reduction of HDC) ablated the autocrine stimulation of histamine on tumour growth (~80%) and VEGF expression. No changes in angiogenesis (evaluated by changes in CD31 immunoreactivity) were detected in the in vivo treatment groups. CONCLUSION The novel concept that an autocrine loop (consisting of enhanced histamine synthesis by HDC) sustains cholangiocarcinoma growth is proposed. Drug targeting of HDC may be important for treatment of patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Heather Francis
- Division of Research, Central Texas Veterans Health Care System, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas, USA,Scott & White Digestive Disease Research Center, Texas A&M Health Science Center, College of Medicine, Temple, Texas, USA,Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas, USA,Division of Research and Education, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas, USA
| | - Sharon DeMorrow
- Division of Research, Central Texas Veterans Health Care System, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas, USA,Scott & White Digestive Disease Research Center, Texas A&M Health Science Center, College of Medicine, Temple, Texas, USA,Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas, USA
| | - Julie Venter
- Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas, USA
| | - Paolo Onori
- Department of Experimental Medicine, State University of L’Aquila, Italy
| | - Mellanie White
- Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of the Studies of La Sapienza, Rome, Italy
| | - Taylor Francis
- Division of Research and Education, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas, USA
| | - John F Greene
- Department of Pathology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas, USA
| | - Steve Tran
- Division of Research and Education, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas, USA
| | - Cynthia J Meininger
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas, USA
| | - Gianfranco Alpini
- Division of Research, Central Texas Veterans Health Care System, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas, USA,Scott & White Digestive Disease Research Center, Texas A&M Health Science Center, College of Medicine, Temple, Texas, USA,Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas, USA
| |
Collapse
|
25
|
Jensen K, Marzioni M, Munshi K, Afroze S, Alpini G, Glaser S. Autocrine regulation of biliary pathology by activated cholangiocytes. Am J Physiol Gastrointest Liver Physiol 2012; 302:G473-83. [PMID: 22194419 PMCID: PMC3774492 DOI: 10.1152/ajpgi.00482.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 12/21/2011] [Indexed: 01/31/2023]
Abstract
The bile duct system of the liver is lined by epithelial cells (i.e., cholangiocytes) that respond to a large number of neuroendocrine factors through alterations in their proliferative activities and the subsequent modification of the microenvironment. As such, activation of biliary proliferation compensates for the loss of cholangiocytes due to apoptosis and slows the progression of toxic injury and cholestasis. Over the course of the last three decades, much progress has been made in identifying the factors that trigger the biliary epithelium to remodel and grow. Because a large number of autocrine factors have recently been identified as relevant clinical targets, a compiled review of their contributions and function in cholestatic liver diseases would be beneficial. In this context, it is important to define the specific processes triggered by autocrine factors that promote cholangiocytes to proliferate, activate neighboring cells, and ultimately lead to extracellular matrix deposition. In this review, we discuss the role of each of the known autocrine factors with particular emphasis on proliferation and fibrogenesis. Because many of these molecules interact with one another throughout the progression of liver fibrosis, a model speculating their involvement in the progression of cholestatic liver disease is also presented.
