1
|
Guo J, Yang WT, Mai FY, Liang JR, Luo J, Zhou MC, Yu DD, Wang YL, Li CG. Unravelling oncosis: morphological and molecular insights into a unique cell death pathway. Front Immunol 2024; 15:1450998. [PMID: 39281670 PMCID: PMC11393741 DOI: 10.3389/fimmu.2024.1450998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024] Open
Abstract
Programmed cell death (PCD) is a fundamental biological process for maintaining cellular equilibrium and regulating development, health, and disease across all living organisms. Among the various types of PCD, apoptosis plays a pivotal role in numerous diseases, notably cancer. Cancer cells frequently develop mechanisms to evade apoptosis, increasing resistance to standard chemotherapy treatments. This resistance has prompted extensive research into alternative mechanisms of programmed cell death. One such pathway is oncosis, characterized by significant energy consumption, cell swelling, dilation of the endoplasmic reticulum, mitochondrial swelling, and nuclear chromatin aggregation. Recent research suggests that oncosis can impact conditions such as chemotherapeutic cardiotoxicity, myocardial ischemic injury, stroke, and cancer, mediated by specific oncosis-related proteins. In this review, we provide a detailed examination of the morphological and molecular features of oncosis and discuss various natural or small molecule compounds that can induce this type of cell death. Additionally, we summarize the current understanding of the molecular mechanisms underlying oncosis and its role in both normal physiology and pathological conditions. These insights aim to illuminate future research directions and propose innovative strategies for leveraging oncosis as a therapeutic tool against human diseases and cancer resistance.
Collapse
Affiliation(s)
- Jie Guo
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Wen-Tao Yang
- Pain Department of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Feng-Yi Mai
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Jing-Rong Liang
- Pain Department of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Jiao Luo
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ming-Chao Zhou
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Dong-Dong Yu
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yu-Long Wang
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Chen-Guang Li
- Pain Department of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| |
Collapse
|
2
|
Wu J, Feng A, Liu C, Zhou W, Li K, Liu Y, Shi Y, Adu-Amankwaah J, Yu H, Pan X, Sun H. Genistein alleviates doxorubicin-induced cardiomyocyte autophagy and apoptosis via ERK/STAT3/c-Myc signaling pathway in rat model. Phytother Res 2024; 38:3921-3934. [PMID: 38818771 DOI: 10.1002/ptr.8236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/25/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Doxorubicin (Dox) is a highly effective anti-neoplastic agent. Still, its utility in the clinic has been hindered by toxicities, including vomiting, hematopoietic suppression and nausea, with cardiotoxicity being the most serious side effect. Genistein (Gen) is a natural product with extensive biological effects, including anti-oxidation, anti-tumor, and cardiovascular protection. This study evaluated whether Gen protected the heart from Dox-induced cardiotoxicity and explored the underlying mechanisms. Male Sprague-Dawley (SD) rats were categorized into control (Ctrl), genistein (Gen), doxorubicin (Dox), genistein 20 mg/kg/day + doxorubicin (Gen20 + Dox) and genistein 40 mg/kg/day + doxorubicin (Gen40 + Dox) groups. Six weeks after injection, immunohistochemistry (IHC), transmission electron microscopy (TEM), and clinical cardiac function analyses were performed to evaluate the effects of Dox on cardiac function and structural alterations. Furthermore, each heart histopathological lesions were given a score of 0-3 in compliance with the articles for statistical analysis. In addition, molecular and cellular response of H9c2 cells toward Dox were evaluated through western blotting, Cell Counting Kit-8 (CCK8), AO staining and calcein AM/PI assay. Dox (5 μM in vitro and 18 mg/kg in vivo) was used in this study. In vivo, low-dose Gen pretreatment protected the rat against Dox-induced cardiac dysfunction and pathological remodeling. Gen inhibited extracellular signal-regulated kinase1/2 (ERK1/2)'s phosphorylation, increased the protein levels of STAT3 and c-Myc, and decreased the autophagy and apoptosis of cardiomyocytes. U0126, a MEK1/2 inhibitor, can mimic the effect of Gen in protecting against Dox-induced cytotoxicity both in vivo and in vitro. Molecular docking analysis showed that Gen forms a stable complex with ERK1/2. Gen protected the heart against Dox-induced cardiomyocyte autophagy and apoptosis through the ERK/STAT3/c-Myc signaling pathway.
Collapse
Affiliation(s)
- Jinxia Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ailu Feng
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chunyang Liu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenxiu Zhou
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kexue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Liu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Shi
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Hongli Yu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiuhua Pan
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Zorov DB, Abramicheva PA, Andrianova NV, Babenko VA, Zorova LD, Zorov SD, Pevzner IB, Popkov VA, Semenovich DS, Yakupova EI, Silachev DN, Plotnikov EY, Sukhikh GT. Mitocentricity. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:223-240. [PMID: 38622092 DOI: 10.1134/s0006297924020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 04/17/2024]
Abstract
Worldwide, interest in mitochondria is constantly growing, as evidenced by scientific statistics, and studies of the functioning of these organelles are becoming more prevalent than studies of other cellular structures. In this analytical review, mitochondria are conditionally placed in a certain cellular center, which is responsible for both energy production and other non-energetic functions, without which the existence of not only the eukaryotic cell itself, but also the entire organism is impossible. Taking into account the high multifunctionality of mitochondria, such a fundamentally new scheme of cell functioning organization, including mitochondrial management of processes that determine cell survival and death, may be justified. Considering that this issue is dedicated to the memory of V. P. Skulachev, who can be called mitocentric, due to the history of his scientific activity almost entirely aimed at studying mitochondria, this work examines those aspects of mitochondrial functioning that were directly or indirectly the focus of attention of this outstanding scientist. We list all possible known mitochondrial functions, including membrane potential generation, synthesis of Fe-S clusters, steroid hormones, heme, fatty acids, and CO2. Special attention is paid to the participation of mitochondria in the formation and transport of water, as a powerful biochemical cellular and mitochondrial regulator. The history of research on reactive oxygen species that generate mitochondria is subject to significant analysis. In the section "Mitochondria in the center of death", special emphasis is placed on the analysis of what role and how mitochondria can play and determine the program of death of an organism (phenoptosis) and the contribution made to these studies by V. P. Skulachev.
Collapse
Affiliation(s)
- Dmitry B Zorov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Polina A Abramicheva
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nadezda V Andrianova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Valentina A Babenko
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Ljubava D Zorova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Savva D Zorov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina B Pevzner
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Vasily A Popkov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Dmitry S Semenovich
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elmira I Yakupova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Denis N Silachev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Egor Y Plotnikov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Gennady T Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
4
|
Corsetti G, Romano C, Pasini E, Scarabelli T, Chen-Scarabelli C, Dioguardi FS. Essential Amino Acids-Rich Diet Increases Cardiomyocytes Protection in Doxorubicin-Treated Mice. Nutrients 2023; 15:nu15102287. [PMID: 37242170 DOI: 10.3390/nu15102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Doxorubicin (Doxo) is a widely prescribed drug against many malignant cancers. Unfortunately, its utility is limited by its toxicity, in particular a progressive induction of congestive heart failure. Doxo acts primarily as a mitochondrial toxin, with consequent increased production of reactive oxygen species (ROS) and attendant oxidative stress, which drives cardiac dysfunction and cell death. A diet containing a special mixture of all essential amino acids (EAAs) has been shown to increase mitochondriogenesis, and reduce oxidative stress both in skeletal muscle and heart. So, we hypothesized that such a diet could play a favorable role in preventing Doxo-induced cardiomyocyte damage. METHODS Using transmission electron microscopy, we evaluated cells' morphology and mitochondria parameters in adult mice. In addition, by immunohistochemistry, we evaluated the expression of pro-survival marker Klotho, as well as markers of necroptosis (RIP1/3), inflammation (TNFα, IL1, NFkB), and defense against oxidative stress (SOD1, glutathione peroxidase, citrate synthase). RESULTS Diets with excess essential amino acids (EAAs) increased the expression of Klotho and enhanced anti-oxidative and anti-inflammatory responses, thereby promoting cell survival. CONCLUSION Our results further extend the current knowledge about the cardioprotective role of EAAs and provide a novel theoretical basis for their preemptive administration to cancer patients undergoing chemotherapy to alleviate the development and severity of Doxo-induced cardiomyopathy.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Claudia Romano
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Evasio Pasini
- Italian Association of Functional Medicine, 20855 Lesmo (Milan), Italy
| | - Tiziano Scarabelli
- Center for Heart and Vessel Preclinical Studies, St. John Hospital and Medical Center, Wayne State University, Detroit, MI 48236, USA
| | - Carol Chen-Scarabelli
- Division of Cardiology, Richmond Veterans Affairs Medical Center (VAMC), Richmond, VA 23249, USA
| | - Francesco S Dioguardi
- Department of Internal Medicine, University of Cagliari, 09042 Monserrato (Cagliari), Italy
| |
Collapse
|
5
|
Ali I, Li C, Kuang M, Shah AU, Shafiq M, Ahmad MA, Abdalmegeed D, Li L, Wang G. Nrf2 Activation and NF-Kb & caspase/bax signaling inhibition by sodium butyrate alleviates LPS-induced cell injury in bovine mammary epithelial cells. Mol Immunol 2022; 148:54-67. [PMID: 35671559 DOI: 10.1016/j.molimm.2022.05.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 12/23/2022]
Abstract
Mastitis, an inflammation of the mammary gland, is a complex disease that affects the health of dairy cows worldwide. Sodium butyrate (SB) is a short-chain fatty acid that has recently been shown to have antioxidant, anti-inflammatory and anti-apoptotic potential in various cells types, although its role in bovine mammary epithelial cells (bMECs) has not been comprehensively reported. Therefore, the aim of this study was to assess the protective effect of sodium butyrate on Lipopolysaccharide (LPS)-induced mastitis model in vitro and to elucidate the possible underlying molecular mechanisms. The in vitro mastitis model was designed to investigate the regulatory effect of SB on LPS-induced inflammatory conditions in bMECs, with particular emphasis on oxidative stress, inflammatory response, apoptosis, and mitochondrial dysfunction. The results showed that SB co-treatment markedly prevented LPS-induced death of bMECs in a concentration-dependent manner. In addition, SB attenuated LPS-induced oxidative stress (OS) (Increased Intracellular ROS, MDA, and decreased SOD, GSH-Px and CAT activity), thereby reduced inflammation (increased expression of IL-6, IL-Iβ, and TNF-α), and apoptosis (Increased the expression of caspases and Bax and decreased Bcl-2) via inhibiting NF-kB and caspase/bax signaling pathways. Furthermore, the protective effect of SB was also associated with the activation of endogenous antioxidant system (Nrf2, Keap1, NQO-1 and HO-1). Nrf2 silencing significantly abolished the protective effect of SB on bMECs. In conclusion, our findings suggest that SB has a significant protective effect on LPS-induced OS, inflammatory responses and apoptosis by activating Nrf2 and inhibiting NF-kB and ROS-mediated mitochondrial dysfunction. These results propose that SB may be an important regulator of OS and its subsequent inflammatory responses, and thus could be used as a therapeutic agent for bovine mastitis.
Collapse
Affiliation(s)
- Ilyas Ali
- Department of Medical Cell Biology and Genetics, Health Science Center, Shenzhen University, Shenzhen 518060, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengmin Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Meqian Kuang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Abid Ullah Shah
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Muhammad Shafiq
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Dyaaaldin Abdalmegeed
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Microbiology section, Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Genlin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Addis DR, Aggarwal S, Lazrak A, Jilling T, Matalon S. Halogen-Induced Chemical Injury to the Mammalian Cardiopulmonary Systems. Physiology (Bethesda) 2021; 36:272-291. [PMID: 34431415 DOI: 10.1152/physiol.00004.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The halogens chlorine (Cl2) and bromine (Br2) are highly reactive oxidizing elements with widespread industrial applications and a history of development and use as chemical weapons. When inhaled, depending on the dose and duration of exposure, they cause acute and chronic injury to both the lungs and systemic organs that may result in the development of chronic changes (such as fibrosis) and death from cardiopulmonary failure. A number of conditions, such as viral infections, coexposure to other toxic gases, and pregnancy increase susceptibility to halogens significantly. Herein we review their danger to public health, their mechanisms of action, and the development of pharmacological agents that when administered post-exposure decrease morbidity and mortality.
