1
|
Tan Q, di Stefano G, Tan X, Renjie X, Römermann D, Talbot SR, Seidler UE. Inhibition of Na + /H + exchanger isoform 3 improves gut fluidity and alkalinity in cystic fibrosis transmembrane conductance regulator-deficient and F508del mutant mice. Br J Pharmacol 2021; 178:1018-1036. [PMID: 33179259 DOI: 10.1111/bph.15323] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Constipation and intestinal obstructive episodes are major health problems in cystic fibrosis (CF) patients. Three FDA-approved drugs against constipation-prone irritable bowel syndrome were tested for their ability to increase luminal fluidity and alkalinity in cystic fibrosis transmembrane conductance regulator (CFTR) null (cftr-/- ) and F508del mutant (F508delmut/mut ) murine intestine. EXPERIMENTAL APPROACH Guanylate cyclase C agonist linaclotide, PGE1 analogue lubiprostone and intestine-specific NHE3 inhibitor tenapanor were perfused through a ~3 cm jejunal, proximal or mid-distal colonic segment in anaesthetized cftr-/- , F508delmut/mut and WT mice. Net fluid balance was determined gravimetrically and alkaline output by pH-stat back titration. KEY RESULTS Basal jejunal fluid absorptive rates were significantly higher and basal HCO3 - output was significantly lower in cftr-/- and F508delmut/mut compared to WT mice. In cftr-/- and F508delmut/mut mice, all three drugs significantly inhibited the fluid absorptive rate and increased alkaline output in the jejunum and tenapanor and lubiprostone, but not linaclotide, in the colon. After tenapanor pre-incubation, linaclotide elicited a robust fluid secretory response in WT jejunum, while no further change in absorptive rates was observed in cftr-/- and F508delmut/mut jejunum, suggesting that the increase in gut fluidity and alkalinity by linaclotide in CF gut is mediated via NHE3 inhibition. Lubiprostone also inhibited fluid absorption in cftr-/- and F508delmut/mut jejunum via NHE3 inhibition but had a residual NHE3-independent effect. CONCLUSION AND IMPLICATIONS Linaclotide, lubiprostone and tenapanor reduced fluid absorption and increased alkaline output in the CF gut. Their application may ameliorate constipation and reduce obstructive episodes in CF patients.
Collapse
Affiliation(s)
- Qinghai Tan
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| | | | - Xinjie Tan
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| | - Xiu Renjie
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| | - Dorothee Römermann
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| | - Steven R Talbot
- Institute of Veterinary Research, Hannover Medical School, Hanover, Germany
| | - Ursula E Seidler
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
2
|
Arzi RS, Sosnik A, Cohen N. A Microscopically Motivated Model for Particle Penetration into Swollen Biological Networks. Polymers (Basel) 2020; 12:polym12091912. [PMID: 32854259 PMCID: PMC7565132 DOI: 10.3390/polym12091912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Biological gels (bio-gels) are hydrated polymer networks that serve diverse biological functions, which often lead to intentional or unintentional exposure to particulate matter. In this work, we derive a microscopically motivated framework that enables the investigation of penetration mechanisms into bio-gels. We distinguish between two types of mechanisms: spontaneous (unforced) penetration and forced penetration. Using experimental data available in the literature, we exploit the proposed model to characterize and compare between the microstructures of respiratory, intestinal, and cervicovaginal mucus and two types of biofilms. Next, we investigate the forced penetration process of spherical and ellipsoidal particles into a locally quadrilateral network. The proposed framework can be used to improve and complement the analysis of experimental findings in vitro, ex vivo, and in vivo. Additionally, the insights from this work pave the way towards enhanced designs of nano-medicines and allow the assessment of risk factors related to the nano-pollutants exposure.