Collapse
Affiliation(s)
- Kendal Jensen
- Scott & White Digestive Disease Research Center, TX, USA
| | | | | | | | | | | |
Collapse
|
26
|
Yang F, Priester S, Onori P, Venter J, Renzi A, Franchitto A, Munshi MK, Wise C, Dostal DE, Marzioni M, Saccomanno S, Ueno Y, Gaudio E, Glaser S. Castration inhibits biliary proliferation induced by bile duct obstruction: novel role for the autocrine trophic effect of testosterone. Am J Physiol Gastrointest Liver Physiol 2011; 301:G981-91. [PMID: 21903763 PMCID: PMC3233786 DOI: 10.1152/ajpgi.00061.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Increased cholangiocyte growth is critical for the maintenance of biliary mass during liver injury by bile duct ligation (BDL). Circulating levels of testosterone decline following castration and during cholestasis. Cholangiocytes secrete sex hormones sustaining cholangiocyte growth by autocrine mechanisms. We tested the hypothesis that testosterone is an autocrine trophic factor stimulating biliary growth. The expression of androgen receptor (AR) was determined in liver sections, male cholangiocytes, and cholangiocyte cultures [normal rat intrahepatic cholangiocyte cultures (NRICC)]. Normal or BDL (immediately after surgery) rats were treated with testosterone or antitestosterone antibody or underwent surgical castration (followed by administration of testosterone) for 1 wk. We evaluated testosterone serum levels; intrahepatic bile duct mass (IBDM) in liver sections of female and male rats following the administration of testosterone; and secretin-stimulated cAMP levels and bile secretion. We evaluated the expression of 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3, the enzyme regulating testosterone synthesis) in cholangiocytes. We evaluated the effect of testosterone on the proliferation of NRICC in the absence/presence of flutamide (AR antagonist) and antitestosterone antibody and the expression of 17β-HSD3. Proliferation of NRICC was evaluated following stable knock down of 17β-HSD3. We found that cholangiocytes and NRICC expressed AR. Testosterone serum levels decreased in castrated rats (prevented by the administration of testosterone) and rats receiving antitestosterone antibody. Castration decreased IBDM and secretin-stimulated cAMP levels and ductal secretion of BDL rats. Testosterone increased 17β-HSD3 expression and proliferation in NRICC that was blocked by flutamide and antitestosterone antibody. Knock down of 17β-HSD3 blocks the proliferation of NRICC. Drug targeting of 17β-HSD3 may be important for managing cholangiopathies.
Collapse
Affiliation(s)
- Fuquan Yang
- Department of Medicine, Division of 1Gastroenterology and ,6Department of Hepatobiliary Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, China;
| | - Sally Priester
- Department of Medicine, Division of 1Gastroenterology and ,3Research & Education, Scott & White,
| | - Paolo Onori
- 7Experimental Medicine, University of L'Aquila, L'Aquila;
| | - Julie Venter
- Department of Medicine, Division of 1Gastroenterology and
| | - Anastasia Renzi
- Department of Medicine, Division of 1Gastroenterology and ,10Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University of Rome “La Sapienza”, Rome; Fondazione Eleonora Lorillard Spencer-Cenci, Rome;
| | - Antonio Franchitto
- 10Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University of Rome “La Sapienza”, Rome; Fondazione Eleonora Lorillard Spencer-Cenci, Rome; ,11Institute of Food and Radiation Safety, Dhaka, Bangladesh
| | - Md Kamruzzaman Munshi
- Department of Medicine, Division of 1Gastroenterology and ,11Institute of Food and Radiation Safety, Dhaka, Bangladesh
| | - Candace Wise
- Department of Medicine, Division of 1Gastroenterology and
| | - David E. Dostal
- 2Molecular Cardiology, Scott & White and Texas A&M Health Science Center, College of Medicine, ,5Central Texas Veterans Health Care System, Temple, Texas;
| | - Marco Marzioni
- 8Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy,
| | - Stefania Saccomanno
- 8Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy,
| | - Yoshiyuki Ueno
- 9Division of Gastroenterology, Tohoku Graduate University School of Medicine, Sendai, Japan; and
| | - Eugenio Gaudio
- 10Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University of Rome “La Sapienza”, Rome; Fondazione Eleonora Lorillard Spencer-Cenci, Rome;
| | - Shannon Glaser
- Department of Medicine, Division of 1Gastroenterology and ,4Scott & White Digestive Disease Research Center, and ,5Central Texas Veterans Health Care System, Temple, Texas;
| |
Collapse
|
27
|
Munshi MK, Priester S, Gaudio E, Yang F, Alpini G, Mancinelli R, Wise C, Meng F, Franchitto A, Onori P, Glaser SS. Regulation of biliary proliferation by neuroendocrine factors: implications for the pathogenesis of cholestatic liver diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:472-84. [PMID: 21281779 DOI: 10.1016/j.ajpath.2010.09.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 08/23/2010] [Accepted: 09/02/2010] [Indexed: 12/15/2022]
Abstract
The proliferation of cholangiocytes occurs during the progression of cholestatic liver diseases and is critical for the maintenance and/or restoration of biliary mass during bile duct damage. The ability of cholangiocytes to proliferate is important in many different human pathologic conditions. Recent studies have brought to light the concept that proliferating cholangiocytes serve as a unique neuroendocrine compartment in the liver. During extrahepatic cholestasis and other pathologic conditions that trigger ductular reaction, proliferating cholangiocytes acquire a neuroendocrine phenotype. Cholangiocytes have the capacity to secrete and respond to a variety of hormones, neuropeptides, and neurotransmitters, regulating their surrounding cell functions and proliferative activity. In this review, we discuss the regulation of cholangiocyte growth by neuroendocrine factors in animal models of cholestasis and liver injury, which includes a discussion of the acquisition of neuroendocrine phenotypes by proliferating cholangiocytes and how this relates to cholangiopathies. We also review what is currently known about the neuroendocrine phenotypes of cholangiocytes in human cholestatic liver diseases (ie, cholangiopathies) that are characterized by ductular reaction.
