1
|
Ikeda-Ohtsubo W, Brugman S, Warden CH, Rebel JMJ, Folkerts G, Pieterse CMJ. How Can We Define "Optimal Microbiota?": A Comparative Review of Structure and Functions of Microbiota of Animals, Fish, and Plants in Agriculture. Front Nutr 2018; 5:90. [PMID: 30333981 PMCID: PMC6176000 DOI: 10.3389/fnut.2018.00090] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022] Open
Abstract
All multicellular organisms benefit from their own microbiota, which play important roles in maintaining the host nutritional health and immunity. Recently, the number of studies on the microbiota of animals, fish, and plants of economic importance is rapidly expanding and there are increasing expectations that productivity and sustainability in agricultural management can be improved by microbiota manipulation. However, optimizing microbiota is still a challenging task because of the lack of knowledge on the dominant microorganisms or significant variations between microbiota, reflecting sampling biases, different agricultural management as well as breeding backgrounds. To offer a more generalized view on microbiota in agriculture, which can be used for defining criteria of “optimal microbiota” as the goal of manipulation, we summarize here current knowledge on microbiota on animals, fish, and plants with emphasis on bacterial community structure and metabolic functions, and how microbiota can be affected by domestication, conventional agricultural practices, and use of antimicrobial agents. Finally, we discuss future tasks for defining “optimal microbiota,” which can improve host growth, nutrition, and immunity and reduce the use of antimicrobial agents in agriculture.
Collapse
Affiliation(s)
- Wakako Ikeda-Ohtsubo
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sylvia Brugman
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Craig H Warden
- Departments of Pediatrics, Neurobiology Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Johanna M J Rebel
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
2
|
Adlimoghaddam A, Sabbir MG, Albensi BC. Ammonia as a Potential Neurotoxic Factor in Alzheimer's Disease. Front Mol Neurosci 2016; 9:57. [PMID: 27551259 PMCID: PMC4976099 DOI: 10.3389/fnmol.2016.00057] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
Ammonia is known to be a potent neurotoxin that causes severe negative effects on the central nervous system. Excessive ammonia levels have been detected in the brain of patients with neurological disorders such as Alzheimer disease (AD). Therefore, ammonia could be a factor contributing to the progression of AD. In this review, we provide an introduction to the toxicity of ammonia and putative ammonia transport proteins. We also hypothesize how ammonia may be linked to AD. Additionally, we discuss the evidence that support the hypothesis that ammonia is a key factor contributing to AD progression. Lastly, we summarize the old and new experimental evidence that focuses on energy metabolism, mitochondrial function, inflammatory responses, excitatory glutamatergic, and GABAergic neurotransmission, and memory in support of our ammonia-related hypotheses of AD.
Collapse
Affiliation(s)
- Aida Adlimoghaddam
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada
| | - Mohammad G Sabbir
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital ResearchWinnipeg, MB, Canada; Department of Pharmacology & Therapeutics, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
3
|
Methylamine induced hypophagia is mediated via dopamine D1 and D2 receptors in neonatal meat chicks. Vet Res Commun 2015; 40:21-7. [PMID: 26685977 DOI: 10.1007/s11259-015-9649-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/14/2015] [Indexed: 12/19/2022]
Abstract
Recently, methylamine has been found as an endogenous amine, which is controlling food intake in mammals. However, there is no evidence about the effect of methylamine on feeding behavior in poultry. So, the present study was designed to evaluate the effect of intracerebroventricular (ICV) injection of methylamine and involvement of central methylamine/dopaminergic systems on feeding behavior in neonatal meat type chicks. In experiment 1, chicks were ICV injected with different doses of methylamine (0.48, 0.96, 1.44, 1.92 and 2.40 μmol). In experiment 2, chicks received a dose of either the control solution, 2.40 μmol methylamine, 125 nmol L-DOPA (dopamine precursor) or a combination of methylamine plus L-DOPA. Experiments 3-7 were similar to experiment 2 except that 150 nmol 6-OHDA (dopamine synthase inhibitor), 5 nmol SCH23390 (D1 receptor antagonist), 5 nmol AMI-193 (D2 receptor antagonist), 6.4 nmol NGB2904 (D3 receptor antagonist) and 6 nmol L-741, 742 (D4 receptor antagonist) were used instead of 125 nmol L-DOPA, respectively. Cumulative food intake was determined until 2 h post-injection. According to the results, methylamine significantly decreased food intake in a dose dependent manner (p < 0.05). The inhibitory effect of methylamine on food intake was significantly attenuated by 6-OHDA, SCH23390 and AMI-193 (P < 0.05), but NGB2904 and L-741, 742 had no effect on food intake induced by methylamine. In addition, hypophagic effect of methylamine significantly amplified by L-DOPA (P < 0.05). These results suggest that methylamine decrease food intake and there is an interaction between methylamine and dopaminergic system via D1 and D2 receptors in chickens.