Collapse
Affiliation(s)
- Roni Sverdlov Arzi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
- Mechanics of Soft Materials, Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
- Correspondence: (A.S.); (N.C.)
| | - Noy Cohen
- Mechanics of Soft Materials, Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
- Correspondence: (A.S.); (N.C.)
| |
Collapse
|
3
|
Jin BJ, Thiagarajah JR, Verkman AS. Response to "Diffusion versus convection". J Gen Physiol 2013; 142:173. [PMID: 23898009 PMCID: PMC3727305 DOI: 10.1085/jgp.201311031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
4
|
Varum FJO, Veiga F, Sousa JS, Basit AW. Mucus thickness in the gastrointestinal tract of laboratory animals. ACTA ACUST UNITED AC 2011; 64:218-27. [PMID: 22221097 DOI: 10.1111/j.2042-7158.2011.01399.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The objective of this study was to systematically assess the mucus thickness in the gastrointestinal tract of laboratory animals commonly used in preclinical studies. METHODS Mucus thickness was studied post-mortem in the rat, rabbit and pig, using cryosections stained by the modified periodic acid Schiff/Alcian blue method. KEY FINDINGS The mucus thickness in the fundus region of the stomach was higher in the pig (190.7 ± 80.7 µm) than in the rabbit (155.1 ± 85.8 µm) and the rat (31.3 ± 11.4 µm). However, along the small intestine (ileum), mucus was thicker in the rabbit (147.8 ± 115.6 µm), followed by the pig (53.8 ± 22.1 µm) and the rat (34.1 ± 14.9 µm). This rank order was also observed in the ascending colon. CONCLUSIONS Inter-species variability in mucus thickness along the gut was demonstrated and suggests that the pig resembles more closely the mucus pattern of humans. This may be highly relevant when preclinical animal models are used in drug absorption studies or in the development of oral mucoadhesive drug delivery systems.
Collapse
Affiliation(s)
- Felipe J O Varum
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal The School of Pharmacy, University of London, London, UK
| | | | | | | |
Collapse
|
5
|
Palatal mucosa as a route for systemic drug delivery: A review. J Control Release 2011; 151:2-9. [DOI: 10.1016/j.jconrel.2010.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 10/19/2010] [Indexed: 11/22/2022]
|
6
|
Flemström G, Bengtsson MW, Mäkelä K, Herzig KH. Effects of short-term food deprivation on orexin-A-induced intestinal bicarbonate secretion in comparison with related secretagogues. Acta Physiol (Oxf) 2010; 198:373-80. [PMID: 20003099 DOI: 10.1111/j.1748-1716.2009.02067.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Studies of gastrointestinal physiology in humans and intact animals are usually conducted after overnight fast. We compared the effects of orexin-A, vasoactive intestinal polypeptide (VIP), melatonin, serotonin, uroguanylin, ghrelin and prostaglandin E(2) (PGE(2)) on duodenal bicarbonate secretion in fed and overnight fasted animals. This review is a summary of our findings. Secretagogues were administered by intra-arterial infusion or luminally (PGE(2)). Enterocyte intracellular calcium ([Ca(2+)](i)) signalling was studied by fluorescence imaging. Total RNA was extracted, reverse transcripted to cDNA and expression of orexin receptors measured by quantitative real-time PCR. Orexin-A stimulates the duodenal secretion in continuously fed animals but not in food-deprived animals. Similarly, short-term fasting causes a 100-fold decrease in the amount of the muscarinic agonist bethanechol required for stimulation of secretion. In contrast, fasting does not affect secretory responses to intra-arterial VIP, melatonin, serotonin, uroguanylin and ghrelin, or that to luminal PGE(2). Orexin-A induces [Ca(2+)](i) signalling in enterocytes from fed rats but no significant [Ca(2+)](i) responses occur in enterocytes from fasted animals. In addition, overnight fasting decreases the expression of mucosal orexin receptors. Short-term food deprivation thus decreases duodenal expression of orexin receptors and abolishes the secretory response to orexin-A as well as orexin-A-induced [Ca(2+)](i) signalling. Fasting, furthermore, decreases mucosal sensitivity to bethanechol. The absence of declines in secretory responses to other secretagogues tested strongly suggests that short-term fasting does not affect the secretory capacity of the duodenal mucosa in general. Studies of intestinal secretion require particular evaluation with respect to feeding status.