Collapse
|
28
|
|
29
|
A novel method for establishment and characterization of extrahepatic bile duct epithelial cells from mice. In Vitro Cell Dev Biol Anim 2010; 46:820-3. [PMID: 20835774 DOI: 10.1007/s11626-010-9346-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
Culture of extrahepatic bile duct epithelial cells is a useful model to investigate physiology of extrahepatic bile duct epithelia and hepatobiliary disease mechanisms. The aim of this work was to establish and characterize a primary murine extrahepatic bile duct epithelial cell culture. Epithelial cells were isolated from extrahepatic bile ducts of BALB/c mice that were intraperitoneally injected with newborn bovine serum to induce the proliferation of extrahepatic bile ducts' epithelial cells and cultured on rat tail type I collagen-coated plastic culture flask containing DMEM/HamF12 with 10% FBS and 10 ng/ml epidermal growth factor at 37°C in an incubator with 5% humidified CO(2). The cells showed typical morphologic characteristics of epithelial phenotypes with cobblestone appearance in monolayer within 5-6 d after culture; they were positive against anticytokeratin-19 immunostaining. Transmission electron microscopy showed typical bile duct epithelia with microvilli on the cytomembrane, Golgi complex, massive mitochondria, and rough endoplasmic reticulum in the cytoplasmic. The growth curve of the epithelial cells was determined by a MTT assay which showed a normal sigmoidal growth curve. This culture technique might be a reliable method for isolation, purification, and primary culture of extrahepatic bile duct epithelial cells that can serve as a model for in vitro studies on the pathophysiology of hepatobiliary diseases as well as pharmacological and toxicological targets relevant to hepatobiliary diseases.
Collapse
|
30
|
Priester S, Wise C, Glaser SS. Involvement of cholangiocyte proliferation in biliary fibrosis. World J Gastrointest Pathophysiol 2010; 1:30-7. [PMID: 21607140 PMCID: PMC3097945 DOI: 10.4291/wjgp.v1.i2.30] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/28/2010] [Accepted: 06/04/2010] [Indexed: 02/07/2023] Open
Abstract
Cholangiocytes are the epithelial cells that line the biliary tree. In the adult liver, they are a mitotically dormant cell population, unless ductular reaction is triggered by injury. The ability of cholangiocytes to proliferate is important in many different human pathological liver conditions that target this cell type, which are termed cholangiopathies (i.e. primary biliary cirrhosis, primary sclerosing cholangitis and biliary atresia). In our article, we provide background information on the morphological and functional heterogeneity of cholangiocytes, summarize what is currently known about their proliferative processes, and briefly describe the diseases that target these cells. In addition, we address recent findings that suggest cholangiocyte involvement in epithelial-to-mesenchymal transformation and liver fibrosis, and propose directions for future studies.
Collapse
|
31
|
Mancinelli R, Onori P, DeMorrow S, Francis H, Glaser S, Franchitto A, Carpino G, Alpini G, Gaudio E. Role of sex hormones in the modulation of cholangiocyte function. World J Gastrointest Pathophysiol 2010; 1:50-62. [PMID: 21607142 PMCID: PMC3097944 DOI: 10.4291/wjgp.v1.i2.50] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/28/2010] [Accepted: 06/04/2010] [Indexed: 02/06/2023] Open
Abstract
Over the last years, cholangiocytes, the cells that line the biliary tree, have been considered an important object of study for their biological properties which involves bile formation, proliferation, injury repair, fibrosis and angiogenesis. Cholangiocyte proliferation occurs in all pathologic conditions of liver injury where it is associated with inflammation and regeneration. During these processes, biliary cells start to secrete different cytokines, growth factors, neuropeptides and hormones which represent potential mechanisms for cross talk with other liver cells. Several studies suggest that hormones, and in particular, sex hormones, play a fundamental role in the modulation of the growth of this compartment in the injured liver which functionally conditions the progression of liver disease. Understanding the mechanisms of action and the intracellular pathways of these compounds on cholangiocyte pathophysiology will provide new potential strategies for the management of chronic liver diseases. The purpose of this review is to summarize the recent findings on the role of sex hormones in cholangiocyte proliferation and biology.