Collapse
Affiliation(s)
- Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, Division of Cardiothoracic Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama.,Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tamas Jilling
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Pediatrics, Division of Neonatology, Children's Hospital, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
7
|
Liu H, Man K. New Insights in Mechanisms and Therapeutics for Short- and Long-Term Impacts of Hepatic Ischemia Reperfusion Injury Post Liver Transplantation. Int J Mol Sci 2021; 22:ijms22158210. [PMID: 34360975 PMCID: PMC8348697 DOI: 10.3390/ijms22158210] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Liver transplantation has been identified as the most effective treatment for patients with end-stage liver diseases. However, hepatic ischemia reperfusion injury (IRI) is associated with poor graft function and poses a risk of adverse clinical outcomes post transplantation. Cell death, including apoptosis, necrosis, ferroptosis and pyroptosis, is induced during the acute phase of liver IRI. The release of danger-associated molecular patterns (DAPMs) and mitochondrial dysfunction resulting from the disturbance of metabolic homeostasis initiates graft inflammation. The inflammation in the short term exacerbates hepatic damage, leading to graft dysfunction and a higher incidence of acute rejection. The subsequent changes in the graft immune environment due to hepatic IRI may result in chronic rejection, cancer recurrence and fibrogenesis in the long term. In this review, we mainly focus on new mechanisms of inflammation initiated by immune activation related to metabolic alteration in the short term during liver IRI. The latest mechanisms of cancer recurrence and fibrogenesis due to the long-term impact of inflammation in hepatic IRI is also discussed. Furthermore, the development of therapeutic strategies, including ischemia preconditioning, pharmacological inhibitors and machine perfusion, for both attenuating acute inflammatory injury and preventing late-phase disease recurrence, will be summarized in the context of clinical, translational and basic research.
Collapse
|
8
|
Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, Rimessi A, Wieckowski MR, Oliveira PJ. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev Camb Philos Soc 2021; 96:2489-2521. [PMID: 34155777 DOI: 10.1111/brv.12764] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
In this review, we summarize current knowledge of perhaps one of the most intriguing phenomena in cell biology: the mitochondrial permeability transition pore (mPTP). This phenomenon, which was initially observed as a sudden loss of inner mitochondrial membrane impermeability caused by excessive calcium, has been studied for almost 50 years, and still no definitive answer has been provided regarding its mechanisms. From its initial consideration as an in vitro artifact to the current notion that the mPTP is a phenomenon with physiological and pathological implications, a long road has been travelled. We here summarize the role of mitochondria in cytosolic calcium control and the evolving concepts regarding the mitochondrial permeability transition (mPT) and the mPTP. We show how the evolving mPTP models and mechanisms, which involve many proposed mitochondrial protein components, have arisen from methodological advances and more complex biological models. We describe how scientific progress and methodological advances have allowed milestone discoveries on mPTP regulation and composition and its recognition as a valid target for drug development and a critical component of mitochondrial biology.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, Ravenna, 48033, Italy.,Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Natalia Naumova
- Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padua Medical School, Via Giustiniani 2, Padova, 35128, Italy
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Sara Valente
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| |
Collapse
|
9
|
Vairetti M, Di Pasqua LG, Cagna M, Richelmi P, Ferrigno A, Berardo C. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants (Basel) 2021; 10:364. [PMID: 33670839 PMCID: PMC7997318 DOI: 10.3390/antiox10030364] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Glutathione (GSH), a tripeptide particularly concentrated in the liver, is the most important thiol reducing agent involved in the modulation of redox processes. It has also been demonstrated that GSH cannot be considered only as a mere free radical scavenger but that it takes part in the network governing the choice between survival, necrosis and apoptosis as well as in altering the function of signal transduction and transcription factor molecules. The purpose of the present review is to provide an overview on the molecular biology of the GSH system; therefore, GSH synthesis, metabolism and regulation will be reviewed. The multiple GSH functions will be described, as well as the importance of GSH compartmentalization into distinct subcellular pools and inter-organ transfer. Furthermore, we will highlight the close relationship existing between GSH content and the pathogenesis of liver disease, such as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), chronic cholestatic injury, ischemia/reperfusion damage, hepatitis C virus (HCV), hepatitis B virus (HBV) and hepatocellular carcinoma. Finally, the potential therapeutic benefits of GSH and GSH-related medications, will be described for each liver disorder taken into account.
Collapse
Affiliation(s)
| | - Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | | | | - Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | |
Collapse
|
10
|
Lead, Mercury and Cadmium in Fish and Shellfish from the Indian Ocean and Red Sea (African Countries): Public Health Challenges. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8050344] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The main aim of this review was to assess the incidence of Pb, Hg and Cd in seafood from African countries on the Indian and the Red Sea coasts and the level of their monitoring and control, where the direct consumption of seafood without quality control are frequently due to the poverty in many African countries. Some seafood from African Indian and the Red Sea coasts such as mollusks and fishes have presented Cd, Pb and Hg concentrations higher than permitted limit by FAOUN/EU regulations, indicating a possible threat to public health. Thus, the operationalization of the heavy metals (HM) monitoring and control is strongly recommended since these countries have laboratories with minimal conditions for HM analysis.
Collapse
|
11
|
Wu B, Yue H, Zhou GH, Zhu YY, Wu TH, Wen JF, Cho KW, Jin SN. Protective effects of oxymatrine on homocysteine-induced endothelial injury: Involvement of mitochondria-dependent apoptosis and Akt-eNOS-NO signaling pathways. Eur J Pharmacol 2019; 864:172717. [DOI: 10.1016/j.ejphar.2019.172717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022]
|
12
|
Seo JH, Chae YC, Kossenkov AV, Lee YG, Tang HY, Agarwal E, Gabrilovich DI, Languino LR, Speicher DW, Shastrula PK, Storaci AM, Ferrero S, Gaudioso G, Caroli M, Tosi D, Giroda M, Vaira V, Rebecca VW, Herlyn M, Xiao M, Fingerman D, Martorella A, Skordalakes E, Altieri DC. MFF Regulation of Mitochondrial Cell Death Is a Therapeutic Target in Cancer. Cancer Res 2019; 79:6215-6226. [PMID: 31582380 DOI: 10.1158/0008-5472.can-19-1982] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 01/05/2023]
Abstract
The regulators of mitochondrial cell death in cancer have remained elusive, hampering the development of new therapies. Here, we showed that protein isoforms of mitochondrial fission factor (MFF1 and MFF2), a molecule that controls mitochondrial size and shape, that is, mitochondrial dynamics, were overexpressed in patients with non-small cell lung cancer and formed homo- and heterodimeric complexes with the voltage-dependent anion channel-1 (VDAC1), a key regulator of mitochondrial outer membrane permeability. MFF inserted into the interior hole of the VDAC1 ring using Arg225, Arg236, and Gln241 as key contact sites. A cell-permeable MFF Ser223-Leu243 d-enantiomeric peptidomimetic disrupted the MFF-VDAC1 complex, acutely depolarized mitochondria, and triggered cell death in heterogeneous tumor types, including drug-resistant melanoma, but had no effect on normal cells. In preclinical models, treatment with the MFF peptidomimetic was well-tolerated and demonstrated anticancer activity in patient-derived xenografts, primary breast and lung adenocarcinoma 3D organoids, and glioblastoma neurospheres. These data identify the MFF-VDAC1 complex as a novel regulator of mitochondrial cell death and an actionable therapeutic target in cancer. SIGNIFICANCE: These findings describe mitochondrial fission regulation using a peptidomimetic agent that disturbs the MFF-VDAC complex and displays anticancer activity in multiple tumor models.See related commentary by Rao, p. 6074.
Collapse
Affiliation(s)
- Jae Ho Seo
- Prostate Cancer Discovery and Development Program
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Young Chan Chae
- Prostate Cancer Discovery and Development Program.
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, Pennsylvania
| | - Yu Geon Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hsin-Yao Tang
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, Pennsylvania
| | - Ekta Agarwal
- Prostate Cancer Discovery and Development Program
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Dmitry I Gabrilovich
- Prostate Cancer Discovery and Development Program
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David W Speicher
- Prostate Cancer Discovery and Development Program
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, Pennsylvania
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Prashanth K Shastrula
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Alessandra Maria Storaci
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Gabriella Gaudioso
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Caroli
- Division of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Davide Tosi
- Division of Thoracic Surgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Giroda
- Division of Breast Surgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Vito W Rebecca
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Min Xiao
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Dylan Fingerman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Alessandra Martorella
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Emmanuel Skordalakes
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Dario C Altieri
- Prostate Cancer Discovery and Development Program.
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Seo JH, Agarwal E, Chae YC, Lee YG, Garlick DS, Storaci AM, Ferrero S, Gaudioso G, Gianelli U, Vaira V, Altieri DC. Mitochondrial fission factor is a novel Myc-dependent regulator of mitochondrial permeability in cancer. EBioMedicine 2019; 48:353-363. [PMID: 31542392 PMCID: PMC6838406 DOI: 10.1016/j.ebiom.2019.09.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
Background Mitochondrial functions are exploited in cancer and provide a validated therapeutic target. However, how this process is regulated has remained mostly elusive and the identification of new pathways that control mitochondrial integrity in cancer is an urgent priority. Methods We studied clinically-annotated patient series of primary and metastatic prostate cancer, representative cases of multiple myeloma (MM) and publicly available genetic databases. Gene regulation studies involved chromatin immunoprecipitation, PCR amplification and Western blotting of conditional Myc-expressing cell lines. Transient or stable gene silencing was used to quantify mitochondrial functions in bioenergetics, outer membrane permeability, Ca2+ homeostasis, redox balance and cell death. Tumorigenicity was assessed by cell proliferation, colony formation and xenograft tumour growth. Findings We identified Mitochondrial Fission Factor (MFF) as a novel transcriptional target of oncogenic Myc overexpressed in primary and metastatic cancer, compared to normal tissues. Biochemically, MFF isoforms, MFF1 and MFF2 associate with the Voltage-Dependent Anion Channel-1 (VDAC1) at the mitochondrial outer membrane, in vivo. Disruption of this complex by MFF silencing induces general collapse of mitochondrial functions with increased outer membrane permeability, loss of inner membrane potential, Ca2+ unbalance, bioenergetics defects and activation of cell death pathways. In turn, this inhibits tumour cell proliferation, suppresses colony formation and reduces xenograft tumour growth in mice. Interpretation An MFF-VDAC1 complex is a novel regulator of mitochondrial integrity and actionable therapeutic target in cancer.
Collapse
Affiliation(s)
- Jae Ho Seo
- Prostate Cancer Discovery and Development Program, USA; Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ekta Agarwal
- Prostate Cancer Discovery and Development Program, USA; Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Young Chan Chae
- Prostate Cancer Discovery and Development Program, USA; Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA; School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Yu Geon Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - David S Garlick
- Histo-Scientific Research Laboratories, Mount Jackson, VA 22842, USA
| | - Alessandra Maria Storaci
- Division of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan 20122, Italy
| | - Gabriella Gaudioso
- Division of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Umberto Gianelli
- Division of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Dario C Altieri
- Prostate Cancer Discovery and Development Program, USA; Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Sarafian TA, Yacoub A, Kunz A, Aranki B, Serobyan G, Cohn W, Whitelegge JP, Watson JB. Enhanced mitochondrial inhibition by 3,4-dihydroxyphenyl-acetaldehyde (DOPAL)-oligomerized α-synuclein. J Neurosci Res 2019; 97:1689-1705. [PMID: 31420910 DOI: 10.1002/jnr.24513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/24/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022]
Abstract
Oligomeric forms of α-synuclein are believed to cause mitochondrial injury, which may contribute to neurotoxicity in Parkinson's disease (PD). Here oligomers of α-synuclein were prepared using the dopamine metabolite, DOPAL (3,4-dihydroxyphenyl-acetaldehyde), in the presence of guanidinium hydrochloride. Electron microscopy, mass spectrometry, and Western blotting studies revealed enhanced and stable oligomerization with DOPAL compared with dopamine or CuCl2 /H2 O2 . Using isolated mouse brain mitochondria, DOPAL-oligomerized α-synuclein (DOS) significantly inhibited oxygen consumption rates compared with untreated, control-fibrillated, and dopamine-fibrillated synuclein, or with monomeric α-synuclein. Inhibition was greater in the presence of malate plus pyruvate than with succinate, suggesting the involvement of mitochondrial complex I. Mitochondrial membrane potential studies using fluorescent probes, JC-1, and Safranin O also detected enhanced inhibition by DOS compared with the other aggregated forms of α-synuclein. Testing a small customized chemical library, four compounds were identified that rescued membrane potential from DOS injury. While diverse in chemical structure and mechanism, each compound has been reported to interact with mitochondrial complex I. Western blotting studies revealed that none of the four compounds disrupted the oligomeric banding pattern of DOS, suggesting their protection involved direct mitochondrial interaction. The remaining set of chemicals also did not disrupt oligomeric banding, attesting to the high structural stability of this α-synuclein proteoform. DOPAL and α-synuclein are both found in dopaminergic neurons, where their levels are elevated in PD and in animal models exposed to chemical toxicants, including agricultural pesticides. The current study provides further evidence of α-synuclein-induced mitochondrial injury and a likely role in PD neuropathology.