Collapse
|
4
|
Worrell RT, Merk L, Matthews JB. Ammonium transport in the colonic crypt cell line, T84: role for Rhesus glycoproteins and NKCC1. Am J Physiol Gastrointest Liver Physiol 2008; 294:G429-40. [PMID: 18032481 DOI: 10.1152/ajpgi.00251.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although colonic lumen NH(4)(+) levels are high, 15-44 mM normal range in humans, relatively few studies have addressed the transport mechanisms for NH(4)(+). More extensive studies have elucidated the transport of NH(4)(+) in the kidney collecting duct, which involves a number of transporter processes also present in the distal colon. Similar to NH(4)(+) secretion in the renal collecting duct, we show that the distal colon secretory model, T84 cell line, has the capacity to secrete NH(4)(+) and maintain an apical-to-basolateral NH(4)(+) gradient. NH(4)(+) transport in the secretory direction was supported by basolateral NH(4)(+) loading on NKCC1, Na(+)-K(+)-ATPase, and the NH(4)(+) transporter, RhBG. NH(4)(+) was transported on NKCC1 in T84 cells nearly as well as K(+) as determined by bumetanide-sensitive (86)Rb-uptake. (86)Rb-uptake and ouabain-sensitive current measurement indicated that NH(4)(+) is transported by Na(+)-K(+)-ATPase in these cells to an equal extent as K(+). T84 cells expressed mRNA for the basolateral NH(4)(+) transporter RhBG and the apical NH(4)(+) transporter RhCG. Net NH(4)(+) transport in the secretory direction determined by (14)C-methylammonium (MA) uptake and flux occurred in T84 cells suggesting functional RhG protein activity. The occurrence of NH(4)(+) transport in the secretory direction within a colonic crypt cell model likely serves to minimize net absorption of NH(4)(+) because of surface cell NH(4)(+) absorption. These findings suggest that we rethink the present limited understanding of NH(4)(+) handling by the distal colon as being due solely to passive absorption.
Collapse
Affiliation(s)
- Roger T Worrell
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45219-0581, USA.
