1
|
Xu MR, Lin CH, Wang CH, Wang SY. Investigate the metabolic changes in intestinal diseases by employing a 1H-NMR-based metabolomics approach on Caco-2 cells treated with cedrol. Biofactors 2025; 51:e2132. [PMID: 39415440 DOI: 10.1002/biof.2132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Mitochondrial dysfunction may precipitate intestinal dysfunction, while inflammatory bowel disease manifests as a chronic inflammatory ailment affecting the gastrointestinal tract. This condition disrupts the barrier function of the intestinal epithelium and alters metabolic products. Increasing mitochondrial adenosine triphosphate (ATP) synthesis in intestinal epithelial cells presents a promising avenue for colitis treatments. Nevertheless, the impact of cedrol on ATP and the intestinal barrier remains unexplored. Hence, this study is dedicated to examining the cedrol's protective effect on an inflammatory cocktail (IC)-induced intestinal epithelial barrier dysfunction in Caco-2 cells. The finding reveals that cedrol enhances ATP content and the transepithelial electrical resistance value in the intestinal epithelial barrier. Moreover, cedrol mitigates the IC-induced decrease in the messenger ribonucleic acid (mRNA) expression of tight junction proteins (ZO-1, Occludin, and Claudin-1), thereby ameliorating intestinal epithelial barrier dysfunction. Furthermore, nuclear magnetic resonance (NMR)-based metabolomic analysis indicated that IC-exposed Caco-2 cells are restored by cedrol treatments. Notably, cedrol elevates metabolites such as amino acids, thereby enhancing the intestinal barrier. In conclusion, cedrol alleviates IC-induced intestinal epithelial barrier dysfunction by promoting ATP-dependent proliferation of Caco-2 cells and bolstering amino acid levels to sustain tight junction messenger ribonucleic acid expression.
Collapse
Affiliation(s)
- Mo-Rong Xu
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Hsin Lin
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Chung Hsuan Wang
- Special Crop and Metabolome Discipline Cluster, Academy Circle Economy, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
- Special Crop and Metabolome Discipline Cluster, Academy Circle Economy, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Song L, Zhong P, Yu R, Yuan Y, Zhou Y, Qian Y, Yang S, Yi H, Yang Z, Zhao W. Effect of HDAC9-induced deacetylation of glycolysis-related GAPDH lysine 219 on rotavirus replication in rotavirus-infected Caco-2 cells. Virus Genes 2024; 60:621-634. [PMID: 39302542 PMCID: PMC11568057 DOI: 10.1007/s11262-024-02104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Post-translational modifications (PTMs), as epigenetic modifications, are significant in the interaction between virus and its host. However, it is unclear whether rotavirus (RV) causes changes in both the host cell epigenetic protein modification and the regulatory mechanism of viral replication. Here, we analyzed the proteome of Caco-2 cells to determine if acetylation modification occurred within the cells after RV infection. We found that glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein involved in glycolysis, was deacetylated at lysine 219 via histone deacetylase 9 (HDAC9) in 50 h after the RV infection. Remarkably, the deacetylation of GAPDH promoted RV replication. Finally, we found that glycolysis was alterable in Caco-2 cells by RV or the deacetylation of GAPDH lysine 219, using the Seahorse XF Glycolysis Stress Test. In conclusion, our results demonstrate for the first time that RV infection promoted deacetylation of GAPDH at lysine 219 in order to increase its own viral replication in Caco-2 cells.
Collapse
Affiliation(s)
- Lijun Song
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Peicheng Zhong
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Runyu Yu
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Yue Yuan
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Yujing Zhou
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Yupei Qian
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Siyan Yang
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Haosen Yi
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Zhiyan Yang
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Wenchang Zhao
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China.