Collapse
Affiliation(s)
- Theodore A Sarafian
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Amneh Yacoub
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Anastasia Kunz
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Burkan Aranki
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Grigor Serobyan
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Whitaker Cohn
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Julian P Whitelegge
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Joseph B Watson
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| |
Collapse
|
15
|
Kelsen J, Karlsson M, Hansson MJ, Yang Z, Fischer W, Hugerth M, Nordström CH, Åstrand R, Keep MF, Kilbaugh T, Wang KKW, Møller K, Juhler M, Elmér E. Copenhagen Head Injury Ciclosporin Study: A Phase IIa Safety, Pharmacokinetics, and Biomarker Study of Ciclosporin in Severe Traumatic Brain Injury Patients. J Neurotrauma 2019; 36:3253-3263. [PMID: 31210099 PMCID: PMC6857463 DOI: 10.1089/neu.2018.6369] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) contributes to almost one third of all trauma-related deaths, and those that survive often suffer from long-term physical and cognitive deficits. Ciclosporin (cyclosporine, cyclosporin A) has shown promising neuroprotective properties in pre-clinical TBI models. The Copenhagen Head Injury Ciclosporin (CHIC) study was initiated to establish the safety profile and pharmacokinetics of ciclosporin in patients with severe TBI, using a novel parenteral lipid emulsion formulation. Exploratory pharmacodynamic study measures included microdialysis in brain parenchyma and protein biomarkers of brain injury in the cerebrospinal fluid (CSF). Sixteen adult patients with severe TBI (Glasgow Coma Scale 4–8) were included, and all patients received an initial loading dose of 2.5 mg/kg followed by a continuous infusion for 5 days. The first 10 patients received an infusion dosage of 5 mg/kg/day whereas the subsequent 6 patients received 10 mg/kg/day. No mortality was registered within the study duration, and the distribution of adverse events was similar between the two treatment groups. Pharmacokinetic analysis of CSF confirmed dose-dependent brain exposure. Between- and within-patient variability in blood concentrations was limited, whereas CSF concentrations were more variable. The four biomarkers, glial fibrillary acidic protein, neurofilament light, tau, and ubiquitin carboxy-terminal hydrolase L1, showed consistent trends to decrease during the 5-day treatment period, whereas the samples taken on the days after the treatment period showed higher values in the majority of patients. In conclusion, ciclosporin, as administered in this study, is safe and well tolerated. The study confirmed that ciclosporin is able to pass the blood–brain barrier in a TBI population and provided an initial biomarker-based signal of efficacy.
Collapse
Affiliation(s)
- Jesper Kelsen
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Michael Karlsson
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark.,Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.,NeuroVive Pharmaceutical AB, Lund, Sweden
| | - Magnus J Hansson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.,NeuroVive Pharmaceutical AB, Lund, Sweden
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida
| | - Walter Fischer
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Ramona Åstrand
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Marcus F Keep
- NeuroVive Pharmaceutical AB, Lund, Sweden.,Department of Neurosurgery, Sanford Brain and Spine Institute, Sanford Medical Center, Fargo, North Dakota
| | - Todd Kilbaugh
- Perelman School of Medicine, University of Pennsylvania; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida.,Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Kirsten Møller
- Department of Neuroanesthesiology, Rigshospitalet, Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.,NeuroVive Pharmaceutical AB, Lund, Sweden
| |
Collapse
|
16
|
D'Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 2019; 43:582-592. [PMID: 30958602 DOI: 10.1002/cbin.11137] [Citation(s) in RCA: 1295] [Impact Index Per Article: 259.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/11/2019] [Accepted: 03/23/2019] [Indexed: 12/16/2022]
Abstract
Cell death was once believed to be the result of one of two distinct processes, apoptosis (also known as programmed cell death) or necrosis (uncontrolled cell death); in recent years, however, several other forms of cell death have been discovered highlighting that a cell can die via a number of differing pathways. Apoptosis is characterised by a number of characteristic morphological changes in the structure of the cell, together with a number of enzyme-dependent biochemical processes. The result being the clearance of cells from the body, with minimal damage to surrounding tissues. Necrosis, however, is generally characterised to be the uncontrolled death of the cell, usually following a severe insult, resulting in spillage of the contents of the cell into surrounding tissues and subsequent damage thereof. Failure of apoptosis and the resultant accumulation of damaged cells in the body can result in various forms of cancer. An understanding of the pathways is therefore important in developing efficient chemotherapeutics. It has recently become clear that there exists a number of subtypes of apoptosis and that there is an overlap between apoptosis, necrosis and autophagy. The goal of this review is to provide a general overview of the current knowledge relating to the various forms of cell death, including apoptosis, necrosis, oncosis, pyroptosis and autophagy. This will provide researchers with a summary of the major forms of cell death and allow them to compare and contrast between them.
Collapse
Affiliation(s)
- Mark S D'Arcy
- Hertfordshire International College (HIC), Collage Lane, Hatfield, AL10 9AB, UK
| |
Collapse
|
17
|
Effects of vitamin A and vitamin E on attenuation of titanium dioxide nanoparticles-induced toxicity in the liver of male Wistar rats. Mol Biol Rep 2019; 46:2919-2932. [DOI: 10.1007/s11033-019-04752-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
|
18
|
Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci 2019; 9:25. [PMID: 30911370 PMCID: PMC6417034 DOI: 10.1186/s13578-019-0286-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/27/2019] [Indexed: 01/16/2023] Open
Abstract
The range of radiation threats we face today includes everything from individual radiation exposures to mass casualties resulting from a terrorist incident, and many of these exposure scenarios include the likelihood of additional traumatic injury as well. Radiation injury is defined as an ionizing radiation exposure inducing a series of organ injury within a specified time. Severity of organ injury depends on the radiation dose and the duration of radiation exposure. Organs and cells with high sensitivity to radiation injury are the skin, the hematopoietic system, the gastrointestinal (GI) tract, spermatogenic cells, and the vascular system. In general, acute radiation syndrome (ARS) includes DNA double strand breaks (DSB), hematopoietic syndrome (bone marrow cells and circulatory cells depletion), cutaneous injury, GI death, brain hemorrhage, and splenomegaly within 30 days after radiation exposure. Radiation injury sensitizes target organs and cells resulting in ARS. Among its many effects on tissue integrity at various levels, radiation exposure results in activation of the iNOS/NF-kB/NF-IL6 and p53/Bax pathways; and increases DNA single and double strand breaks, TLR signaling, cytokine concentrations, bacterial infection, cytochrome c release from mitochondria to cytoplasm, and possible PARP-dependent NAD and ATP-pool depletion. These alterations lead to apoptosis and autophagy and, as a result, increased mortality. In this review, we summarize what is known about how radiation exposure leads to the radiation response with time. We also describe current and prospective countermeasures relevant to the treatment and prevention of radiation injury.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Ayodele O. Olabisi
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
| |
Collapse
|
19
|
Karlsson M, Pukenas B, Chawla S, Ehinger JK, Plyler R, Stolow M, Gabello M, Hugerth M, Elmér E, Hansson MJ, Margulies S, Kilbaugh T. Neuroprotective Effects of Cyclosporine in a Porcine Pre-Clinical Trial of Focal Traumatic Brain Injury. J Neurotrauma 2018; 36:14-24. [PMID: 29929438 PMCID: PMC6306685 DOI: 10.1089/neu.2018.5706] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction is thought to be a hallmark of traumatic brain injury (TBI) and plays a pivotal role in the resulting cellular injury. Cyclophilin D-mediated activation of the mitochondrial permeability transition pore has been suggested to contribute to this secondary injury cascade. Cyclosporine possesses neuroprotective properties that have been attributed to the desensitization of mitochondrial permeability transition pore activation. In vivo animal experiments have demonstrated neuroprotective effects of cyclosporine in more than 20 independent experimental studies in a multitude of different experimental models. However, the majority of these studies have been carried out in rodents. The aim of the present study was to evaluate the efficacy of a novel and cremophor/kolliphor EL-free lipid emulsion formulation of cyclosporine in a translational large animal model of TBI. A mild-to-moderate focal contusion injury was induced in piglets using a controlled cortical impact device. After initial step-wise analyses of pharmacokinetics and comparing with exposure of cyclosporine in clinical TBI trials, a 5-day dosing regimen with continuous intravenous cyclosporine infusion (20 mg/kg/day) was evaluated in a randomized and blinded placebo-controlled setting. Cyclosporine reduced the volume of parenchymal injury by 35%, as well as improved markers of neuronal injury, as measured with magnetic resonance spectroscopic imaging. Further, a consistent trend toward positive improvements in brain metabolism and mitochondrial function was observed in the pericontusional tissue. In this study, we have demonstrated efficacy using a novel cyclosporine formulation in clinically relevant and translatable outcome metrics in a large animal model of focal TBI.
Collapse
Affiliation(s)
- Michael Karlsson
- 1 Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- 2 Mitochondrial Medicine, Department of Clinical Sciences, Lund University , Lund, Sweden
- 3 Department of Neurosurgery, Rigshospitalet , Copenhagen, Denmark
- 4 NeuroVive Pharmaceutical AB , Lund, Sweden
| | - Bryan Pukenas
- 5 Department of Radiology, Hospital of the University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Sanjeev Chawla
- 5 Department of Radiology, Hospital of the University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Johannes K Ehinger
- 1 Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- 2 Mitochondrial Medicine, Department of Clinical Sciences, Lund University , Lund, Sweden
- 4 NeuroVive Pharmaceutical AB , Lund, Sweden
| | - Ross Plyler
- 6 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Madeline Stolow
- 6 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Melissa Gabello
- 1 Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | - Eskil Elmér
- 2 Mitochondrial Medicine, Department of Clinical Sciences, Lund University , Lund, Sweden
- 4 NeuroVive Pharmaceutical AB , Lund, Sweden
| | - Magnus J Hansson
- 2 Mitochondrial Medicine, Department of Clinical Sciences, Lund University , Lund, Sweden
- 4 NeuroVive Pharmaceutical AB , Lund, Sweden
| | - Susan Margulies
- 6 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Todd Kilbaugh
- 1 Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Liu Y, Liu X, Wang L, Du Y, Chen Z, Chen H, Guo J, Weng X, Wang X, Wang M, Wang Z. Effects of apigenin on the expression levels of B-cell lymphoma-2, Fas and Fas ligand in renal ischemia-reperfusion injury in rats. Exp Ther Med 2017; 14:5345-5354. [PMID: 29285062 PMCID: PMC5740702 DOI: 10.3892/etm.2017.5241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the effect and possible mechanism of apigenin on renal ischemia-reperfusion (I/R) injury in rats, as well as in in vitro experiments. In total, 36 rats were subjected to 45 min of renal ischemia, with or without treatment prior to ischemia with different concentrations of apigenin (2, 10 and 50 mg/kg) administered intravenously. All rats were sacrificed at 24 h after I/R injury. The serum creatinine (Cr) and blood urea nitrogen (BUN) levels were analyzed, and histological examination was conducted. In addition, the expression levels of B-cell lymphoma 2 (Bcl-2) and Fas/Fas ligand (FasL) were detected by immunohistochemistry, reverse transcription-quantitative polymerase chain reaction and western blot analysis. For in vitro experiments, the NRK-52E cell line was employed. The viability, apoptosis and expression levels of Fas, FasL and Bcl-2 were examined in the culture of NRK-52E cells following the I/R. The results indicated that apigenin significantly decreased the levels of serum Cr and BUN induced by renal I/R, demonstrating an improvement in renal function. The histological evidence of renal damage associated with I/R was also mitigated by apigenin in vivo. Furthermore, apigenin increased the cell viability and decreased cell apoptosis in the culture of NRK52E after I/R in vitro. Compared with the I/R group, the expression of Bcl-2 was upregulated and the expression levels of Fas and FasL were downregulated by apigenin at the mRNA and protein levels in vivo and in vitro. In conclusion, apigenin appeared to increase the expression of Bcl-2 and reduce Fas/FasL expression in renal I/R injury, providing evident protection against renal I/R injury in rats.