| | | | | |
Collapse
|
5
|
Raimondi L, Alfarano C, Pacini A, Livi S, Ghelardini C, DeSiena G, Pirisino R. Methylamine-dependent release of nitric oxide and dopamine in the CNS modulates food intake in fasting rats. Br J Pharmacol 2007; 150:1003-10. [PMID: 17339841 PMCID: PMC2013916 DOI: 10.1038/sj.bjp.0707170] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Methylamine is an endogenous aliphatic amine exhibiting anorexigenic properties in mice. The aim of this work was to show whether methylamine also modifies feeding behaviour in rats and, if so, to identify the mediator(s) responsible for such effects. EXPERIMENTAL APPROACH Microdialysis experiments with the probe inserted in the periventricular hypothalamic nucleus were carried out in 12 h starved, freely moving rats. Collected perfusate samples following methylamine injection (i.c.v.) were analysed for nitric oxide by chemiluminescence and for dopamine and 5-hydroxytryptamine content by HPLC. Kv1.6 potassium channel expression was reduced by antisense strategy and this decrease quantified by semi-quantitative RT-PCR analysis. KEY RESULTS Methylamine showed biphasic dose-related effects on rat feeding. At doses of 15-30 microg per rat, it was hyperphagic whereas higher doses (60-80 microg) were hypophagic. Methylamine stimulated central nitric oxide (+115% vs. basal) following hyperphagic and dopamine release (60% over basal values) at hypophagic doses, respectively. Treatment with L-N(G)-nitro-L-arginine-methyl ester (i.c.v. 2 microg 10 microl(-1)) or with alpha-methyl-p-tyrosine (i.p. 100 mg kg(-1)) before methylamine injection, reduced nitric oxide output and hyperphagia, or dopamine release and hypophagia respectively. Moreover, hypophagia and hyperphagia, as well as nitric oxide and dopamine release were significantly reduced by down-regulating brain Kv1.6 potassium channel expression. CONCLUSIONS AND IMPLICATIONS The effects of methylamine on feeding depend on the hypothalamic release of nitric oxide and dopamine as a result of interaction at the Kv1.6 channels. The study of methylamine levels in the CNS may provide new perspectives on the physiopathology of alimentary behaviour.
Collapse
Affiliation(s)
- L Raimondi
- Department of Preclinical and Clinical Pharmacology, University of Florence Florence, Italy
| | - C Alfarano
- Department of Preclinical and Clinical Pharmacology, University of Florence Florence, Italy
| | - A Pacini
- Department of Anatomy, Histology, Forensic Medicine, University of Florence Florence, Italy
| | - S Livi
- Department of Pharmacology, University of Rome La Sapienza Rome, Italy
| | - C Ghelardini
- Department of Preclinical and Clinical Pharmacology, University of Florence Florence, Italy
| | - G DeSiena
- Department of Preclinical and Clinical Pharmacology, University of Florence Florence, Italy
| | - R Pirisino
- Department of Preclinical and Clinical Pharmacology, University of Florence Florence, Italy
- Author for correspondence:
| |
Collapse
|
6
|
Worrell RT, Best A, Crawford OR, Xu J, Soleimani M, Matthews JB. Apical ammonium inhibition of cAMP-stimulated secretion in T84 cells is bicarbonate dependent. Am J Physiol Gastrointest Liver Physiol 2005; 289:G768-78. [PMID: 16002564 DOI: 10.1152/ajpgi.00451.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Normal human colonic luminal (NH(4)(+)) concentration ([NH(4)(+)]) ranges from approximately 10 to 100 mM. However, the nature of the effects of NH(4)(+) on transport, as well as NH(4)(+) transport itself, in colonic epithelium is poorly understood. We elucidate here the effects of apical NH(4)(+) on cAMP-stimulated Cl(-) secretion in colonic T84 cells. In HEPES-buffered solutions, 10 mM apical NH(4)(+) had no significant effect on cAMP-stimulated current. In contrast, 10 mM apical NH(4)(+) reduced current within 5 min to 61 +/- 4% in the presence of 25 mM HCO(3)(-). Current inhibition was not simply due to an increase in extracellular K(+)-like cations, in that the current magnitude was 95 +/- 5% with 10 mM apical K(+) and 46 +/- 3% with 10 mM apical NH(4)(+) relative to that with 5 mM apical K(+). We previously demonstrated that inhibition of Cl(-) secretion by basolateral NH(4)(+) occurs in HCO(3)(-)-free conditions and exhibits anomalous mole fraction behavior. In contrast, apical NH(4)(+) inhibition of current in HCO(3)(-) buffer did not show anomalous mole fraction behavior and followed the absolute [NH(4)(+)] in K(+)-NH(4)(+) mixtures, where K(+) concentration + [NH(4)(+)] = 10 mM. The apical NH(4)(+) inhibitory effect was not prevented by 100 microM methazolamide, suggesting no role for apical carbonic anhydrase. However, apical NH(4)(+) inhibition of current was prevented by 10 min of pretreatment of the apical surface with 500 microM DIDS, 100 microM 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), or 25 microM niflumic acid, suggesting a role for NH(4)(+) action through an apical anion exchanger. mRNA and protein for the apical anion exchangers SLC26A3 [downregulated in adenoma (DRA)] and SLC26A6 [putative anion transporter (PAT1)] were detected in T84 cells by RT-PCR and Northern and Western blots. DRA and PAT1 appear to associate with CFTR in the apical membrane. We conclude that the HCO(3)(-) dependence of apical NH(4)(+) inhibition of secretion is due to the action of NH(4)(+) on an apical anion exchanger.