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
3
|
Shen M, Sun Z, Wang C, Zhang S, Jia B, Huang B, Xu L, Zhu Z, Bu Q, Li C, Zhu R, Wei L, Wei K. Duck circovirus regulates the expression of duck CLDN2 protein by activating the MAPK-ERK pathway to affect its adhesion and infection. J Virol 2024; 98:e0049724. [PMID: 39345142 PMCID: PMC11495148 DOI: 10.1128/jvi.00497-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Duck circovirus (DuCV) is widely recognized as a prominent virus in China's duck farming industry, known for its ability to cause persistent infections and significant immunosuppression, which can lead to an increased susceptibility to secondary infections, posing a significant threat to the duck industry. Moreover, clinical evidence also indicates the potential vertical transmission of the virus through duck embryos to subsequent generations of ducklings. However, the limited availability of suitable cell lines for in vitro cultivation of DuCV has hindered further investigation into the molecular mechanisms underlying its infection and pathogenicity. In this study, we observed that oral DuCV infection in female breeding ducks can lead to oviduct, ovarian, and follicular infections. Subsequently, the infection can be transmitted to the fertilized eggs, resulting in the emergence of virus-carrying ducklings upon hatching. In contrast, the reproductive organs of male breeding ducks were unaffected by the virus, thus confirming that vertical transmission of DuCV primarily occurs through infection in female breeding ducks. By analyzing transcriptome sequencing data from the oviduct, we focused on claudin-2, a gene encoding the tight junction protein CLDN2 located on the cell membrane, which showed significantly increased expression in DuCV-infected oviducts of female breeding ducks. Notably, CLDN2 was confirmed to interact with the unique structural protein of DuCV, namely capsid protein (Cap), through a series of experimental approaches including co-immunoprecipitation (co-IP), GST pull-down, immunofluorescence, and adhesion-blocking assays. Furthermore, we demonstrated that the Cap protein binds to the extracellular loop structural domains EL1 and EL2 of CLDN2. Subsequently, by constructing a series of truncated bodies of the CLDN2 promoter region, we identified the transcription factor SP5 for CLDN2. Moreover, we found that DuCV infection triggers the activation of the MAPK-ERK signaling pathway in DEF cells and ducks, leading to an upregulation of SP5 and CLDN2 expression. This process ultimately leads to the transportation of mature CLDN2 to the cell surface, thereby facilitating increased virus adherence to the target organs. In conclusion, we discovered that DuCV utilizes host CLDN2 proteins to enhance adhesion and infection in oviducts and other target organs. Furthermore, we elucidated the signaling pathways involved in the interaction between DuCV Cap proteins and CLDN2, which provides valuable insights into the molecular mechanism underlying DuCV's infection and vertical transmission. IMPORTANCE Although duck circovirus (DuCV) poses a widespread infection and a serious hazard to the duck industry, the molecular mechanisms underlying DuCV infection and transmission remain elusive. We initially demonstrated vertical transmission of DuCV through female breeding ducks by simulating natural infection. Furthermore, a differentially expressed membrane protein CLDN2 was identified on the DuCV-infected oviduct of female ducks, and its extracellular loop structural domains EL1 and EL2 were identified as the interaction sites of DuCV Cap proteins. Moreover, the binding of DuCV Cap to CLDN2 triggered the intracellular MAPK-ERK pathway and activated the downstream transcription factor SP5. Importantly, we demonstrated that intracellular Cap also interacts with SP5, leading to upregulation of CLDN2 transcription and facilitating enhanced adherence of DuCV to target tissue, thereby promoting viral infection and transmission. Our study sheds light on the molecular mechanisms underlying vertical transmission of DuCV, highlighting CLDN2 as a promising target for drug development against DuCV infection.