Collapse
Affiliation(s)
- Yang Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jia Guo
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ming Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhishun Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
21
|
Abstract
Acute on chronic liver failure (ACLF) was first described in 1995 as a clinical syndrome distinct to classic acute decompensation. Characterized by complications of decompensation, ACLF occurs on a background of chronic liver dysfunction and is associated with high rates of organ failure and significant short-term mortality estimated between 45% and 90%. Despite the clinical relevance of the condition, it still remains largely undefined with continued disagreement regarding its precise etiological factors, clinical course, prognostic criteria and management pathways. It is concerning that, despite our relative lack of understanding of the condition, the burden of ACLF among cirrhotic patients remains significant with an estimated prevalence of 30.9%. This paper highlights our current understanding of ACLF, including its etiology, diagnostic and prognostic criteria and pathophysiology. It is evident that further refinement of the ACLF classification system is required in order to detect high-risk patients and improve short-term mortality rates. The field of metabolomics certainly warrants investigation to enhance diagnostic and prognostic parameters, while the use of granulocyte-colony stimulating factor is a promising future therapeutic intervention for patients with ACLF.
Collapse
Affiliation(s)
- Azeem Alam
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW7 2AZ, UK
| | - Ka Chun Suen
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW7 2AZ, UK
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW7 2AZ, UK
| |
Collapse
|
22
|
Gu C, Yao J, Sun P. Dynamin 3 suppresses growth and induces apoptosis of hepatocellular carcinoma cells by activating inducible nitric oxide synthase production. Oncol Lett 2017; 13:4776-4784. [PMID: 28599479 PMCID: PMC5453014 DOI: 10.3892/ol.2017.6057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 02/23/2017] [Indexed: 01/08/2023] Open
Abstract
Dynamin 3 (DNM3) is candidate tumor suppressor against hepatocellular carcinoma (HCC). Downregulation of DNM3 is more frequently identified in HCC tissues than in normal liver tissues. However, the mechanism underlying DNM3-mediated inhibition of HCC remains unclear. The present study demonstrated that DNM3 expression was decreased in human HCC tissues and cell lines. The downregulation of DNM3 promoted cell proliferation by increasing cell cycle-associated proteins, including cyclin D1, cyclin-dependent kinase (CDK) 2 and CDK4. The upregulation of DNM3 induced HCC cell apoptosis and inhibited tumor growth. The present study also revealed that overexpression of DNM3 induced nitric oxide (NO) production and intracellular reactive oxygen species (ROS) accumulation. DNM3 overexpression also increased the protein expression level of inducible nitric oxide synthase (iNOS) in HCC cells and subcutaneous HCC tumor xenografts. The inhibition of iNOS by L-canavanine attenuated the DNM3-induced ROS accumulation and apoptotic cell death. In conclusion, the results indicate that DNM3 overexpression may induce apoptosis and inhibit tumor growth of HCC by activating iNOS production and the subsequent NO-ROS signaling pathways.
Collapse
Affiliation(s)
- Chao Gu
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Junliang Yao
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Peilong Sun
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
23
|
Yin Z, Zhao X, Yang D, Cao X, Yu Y, Jiang H, Zhou X, Li C, Guo Q. LFG-500, a newly synthesized flavonoid, induces apoptosis in human ovarian carcinoma SKOV3 cells with involvement of the reactive oxygen species-mitochondria pathway. Exp Ther Med 2017; 13:2819-2827. [PMID: 28587346 PMCID: PMC5450748 DOI: 10.3892/etm.2017.4343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/01/2016] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is the main cause of gynecologic malignancy-related mortality in women. Therefore, the disease requires improvements in treatment options and in the potency of chemotherapeutic drugs. The study of apoptosis in tumor cells is an important field for cancer therapy and cancer molecular biology. It has recently been established that LFG-500, a new synthesized flavonoid with a piperazine and benzyl group substitution, has strong anticancer activity. However, its exact molecular mechanism is not fully understood. The present study aimed to examine the effects of LFG-500 on human ovarian cancer SKOV3 cells, as well as to identify its underlying mechanisms. The data showed that LFG-500 inhibited the growth of SKOV3 cells in a concentration-dependent manner. It was found that LFG-500 induced apoptosis in SKOV3 cells, detected by DAPI staining and an Annexin V/PI double-staining assay. Moreover, LFG-500 reduced caspase-3 protein expression and increased the Bcl-2-associated X protein/B-cell lymphoma 2 protein ratio. Further findings revealed that LFG-500 treatment resulted in reactive oxygen species (ROS) accumulation and loss of mitochondrial transmembrane potential. Collectively, these results demonstrated that LFG-500 efficiently induced apoptosis in SKOV3 cells, an event possibly associated with the trigging of the mitochondrial apoptotic pathway through ROS accumulation. Therefore, LFG-500 shows potential as a potent anticancer agent for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Zeyuan Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xue Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Dan Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xin Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Haijing Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
24
|
Kiang JG. Exacerbation of Mild Hypoxia on Acute Radiation Syndrome and Subsequent Mortality. ADAPTIVE MEDICINE 2017; 9:28-33. [PMID: 34616568 PMCID: PMC8491646 DOI: 10.4247/am.2017.abg170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mild hypoxia induced by 20% hemorrhage results in increases in few cytokine concentrations and sclerostin levels in blood, but shows no changes in bone formation, bone marrow cellularity, and gastrointestinal (GI) integrity and no systemic bacterial infection as well as no subsequent mortality. On the other hand, severe hypoxia induced by 40% hemorrhage causes significant increases in most cytokine concentrations, GI injury, lung injury, systemic bacterial infection, cellular ATP reduction and subsequent mortality. The severe hypoxia drastically damages GI and lung morphology, elevates cytokine concentrations in blood and increases inducible nitric oxide synthase (iNOS) expression in cells that is mediated by transcription factors NF-κB/NF-IL6, subsequently producing free radicals that disrupt mitochondria. ATP depletion, p53 phosphorylation, and caspase-3 activation are found, suggesting cell apoptosis. As a result, mortality occurs. However, when mild hypoxia follows ionizing radiation, the mild hypoxia significantly enhances radiation-induced mortality and acute radiation syndrome, including injury of bone marrow, GI, kidney, and lung. The synergism also occurs at the molecular level, resulting in alteration of microRNAs, amplification of iNOS expression, cytokine increases, sepsis, and ATP depletion. This is the first demonstration of synergistic effects between mild hypoxia and ionizing radiation.
Collapse
Affiliation(s)
- Juliann G Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute Department of Pharmacology and Molecular Therapeutics, Department of Medicine Uniformed Services University of the Health Sciences, Bethesda, Maryland, U.S.A
| |
Collapse
|
25
|
Hu C, Li L. Pre-conditions for eliminating mitochondrial dysfunction and maintaining liver function after hepatic ischaemia reperfusion. J Cell Mol Med 2017; 21:1719-1731. [PMID: 28301072 PMCID: PMC5571537 DOI: 10.1111/jcmm.13129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
The liver, the largest organ with multiple synthesis and secretion functions in mammals, consists of hepatocytes and Kupffer, stem, endothelial, stellate and other parenchymal cells. Because of early and extensive contact with the external environment, hepatic ischaemia reperfusion (IR) may result in mitochondrial dysfunction, autophagy and apoptosis of cells and tissues under various pathological conditions. Because the liver requires a high oxygen supply to maintain normal detoxification and synthesis functions, it is extremely susceptible to ischaemia and subsequent reperfusion with blood. Consequently, hepatic IR leads to acute or chronic liver failure and significantly increases the total rate of morbidity and mortality through multiple regulatory mechanisms. An increasing number of studies indicate that mitochondrial structure and function are impaired after hepatic IR, but that the health of liver tissues or liver grafts can be effectively rescued by attenuation of mitochondrial dysfunction. In this review, we mainly focus on the subsequent therapeutic interventions related to the conservation of mitochondrial function involved in mitigating hepatic IR injury and the potential mechanisms of protection. Because mitochondria are abundant in liver tissue, clarification of the regulatory mechanisms between mitochondrial dysfunction and hepatic IR should shed light on clinical therapies for alleviating hepatic IR‐induced injury.
Collapse
Affiliation(s)
- Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Lekshmi A, Varadarajan SN, Lupitha SS, Indira D, Mathew KA, Chandrasekharan Nair A, Nair M, Prasad T, Sekar H, Gopalakrishnan AK, Murali A, Santhoshkumar TR. A quantitative real-time approach for discriminating apoptosis and necrosis. Cell Death Discov 2017; 3:16101. [PMID: 28179996 PMCID: PMC5253725 DOI: 10.1038/cddiscovery.2016.101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/09/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022] Open
Abstract
Apoptosis and necrosis are the two major forms of cell death mechanisms. Both forms of cell death are involved in several physiological and pathological conditions and also in the elimination of cancer cells following successful chemotherapy. Large number of cellular and biochemical assays have evolved to determine apoptosis or necrosis for qualitative and quantitative purposes. A closer analysis of the assays and their performance reveal the difficulty in using any of these methods as a confirmatory approach, owing to the secondary induction of necrosis in apoptotic cells. This highlights the essential requirement of an approach with a real-time analysis capability for discriminating the two forms of cell death. This paper describes a sensitive live cell-based method for distinguishing apoptosis and necrosis at single-cell level. The method uses cancer cells stably expressing genetically encoded FRET-based active caspase detection probe and DsRed fluorescent protein targeted to mitochondria. Caspase activation is visualized by loss of FRET upon cleavage of the FRET probe, while retention of mitochondrial fluorescence and loss of FRET probe before its cleavage confirms necrosis. The absence of cleavage as well as the retention of mitochondrial fluorescence indicates live cells. The method described here forms an extremely sensitive tool to visualize and quantify apoptosis and necrosis, which is adaptable for diverse microscopic, flow cytometric techniques and high-throughput imaging platforms with potential application in diverse areas of cell biology and oncology drug screening.
Collapse
Affiliation(s)
- Asha Lekshmi
- Cancer Research Program-1, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram, Kerala, India
| | | | | | - Deepa Indira
- Cancer Research Program-1, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram, Kerala, India
| | - Krupa Ann Mathew
- Cancer Research Program-1, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram, Kerala, India
| | | | - Mydhily Nair
- Cancer Research Program-1, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram, Kerala, India
| | - Tilak Prasad
- Cancer Research Program-1, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram, Kerala, India
| | - Hari Sekar
- Cancer Research Program-1, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram, Kerala, India
| | | | - Abitha Murali
- Cancer Research Program-1, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram, Kerala, India
| | | |
Collapse
|
27
|
Roth AD, Lee MY. Idiosyncratic Drug-Induced Liver Injury (IDILI): Potential Mechanisms and Predictive Assays. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9176937. [PMID: 28133614 PMCID: PMC5241492 DOI: 10.1155/2017/9176937] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is a significant source of drug recall and acute liver failure (ALF) in the United States. While current drug development processes emphasize general toxicity and drug metabolizing enzyme- (DME-) mediated toxicity, it has been challenging to develop comprehensive models for assessing complete idiosyncratic potential. In this review, we describe the enzymes and proteins that contain polymorphisms believed to contribute to IDILI, including ones that affect phase I and phase II metabolism, antioxidant enzymes, drug transporters, inflammation, and human leukocyte antigen (HLA). We then describe the various assays that have been developed to detect individual reactions focusing on each of the mechanisms described in the background. Finally, we examine current trends in developing comprehensive models for examining these mechanisms. There is an urgent need to develop a panel of multiparametric assays for diagnosing individual toxicity potential.