Collapse
Affiliation(s)
- Roger T Worrell
- Epithelial Pathobioloby Group, Dept. of Surgery, University of Cincinnati, OH 45219, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Abdoun K, Stumpff F, Wolf K, Martens H. Modulation of electroneutral Na transport in sheep rumen epithelium by luminal ammonia. Am J Physiol Gastrointest Liver Physiol 2005; 289:G508-20. [PMID: 15831711 DOI: 10.1152/ajpgi.00436.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ammonia is an abundant fermentation product in the forestomachs of ruminants and the intestine of other species. Uptake as NH3 or NH4+ should modulate cytosolic pH and sodium-proton exchange via Na+/H+ exchanger (NHE). Transport rates of Na+, NH4+, and NH3 across the isolated rumen epithelium were studied at various luminal ammonia concentrations and pH values using the Ussing chamber method. The patch-clamp technique was used to identify an uptake route for NH4+. The data show that luminal ammonia inhibits electroneutral Na transport at pH 7.4 and abolishes it at 30 mM (P < 0.05). In contrast, at pH 6.4, ammonia stimulates Na transport (P < 0.05). Flux data reveal that at pH 6.4, approximately 70% of ammonia is absorbed in the form of NH4+, whereas at pH 7.4, uptake of NH3 exceeds that of NH4+ by a factor of approximately four. The patch-clamp data show a quinidine-sensitive permeability for NH4+ and K+ but not Na+. Conductance was 135 +/- 12 pS in symmetrical NH(4)Cl solution (130 mM). Permeability was modulated by the concentration of permeant ions, with P(K) > P(NH4) at high and P(NH4) > P(K) at lower external concentrations. Joint application of both ions led to anomalous mole fraction effects. In conclusion, the luminal pH determines the predominant form of ammonia absorption from the rumen and the effect of ammonia on electroneutral Na transport. Protons that enter the cytosol through potassium channels in the form of NH4+ stimulate and nonionic diffusion of NH3 blocks NHE, thus contributing to sodium transport and regulation of pH.
Collapse
Affiliation(s)
- Khalid Abdoun
- Dept. of Physiology, Faculty of Veterinary Sciences, University of Khartoum, Sudan
| | | | | | | |
Collapse
|
8
|
Weihrauch D, Morris S, Towle DW. Ammonia excretion in aquatic and terrestrial crabs. ACTA ACUST UNITED AC 2005; 207:4491-504. [PMID: 15579545 DOI: 10.1242/jeb.01308] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The excretory transport of toxic ammonia across epithelia is not fully understood. This review presents data combined with models of ammonia excretion derived from studies on decapod crabs, with a view to providing new impetus to investigation of this essential issue. The majority of crabs preserve ammonotely regardless of their habitat, which varies from extreme hypersaline to freshwater aquatic environments, and ranges from transient air exposure to obligate air breathing. Important components in the excretory process are the Na+/K+(NH4+)-ATPase and other membrane-bound transport proteins identified in many species, an exocytotic ammonia excretion mechanism thought to function in gills of aquatic crabs such as Carcinus maenas, and gaseous ammonia release found in terrestrial crabs, such as Geograpsus grayi and Ocypode quadrata. In addition, this review presents evidence for a crustacean Rhesus-like protein that shows high homology to the human Rhesus-like ammonia transporter both in its amino acid sequence and in its predicted secondary structure.