Collapse
|
32
|
Abstract
Chronic liver inflammation after murine bile duct ligation could evolve according to three interrelated phenotypes, which would have different metabolic, functional and histologic characteristics. Liver injury secondary to extrahepatic cholestasis would induce an early ischemic-reperfusion phenotype with cholangiocyte depolarization, abnormal ion transport, hypometabolism with anaerobic glycolysis and hepatocytic apoptosis. This phenotype, in turn, could trigger the switch to a leukocytic phenotype by the cholangiocytes, with an intense anaplerotic activity, hypermetabolism, extracellular matrix degradation and moderated proliferation to create a pseudotissue with metabolic autonomy and paracrine functions. In the long-term cholestasis-drive tumorigenesis, the tumorous tissue would principally consist of cholangiocyte parenchyma, with an impressive biosynthetic activity through the tricarboxylic cell cycle. In terms of the tumorous stroma, made up by fibroplasia and angiogenesis, it would favor the tumor trophism. In conclusion, the great intensity and persistence in the expression of these phenotypes by the cholestatic cholangiocyte would favor chronic inflammatory tumorigenesis.
Collapse
|
33
|
Glaser S, Onori P, Wise C, Yang F, Marzioni M, Alvaro D, Franchitto A, Mancinelli R, Alpini G, Munshi MK, Gaudio E. Recent advances in the regulation of cholangiocyte proliferation and function during extrahepatic cholestasis. Dig Liver Dis 2010; 42:245-52. [PMID: 20153989 PMCID: PMC2836402 DOI: 10.1016/j.dld.2010.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 01/08/2010] [Indexed: 12/11/2022]
Abstract
Bile duct epithelial cells (i.e., cholangiocytes), which line the intrahepatic biliary epithelium, are the target cells in a number of human cholestatic liver diseases (termed cholangiopathies). Cholangiocyte proliferation and death is present in virtually all human cholangiopathies. A number of recent studies have provided insights into the key mechanisms that regulate the proliferation and function of cholangiocytes during the pathogenesis of cholestatic liver diseases. In our review, we have summarised the most important of these recent studies over the past 3 years with a focus on those performed in the animal model of extrahepatic bile duct ligation. In the first part of the review, we provide relevant background on the biliary ductal system. We then proceed with a general discussion of the factors regulating biliary proliferation performed in the cholestatic animal model of bile duct ligation. Further characterisation of the factors that regulate cholangiocyte proliferation and function will help in elucidating the mechanisms regulating the pathogenesis of biliary tract diseases in humans and in devising new treatment approaches for these devastating diseases.
Collapse
Affiliation(s)
- S.S. Glaser
- Digestive Disease Research Center, Scott & White, TX, United States, Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States,* Corresponding author at: Digestive Disease Research Center, Texas A&M Health Science Center, 702 SW H.K. Dodgen Loop, Temple, TX 76504, United States. Tel.: +1 254 742 7058; fax: +1 254 724 5944. ** Corresponding author at: Department of Human Anatomy, University of Rome “La Sapienza”, Via Alfonso Borelli 50 00161 Rome, Rome 00161, Italy. Tel.: +39 06 4991 8060; fax: +39 06 4991 8062
| | - P. Onori
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | - C. Wise
- Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - F. Yang
- Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States, Shengjing Hospital, China Medical University, Shenyang City, Liaoning Province, China
