Vilella S, Zilli L, Ingrosso L, Schiavone R, Zonno V, Verri T, Storelli C. Differential expression of Na+/D-glucose cotransport in isolated cells of Marsupenaeus japonicus hepatopancreas.
J Comp Physiol B 2003;
173:679-86. [PMID:
12955436 DOI:
10.1007/s00360-003-0379-z]
[Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2003] [Indexed: 11/26/2022]
Abstract
D-Glucose absorptive processes at the gastrointestinal tract of decapod crustaceans are largely under-investigated. We have studied Na(+)-dependent D-glucose transport (Na(+)/D-glucose cotransport) in the hepatopancreas of the Kuruma prawn, Marsupenaeus japonicus, using both brush-border membrane vesicles and purified R and B hepatopancreatic cell suspensions. As assessed by brush-border membrane vesicle studies, Na(+)/D-glucose cotransport was inhibited by phloridzin and responsive to the (inside negative) membrane potential. Furthermore, it was strongly activated by protons (although only in the presence of an inside-negative membrane potential), which correlates with the fact that the lumen of crustacean hepatopancreatic tubules is acidic. When assayed in purified R and B cell suspensions, Na(+)/D-glucose cotransport activity was restricted to B cells only. Mab 13, a monoclonal antibody recognizing an 80- to 85-KDa protein at the brush-border membrane location, inhibited Na(+)/D-glucose cotransport in brush-border membrane vesicles as well as in enriched B cell suspensions. Primers designed after comparison of highly homologous regions of various mammalian sodium-glucose transporter) nucleotide sequences failed to produce RT-PCR amplification products from Kuruma prawn hepatopancreatic RNA. The molecular nature of this Na(+)/D-glucose cotransport system is still to be established.
Collapse