Collapse
Affiliation(s)
- Mingyue Shen
- Shandong Provincial Key Laboratory of Zoonoses, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention,College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Zhenhong Sun
- College of Basic Medical Sciences, Shandong First Medical University, Tai'an, China
| | - Cheng Wang
- Shandong Academy of Chinese Medicine, Ji'nan, China
| | - Shuyu Zhang
- Shandong Provincial Key Laboratory of Zoonoses, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention,College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Baoyu Jia
- Shandong Provincial Key Laboratory of Zoonoses, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention,College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Bohan Huang
- Shandong Provincial Key Laboratory of Zoonoses, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention,College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Li Xu
- Shandong Provincial Key Laboratory of Zoonoses, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention,College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Zhiyu Zhu
- Shandong Provincial Key Laboratory of Zoonoses, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention,College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Qingyun Bu
- Shandong Provincial Key Laboratory of Zoonoses, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention,College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Chen Li
- Shandong Provincial Key Laboratory of Zoonoses, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention,College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Ruiliang Zhu
- Shandong Provincial Key Laboratory of Zoonoses, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention,College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Liangmeng Wei
- Shandong Provincial Key Laboratory of Zoonoses, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention,College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Kai Wei
- Shandong Provincial Key Laboratory of Zoonoses, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention,College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
4
|
Filippone A, Mannino D, Cucinotta L, Calapai F, Crupi L, Paterniti I, Esposito E. Rebalance of mitophagy by inhibiting LRRK2 improves colon alterations in an MPTP in vivo model. iScience 2024; 27:110980. [PMID: 39635134 PMCID: PMC11615202 DOI: 10.1016/j.isci.2024.110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/10/2024] [Accepted: 09/13/2024] [Indexed: 12/07/2024] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are common genetic causes of Parkinson's disease (PD). Studies demonstrated that variants in LRRK2 genetically link intestinal disorders to PD. We aimed to evaluate whether the selective inhibitor of LRRK2, PF-06447475 (PF-475), attenuates the PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in central nervous system (CNS) and in the gastrointestinal system. CD1 mice received four intraperitoneal injections of MPTP (20 mg/kg, total dose of 80 mg/kg) at 2 h intervals (day 1). After 24 h PF-475 was administered intraperitoneally at the doses of 2.5, 5, and 10 mg/kg for seven days. LRRK2 inhibition reduced brain α-synuclein and modulated mitophagy pathway and reduced pro-inflammatory markers and α-synuclein aggregates in colonic tissues through the modulation of mitophagy proteins. LRRK2 inhibition suppressed MPTP-induced enteric dopaminergic neuronal injury and protected tight junction in the colon. Results suggested that PF-475 may attenuate gastrointestinal dysfunction associated to PD.
Collapse
Affiliation(s)
- Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Laura Cucinotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Fabrizio Calapai
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| |
Collapse
|
5
|
Schreiber F, Balas I, Robinson MJ, Bakdash G. Border Control: The Role of the Microbiome in Regulating Epithelial Barrier Function. Cells 2024; 13:477. [PMID: 38534321 PMCID: PMC10969408 DOI: 10.3390/cells13060477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
The gut mucosal epithelium is one of the largest organs in the body and plays a critical role in regulating the crosstalk between the resident microbiome and the host. To this effect, the tight control of what is permitted through this barrier is of high importance. There should be restricted passage of harmful microorganisms and antigens while at the same time allowing the absorption of nutrients and water. An increased gut permeability, or "leaky gut", has been associated with a variety of diseases ranging from infections, metabolic diseases, and inflammatory and autoimmune diseases to neurological conditions. Several factors can affect gut permeability, including cytokines, dietary components, and the gut microbiome. Here, we discuss how the gut microbiome impacts the permeability of the gut epithelial barrier and how this can be harnessed for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Ghaith Bakdash
- Microbiotica Ltd., Cambridge CB10 1XL, UK; (F.S.); (I.B.); (M.J.R.)