| | - M. Marzioni
- Department of Gastroenterology, Universita' Politecnica delle Marche, Ancona, Italy
| | - D. Alvaro
- Gastroenterology, University of Rome “La Sapienza”, Rome, Italy
| | - A. Franchitto
- Department of Human Anatomy, University of Rome “La Sapienza”, Rome, Italy
| | - R. Mancinelli
- Department of Human Anatomy, University of Rome “La Sapienza”, Rome, Italy
| | - G. Alpini
- Digestive Disease Research Center, Scott & White, TX, United States, Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States, Central Texas Veterans Health Care System, Temple, TX, United States
| | - Md. K. Munshi
- Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - E. Gaudio
- Department of Human Anatomy, University of Rome “La Sapienza”, Rome, Italy,* Corresponding author at: Digestive Disease Research Center, Texas A&M Health Science Center, 702 SW H.K. Dodgen Loop, Temple, TX 76504, United States. Tel.: +1 254 742 7058; fax: +1 254 724 5944. ** Corresponding author at: Department of Human Anatomy, University of Rome “La Sapienza”, Via Alfonso Borelli 50 00161 Rome, Rome 00161, Italy. Tel.: +39 06 4991 8060; fax: +39 06 4991 8062
| |
Collapse
|
34
|
Mancinelli R, Onori P, Gaudio E, DeMorrow S, Franchitto A, Francis H, Glaser S, Carpino G, Venter J, Alvaro D, Kopriva S, White M, Kossie A, Savage J, Alpini G. Follicle-stimulating hormone increases cholangiocyte proliferation by an autocrine mechanism via cAMP-dependent phosphorylation of ERK1/2 and Elk-1. Am J Physiol Gastrointest Liver Physiol 2009; 297:G11-26. [PMID: 19389804 PMCID: PMC2711748 DOI: 10.1152/ajpgi.00025.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sex hormones regulate cholangiocyte hyperplasia in bile duct-ligated (BDL) rats. We studied whether follicle-stimulating hormone (FSH) regulates cholangiocyte proliferation. FSH receptor (FSHR) and FSH expression was evaluated in liver sections, purified cholangiocytes, and cholangiocyte cultures (NRICC). In vivo, normal female and male rats were treated with FSH or immediately after BDL with antide (a gonadotropin-releasing hormone antagonist blocking FSH secretion) or a neutralizing FSH antibody for 1 wk. We evaluated 1) cholangiocyte proliferation in sections and cholangiocytes and 2) changes in secretin-stimulated cAMP (functional index of cholangiocyte growth) levels, and ERK1/2 and Elk-1 phosphorylation. NRICC were stimulated with FSH before evaluation of proliferation, cAMP/IP(3) levels, and ERK1/2 and Elk-1 phosphorylation. To determine whether FSH regulates cholangiocyte proliferation by an autocrine mechanism, we evaluated the effects of 1) cholangiocyte supernatant (containing FSH) on NRICC proliferation and 2) FSH silencing in NRICC before measuring proliferation and ERK1/2 and Elk-1 phosphorylation. Cholangiocytes and NRICC express FSHR and FSH and secrete FSH. In vivo administration of FSH to normal rats increased, whereas administration of antide and anti-FSH antibody to BDL rats decreased 1) ductal mass and 2) secretin-stimulated cAMP levels, proliferation, and ERK1/2 and Elk-1 phosphorylation in cholangiocytes compared with controls. In NRICC, FSH increased cholangiocyte proliferation, cAMP levels, and ERK1/2 and Elk-1 phosphorylation. The supernatant of cholangiocytes increased NRICC proliferation, inhibited by preincubation with anti-FSH antibody. Silencing of FSH gene decreases cholangiocyte proliferation and ERK1/2 and Elk-1 phosphorylation. Modulation of cholangiocyte FSH expression may be important for the management of cholangiopathies.