Collapse
Affiliation(s)
- Alexander D. Roth
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street, Cleveland, OH 44115-2214, USA
| | - Moo-Yeal Lee
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street, Cleveland, OH 44115-2214, USA
| |
Collapse
|
28
|
Canonico B, Cesarini E, Salucci S, Luchetti F, Falcieri E, Di Sario G, Palma F, Papa S. Defective Autophagy, Mitochondrial Clearance and Lipophagy in Niemann-Pick Type B Lymphocytes. PLoS One 2016; 11:e0165780. [PMID: 27798705 PMCID: PMC5087958 DOI: 10.1371/journal.pone.0165780] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022] Open
Abstract
Niemann-Pick disease type A (NP-A) and type B (NP-B) are lysosomal storage diseases (LSDs) caused by sphingomyelin accumulation in lysosomes relying on reduced or absent acid sphingomyelinase. A considerable body of evidence suggests that lysosomal storage in many LSD impairs autophagy, resulting in the accumulation of poly-ubiquitinated proteins and dysfunctional mitochondria, ultimately leading to cell death. Here we test this hypothesis in a cellular model of Niemann-Pick disease type B, in which autophagy has never been studied. The basal autophagic pathway was first examined in order to evaluate its functionality using several autophagy-modulating substances such as rapamycin and nocodazole. We found that human NP-B B lymphocytes display considerable alteration in their autophagic vacuole accumulation and mitochondrial fragmentation, as well as mitophagy induction (for damaged mitochondria clearance). Furthermore, lipid traceability of intra and extra-cellular environments shows lipid accumulation in NP-B B lymphocytes and also reveals their peculiar trafficking/management, culminating in lipid microparticle extrusion (by lysosomal exocytosis mechanisms) or lipophagy. All of these features point to the presence of a deep autophagy/mitophagy alteration revealing autophagic stress and defective mitochondrial clearance. Hence, rapamycin might be used to regulate autophagy/mitophagy (at least in part) and to contribute to the clearance of lysosomal aberrant lipid storage.
Collapse
Affiliation(s)
- Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- * E-mail:
| | - Erica Cesarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Sara Salucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Elisabetta Falcieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- IGM, CNR, Rizzoli Orthopaedic Institute, Bologna, Italy; Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Gianna Di Sario
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Fulvio Palma
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
29
|
Tian X, Shi Y, Liu N, Yan Y, Li T, Hua P, Liu B. Upregulation of DAPK contributes to homocysteine-induced endothelial apoptosis via the modulation of Bcl2/Bax and activation of caspase 3. Mol Med Rep 2016; 14:4173-4179. [PMID: 27633052 PMCID: PMC5101913 DOI: 10.3892/mmr.2016.5733] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/19/2016] [Indexed: 11/05/2022] Open
Abstract
Hyperhomocysteinemia is characterized by an abnormally high level of homocysteine (Hcy) in the blood and is associated with cardiovascular diseases such as atherosclerosis. Endothelial dysfunction may lead to the pro-atherogenic effects associated with hyperhomocysteinemia. Endothelial dysfunction induced by Hcy has been previously investigated; however, the underlying molecular mechanism remains to be fully elucidated. The present study investigated whether death-associated protein kinase (DAPK) is involved in Hcy‑induced apoptosis in human umbilical vein endothelial cells (HUVECs). It was determined that Hcy treatment upregulated the mRNA and protein expression levels of DAPK in HUVECs. Additionally, it was identified that the knockdown of DAPK using small interfering RNA may attenuate the Hcy-induced apoptosis and dissipation of mitochondrial membrane potential. DAPK inhibition may also reverse the effect of Hcy by the upregulation of B cell leukemia/lymphoma 2 (Bcl2) and poly ADP‑ribose polymerase, and the downregulation of Bcl2‑associated X protein (Bax) and of caspase 3. In conclusion, the present study demonstrated that DAPK contributed to the Hcy‑induced endothelial apoptosis via modulation of Bcl2/Bax expression levels and activation of caspase 3.
Collapse
Affiliation(s)
- Xin Tian
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yongfeng Shi
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Ning Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Youyou Yan
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Peiyan Hua
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
30
|
Baumann KW, Baust JM, Snyder KK, Baust JG, Van Buskirk RG. Characterization of Pancreatic Cancer Cell Thermal Response to Heat Ablation or Cryoablation. Technol Cancer Res Treat 2016; 16:393-405. [PMID: 27340260 DOI: 10.1177/1533034616655658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
One of the most lethal carcinomas is pancreatic cancer. As standard treatment using chemotherapy and radiation has shown limited success, thermal regimens (cryotherapy or heat ablation) are emerging as viable alternatives. Although promising, our understanding of pancreatic cancer response to thermal ablation remains limited. In this study, we investigated the thermal responses of 2 pancreatic cancer cell lines in an effort to identify the minimum lethal temperature needed for complete cell death to provide guidance for in vivo applications. PANC-1 and BxPC-3 were frozen (-10°C to -25°C) or heated (45°C-50°C) in single and repeated exposure regimes. Posttreatment survival and recovery were analyzed using alamarBlue assay over a 7-day interval. Modes of cell death were assessed using fluorescence microscopy (calcein acetoxymethyl ester/propidium iodide) and flow cytometry (YO-PRO-1/propidium iodide). Freezing to -10°C resulted in minimal cell death. Exposure to -15°C had a mild impact on PANC-1 survival (93%), whereas BxPC-3 was more severely damaged (33%). Exposure to -20°C caused a significant reduction in viability (PANC-1 = 23%; BxPC-3 = 2%) whereas -25°C yielded complete death. Double freezing exposure was more effective than single exposure. Repeat exposure to -15°C resulted in complete death of BxPC-3, whereas -20°C severely impacted PANC-1 (7%). Heating to 45°C resulted in minimum cell death. Exposure to 48°C yielded a slight increase in cell loss (PANC-1 = 85%; BxPC-3 = 98%). Exposure to 50°C caused a significant decline (PANC-1 = 70%; BxPC-3 = 9%) with continued deterioration to 0%. Double heating to 45°C resulted in similar effects observed in single exposures, whereas repeated 48°C resulted in significant increases in cell death (PANC-1 = 68%; BxPC-3 = 29%). In conclusion, we observed that pancreatic cancer cells were completely destroyed at temperatures <-25°C or >50°C using single thermal exposures. Repeated exposures resulted in increased cell death at less extreme temperatures. Our data suggest that thermal ablation strategies (heat or cryoablation) may represent a viable technique for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Kenneth W Baumann
- 1 Institute of Biomedical Technology, State University of New York, Binghamton, NY, USA.,2 Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.,3 CPSI Biotech, Owego, NY, USA
| | - John M Baust
- 1 Institute of Biomedical Technology, State University of New York, Binghamton, NY, USA.,3 CPSI Biotech, Owego, NY, USA
| | - Kristi K Snyder
- 1 Institute of Biomedical Technology, State University of New York, Binghamton, NY, USA.,3 CPSI Biotech, Owego, NY, USA
| | - John G Baust
- 1 Institute of Biomedical Technology, State University of New York, Binghamton, NY, USA.,2 Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Robert G Van Buskirk
- 1 Institute of Biomedical Technology, State University of New York, Binghamton, NY, USA.,2 Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.,3 CPSI Biotech, Owego, NY, USA
| |
Collapse
|
31
|
HSP27 Inhibits Homocysteine-Induced Endothelial Apoptosis by Modulation of ROS Production and Mitochondrial Caspase-Dependent Apoptotic Pathway. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4847874. [PMID: 27190988 PMCID: PMC4852127 DOI: 10.1155/2016/4847874] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 01/30/2023]
Abstract
Objectives. Elevated plasma homocysteine (Hcy) could lead to endothelial dysfunction and is viewed as an independent risk factor for atherosclerosis. Heat shock protein 27 (HSP27), a small heat shock protein, is reported to exert protective effect against atherosclerosis. This study aims to investigate the protective effect of HSP27 against Hcy-induced endothelial cell apoptosis in human umbilical vein endothelial cells (HUVECs) and to determine the underlying mechanisms. Methods. Apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) of normal or HSP27-overexpressing HUVECs in the presence of Hcy were analyzed by flow cytometry. The mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Results. We found that Hcy could induce cell apoptosis with corresponding decrease of nitric oxide (NO) level, increase of endothelin-1 (ET-1), intracellular adhesion molecule-1 (ICAM-1), vascular cellular adhesion molecule-1 (VCAM-1), and monocyte chemoattractant protein-1 (MCP-1) levels, elevation of ROS, and dissipation of MMP. In addition, HSP27 could protect the cell against Hcy-induced apoptosis and inhibit the effect of Hcy on HUVECs. Furthermore, HSP27 could increase the ratio of Bcl-2/Bax and inhibit caspase-3 activity. Conclusions. Therefore, we concluded that HSP27 played a protective role against Hcy-induced endothelial apoptosis through modulation of ROS production and the mitochondrial caspase-dependent apoptotic pathway.
Collapse
|
32
|
Banerjee M, Chattopadhyay S, Choudhuri T, Bera R, Kumar S, Chakraborty B, Mukherjee SK. Cytotoxicity and cell cycle arrest induced by andrographolide lead to programmed cell death of MDA-MB-231 breast cancer cell line. J Biomed Sci 2016; 23:40. [PMID: 27084510 PMCID: PMC4833932 DOI: 10.1186/s12929-016-0257-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/03/2016] [Indexed: 11/10/2022] Open
Abstract
Background Breast cancer is considered as an increasing major life-threatening concern among the malignancies encountered globally in females. Traditional therapy is far from satisfactory due to drug resistance and various side effects, thus a search for complementary/alternative medicines from natural sources with lesser side effects is being emphasized. Andrographis paniculata, an oriental, traditional medicinal herb commonly available in Asian countries, has a long history of treating a variety of diseases, such as respiratory infection, fever, bacterial dysentery, diarrhea, inflammation etc. Extracts of this plant showed a wide spectrum of therapeutic effects, such as anti-bacterial, anti-malarial, anti-viral and anti-carcinogenic properties. Andrographolide, a diterpenoid lactone, is the major active component of this plant. This study reports on andrographolide induced apoptosis and its possible mechanism in highly proliferative, invasive breast cancer cells, MDA-MB-231 lacking a functional p53 and estrogen receptor (ER). Furthermore, the pharmacokinetic properties of andrographolide have also been studied in mice following intravenous and oral administration. Results Andrographolide showed a time- and concentration- dependent inhibitory effect on MDA-MB-231 breast cancer cell proliferation, but the treatment did not affect normal breast epithelial cells, MCF-10A (>80 %). The number of cells in S as well as G2/M phase was increased after 36 h of treatment. Elevated reactive oxygen species (ROS) production with concomitant decrease in Mitochondrial Membrane Potential (MMP) and externalization of phosphatidyl serine were observed. Flow cytometry with Annexin V revealed that the population of apoptotic cells increased with prolonged exposure to andrographolide. Activation of caspase-3 and caspase-9 were also noted. Bax and Apaf-1 expression were notably increased with decreased Bcl-2 and Bcl-xL expression in andrographolide-treated cells. Pharmacokinetic study with andrographolide showed the bioavailability of 9.27 ± 1.69 % with a Cmax, of 0.73 ± 0.17 μmol/L and Tmax of 0.42 ± 0.14 h following oral administration. AG showed rapid clearance and moderate terminal half lives (T1/2) of 1.86 ± 0.21 and 3.30 ± 0.35 h following IV and oral administration respectively. Conclusion This investigation indicates that andrographolide might be useful as a possible chemopreventive/chemotherapeutic agent for human breast cancers. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0257-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Malabika Banerjee
- Department of Microbiology, University of Kalyani, Kalyani, 741235, WB, India.,TCG Life Science Ltd., Bengal Intelligent Park, Tower-B, Block-EP & GP, Sector-5, Salt Lake, Kolkata, 700091, India
| | - Subrata Chattopadhyay
- TCG Life Science Ltd., Bengal Intelligent Park, Tower-B, Block-EP & GP, Sector-5, Salt Lake, Kolkata, 700091, India
| | | | - Rammohan Bera
- TCG Life Science Ltd., Bengal Intelligent Park, Tower-B, Block-EP & GP, Sector-5, Salt Lake, Kolkata, 700091, India
| | - Sanjay Kumar
- TCG Life Science Ltd., Bengal Intelligent Park, Tower-B, Block-EP & GP, Sector-5, Salt Lake, Kolkata, 700091, India
| | - Biswajit Chakraborty
- TCG Life Science Ltd., Bengal Intelligent Park, Tower-B, Block-EP & GP, Sector-5, Salt Lake, Kolkata, 700091, India
| | | |
Collapse
|
33
|
Dehydroabietic Acid Derivative QC4 Induces Gastric Cancer Cell Death via Oncosis and Apoptosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2581061. [PMID: 27057539 PMCID: PMC4789375 DOI: 10.1155/2016/2581061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/01/2016] [Accepted: 02/08/2016] [Indexed: 02/07/2023]
Abstract
AIM QC4 is the derivative of rosin's main components dehydroabietic acid (DHA). We investigated the cytotoxic effect of QC4 on gastric cancer cells and revealed the mechanisms beneath the induction of cell death. METHODS The cytotoxic effect of QC4 on gastric cancer cells was evaluated by CCK-8 assay and flow cytometry. The underlying mechanisms were tested by administration of cell death related inhibitors and detection of apoptotic and oncosis related proteins. Cytomembrane integrity and organelles damage were confirmed by lactate dehydrogenase (LDH) leakage assay, mitochondrial function test, and cytosolic free Ca(2+) concentration detection. RESULTS QC4 inhibited cell proliferation dose- and time-dependently and destroyed cell membrane integrity, activated calpain-1 autolysis, and induced apoptotic protein cleavage in gastric cancer cells. The detection of decreased ATP and mitochondrial membrane potential, ROS accumulation, and cytosolic free Ca(2+) elevation confirmed organelles damage in QC4-treated gastric cancer cells. CONCLUSIONS DHA derivative QC4 induced the damage of cytomembrane and organelles which finally lead to oncosis and apoptosis in gastric cancer cells. Therefore, as a derivative of plant derived small molecule DHA, QC4 might become a promising agent in gastric cancer therapy.