| |
Collapse
|
6
|
Liu Z, Smith H, Criglar JM, Valentin AJ, Karandikar U, Zeng XL, Estes MK, Crawford SE. Rotavirus-mediated DGAT1 degradation: A pathophysiological mechanism of viral-induced malabsorptive diarrhea. Proc Natl Acad Sci U S A 2023; 120:e2302161120. [PMID: 38079544 PMCID: PMC10743370 DOI: 10.1073/pnas.2302161120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/11/2023] [Indexed: 12/18/2023] Open
Abstract
Gastroenteritis is among the leading causes of mortality globally in infants and young children, with rotavirus (RV) causing ~258 million episodes of diarrhea and ~128,000 deaths annually in infants and children. RV-induced mechanisms that result in diarrhea are not completely understood, but malabsorption is a contributing factor. RV alters cellular lipid metabolism by inducing lipid droplet (LD) formation as a platform for replication factories named viroplasms. A link between LD formation and gastroenteritis has not been identified. We found that diacylglycerol O-acyltransferase 1 (DGAT1), the terminal step in triacylglycerol synthesis required for LD biogenesis, is degraded in RV-infected cells by a proteasome-mediated mechanism. RV-infected DGAT1-silenced cells show earlier and increased numbers of LD-associated viroplasms per cell that translate into a fourfold-to-fivefold increase in viral yield (P < 0.05). Interestingly, DGAT1 deficiency in children is associated with diarrhea due to altered trafficking of key ion transporters to the apical brush border of enterocytes. Confocal microscopy and immunoblot analyses of RV-infected cells and DGAT1-/- human intestinal enteroids (HIEs) show a decrease in expression of nutrient transporters, ion transporters, tight junctional proteins, and cytoskeletal proteins. Increased phospho-eIF2α (eukaryotic initiation factor 2 alpha) in DGAT1-/- HIEs, and RV-infected cells, indicates a mechanism for malabsorptive diarrhea, namely inhibition of translation of cellular proteins critical for nutrient digestion and intestinal absorption. Our study elucidates a pathophysiological mechanism of RV-induced DGAT1 deficiency by protein degradation that mediates malabsorptive diarrhea, as well as a role for lipid metabolism, in the pathogenesis of gastroenteritis.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
- Department of Biosciences, Rice University, Houston, TX77005
| | - Hunter Smith
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| | - Jeanette M. Criglar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| | - Antonio J. Valentin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| | - Umesh Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
- Department of Medicine, Baylor College of Medicine, Houston, TX77030
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
7
|
Hong SH, Kwon JY, Lee SO, Lee HI, Hong SJ, Ju JW. Kudoa septempunctata Spores Cause Acute Gastroenteric Symptoms in Mouse and Musk Shrew Models as Evidenced In Vitro in Human Colon Cells. Pathogens 2023; 12:pathogens12050739. [PMID: 37242409 DOI: 10.3390/pathogens12050739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Kudoa septempunctata is a myxosporean parasite that infects the trunk muscles of olive flounder (Paralichthys olivaceus) and has been reported to cause foodborne illnesses in humans. However, the molecular mechanisms underlying K. septempunctata spore toxicity remain largely unknown. In this study, the gastroenteropathy of K. septempunctata was examined in human colon adenocarcinoma cells as well as experimental mice inoculated with spores. We found that K. septempunctata decreased transepithelial resistance and disrupted epithelial tight junctions by deleting ZO-1 in Caco-2 monolayers. Additionally, serotonin (5-HT), an emetic neurotransmitter, was increased in K. septempunctata-inoculated cells. In vivo, K. septempunctata spores induced diarrhea in suckling mice (80% in ddY and 70% in ICR mice), with a minimum provocative dose of 2 × 105 K. septempunctata spores. In house musk shrews, K. septempunctata induced emesis within 1 h and induced serotonin secretion in the intestinal epithelium. In conclusion, K. septempunctata may induce diarrhea and emesis by increasing intestinal permeability and serotonin secretion.
Collapse
Affiliation(s)
- Sung-Hee Hong
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, 187 Osongsaenmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju 28159, Republic of Korea
| | - Ji-Young Kwon
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, 187 Osongsaenmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju 28159, Republic of Korea
| | - Soon-Ok Lee
- College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Medical Research Center for Bioreaction to Reactive Oxygen Species, Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee-Il Lee
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, 187 Osongsaenmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju 28159, Republic of Korea
| | - Sung-Jong Hong
- College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Jung-Won Ju
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, 187 Osongsaenmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju 28159, Republic of Korea
| |
Collapse
|
8
|
Sodium butyrate protects against rotavirus-induced intestinal epithelial barrier damage by activating AMPK-Nrf2 signaling pathway in IPEC-J2 cells. Int J Biol Macromol 2023; 228:186-196. [PMID: 36565836 DOI: 10.1016/j.ijbiomac.2022.12.219] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Rotavirus (RV) mainly infects intestinal epithelial cells, which leads to diarrhea in newborn piglets with dysfunction in the intestinal mucosal mechanical barrier. Sodium butyrate (SB) is one of the metabolites excreted by gut microbes. However, the protective effect of SB on RV infection induced intestinal mucosal mechanical barrier injury and its potential mechanism has not been well elucidated. In the present study, IPEC-J2 cells with RV infection was a model of intestinal mucosal mechanical barrier injury. Our results demonstrated that the appropriate concentration of SB can effectively alleviate TJ structural damage and up-regulating the expression of TJ-related genes. Furthermore, the appropriate concentration of SB can effectively reverse the increase of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) level induced by RV infection. Meanwhile, the levels of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-px) and antioxidant proteins NAD(P)H dehydrogenase quinone 1 (NQO1) and heme oxygenase-1 (HO-1) were increased through SB treatment. In addition, we found that SB increased cellular antioxidant capacity by activating the adenosine monophosphate-activated protein kinase (AMPK)-nuclear factor erythroid 2-related factor (Nrf2) signaling pathway and the cytoprotective effect of SB is limited by GPR109A siRNA. Thus, our findings revealed that SB reduces oxidative stress caused by RV infection and restores the intestinal mucosal mechanical barrier function by activating the AMPK-Nrf2 signal pathway mediated by the receptor GPR109A.