Collapse
Affiliation(s)
- Romina Mancinelli
- Research, Central Texas Veterans Health Care System, Digestive Disease Research Center, Scott & White, Department of Medicine, Division Gastroenterology, and Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, Division of Research and Education, Scott & White, Temple, Texas; Department of Human Anatomy, University of Rome “La Sapienza,” Rome, Italy; Experimental Medicine, University of L'Aquila, L'Aquila, Italy, Department of Gastroenterology, Polo Pontino, University of Rome “La Sapienza,” Rome, Italy; and Department of Health Science, Istituto Universitario di Scienze Motorie, University of Rome, Italy
| | - Paolo Onori
- Research, Central Texas Veterans Health Care System, Digestive Disease Research Center, Scott & White, Department of Medicine, Division Gastroenterology, and Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, Division of Research and Education, Scott & White, Temple, Texas; Department of Human Anatomy, University of Rome “La Sapienza,” Rome, Italy; Experimental Medicine, University of L'Aquila, L'Aquila, Italy, Department of Gastroenterology, Polo Pontino, University of Rome “La Sapienza,” Rome, Italy; and Department of Health Science, Istituto Universitario di Scienze Motorie, University of Rome, Italy
| | - Eugenio Gaudio
- Research, Central Texas Veterans Health Care System, Digestive Disease Research Center, Scott & White, Department of Medicine, Division Gastroenterology, and Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, Division of Research and Education, Scott & White, Temple, Texas; Department of Human Anatomy, University of Rome “La Sapienza,” Rome, Italy; Experimental Medicine, University of L'Aquila, L'Aquila, Italy, Department of Gastroenterology, Polo Pontino, University of Rome “La Sapienza,” Rome, Italy; and Department of Health Science, Istituto Universitario di Scienze Motorie, University of Rome, Italy
| | - Sharon DeMorrow
- Research, Central Texas Veterans Health Care System, Digestive Disease Research Center, Scott & White, Department of Medicine, Division Gastroenterology, and Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, Division of Research and Education, Scott & White, Temple, Texas; Department of Human Anatomy, University of Rome “La Sapienza,” Rome, Italy; Experimental Medicine, University of L'Aquila, L'Aquila, Italy, Department of Gastroenterology, Polo Pontino, University of Rome “La Sapienza,” Rome, Italy; and Department of Health Science, Istituto Universitario di Scienze Motorie, University of Rome, Italy
| | - Antonio Franchitto
- Research, Central Texas Veterans Health Care System, Digestive Disease Research Center, Scott & White, Department of Medicine, Division Gastroenterology, and Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, Division of Research and Education, Scott & White, Temple, Texas; Department of Human Anatomy, University of Rome “La Sapienza,” Rome, Italy; Experimental Medicine, University of L'Aquila, L'Aquila, Italy, Department of Gastroenterology, Polo Pontino, University of Rome “La Sapienza,” Rome, Italy; and Department of Health Science, Istituto Universitario di Scienze Motorie, University of Rome, Italy
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Digestive Disease Research Center, Scott & White, Department of Medicine, Division Gastroenterology, and Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, Division of Research and Education, Scott & White, Temple, Texas; Department of Human Anatomy, University of Rome “La Sapienza,” Rome, Italy; Experimental Medicine, University of L'Aquila, L'Aquila, Italy, Department of Gastroenterology, Polo Pontino, University of Rome “La Sapienza,” Rome, Italy; and Department of Health Science, Istituto Universitario di Scienze Motorie, University of Rome, Italy
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Digestive Disease Research Center, Scott & White, Department of Medicine, Division Gastroenterology, and Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, Division of Research and Education, Scott & White, Temple, Texas; Department of Human Anatomy, University of Rome “La Sapienza,” Rome, Italy; Experimental Medicine, University of L'Aquila, L'Aquila, Italy, Department of Gastroenterology, Polo Pontino, University of Rome “La Sapienza,” Rome, Italy; and Department of Health Science, Istituto Universitario di Scienze Motorie, University of Rome, Italy
| | - Guido Carpino
- Research, Central Texas Veterans Health Care System, Digestive Disease Research Center, Scott & White, Department of Medicine, Division Gastroenterology, and Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, Division of Research and Education, Scott & White, Temple, Texas; Department of Human Anatomy, University of Rome “La Sapienza,” Rome, Italy; Experimental Medicine, University of L'Aquila, L'Aquila, Italy, Department of Gastroenterology, Polo Pontino, University of Rome “La Sapienza,” Rome, Italy; and Department of Health Science, Istituto Universitario di Scienze Motorie, University of Rome, Italy
| | - Julie Venter
- Research, Central Texas Veterans Health Care System, Digestive Disease Research Center, Scott & White, Department of Medicine, Division Gastroenterology, and Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, Division of Research and Education, Scott & White, Temple, Texas; Department of Human Anatomy, University of Rome “La Sapienza,” Rome, Italy; Experimental Medicine, University of L'Aquila, L'Aquila, Italy, Department of Gastroenterology, Polo Pontino, University of Rome “La Sapienza,” Rome, Italy; and Department of Health Science, Istituto Universitario di Scienze Motorie, University of Rome, Italy