Collapse
|
34
|
Rharass T, Gbankoto A, Canal C, Kurşunluoğlu G, Bijoux A, Panáková D, Ribou AC. Oxidative stress does not play a primary role in the toxicity induced with clinical doses of doxorubicin in myocardial H9c2 cells. Mol Cell Biochem 2016; 413:199-215. [PMID: 26833193 DOI: 10.1007/s11010-016-2653-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/23/2016] [Indexed: 11/26/2022]
Abstract
The implication of oxidative stress as primary mechanism inducing doxorubicin (DOX) cardiotoxicity is still questionable as many in vitro studies implied supra-clinical drug doses or unreliable methodologies for reactive oxygen species (ROS) detection. The aim of this study was to clarify whether oxidative stress is involved in compliance with the conditions of clinical use of DOX, and using reliable tools for ROS detection. We examined the cytotoxic mechanisms of 2 μM DOX 1 day after the beginning of the treatment in differentiated H9c2 rat embryonic cardiac cells. Cells were exposed for 2 or 24 h with DOX to mimic a single chronic dosage or to favor accumulation, respectively. We found that apoptosis was prevalent in cells exposed for a short period with DOX: cells showed typical hallmarks as loss of anchorage ability, mitochondrial hyperpolarization followed by the collapse of mitochondrial activity, and nuclear condensation. Increasing the exposure period favored a shift to necrosis as the cells preferentially exhibited early DNA impairment and nuclear swelling. In either case, measuring the fluorescence lifetime of 1-pyrenebutyric acid or the intensities of dihydroethidium or amplex red showed a consistent pattern in ROS production which was a slight increased level far from representative of an oxidative stress. Moreover, pre-treatment with dexrazoxane provided a cytoprotective effect although it failed to detoxify ROS. Our data support that oxidative stress is unlikely to be the primary mechanism of DOX cardiac toxicity in vitro.
Collapse
Affiliation(s)
- Tareck Rharass
- Institute of Modeling and Analysis in Geo-Environmental and Health (IMAGES_ESPACE-DEV), University of Perpignan Via Domitia, 66860, Perpignan, France
- Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine (MDC), 13125, Berlin-Buch, Germany
| | - Adam Gbankoto
- Department of Animal Physiology, Faculty of Sciences and Technics, University of Abomey-Calavi, 01 BP 526, Cotonou, Benin
| | - Christophe Canal
- Institute of Modeling and Analysis in Geo-Environmental and Health (IMAGES_ESPACE-DEV), University of Perpignan Via Domitia, 66860, Perpignan, France
| | | | - Amandine Bijoux
- Institute of Modeling and Analysis in Geo-Environmental and Health (IMAGES_ESPACE-DEV), University of Perpignan Via Domitia, 66860, Perpignan, France
| | - Daniela Panáková
- Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine (MDC), 13125, Berlin-Buch, Germany
| | - Anne-Cécile Ribou
- Institute of Modeling and Analysis in Geo-Environmental and Health (IMAGES_ESPACE-DEV), University of Perpignan Via Domitia, 66860, Perpignan, France.
- ESPACE-DEV, UMR UG UA UM IRD, 34093, Montpellier, France.
| |
Collapse
|
35
|
Lee LY, Harberg C, Matkowskyj KA, Cook S, Roenneburg D, Werner S, Johnson J, Foley DP. Overactivation of the nuclear factor (erythroid-derived 2)-like 2-antioxidant response element pathway in hepatocytes decreases hepatic ischemia/reperfusion injury in mice. Liver Transpl 2016; 22:91-102. [PMID: 26285140 PMCID: PMC4718744 DOI: 10.1002/lt.24303] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 12/24/2022]
Abstract
Hepatic ischemia/reperfusion injury (IRI) is a critical component of hepatic surgery. Oxidative stress has long been implicated as a key player in IRI. In this study, we examine the cell-specific role of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-antioxidant response element pathway in warm hepatic IRI. Nrf2 knockout (KO) and wild-type (WT) animals and novel transgenic mice expressing a constitutively active nuclear factor (erythroid-derived 2)-like 2 (caNrf2) mutant in hepatocytes (AlbCre+/caNrf2+) and their littermate controls underwent partial hepatic ischemia or sham surgery. The animals were killed 6 hours after reperfusion, and their serum and tissue were collected for analysis. As compared to WT animals after ischemia/reperfusion (IR), Nrf2 KO mice had increased hepatocellular injury with increased serum alanine aminotransferase and aspartate aminotransferase, Suzuki score, apoptosis, an increased inflammatory infiltrate, and enhanced inflammatory cytokine expression. On the other hand, AlbCre+/caNrf2+ that underwent IR had significantly reduced serum transaminases, less necrosis on histology, and a less pronounced inflammatory infiltrate and inflammatory cytokine expression as compared to the littermate controls. However, there were no differences in apoptosis. Taken together, Nrf2 plays a critical role in our murine model of warm hepatic IRI, with Nrf2 deficiency exacerbating hepatic IRI and hepatocyte-specific Nrf2 overactivation providing protection against warm hepatic IRI.
Collapse
Affiliation(s)
- Lung-Yi Lee
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Calvin Harberg
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Kristina A. Matkowskyj
- Department of Pathology and Laboratory Medicine. University of Wisconsin School of Medicine and Public Health, Madison, WI. 53726.,Veterans Administration Pathology Services, William S. Middleton Memorial Hospital, Madison, WI 53705
| | - Shelly Cook
- Department of Pathology and Laboratory Medicine. University of Wisconsin School of Medicine and Public Health, Madison, WI. 53726
| | - Drew Roenneburg
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Jeffrey Johnson
- Divisions of Pharmaceutical Sciences, University of Wisconsin Madison, WI 53705.,Molecular and Environmental Toxicological Center, University of Wisconsin Madison, WI 53705.,Center for Neuroscience, University of Wisconsin Madison, WI 53705.,Waisman Center, University of Wisconsin Madison, WI 53705
| | - David P. Foley
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI,Veterans Administration Surgical Services, William S. Middleton Memorial Hospital, Madison WI 53705
| |
Collapse
|
36
|
Minocycline and doxycycline, but not tetracycline, mitigate liver and kidney injury after hemorrhagic shock/resuscitation. Shock 2015; 42:256-63. [PMID: 24978888 DOI: 10.1097/shk.0000000000000213] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Despite recovery of hemodynamics by fluid resuscitation after hemorrhage, development of the systemic inflammatory response and multiple organ dysfunction syndromes can nonetheless lead to death. Minocycline and doxycycline are tetracycline derivatives that are protective in models of hypoxic, ischemic, and oxidative stress. Our aim was to determine whether minocycline and doxycycline protect liver and kidney and improve survival in a mouse model of hemorrhagic shock and resuscitation. METHODS Mice were hemorrhaged to 30 mmHg for 3 h and then resuscitated with shed blood followed by half the shed volume of lactated Ringer's solution containing tetracycline (10 mg/kg), minocycline (10 mg/kg), doxycycline (5 mg/kg), or vehicle. For pretreatment plus posttreatment, drugs were administered intraperitoneally prior to hemorrhage followed by second equal dose in Ringer's solution after blood resuscitation. Blood and tissue were harvested after 6 h. RESULTS Serum alanine aminotransferase (ALT) increased to 1,988 and 1,878 U/L after posttreatment with vehicle and tetracycline, respectively, whereas minocycline and doxycycline posttreatment decreased ALT to 857 and 863 U/L. Pretreatment plus posttreatment with minocycline and doxycycline also decreased ALT to 849 and 834 U/L. After vehicle, blood creatinine increased to 134 µM, which minocycline and doxycycline posttreatment decreased to 59 and 56 µM. Minocycline and doxycycline pretreatment plus posttreatment decreased creatinine similarly. Minocycline and doxycycline also decreased necrosis and apoptosis in liver and apoptosis in both liver and kidney, the latter assessed by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) and caspase 3 activation. Lastly after 4.5 h of hemorrhage followed by resuscitation, minocycline and doxycycline (but not tetracycline) posttreatment improved 1-week survival from 38% (vehicle) to 69% and 67%, respectively. CONCLUSION Minocycline and doxycycline were similarly protective when given before as after blood resuscitation and might therefore have clinical efficacy to mitigate liver and kidney injury after resuscitated hemorrhage.
Collapse
|
37
|
Wang G, Wang JJ, To TSS, Zhao HF, Wang J. Role of SIRT1-mediated mitochondrial and Akt pathways in glioblastoma cell death induced by Cotinus coggygria flavonoid nanoliposomes. Int J Nanomedicine 2015; 10:5005-23. [PMID: 26345416 PMCID: PMC4531020 DOI: 10.2147/ijn.s82282] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Flavonoids, the major polyphenol components in Cotinus coggygria (CC), have been found to show an anticancer effect in our previous study; however, the exact mechanisms of inducing human glioblastoma (GBM) cell death remain to be resolved. In this study, a novel polyvinylpyrrolidone K-30/sodium dodecyl sulfate and polyethyleneglycol-coated liposome loaded with CC flavonoids (CCFs) was developed to enhance solubility and the antibrain tumor effect, and the molecular mechanism regarding how CCF nanoliposomes (CCF-NLs) induce apoptotic cell death in vitro was investigated. DBTRG-05MG GBM cell lines treated with CCF-NLs showed potential antiproliferative effects. Regarding the underlying mechanisms of inducing apoptosis in DBTRG-05MG GBM cells, CCF-NLs were shown to downregulate the expression of antiapoptotic B-cell lymphoma/leukemia 2 (Bcl-2), an apoptosis-related protein family member, but the expression of proapoptotic Bcl-2-associated X protein was enhanced compared with that in controls. CCF-NLs also inhibited the activity of caspase-3 and -9, which is the initiator caspase of the extrinsic and intrinsic apoptotic pathways. Blockade of caspase activation consistently induced apoptosis and inhibited growth in CCF-NL-treated DBTRG-05MG cells. This study further investigated the role of the Akt pathway in the apoptotic cell death by CCF-NLs, showing that CCF-NLs deactivated Akt. Specifically, CCF-NLs downregulated the expression of p-Akt and SIRT1 as well as the level of phosphorylated p53. Together, these results indicated SIRT1/p53-mediated cell death was induced by CCF-NLs, but not by extracellular signal-regulated kinase, in DBTRG-05MG cells. Overall, this study suggested caspase-dependent activation of both the intrinsic and extrinsic signaling pathways, probably through blockade of the SIRT1/p53-mediated mitochondrial and Akt pathways to exert the proapoptotic effect of CCF-NLs in DBTRG-05MG GBM cells.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, People's Republic of China ; College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei Province, People's Republic of China
| | - Jun Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, People's Republic of China ; College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei Province, People's Republic of China
| | - Tony S S To
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Hua Fu Zhao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Jing Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| |
Collapse
|
38
|
Lee MY, Hong S, Kim N, Shin KS, Kang SJ. Tricyclic Antidepressants Amitriptyline and Desipramine Induced Neurotoxicity Associated with Parkinson's Disease. Mol Cells 2015; 38:734-40. [PMID: 26242194 PMCID: PMC4546946 DOI: 10.14348/molcells.2015.0131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 11/27/2022] Open
Abstract
Recent studies report that a history of antidepressant use is strongly correlated with the occurrence of Parkinson's disease (PD). However, it remains unclear whether antidepressant use can be a causative factor for PD. In the present study, we examined whether tricyclic antidepressants amitriptyline and desipramine can induce dopaminergic cell damage, both in vitro and in vivo. We found that amitriptyline and desipramine induced mitochondria-mediated neurotoxicity and oxidative stress in SH-SY5Y cells. When injected into mice on a subchronic schedule, amitriptyline induced movement deficits in the pole test, which is known to detect nigrostriatal dysfunction. In addition, the number of tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta was reduced in amitriptyline-injected mice. Our results suggest that amitriptyline and desipramine may induce PD-associated neurotoxicity.