Collapse
Affiliation(s)
- G Flemström
- Division of Physiology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
7
|
Castro G, Carvalho J, Tinti S, Possenti A, Sgarbieri V. Anti-Ulcerogenic Effect of a Whey Protein Isolate and Collagen Hydrolysates Against Ethanol Ulcerative Lesions on Oral Administration to Rats. J Med Food 2010; 13:83-90. [DOI: 10.1089/jmf.2008.0277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- G.A. Castro
- Departamento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - J.E. Carvalho
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - S.V. Tinti
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - A. Possenti
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - V.C. Sgarbieri
- Departamento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Mumper RJ, Bell MA, Worthen DR, Cone RA, Lewis GR, Paull JRA, Moench TR. Formulating a sulfonated antiviral dendrimer in a vaginal microbicidal gel having dual mechanisms of action. Drug Dev Ind Pharm 2009; 35:515-24. [PMID: 19040181 DOI: 10.1080/03639040802488097] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
SPL7013 is the sodium salt of a sulfonated dendrimer that has potent antiviral properties. VivaGel, a topical gel containing 3% (wt/wt) SPL7013, is in development as a vaginal microbicide. BufferGel is a Carbopol-based acidic buffering gel that enhances the natural protective action of the vagina to produce a broad-spectrum microbicidal environment. The positive attributes of both gels were combined into a combination vaginal microbicidal gel having dual mechanisms of action. A 3% (wt/wt) SPL7013 combination gel, pH 3.7, was developed and fully characterized and was shown to have more than twofold greater acidic buffering capacity than BufferGel. Ultracentrifugation experiments demonstrated that SPL7013 was not sequestered or entropically trapped in the viscous gel, thereby confirming, along with viral challenge studies, that SPL7013 has sufficient mobility in the viscous gel to exert antiviral properties.
Collapse
Affiliation(s)
- Russell J Mumper
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Debellis L, Diana A, Arcidiacono D, Fiorotto R, Portincasa P, Altomare DF, Spirlì C, de Bernard M. The Vibrio cholerae cytolysin promotes chloride secretion from intact human intestinal mucosa. PLoS One 2009; 4:e5074. [PMID: 19333391 PMCID: PMC2659442 DOI: 10.1371/journal.pone.0005074] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 03/05/2009] [Indexed: 12/02/2022] Open
Abstract
Background The pathogenicity of the Vibrio cholerae strains belonging to serogroup O1 and O139 is due to the production of virulence factors such as cholera toxin (CT) and the toxin-coregulated pilus (TCP). The remaining serogroups, which mostly lack CT and TCP, are more frequently isolated from aquatic environmental sources than from clinical samples; nevertheless, these strains have been reported to cause human disease, such as sporadic outbreaks of watery diarrhoea and inflammatory enterocolitis. This evidence suggested the possibility that other virulence factor(s) than cholera toxin might be crucial in the pathogenesis of Vibrio cholerae-induced diarrhoea, but their nature remains unknown. VCC, the hemolysin produced by virtually all Vibrio cholerae strains, has been proposed as a possible candidate, though a clear-cut demonstration attesting VCC as crucial in the pathogenesis of Vibrio cholerae-induced diarrhoea is still lacking. Methodology/Principal Findings Electrophysiological parameters and paracellular permeability of stripped human healthy colon tissues, obtained at subtotal colectomy, mounted in Ussing chamber were studied in the presence or absence of VCC purified from culture supernatants of V. cholerae O1 El Tor strain. Short circuit current (ISC) and transepithelial resistance (RT) were measured by a computerized voltage clamp system. The exposure of sigmoid colon specimens to 1 nM VCC resulted in an increase of ISC by 20.7%, with respect to the basal values, while RT was reduced by 12.3%. Moreover, increase in ISC was abolished by bilateral Cl− reduction. Conclusion/Significance Our results demonstrate that VCC, by forming anion channels on the apical membrane of enterocytes, triggers an outward transcellular flux of chloride. Such an ion movement, associated with the outward movement of Na+ and water, might be responsible for the diarrhoea caused by the non-toxigenic strains of Vibrio cholerae.