Collapse
Affiliation(s)
- Dirk Weihrauch
- Department of Biology, Division of Animal Physiology, University of Osnabrück, D-49076 Osnabrück, Germany.
| | | | | |
Collapse
|
9
|
Pirisino R, Ghelardini C, Pacini A, Galeotti N, Raimondi L. Methylamine, but not ammonia, is hypophagic in mouse by interaction with brain Kv1.6 channel subtype. Br J Pharmacol 2004; 142:381-9. [PMID: 15100162 PMCID: PMC1574941 DOI: 10.1038/sj.bjp.0705740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ammonia and methylamine (MET) are endogenous compounds increased during liver and renal failure, Alzheimer's disease, vascular dementia and diabetes, where they alter some neurobehavioural functions probably acting as potassium channel blockers. We have already described that potassium channel blockers including tetraethylammonium (TEA), ammonia and MET are hypophagic in mice. Antisense oligonucleotides (aODNs) against Shaker-like Kv1.1 gene abolished the effect of TEA but not of ammonia and MET. The central effects elicited in fasted mice by ammonia and MET were further studied. For MET, an ED(50) value 71.4+/-1.8 nmol mouse(-1) was calculated. The slope of the dose-response curves for these two compounds and the partial hypophagic effect elicited by ammonia indicated a different action mechanism for these amines. The aODNs pretreatments capable of temporarily reducing the expression of all seven known subtypes of Shaker-like gene or to inactivate specifically the Kv1.6 subtype abolished the hypophagic effect of MET but not that of ammonia. Reverse transcription-polymerase chain reaction, Western blot and immunohistochemical results indicate that a full expression in the brain of Kv1.6 is required only for the activity of MET, and confirms the different action mechanism of ammonia and MET.
Collapse
Affiliation(s)
- Renato Pirisino
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50134 Florence, Italy.
| | | | | | | | | |
Collapse
|
10
|
Worrell RT, Oghene J, Matthews JB. Ammonium effects on colonic Cl- secretion: anomalous mole fraction behavior. Am J Physiol Gastrointest Liver Physiol 2004; 286:G14-22. [PMID: 12946942 DOI: 10.1152/ajpgi.00196.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A significant amount of ammonium (NH4+) is absorbed by the colon. The nature of NH4+ effects on transport and NH4+ transport itself in colonic epithelium is poorly understood. The goal of this study was to elucidate the effects of NH4+ on cAMP-stimulated Cl- secretion in the colonic cell line T84. In HEPES-buffered solutions, application of basolateral NH4+ resulted in a reduced level of Cl- secretory current. The effect of NH4+ appears to occur by at least three mechanisms: 1) basolateral membrane depolarization, 2) a competitive effect with K+, and 3) a long-term (>20 min) increase in transepithelial resistance (TER). The competitive effect with K+ exhibits anomalous mole fraction behavior. Transepithelial current relative to that in 10 mM basolateral K+ was inhibited 15% by 10 mM NH4+ alone and by 30% with a mixture of 2 mM K+ and 8 mM NH4+. A mole fraction mix of 2 mM K+:8 mM NH4+ produced a greater inhibition of basolateral membrane K+ current than pure K+ or NH4+ alone. Similar anomalous behavior was also observed for inhibition of bumetanide-sensitive 36Cl- uptake, e.g., Na+-K+-2Cl- -cotransporter (NKCC-1). No anomalous effect was observed on Na+-K+-ATPase current. Both NKCC-1 and Na+-K+-ATPase activity were elevated in 10 mM NH4+ with respect to 10 mM K+. The effect on TER did not exhibit anomalous mole fraction behavior. The overall effect of basolateral NH4+ on cAMP-stimulated transport is dependent on the [K+]o /[NH4+]o ratio at the basolateral membrane, where o is outside of the cell.