Collapse
Affiliation(s)
- Min-yeong Lee
- Department of Molecular Biology, Sejong University, Seoul 143-747,
Korea
| | - Seokheon Hong
- Department of Molecular Biology, Sejong University, Seoul 143-747,
Korea
| | - Nahmhee Kim
- Department of Biology, Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 130-701,
Korea
| | - Ki Soon Shin
- Department of Biology, Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 130-701,
Korea
| | - Shin Jung Kang
- Department of Molecular Biology, Sejong University, Seoul 143-747,
Korea
| |
Collapse
|
39
|
Schopp I, Reissberg E, Lüer B, Efferz P, Minor T. Controlled Rewarming after Hypothermia: Adding a New Principle to Renal Preservation. Clin Transl Sci 2015; 8:475-8. [PMID: 26053383 PMCID: PMC4744687 DOI: 10.1111/cts.12295] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Early graft dysfunction due to preservation/reperfusion injury still represents a notable issue after kidney transplantation, affecting long term prognosis of graft viability. One trigger of postischemic cell dysfunction could be recognized in the abrupt temperature shift from hypo‐ to normothermia, leading to mitochondrial dysfunction and proapoptotic signal transduction. Here we propose a technique to cope with this “rewarming injury” by interposing a period of gentle warming up by hypo‐ to subnormothermic machine perfusion of the isolated graft prior to warm reperfusion. Porcine kidneys were subjected either to 18 hours of hypothermic machine preservation (HMP) or 18 hours static cold storage + 3 hours of gentle, machine controlled oxygenated rewarming (COR). Functional integrity was evaluated in both groups by subsequent normothermic reperfusion in vitro. The functional benefit of COR was documented by an approximately twofold increase in renal clearances of creatinine as well as urea upon warm reperfusion, compared to controls. This was accompanied with a notable mitigation of postischemic mitochondrial dys‐homeostasis. COR significantly improved renal oxygen consumption and maintained total NAD tissue content upon reperfusion. Mitochondrial initiation of cellular apoptosis, as evidenced by activation of caspase 9 was also largely prevented after COR but not in controls. The concept of gentle regenerative graft rewarming could become a valuable adjunct in renal transplantation.
Collapse
Affiliation(s)
- Ina Schopp
- Surgical Research Division, University Clinic of Surgery, Bonn, Germany
| | - Elmo Reissberg
- Surgical Research Division, University Clinic of Surgery, Bonn, Germany
| | - Bastian Lüer
- Surgical Research Division, University Clinic of Surgery, Bonn, Germany
| | - Patrik Efferz
- Surgical Research Division, University Clinic of Surgery, Bonn, Germany
| | - Thomas Minor
- Surgical Research Division, University Clinic of Surgery, Bonn, Germany
| |
Collapse
|
40
|
Swift JM, Smith JT, Kiang JG. Ciprofloxacin Therapy Results in Mitigation of ATP Loss after Irradiation Combined with Wound Trauma: Preservation of Pyruvate Dehydrogenase and Inhibition of Pyruvate Dehydrogenase Kinase 1. Radiat Res 2015; 183:684-92. [PMID: 26010714 DOI: 10.1667/rr13853.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing radiation exposure combined with wound injury increases animal mortalities than ionizing radiation exposure alone. Ciprofloxacin (CIP) is in the fluroquinolone family of synthetic antibiotic that are available from the strategic national stockpile for emergency use and is known to inhibit bacterial sepsis. The purpose of this study was to evaluate the efficacy of ciprofloxacin as a countermeasure to combined injury mortality and determine the signaling proteins involved in energy machinery. B6D2F1/J female mice were randomly assigned to receive either 9.75 Gy irradiation with Co-60 gamma rays followed by skin wounding (combined injury; CI) or sham procedure (sham). Either ciprofloxacin (90 mg/kg/day) or vehicle (VEH) (water) was administered orally to these mice 2 h after wounding and thereafter daily for 10 days. Determination of tissue adenosine triphosphate (ATP) was conducted, and immunoblotting for signaling proteins involved in ATP machinery was performed. Combined injury resulted in 60% survival after 10 days compared to 100% survival in the sham group. Furthermore, combined injury caused significant reductions of ATP concentrations in ileum, pancreas, brain, spleen, kidney and lung (-25% to -95%) compared to the sham group. Ciprofloxacin administration after combined injury resulted in 100% survival and inhibited reductions in ileum and kidney ATP production. Ileum protein levels of heat-shock protein 70 kDa (HSP-70, a chaperone protein involved in ATP synthesis) and pyruvate dehydrogenase (PDH, an enzyme complex crucial to conversion of pyruvate to acetyl CoA for entrance into TCA cycle) were significantly lower in the CI group (vs. sham group). Using immunoprecipitation and immunoblotting, HSP-70-PDH complex was found to be present in the ileum tissue of CI mice treated with ciprofloxacin. Furthermore, phosphorylation of serine residues of PDH resulting in inactivating PDH enzymatic activity, which occurred after combined injury, was inhibited with ciprofloxacin treatment, thus enabling PDH to increase ATP production. Increased ileum levels of pyruvate dehydrogenase kinase 1 protein (PDK1, an enzyme responsible for PDH phosphorylation) after combined injury were also prevented by ciprofloxacin treatment. Taken together, these data suggest that ciprofloxacin oral administration after combined injury had a role in sustained ileum ATP levels, and may have acted through preservation of PDH by HSP-70 and inhibition of PDK1. These molecular changes in the ileum are simply one of a host of mechanisms working in concert with one another by which ciprofloxacin treatment mitigates body weight loss and drastically enhances subsequent survival after combined injury. To this end, our findings indicate that oral treatment of ciprofloxacin is a valuable therapeutic treatment after irradiation with combined injury and warrants further analyses to elucidate the precise mechanisms involved.
Collapse
Affiliation(s)
- Joshua M Swift
- a Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889; and.,b Departments of Military and Emergency Medicine;,c Radiation Biology and
| | - Joan T Smith
- a Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889; and
| | - Juliann G Kiang
- a Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889; and.,c Radiation Biology and.,d Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| |
Collapse
|
41
|
Antioxidant and proapoptotic activities of Sclerocarya birrea [(A. Rich.) Hochst.] methanolic root extract on the hepatocellular carcinoma cell line HepG2. BIOMED RESEARCH INTERNATIONAL 2015; 2015:561589. [PMID: 26075245 PMCID: PMC4449889 DOI: 10.1155/2015/561589] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/09/2015] [Accepted: 03/14/2015] [Indexed: 02/08/2023]
Abstract
The main goal of this study was to characterize the in vitro antioxidant activity and the apoptotic potential of S. birrea methanolic root extract (MRE). Among four tested extracts, obtained with different solvents, MRE showed the highest content of polyphenols, flavonoids, and tannins together with antioxidant activities tested with superoxide, nitric oxide, ABTS, and beta-carotene bleaching assays. Moreover, the cytotoxic effect of MRE was evaluated on the hepatocarcinoma cell line HepG2. In these cells, MRE treatment induced apoptosis and generated reactive oxygen species (ROS) in dose-dependent manner. The cytotoxic effect promoted by MRE was prevented by pretreatment of HepG2 cells with N-acetyl-L-cysteine (NAC), suggesting that oxidative stress was pivotal in MRE-mediated cell death. Moreover, we showed that the MRE treatment induced the mitochondrial membrane depolarization and the cytochrome c release from mitochondria into the cytosol. It suggests that the apoptosis occurred in a mitochondrial-dependent pathway. Interestingly, MRE showed a sensibly lower cytotoxicity, associated with a low increase of ROS, in normal human dermal fibroblasts compared to HepG2 cells. It is suggested that the methanolic root extract of S. Birrea is able to selectively increase intracellular ROS levels in cancer cells, promoting cell death.
Collapse
|
42
|
Autophagy and liver ischemia-reperfusion injury. BIOMED RESEARCH INTERNATIONAL 2015; 2015:417590. [PMID: 25861623 PMCID: PMC4377441 DOI: 10.1155/2015/417590] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/21/2014] [Accepted: 09/07/2014] [Indexed: 12/12/2022]
Abstract
Liver ischemia-reperfusion (I-R) injury occurs during liver resection, liver transplantation, and hemorrhagic shock. The main mode of liver cell death after warm and/or cold liver I-R is necrosis, but other modes of cell death, as apoptosis and autophagy, are also involved. Autophagy is an intracellular self-digesting pathway responsible for removal of long-lived proteins, damaged organelles, and malformed proteins during biosynthesis by lysosomes. Autophagy is found in normal and diseased liver. Although depending on the type of ischemia, warm and/or cold, the dynamic process of liver I-R results mainly in adenosine triphosphate depletion and in production of reactive oxygen species (ROS), leads to both, a local ischemic insult and an acute inflammatory-mediated reperfusion injury, and results finally in cell death. This process can induce liver dysfunction and can increase patient morbidity and mortality after liver surgery and hemorrhagic shock. Whether autophagy protects from or promotes liver injury following warm and/or cold I-R remains to be elucidated. The present review aims to summarize the current knowledge in liver I-R injury focusing on both the beneficial and the detrimental effects of liver autophagy following warm and/or cold liver I-R.
Collapse
|
43
|
Porcelli L, Guida G, Quatrale AE, Cocco T, Sidella L, Maida I, Iacobazzi RM, Ferretta A, Stolfa DA, Strippoli S, Guida S, Tommasi S, Guida M, Azzariti A. Aurora kinase B inhibition reduces the proliferation of metastatic melanoma cells and enhances the response to chemotherapy. J Transl Med 2015; 13:26. [PMID: 25623468 PMCID: PMC4314759 DOI: 10.1186/s12967-015-0385-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/08/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The poor response to chemotherapy and the brief response to vemurafenib in metastatic melanoma patients, make the identification of new therapeutic approaches an urgent need. Interestingly the increased expression and activity of the Aurora kinase B during melanoma progression suggests it as a promising therapeutic target. METHODS The efficacy of the Aurora B kinase inhibitor barasertib-HQPA was evaluated in BRAF mutated cells, sensitive and made resistant to vemurafenib after chronic exposure to the drug, and in BRAF wild type cells. The drug effectiveness has been evaluated as cell growth inhibition, cell cycle progression and cell migration. In addition, cellular effectors of drug resistance and response were investigated. RESULTS The characterization of the effectors responsible for the resistance to vemurafenib evidenced the increased expression of MITF or the activation of Erk1/2 and p-38 kinases in the newly established cell lines with a phenotype resistant to vemurafenib. The sensitivity of cells to barasertib-HQPA was irrespective of BRAF mutational status. Barasertib-HQPA induced the mitotic catastrophe, ultimately causing apoptosis and necrosis of cells, inhibited cell migration and strongly affected the glycolytic metabolism of cells inducing the release of lactate. In association i) with vemurafenib the gain in effectiveness was found only in BRAF(V600K) cells while ii) with nab-paclitaxel, the combination was more effective than each drug alone in all cells. CONCLUSIONS These findings suggest barasertib as a new therapeutic agent and as enhancer of chemotherapy in metastatic melanoma treatment.