Collapse
Affiliation(s)
- Lucantonio Debellis
- Department of General and Environmental Physiology, University of Bari, Bari, Italy
| | - Anna Diana
- Department of General and Environmental Physiology, University of Bari, Bari, Italy
| | | | - Romina Fiorotto
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut, United States of America
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Internal and Public Medicine, University Medical School, Bari, Italy
| | - Donato Francesco Altomare
- Department of Emergency and Organ Transplantation, General Surgery and Liver Transplantation Units, University of Bari, Policlinico, Bari, Italy
| | - Carlo Spirlì
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut, United States of America
| | - Marina de Bernard
- Venetian Institute of Molecular Medicine, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
- * E-mail:
| |
Collapse
|
10
|
Bengtsson MW, Jedstedt G, Flemström G. Duodenal bicarbonate secretion in rats: stimulation by intra-arterial and luminal guanylin and uroguanylin. Acta Physiol (Oxf) 2007; 191:309-17. [PMID: 17995576 DOI: 10.1111/j.1748-1716.2007.01759.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Uroguanylin and guanylin are endogenous ligands for guanylate cyclase C, an upstream regulator of the cystic fibrosis transmembrane resistance (CFTR) anion channel, and both peptides increase intestinal anion export in vitro. We have compared the effects of close intra-arterial and luminal administration of uroguanylin and guanylin on duodenal bicarbonate secretion in vivo and studied the interactions with melatonin and cholinergic stimulation. METHODS Lewis x Dark Agouti rats were anaesthetized and a segment of the proximal duodenum with intact blood supply was cannulated in situ. Mucosal bicarbonate secretion (pH stat) was continuously recorded and peptides were infused intra-arterially or added to the luminal perfusate. RESULTS Intra-arterial (50-1000 pmol kg(-1) h(-1)) as well as luminal administration (50-500 nmol L(-1)) of guanylin or uroguanylin caused dose-dependent increases in the duodenal secretion. Luminal administration induced more rapidly appearing rises in secretion and the two peptides induced secretory responses of similar shape and magnitude. The melatonin MT(2)-selective antagonist luzindole (600 nmol kg(-1)) significantly depressed the response to intra-arterial guanylins but did not affect secretion induced by luminal guanylins. Similarly, the muscarinic antagonist atropine (0.75 micromol kg(-1) followed by 0.15 micromol kg(-1) h(-1)) abolished the response to intra-arterial uroguanylin but caused only slight suppression of the response to luminal uroguanylin. CONCLUSIONS Intra-arterial as well as luminal uroguanylin and guanylin are potent stimuli of duodenal mucosal bicarbonate secretion in vivo. The response to luminal guanylins reflects an action at apical receptors. Stimulation by parenteral guanylins, in contrast, is under cholinergic influence and interacts with melatonin produced by mucosal enteroendocrine cells.
Collapse
Affiliation(s)
- M W Bengtsson
- Department of Neuroscience, Division of Physiology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
11
|
Bengtsson MW, Mäkelä K, Sjöblom M, Uotila S, Akerman KEO, Herzig KH, Flemström G. Food-induced expression of orexin receptors in rat duodenal mucosa regulates the bicarbonate secretory response to orexin-A. Am J Physiol Gastrointest Liver Physiol 2007; 293:G501-9. [PMID: 17585016 DOI: 10.1152/ajpgi.00514.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Presence of appetite-regulating peptides orexin-A and orexin-B in mucosal endocrine cells suggests a role in physiological control of the intestine. Our aim was to characterize orexin-induced stimulation of duodenal bicarbonate secretion and modulation of secretory responses and mucosal orexin receptors by overnight food deprivation. Lewis x Dark Agouti rats were anesthetized and proximal duodenum cannulated in situ. Mucosal bicarbonate secretion (pH stat) and mean arterial blood pressure were continuously recorded. Orexin-A was administered intra-arterially close to the duodenum, intraluminally, or into the brain ventricles. Total RNA was extracted from mucosal specimens, reverse transcribed to cDNA and expression of orexin receptors 1 and 2 (OX1 and OX2) measured by quantitative real-time PCR. OX1 protein was measured by Western blot. Intra-arterial orexin-A (60-600 nmol.h(-1).kg(-1)) increased (P < 0.01) the duodenal secretion in fed but not in fasted animals. The OX1 receptor antagonist SB-334867, which was also found to have a partial agonist action, abolished the orexin-induced secretory response but did not affect secretion induced by the muscarinic agonist bethanechol. Atropine, in contrast, inhibited bethanechol but not orexin-induced secretion. Orexin-A infused into the brain ventricles (2-20 nmol.kg(-1).h(-1)) or added to luminal perfusate (1.0-100 nM) did not affect secretion, indicating that orexin-A acts peripherally and at basolateral receptors. Overnight fasting decreased mucosal OX1 and OX2 mRNA expression (P < 0.01) as well as OX1 protein expression (P < 0.05). We conclude that stimulation of secretion by orexin-A may involve both receptor types and is independent of cholinergic pathways. Intestinal OX receptors and secretory responses are markedly related to food intake.