Collapse
|
9
|
Chamseddine D, Mahmud SA, Westfall AK, Castoe TA, Berg RE, Pellegrino MW. The mitochondrial UPR regulator ATF5 promotes intestinal barrier function via control of the satiety response. Cell Rep 2022; 41:111789. [PMID: 36516750 PMCID: PMC9805788 DOI: 10.1016/j.celrep.2022.111789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/08/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Organisms use several strategies to mitigate mitochondrial stress, including the activation of the mitochondrial unfolded protein response (UPRmt). The UPRmt in Caenorhabditis elegans, regulated by the transcription factor ATFS-1, expands on this recovery program by inducing an antimicrobial response against pathogens that target mitochondrial function. Here, we show that the mammalian ortholog of ATFS-1, ATF5, protects the host during infection with enteric pathogens but, unexpectedly, by maintaining the integrity of the intestinal barrier. Intriguingly, ATF5 supports intestinal barrier function by promoting a satiety response that prevents obesity and associated hyperglycemia. This consequently averts dysregulated glucose metabolism that is detrimental to barrier function. Mechanistically, we show that intestinal ATF5 stimulates the satiety response by transcriptionally regulating the gastrointestinal peptide hormone cholecystokinin, which promotes the secretion of the hormone leptin. We propose that ATF5 protects the host from enteric pathogens by promoting intestinal barrier function through a satiety-response-mediated metabolic control mechanism.
Collapse
Affiliation(s)
- Douja Chamseddine
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Siraje A Mahmud
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Aundrea K Westfall
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Rance E Berg
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Mark W Pellegrino
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
10
|
Rodríguez-Viso P, Domene A, Vélez D, Devesa V, Monedero V, Zúñiga M. Mercury toxic effects on the intestinal mucosa assayed on a bicameral in vitro model: Possible role of inflammatory response and oxidative stress. Food Chem Toxicol 2022; 166:113224. [PMID: 35700822 DOI: 10.1016/j.fct.2022.113224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Exposure to mercury (Hg) mostly occurs through diet, where it is mainly found as inorganic Hg [Hg(II)] or methylmercury (MeHg). In vivo studies have linked its exposure with neurological and renal diseases, however, its toxic effects upon the gastrointestinal tract are largely unknown. In order to evaluate the effect of Hg on intestinal mucosa, a bicameral system was employed with co-cultures of Caco-2 and HT29-MTX intestinal epithelial cells and THP-1 macrophages. Cells were exposed to Hg(II) and MeHg (0.1, 0.5, 1 mg/L) during 11 days. The results evidenced a greater pro-inflammatory response in cells exposed to Hg with increments of IL-8 (15-126%) and IL-1β release (39-63%), mainly induced by macrophages which switched to a M1 phenotype. A pro-oxidant response was also observed in both cell types with an increase in ROS/RNS levels (44-140%) and stress proteins expression. Intestinal cells treated with Hg displayed structural abnormalities, hypersecretion of mucus and defective tight junctions. An increased paracellular permeability (123-170%) at the highest concentrations of Hg(II) and MeHg and decreased capacity to restore injuries in the cell monolayer were also observed. All these toxic effects were governed by various inflammatory signalling pathways (p38 MAPK, JNK and NF-κB).