Collapse
Affiliation(s)
- Letizia Porcelli
- Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre Istituto Tumori Giovanni Paolo II, Viale O. Flacco,65, 70124, Bari, Italy.
| | - Gabriella Guida
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, P.zza Giulio Cesare, 70124, Bari, Italy.
| | - Anna E Quatrale
- Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre Istituto Tumori Giovanni Paolo II, Viale O. Flacco,65, 70124, Bari, Italy.
| | - Tiziana Cocco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, P.zza Giulio Cesare, 70124, Bari, Italy.
| | - Letizia Sidella
- Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre Istituto Tumori Giovanni Paolo II, Viale O. Flacco,65, 70124, Bari, Italy.
| | - Immacolata Maida
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, P.zza Giulio Cesare, 70124, Bari, Italy.
| | - Rosa M Iacobazzi
- Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre Istituto Tumori Giovanni Paolo II, Viale O. Flacco,65, 70124, Bari, Italy.
| | - Anna Ferretta
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, P.zza Giulio Cesare, 70124, Bari, Italy.
| | - Diana A Stolfa
- Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre Istituto Tumori Giovanni Paolo II, Viale O. Flacco,65, 70124, Bari, Italy.
| | - Sabino Strippoli
- Medical Oncology Department, National Cancer Research Centre Istituto Tumori Giovanni Paolo II, Viale O. Flacco,65, 70124, Bari, Italy.
| | - Stefania Guida
- Unit of Dermatology and Venereology, University of Bari, P.zza Giulio Cesare, 70124, Bari, Italy.
| | - Stefania Tommasi
- Molecular Genetics Laboratory, National Cancer Research Centre Istituto Tumori Giovanni Paolo II, Viale O. Flacco,65, 70124, Bari, Italy.
| | - Michele Guida
- Medical Oncology Department, National Cancer Research Centre Istituto Tumori Giovanni Paolo II, Viale O. Flacco,65, 70124, Bari, Italy.
| | - Amalia Azzariti
- Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre Istituto Tumori Giovanni Paolo II, Viale O. Flacco,65, 70124, Bari, Italy.
| |
Collapse
|
44
|
The roads to mitochondrial dysfunction in a rat model of posttraumatic syringomyelia. BIOMED RESEARCH INTERNATIONAL 2015; 2015:831490. [PMID: 25685811 PMCID: PMC4309244 DOI: 10.1155/2015/831490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/13/2014] [Indexed: 11/26/2022]
Abstract
The pathophysiology of posttraumatic syringomyelia is incompletely understood. We examined whether local ischemia occurs after spinal cord injury. If so, whether it causes neuronal mitochondrial dysfunction and depletion, and subsequent energy metabolism impairment results in cell starvation of energy and even cell death, contributing to the enlargement of the cavity. Local blood flow was measured in a rat model of posttraumatic syringomyelia that had received injections of quisqualic acid and kaolin. We found an 86 ± 11% reduction of local blood flow at C8 where a cyst formed at 6 weeks after syrinx induction procedure (P < 0.05), and no difference in blood flow rate between the laminectomy and intact controls. Electron microscopy confirmed irreversible neuronal mitochondrion depletion surrounding the cyst, but recoverable mitochondrial loses in laminectomy rats. Profound energy loss quantified in the spinal cord of syrinx animals, and less ATP and ADP decline observed in laminectomy rats. Our findings demonstrate that an excitotoxic injury induces local ischemia in the spinal cord and results in neuronal mitochondrial depletion, and profound ATP loss, contributing to syrinx enlargement. Ischemia did not occur following laminectomy induced trauma in which mitochondrial loss and decline in ATP were reversible. This confirms excitotoxic injury contributing to the pathology of posttraumatic syringomyelia.
Collapse
|
45
|
The effects of apigenin on the expression of Fas/FasL apoptotic pathway in warm liver ischemia-reperfusion injury in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:157216. [PMID: 25110657 PMCID: PMC4109422 DOI: 10.1155/2014/157216] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/15/2014] [Accepted: 06/18/2014] [Indexed: 11/17/2022]
Abstract
Background. The aim of this experimental study was to investigate the role of apigenin in liver apoptosis, in an experimental model of hepatic ischemia-reperfusion in rats. Materials and Methods. Forty-eight Wistar rats (apigenin and control groups), 14 to 16 weeks old and weighing 220 to 350 g, were used. They were all subjected to hepatic ischemia by occlusion of the hepatic artery and portal vein for 45 minutes and reperfusion was followed for 60, 120, and 240 minutes. Apigenin was administrated intraperitoneally. Liver tissues were used for the detection of apoptosis by TUNEL assay and caspase 3 antibodies. Expression analysis of Fas/FasL genes was evaluated by real time PCR. Results. The expression analysis of Fas and FasL genes was increasing during reperfusion (significantly in the group of 240 minutes of reperfusion). It was in the same group that apigenin decreased Fas receptor levels and inhibited apoptosis as confirmed by TUNEL assay and caspase 3 antibodies. Conclusions. The effects of apigenin in the Fas/FasL mediated pathway of apoptosis, in the hepatic ischemia-reperfusion, seem to have a protective result on the hepatic cell.
Collapse
|
46
|
Lemasters JJ. Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3). Redox Biol 2014; 2:749-54. [PMID: 25009776 PMCID: PMC4085350 DOI: 10.1016/j.redox.2014.06.004] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 12/12/2022] Open
Abstract
Mitophagy (mitochondrial autophagy), which removes damaged, effete and superfluous mitochondria, has several distinct variants. In Type 1 mitophagy occurring during nutrient deprivation, preautophagic structures (PAS) grow into cup-shaped phagophores that surround and sequester individual mitochondria into mitophagosomes, a process requiring phosphatidylinositol-3-kinase (PI3K) and often occurring in coordination with mitochondrial fission. After sequestration, the outer compartment of the mitophagosome acidifies, followed by mitochondrial depolarization and ultimately hydrolytic digestion in lysosomes. Mitochondrial damage stimulates Type 2 mitophagy. After photodamage to single mitochondria, depolarization occurs followed by decoration and then coalescence of autophagic LC3-containing structures on mitochondrial surfaces. Vesicular acidification then occurs. By contrast to Type 1 mitophagy, PI3K inhibition does not block Type 2 mitophagy. Further, Type 2 mitophagy is not associated with phagophore formation or mitochondrial fission. A third form of self-eating of mitochondria is formation of mitochondria-derived vesicles (MDVs) enriched in oxidized mitochondrial proteins that bud off and transit into multivesicular bodies. Topologically, the internalization of MDV by invagination of the surface of multivesicular bodies followed by vesicle scission into the lumen is a form of microautophagy, or micromitophagy (Type 3 mitophagy). Cell biological distinctions are the basis for these three types of mitophagy. Future studies are needed to better characterize the molecular and biochemical differences between Types 1, 2 and 3 mitophagy.
Collapse
Key Words
- 3 MA, 3-methyladenine
- Drp1, dynamin-related protein-1
- GFP, green fluorescent protein
- LC3, microtubule-associated protein-1 light chain-3
- LTR, LysoTracker Red
- MDV, mitochondria-derived vesicle
- MFFR, MitoFluor Far Red
- MV633, MitoView 633
- Micromitophagy
- Mitochondria-derived vesicles
- Mitophagy
- Nutrient deprivation
- PAS, preautophagic structure
- PI3K, phosphatidylinositol 3-kinase
- Photodamage
- Preautophagic structure
- TMRM, tetramethyrhodamine methyester
- TOM20, transporter of the outer membrane-20
- mtDNA, mitochondrial DNA
- ΔΨ, membrane potential
Collapse
Affiliation(s)
- John J. Lemasters
- Center for Cell Death, Injury & Regeneration, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, DD504 Drug Discovery Building, 70 President Street, MSC 140, Charleston, SC 29425, United States of America
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, SC, United States of America
- Institute of Theoretical & Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russian Federation
- Correspondence address: Center for Cell Death, Injury & Regeneration, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, DD504 Drug Discovery Building, 70 President Street, MSC 140, Charleston, SC 29425, United States of America.
| |
Collapse
|
47
|
Jacobsen catalyst as a cytochrome P450 biomimetic model for the metabolism of monensin A. BIOMED RESEARCH INTERNATIONAL 2014; 2014:152102. [PMID: 24987668 PMCID: PMC4058456 DOI: 10.1155/2014/152102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/11/2014] [Indexed: 11/29/2022]
Abstract
Monensin A is a commercially important natural product isolated from Streptomyces cinnamonensins that is primarily employed to treat coccidiosis. Monensin A selectively complexes and transports sodium cations across lipid membranes and displays a variety of biological properties. In this study, we evaluated the Jacobsen catalyst as a cytochrome P450 biomimetic model to investigate the oxidation of monensin A. Mass spectrometry analysis of the products from these model systems revealed the formation of two products: 3-O-demethyl monensin A and 12-hydroxy monensin A, which are the same ones found in in vivo models. Monensin A and products obtained in biomimetic model were tested in a mitochondrial toxicity model assessment and an antimicrobial bioassay against Staphylococcus aureus, S. aureus methicillin-resistant, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. Our results demonstrated the toxicological effects of monensin A in isolated rat liver mitochondria but not its products, showing that the metabolism of monensin A is a detoxification metabolism. In addition, the antimicrobial bioassay showed that monensin A and its products possessed activity against Gram-positive microorganisms but not for Gram-negative microorganisms. The results revealed the potential of application of this biomimetic chemical model in the synthesis of drug metabolites, providing metabolites for biological tests and other purposes.
Collapse
|
48
|
Zamora Nava LE, Aguirre Valadez J, Chávez-Tapia NC, Torre A. Acute-on-chronic liver failure: a review. Ther Clin Risk Manag 2014; 10:295-303. [PMID: 24790454 PMCID: PMC4003263 DOI: 10.2147/tcrm.s59723] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is no universally accepted definition of acute-on-chronic liver failure; however, it is recognized as an entity characterized by decompensation from an underlying chronic liver disease associated with organ failure that conveys high short-term mortality, with alcoholism and infection being the most frequent precipitating events. The pathophysiology involves inflammatory processes associated with a trigger factor in susceptible individuals (related to altered immunity in the cirrhotic population). This review addresses the different definitions developed by leading research groups, epidemiological and pathophysiological aspects, and the latest treatments for this entity.
Collapse
Affiliation(s)
- Luis Eduardo Zamora Nava
- Department of Endoscopy, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Jonathan Aguirre Valadez
- Department of Gastroenterology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | | | - Aldo Torre
- Department of Gastroenterology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
49
|
Gong Y, Wang G, Gong Y, Yan J, Chen Y, Burczynski FJ. Hepatoprotective role of liver fatty acid binding protein in acetaminophen induced toxicity. BMC Gastroenterol 2014; 14:44. [PMID: 24606952 PMCID: PMC3975289 DOI: 10.1186/1471-230x-14-44] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 03/03/2014] [Indexed: 02/07/2023] Open
Abstract
Background FABP1 has been reported to possess strong antioxidant properties. Upon successful transfection of the Chang cell line, which has undetectable FABP1 mRNA levels, with human FABP1 cDNA, the Chang cells were shown to express FABP1. Using the transfected and control (normal) Chang cells and subjecting them to oxidative stress, transfected cells were reported to be associated with enhanced cell viability. This study extends those observations by investigating the effect of FABP1 on acetaminophen (AAP)-induced hepatotoxicity. We hypothesized that presence of FABP1 would enhance cell viability compared to control cells (vector transfected cells). Methods Following AAP treatment of Chang FABP1 transfected and control cells, cell viability, oxidative stress, and apoptosis were evaluated using lactate dehydrogenase (LDH) release, the fluorescent probe DCF, and Bax expression, respectively. Results FABP1 cDNA transfected cells showed greater resistance against AAP toxicity than vector transfected cells. Significantly lower LDH levels (p < 0.05) were observed as were lower DCF fluorescence intensity (p < 0.05) in FABP1 cDNA transfected cells compared to vector transfected cells. FABP1 expression also attenuated the expression of Bax following AAP induced toxicity. Conclusion FABP1 attenuated AAP-induced toxicity and may be considered a cytoprotective agent in this in vitro model of drug induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Frank J Burczynski
- Faculty of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.
| |
Collapse
|
50
|
Krajnáková J, Bertolini A, Zoratti L, Gömöry D, Häggman H, Vianello A. Changes in ATP, glucose-6-phosphate and NAD(P)H cellular levels during the proliferation and maturation phases of Abies alba Mill. embryogenic cultures. TREE PHYSIOLOGY 2013; 33:1099-110. [PMID: 24200583 DOI: 10.1093/treephys/tpt082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The aim of the present study was to evaluate the adenosine triphospate (ATP), glucose-6-phosphate (glu-6P) and reduced form of nicotinamide adenine dinucleotide phosphate (NAD(P)H) cellular levels during the proliferation and maturation phases of Abies alba Mill. somatic embryos. For a better understanding of the dynamics of these parameters during the proliferation cycle, four embryonic cell lines were tested. During the maturation period, three independent experiments were conducted, focused on the effects of PEG-4000 (5 or 10% (w/v)) and abscisic acid (16, 32 or 64 μM) applied together (Experiments A and B) or with addition of gibberellic acid (Experiment C) on the dynamics of bio-energetic molecules and on the mean number of cotyledonary somatic embryos. Our results demonstrated that the cellular levels of bio-energetic molecules strongly depended on the composition of maturation media. Generally, the higher the number of cotyledonary embryos produced, the higher the level of ATP observed after a 2-week maturation period. The cellular level of ATP, glu-6P and NAD(P)H increased, particularly after the transition from the proliferation to the maturation phase when the differentiation and growth of somatic embryos occurred.
Collapse
Affiliation(s)
- Jana Krajnáková
- Faculty of Forestry and Wood Technology, Mendel University, Zemědělská 3, 613 00 Czech Republic
| | | | | | | | | | | |
Collapse
|