Collapse
MESH Headings
- Animals
- Atropine/pharmacology
- Benzoxazoles/administration & dosage
- Bethanechol/pharmacology
- Bicarbonates/metabolism
- Cerebral Ventricles/drug effects
- Cerebral Ventricles/metabolism
- Crosses, Genetic
- Dose-Response Relationship, Drug
- Duodenum/drug effects
- Duodenum/metabolism
- Eating/physiology
- Food Deprivation
- Hydrogen-Ion Concentration
- Infusions, Intra-Arterial
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Intestinal Secretions/metabolism
- Intracellular Signaling Peptides and Proteins/administration & dosage
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Muscarinic Agonists/pharmacology
- Muscarinic Antagonists/pharmacology
- Naphthyridines
- Neuropeptides/administration & dosage
- Neuropeptides/metabolism
- Orexin Receptors
- Orexins
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Lew
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/genetics
- Receptors, Neuropeptide/biosynthesis
- Receptors, Neuropeptide/drug effects
- Receptors, Neuropeptide/genetics
- Time Factors
- Up-Regulation
- Urea/administration & dosage
- Urea/analogs & derivatives
Collapse
Affiliation(s)
- Magnus W Bengtsson
- Dept. of Neuroscience, Division of Physiology, Uppsala University, BMC, PO Box 572, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
12
|
De Lisle RC, Roach EA, Norkina O. Eradication of small intestinal bacterial overgrowth in the cystic fibrosis mouse reduces mucus accumulation. J Pediatr Gastroenterol Nutr 2006; 42:46-52. [PMID: 16385253 DOI: 10.1097/01.mpg.0000189322.34582.3e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Mucus accumulation in cystic fibrosis (CF) is involved in blockage of the distal small intestine. Because expression of mucin genes and mucus secretion can be increased by infection and previous work indicated that small intestinal bacterial overgrowth occurs in CF, we tested whether reduction of bacterial load by antibiotic treatment would reduce mucin gene expression and mucus accumulation in the CF mouse small intestine. METHODS CF transmembrane conductance regulator null (cftr (tm1UNC)) and wild type littermates were treated with ciprofloxacin and metronidazole for 3 weeks. Muc2 and Muc3 gene expression were measured by quantitative reverse-transcriptase polymerase chain reaction. Periodic acid Schiff (PAS) staining and morphometry were used to measure the size of mucus droplets within goblet cells and dilation of the intestinal crypt lumen, as estimates of mucus secretion and accumulation. RESULTS Antibiotic treatment did not significantly affect Muc2 and Muc3 gene expression in CF mice. In untreated CF mice, the crypt lumen was almost sevenfold wider than wild type. Antibiotic treatment of CF mice reduced the intensity of PAS crypt lumen staining, and the lumen width was decreased by approximately 25%. The area occupied by PAS-positive material in goblet cells was significantly greater in tissues from antibiotic treated mice. CONCLUSIONS Eradication of bacterial overgrowth in CF mice significantly decreased mucus secretion and accumulation in intestinal crypts without an effect on mucin gene expression. It is proposed that bacterial overgrowth stimulates mucus secretion, which contributes to its accumulation in the small intestine. Control of bacterial overgrowth is expected to reduce mucus accumulation and may improve intestinal function and overall health in CF.
Collapse
Affiliation(s)
- Robert C De Lisle
- Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas 66160, USA.
| | | | | |
Collapse
|
13
|
Allen A, Flemström G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol 2005; 288:C1-19. [PMID: 15591243 DOI: 10.1152/ajpcell.00102.2004] [Citation(s) in RCA: 378] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Secretion of bicarbonate into the adherent layer of mucus gel creates a pH gradient with a near-neutral pH at the epithelial surfaces in stomach and duodenum, providing the first line of mucosal protection against luminal acid. The continuous adherent mucus layer is also a barrier to luminal pepsin, thereby protecting the underlying mucosa from proteolytic digestion. In this article we review the present state of the gastroduodenal mucus bicarbonate barrier two decades after the first supporting experimental evidence appeared. The primary function of the adherent mucus gel layer is a structural one to create a stable, unstirred layer to support surface neutralization of acid and act as a protective physical barrier against luminal pepsin. Therefore, the emphasis on mucus in this review is on the form and role of the adherent mucus gel layer. The primary function of the mucosal bicarbonate secretion is to neutralize acid diffusing into the mucus gel layer and to be quantitatively sufficient to maintain a near-neutral pH at the mucus-mucosal surface interface. The emphasis on mucosal bicarbonate in this review is on the mechanisms and control of its secretion and the establishment of a surface pH gradient. Evidence suggests that under normal physiological conditions, the mucus bicarbonate barrier is sufficient for protection of the gastric mucosa against acid and pepsin and is even more so for the duodenum.