Collapse
Affiliation(s)
- Pilar Rodríguez-Viso
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Adrián Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
11
|
Melnik LI, Garry RF. Enterotoxigenic Escherichia coli Heat-Stable Toxin and Ebola Virus Delta Peptide: Similarities and Differences. Pathogens 2022; 11:pathogens11020170. [PMID: 35215114 PMCID: PMC8878840 DOI: 10.3390/pathogens11020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) STb toxin exhibits striking structural similarity to Ebola virus (EBOV) delta peptide. Both ETEC and EBOV delta peptide are enterotoxins. Comparison of the structural and functional similarities and differences of these two toxins illuminates features that are important in induction of pathogenesis by a bacterial and viral pathogen.
Collapse
Affiliation(s)
- Lilia I. Melnik
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Viral Hemorrhagic Fever Consortium, New Orleans, LA 70112, USA
- Correspondence: ; Tel.: +1-(504)988-3818
| | - Robert F. Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Viral Hemorrhagic Fever Consortium, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
Tugizov S. Virus-associated disruption of mucosal epithelial tight junctions and its role in viral transmission and spread. Tissue Barriers 2021; 9:1943274. [PMID: 34241579 DOI: 10.1080/21688370.2021.19432749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Oropharyngeal, airway, intestinal, and genital mucosal epithelia are the main portals of entry for the majority of human pathogenic viruses. To initiate systemic infection, viruses must first be transmitted across the mucosal epithelium and then spread across the body. However, mucosal epithelia have well-developed tight junctions, which have a strong barrier function that plays a critical role in preventing the spread and dissemination of viral pathogens. Viruses can overcome these barriers by disrupting the tight junctions of mucosal epithelia, which facilitate paracellular viral penetration and initiate systemic disease. Disruption of tight and adherens junctions may also release the sequestered viral receptors within the junctional areas, and liberation of hidden receptors may facilitate viral infection of mucosal epithelia. This review focuses on possible molecular mechanisms of virus-associated disruption of mucosal epithelial junctions and its role in transmucosal viral transmission and spread.
Collapse
Affiliation(s)
- Sharof Tugizov
- Department of Medicine, School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Tugizov S. Virus-associated disruption of mucosal epithelial tight junctions and its role in viral transmission and spread. Tissue Barriers 2021; 9:1943274. [PMID: 34241579 DOI: 10.1080/21688370.2021.1943274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Oropharyngeal, airway, intestinal, and genital mucosal epithelia are the main portals of entry for the majority of human pathogenic viruses. To initiate systemic infection, viruses must first be transmitted across the mucosal epithelium and then spread across the body. However, mucosal epithelia have well-developed tight junctions, which have a strong barrier function that plays a critical role in preventing the spread and dissemination of viral pathogens. Viruses can overcome these barriers by disrupting the tight junctions of mucosal epithelia, which facilitate paracellular viral penetration and initiate systemic disease. Disruption of tight and adherens junctions may also release the sequestered viral receptors within the junctional areas, and liberation of hidden receptors may facilitate viral infection of mucosal epithelia. This review focuses on possible molecular mechanisms of virus-associated disruption of mucosal epithelial junctions and its role in transmucosal viral transmission and spread.
Collapse
Affiliation(s)
- Sharof Tugizov
- Department of Medicine, School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Tight junction protein claudin-2 promotes cell entry of Bombyx mori cypovirus. Appl Microbiol Biotechnol 2021; 105:6019-6031. [PMID: 34324010 DOI: 10.1007/s00253-021-11456-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
Claudin-2 is a major component of tight junctions (TJs), which play an important role in reovirus entry into host cells. The Bombyx mori cytoplasmic polyhedosis virus (BmCPV) relates to the cypovirus strain of the reovirus family. So far, the role of claudin-2 in the process of BmCPV infection is not known. In the present study, it was observed that increasing expression of the claudin-2 gene (CLDN2) may concomitantly elevate BmCPV infection. Contrarily, knockdown of CLDN2 expression by siRNAs can reduce BmCPV infection. Similarly, antibody-based blockage of claudin-2 could also decrease BmCPV cell entry. These results suggest that claudin-2 can promote BmCPV infection in vitro. Moreover, immunofluorescence (IF) assays showed that claudin-2 can interact with BmCPV during viral infection. Specifically, co-immunoprecipitation experiments indicated that claudin-2 binds the BmCPV VP7 (instead of VP3 proteins). The interaction between VP7 and claudin-2 was further confirmed by bimolecular fluorescence complementation (BIFC). Altogether, our results suggest that BmCPV cell entry can be promoted upon interaction of VP7 with claudin-2. These findings provide new mechanistic insights related to BmCPV infection. KEY POINTS: •Claudin-2 could promote BmCPV infection of cells. •Claudin-2 interacted with BmCPV during BmCPV infection. •Claudin-2 could interact with BmCPV VP7 protein, but not with VP3 proteins.