Collapse
Affiliation(s)
- Roger T Worrell
- Epithelial Pathobiology Group, Department of Surgery, University of Cincinnati, Cincinnati, OH 45219, USA.
| | | | | |
Collapse
|
11
|
Cremin JD, Fitch MD, Fleming SE. Glucose alleviates ammonia-induced inhibition of short-chain fatty acid metabolism in rat colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 2003; 285:G105-14. [PMID: 12637251 DOI: 10.1152/ajpgi.00437.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ammonia decreased metabolism by rat colonic epithelial cells of butyrate and acetate to CO2 and ketones but increased oxidation of glucose and glutamine. Ammonia decreased cellular concentrations of oxaloacetate for all substrates evaluated. The extent to which butyrate carbon was oxidized to CO2 after entering the tricarboxylic acid (TCA) cycle was not significantly influenced by ammonia, suggesting there was no major shift toward efflux of carbon from the TCA cycle. Ammonia reduced entry of butyrate carbon into the TCA cycle, and the proportion of CoA esterified with acetate and butyrate correlated positively with the production of CO2 and ketone bodies. Also, ammonia reduced oxidation of propionate but had no effect on oxidation of 3-hydroxybutyrate. Inclusion of glucose, lactate, or glutamine with butyrate and acetate counteracted the ability of ammonia to decrease their oxidation. In rat colonocytes, it appears that ammonia suppresses short-chain fatty acid (SCFA) oxidation by inhibiting a step before or during their activation. This inhibition is alleviated by glucose and other energy-generating compounds. These results suggest that ammonia may only affect SCFA metabolism in vivo when glucose availability is compromised.
Collapse
Affiliation(s)
- John D Cremin
- Department of Nutritional Sciences and Toxicology, University of California-Berkeley, Berkeley, CA 94720-3104, USA
| | | | | |
Collapse
|
12
|
Pirisino R, Ghelardini C, Banchelli G, Galeotti N, Raimondi L. Methylamine and benzylamine induced hypophagia in mice: modulation by semicarbazide-sensitive benzylamine oxidase inhibitors and aODN towards Kv1.1 channels. Br J Pharmacol 2001; 134:880-6. [PMID: 11606329 PMCID: PMC1573009 DOI: 10.1038/sj.bjp.0704316] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2001] [Revised: 07/23/2001] [Accepted: 08/03/2001] [Indexed: 01/27/2023] Open
Abstract
1. In starved mice, the anorectic activity of methylamine (MET) and benzylamine (BZ), both substrates of semicarbazide-sensitive benzylamine oxidases (Bz-SSAO), was compared with that of the potassium channel blocking agents charybdotoxin (ChTX), tetraethylammonium (TEA), gliquidone (GLI), ammonium chloride (NH(4)(+)) and of the anoressants amphetamine (AMPH) and nicotine (NIC). After i.c.v. administration, an approximate ranking order of potency was: ChTX> or =AMPH>NIC=TEA> or =GLI> or =MET>BZ>NH(4)(+). 2. Clorgyline (2.5 mg kg(-1) i.p.) or deprenyl (10 mg kg(-1) i.p.) potentiated the anorectic effect of i.c.v.-administered BZ, NIC and AMPH. The effect of TEA was increased only by deprenyl, while MET, NH(4)(+), ChTX and GLI were not affected by either of the inhibitors. 3. The Bz-SSAO inhibitors alpha-aminoguanidine (50 mg kg(-1) i.p.), B24 (100 mg kg(-1) i.p.) and MDL 72274 (2.5 mg kg(-1) i.p.) potentiated the effect of i.p., but not of i.c.v.-administered MET. 4. Antisense oligodeoxyribonucleotides (aODN) to Kv1.1 potassium channels abolished the effect of BZ and TEA, but was ineffective in reducing the activity of MET and other compounds. 5. These results suggest that MET is endowed with peculiar hypophagic effects at dosage levels that are not able to affect gross behaviour in mice. The effect of MET, differently from BZ, seems unrelated to an increase in the central release of monoaminergic mediators, as well as to a Kv1.1 blocking activity. Through a reduction of the endogenous breakdown of MET, Bz-SSAO inhibitors enhance the central pharmacological activity of this amine.
Collapse
Affiliation(s)
- R Pirisino
- Department of Preclinical and Clinical Pharmacology, Viale Pieraccini, 6, 50134 Florence, Italy.
| | | | | | | | | |
Collapse
|