Collapse
Affiliation(s)
- Adrian Allen
- Physiological Sciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
14
|
Bhuiyan NU, Poston JW. A revised model for electron dosimetry in the human small intestine. HEALTH PHYSICS 2005; 88:23-36. [PMID: 15596987 DOI: 10.1097/01.hp.0000144569.42599.eb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, the absorbed dose was calculated to the small intestine (SI) wall of an adult human from electrons in its lumen contents. The effects on dose due to variations in the lumen radius and wall-thickness also were studied. The SI model was based on values gleaned from anatomic and histologic reviews of the adult human SI. Histologic and radiological analyses of the SI suggested the microscopic intricacy of this walled organ could be avoided for dosimetric purposes and a set of concentric cylinders could be used to model the SI. The model was input into the Monte Carlo N-Particle (MCNP) version 4A computational package, which was used to simulate energy deposition in the SI by electrons of fifty discrete energies ranging 10-500 keV. The source electrons as well as all resulting particles, such as knock-on electrons, bremsstrahlung, and electrons created from bremsstrahlung interactions, were transported until the particle energies fell below the 1 keV low-energy cutoff. Detailed physics treatments for secondary photons were made. With a reasonable number of histories, appropriate variance reduction techniques were used to improve the precision of the Monte Carlo calculations. The model used very small tally regions, which ranged in thickness from 0.5 microm to 200 microm depending on the electron energy studied and tally location in the wall. Relative errors associated with these calculations were maintained at less than 5%. The large number of tally results across the wall for each of the energies studied enabled the construction of the energy-specific depth dose curves in the wall. Each of these curves was consistent with the anticipated energy deposition pattern. These curves showed that only a small fraction of the energy absorbed at the contents-mucus interface reaches the stem cell layers because the cells are located deep in the mucosa. This fraction was found to vary from 1.66 x 10(-6) to 1.21 x 10(-1) over the energy range 10-500 keV. These results demonstrated the interface dose, which has been routinely reported as the "wall" dose, is a significant overestimate of the actual dose to the stem cells. The dose uncertainties associated with variations of the critical cell depth were shown to be very high for electrons whose CSDA ranges in the soft tissue exceeded the depth of the critical cells. This study showed that the uncertainty in the wall-thickness had no effect on depth doses while variation in the lumen radius significantly changes depth doses. The results suggest that these changes could be approximated by the inverse square of the lumen radius.
Collapse
Affiliation(s)
- N U Bhuiyan
- Texas A&M University, Department of Nuclear Engineering, College Station, TX 77843, USA
| | | |
Collapse
|
15
|
Abstract
Melatonin, originating from intestinal enterochromaffin cells, mediates vagal and sympathetic neural stimulation of the HCO secretion by the duodenal mucosa. This alkaline secretion is considered the first line of mucosal defense against hydrochloric acid discharged from the stomach. We have studied whether luminally applied melatonin stimulates the protective secretion and whether a melatonin pathway is involved in acid-induced stimulation of the secretion. Rats were anaesthetized (Inactin) and a 12-mm segment of proximal duodenum with an intact blood supply was cannulated in situ. Mucosal HCO secretion (pH-stat) and the mean arterial blood pressure were continuously recorded. Luminal melatonin at a concentration of 1.0 micro m increased (P < 0.05) the secretion from 7.20 +/- 1.35 to 13.20 +/- 1.51 micro Eq/cm/hr. The MT2 selective antagonist luzindole (600 nmol/kg, i.v.) had no effect on basal HCO secretion, but inhibited (P < 0.05) secretion stimulated by luminal melatonin. Hexamethonium (10 mg/kg i.v. followed by continuous i.v. infusion at a rate of 10 mg/kg/hr), abolishes neurally mediated rises in secretion and also inhibited (P < 0.05) the stimulation by luminal melatonin. Exposure of the lumen to acid containing perfusate (pH 2.0) for 5 min increased (P < 0.05) the HCO secretion from 5.85 +/- 0.82 to 12.35 +/- 1.51 micro Eq/cm/hr, and luzindole significantly inhibited (P < 0.05) this rise in secretion. The study thus demonstrates that luminal melatonin is a potent stimulant of duodenal HCO secretion and, furthermore, strongly suggests melatonin as an important mediator of acid-induced secretion.