| | - Domenico Alvaro
- Research, Central Texas Veterans Health Care System, Digestive Disease Research Center, Scott & White, Department of Medicine, Division Gastroenterology, and Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, Division of Research and Education, Scott & White, Temple, Texas; Department of Human Anatomy, University of Rome “La Sapienza,” Rome, Italy; Experimental Medicine, University of L'Aquila, L'Aquila, Italy, Department of Gastroenterology, Polo Pontino, University of Rome “La Sapienza,” Rome, Italy; and Department of Health Science, Istituto Universitario di Scienze Motorie, University of Rome, Italy
| | - Shelley Kopriva
- Research, Central Texas Veterans Health Care System, Digestive Disease Research Center, Scott & White, Department of Medicine, Division Gastroenterology, and Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, Division of Research and Education, Scott & White, Temple, Texas; Department of Human Anatomy, University of Rome “La Sapienza,” Rome, Italy; Experimental Medicine, University of L'Aquila, L'Aquila, Italy, Department of Gastroenterology, Polo Pontino, University of Rome “La Sapienza,” Rome, Italy; and Department of Health Science, Istituto Universitario di Scienze Motorie, University of Rome, Italy
| | - Mellanie White
- Research, Central Texas Veterans Health Care System, Digestive Disease Research Center, Scott & White, Department of Medicine, Division Gastroenterology, and Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, Division of Research and Education, Scott & White, Temple, Texas; Department of Human Anatomy, University of Rome “La Sapienza,” Rome, Italy; Experimental Medicine, University of L'Aquila, L'Aquila, Italy, Department of Gastroenterology, Polo Pontino, University of Rome “La Sapienza,” Rome, Italy; and Department of Health Science, Istituto Universitario di Scienze Motorie, University of Rome, Italy
| | - Ashley Kossie
- Research, Central Texas Veterans Health Care System, Digestive Disease Research Center, Scott & White, Department of Medicine, Division Gastroenterology, and Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, Division of Research and Education, Scott & White, Temple, Texas; Department of Human Anatomy, University of Rome “La Sapienza,” Rome, Italy; Experimental Medicine, University of L'Aquila, L'Aquila, Italy, Department of Gastroenterology, Polo Pontino, University of Rome “La Sapienza,” Rome, Italy; and Department of Health Science, Istituto Universitario di Scienze Motorie, University of Rome, Italy
| | - Jennifer Savage
- Research, Central Texas Veterans Health Care System, Digestive Disease Research Center, Scott & White, Department of Medicine, Division Gastroenterology, and Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, Division of Research and Education, Scott & White, Temple, Texas; Department of Human Anatomy, University of Rome “La Sapienza,” Rome, Italy; Experimental Medicine, University of L'Aquila, L'Aquila, Italy, Department of Gastroenterology, Polo Pontino, University of Rome “La Sapienza,” Rome, Italy; and Department of Health Science, Istituto Universitario di Scienze Motorie, University of Rome, Italy
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Digestive Disease Research Center, Scott & White, Department of Medicine, Division Gastroenterology, and Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, Division of Research and Education, Scott & White, Temple, Texas; Department of Human Anatomy, University of Rome “La Sapienza,” Rome, Italy; Experimental Medicine, University of L'Aquila, L'Aquila, Italy, Department of Gastroenterology, Polo Pontino, University of Rome “La Sapienza,” Rome, Italy; and Department of Health Science, Istituto Universitario di Scienze Motorie, University of Rome, Italy
| |
Collapse
|
35
|
Abstract
Cholangiocyte proliferation is triggered during extrahepatic bile duct obstruction induced by bile duct ligation, which is a common in vivo model used for the study of cholangiocyte proliferation and liver fibrosis. The proliferative response of cholangiocytes during cholestasis is regulated by the complex interaction of several factors, including gastrointestinal hormones, neuroendocrine hormones and autocrine or paracrine signalling mechanisms. Activation of biliary proliferation (ductular reaction) is thought to have a key role in the initiation and progression of liver fibrosis. The first part of this review provides an overview of the primary functions of cholangiocytes in terms of secretin-stimulated bicarbonate secretion--a functional index of cholangiocyte growth. In the second section, we explore the important regulators, both inhibitory and stimulatory, that regulate the cholangiocyte proliferative response during cholestasis. We discuss the role of proliferating cholangiocytes in the induction of fibrosis either directly via epithelial mesenchymal transition or indirectly via the activation of other liver cell types. The possibility of targeting cholangiocyte proliferation as potential therapy for reducing and/or preventing liver fibrosis, and future avenues for research into how cholangiocytes participate in the process of liver fibrogenesis are described.
Collapse
|