Collapse
Affiliation(s)
- Markus Sjöblom
- Department of Neuroscience, Division of Physiology, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
16
|
Debellis L, Papini E, Caroppo R, Montecucco C, Curci S. Helicobacter pylori cytotoxin VacA increases alkaline secretion in gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol 2001; 281:G1440-8. [PMID: 11705749 DOI: 10.1152/ajpgi.2001.281.6.g1440] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human infection by the bacterium Helicobacter pylori (Hp) may lead to severe gastric diseases by an ill-understood process involving several virulence factors. Among these, the cytotoxin VacA is associated with higher tissue damage. In this study, the isolated frog stomach model was used to characterize the acute effects of VacA on the gastric epithelium. Our results show that VacA partially inhibits gastric acid output by increasing HCO(3)(-) efflux. Experiments conducted with double-barrelled pH or Cl(-)-selective microelectrodes on surface epithelial gastric cells (SECs) and single gastric glands show that VacA does not impair the activity of the oxyntic cells but renders the apical membrane of SECs more permeable to HCO(3)(-) and Cl(-). Inhibition of this permeation by 5-nitro-2-(3-phenylpropylamino) benzoic acid indicates that this may be due to the formation of anion-selective pores by the toxin. We suggest that VacA-dependent HCO(3)(-) efflux from SECs improves the environmental conditions (pH, CO(2) concentration) of the niche parasitized by Hp, that is the gastric surface. This may favor Hp persistence in the tissue and the secondary development of a chronic inflammation.
Collapse
Affiliation(s)
- L Debellis
- Dipartimento di Fisiologia Generale e Ambientale, Università di Bari, 70126 Bari, Italy.
| | | | | | | | | |
Collapse
|
17
|
Atuma C, Strugala V, Allen A, Holm L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol 2001; 280:G922-9. [PMID: 11292601 DOI: 10.1152/ajpgi.2001.280.5.g922] [Citation(s) in RCA: 640] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Divergent results from in vitro studies on the thickness and appearance of the gastrointestinal mucus layer have previously been reported. With an in vivo model, we studied mucus gel thickness over time from stomach to colon. The gastrointestinal tissues of Inactin-anesthetized rats were mounted luminal side up for intravital microscopy. Mucus thickness was measured with a micropipette before and after mucus removal by suction. The mucus layer was translucent and continuous; it was thickest in the colon (approximately 830 microm) and thinnest in the jejunum (approximately 123 microm). On mucus removal, a continuous, firmly adherent mucus layer remained attached to the epithelial surface in the corpus (approximately 80 microm), antrum (approximately 154 microm), and colon (approximately 116 microm). In the small intestine, this layer was very thin (approximately 20 microm) or absent. After mucus removal, there was a continuous increase in mucus thickness with the highest rate in the colon and the lowest rate in the stomach. In conclusion, the adherent gastrointestinal mucus gel in vivo is continuous and can be divided into two layers: a loosely adherent layer removable by suction and a layer firmly attached to the mucosa.
Collapse
Affiliation(s)
- C Atuma
- Department of Physiology, Uppsala University, P.O. Box 572, SE-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
18
|
Flemström G, Isenberg JI. Gastroduodenal mucosal alkaline secretion and mucosal protection. NEWS IN PHYSIOLOGICAL SCIENCES : AN INTERNATIONAL JOURNAL OF PHYSIOLOGY PRODUCED JOINTLY BY THE INTERNATIONAL UNION OF PHYSIOLOGICAL SCIENCES AND THE AMERICAN PHYSIOLOGICAL SOCIETY 2001; 16:23-8. [PMID: 11390942 DOI: 10.1152/physiologyonline.2001.16.1.23] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gastroduodenal mucosa is a dynamic barrier restricting entry of gastric acid and other potentially hostile luminal contents. Mucosal HCO3(-) is a key element in preventing epithelial damage, and knowledge about HCO3(-) transport processes, including the role of the cystic fibrosis transmembrane conductance regulator channel, and their neurohumoral control are in rapid progress.
Collapse
Affiliation(s)
- G Flemström
- Department of Physiology at Uppsala University, SE-751 23 Uppsala, Sweden
| | | |
Collapse
|