Collapse
|
15
|
Desgraupes S, Hubert M, Gessain A, Ceccaldi PE, Vidy A. Mother-to-Child Transmission of Arboviruses during Breastfeeding: From Epidemiology to Cellular Mechanisms. Viruses 2021; 13:1312. [PMID: 34372518 PMCID: PMC8310101 DOI: 10.3390/v13071312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/18/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Most viruses use several entry sites and modes of transmission to infect their host (parenteral, sexual, respiratory, oro-fecal, transplacental, transcutaneous, etc.). Some of them are known to be essentially transmitted via arthropod bites (mosquitoes, ticks, phlebotomes, sandflies, etc.), and are thus named arthropod-borne viruses, or arboviruses. During the last decades, several arboviruses have emerged or re-emerged in different countries in the form of notable outbreaks, resulting in a growing interest from scientific and medical communities as well as an increase in epidemiological studies. These studies have highlighted the existence of other modes of transmission. Among them, mother-to-child transmission (MTCT) during breastfeeding was highlighted for the vaccine strain of yellow fever virus (YFV) and Zika virus (ZIKV), and suggested for other arboviruses such as Chikungunya virus (CHIKV), dengue virus (DENV), and West Nile virus (WNV). In this review, we summarize all epidemiological and clinical clues that suggest the existence of breastfeeding as a neglected route for MTCT of arboviruses and we decipher some of the mechanisms that chronologically occur during MTCT via breastfeeding by focusing on ZIKV transmission process.
Collapse
Affiliation(s)
- Sophie Desgraupes
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, 75015 Paris, France; (M.H.); (A.G.); (P.-E.C.)
- Université de Paris, 75013 Paris, France
- UMR Centre National de la Recherche Scientifique 3569, Institut Pasteur, 75015 Paris, France
| | - Mathieu Hubert
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, 75015 Paris, France; (M.H.); (A.G.); (P.-E.C.)
- Université de Paris, 75013 Paris, France
- UMR Centre National de la Recherche Scientifique 3569, Institut Pasteur, 75015 Paris, France
| | - Antoine Gessain
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, 75015 Paris, France; (M.H.); (A.G.); (P.-E.C.)
- Université de Paris, 75013 Paris, France
- UMR Centre National de la Recherche Scientifique 3569, Institut Pasteur, 75015 Paris, France
| | - Pierre-Emmanuel Ceccaldi
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, 75015 Paris, France; (M.H.); (A.G.); (P.-E.C.)
- Université de Paris, 75013 Paris, France
- UMR Centre National de la Recherche Scientifique 3569, Institut Pasteur, 75015 Paris, France
| | - Aurore Vidy
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, 75015 Paris, France; (M.H.); (A.G.); (P.-E.C.)
- Université de Paris, 75013 Paris, France
- UMR Centre National de la Recherche Scientifique 3569, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
16
|
Wang X, Yang Y, Yang X, Liu X, Wang X, Gao L, Yang C, Lan R, Bi J, Zhao Q, Yang G, Wang J, Lin Y, Liu J, Yin G. Classical swine fever virus infection suppresses claudin-1 expression to facilitate its replication in PK-15 cells. Microb Pathog 2021; 157:105012. [PMID: 34062228 DOI: 10.1016/j.micpath.2021.105012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022]
Abstract
Classical swine fever (CSF) is one of the most epidemic viral diseases in swine industry. The causative pathogen is CSF virus (CSFV), a small enveloped RNA virus of Flaviviridae family. Claudin-1 was reported to be involved in the infections of a number of viruses, including many from Flaviviridae family, but no studies have investigated the role of porcine claudin-1 during CSFV infection in PK-15 cells. In this study, on the one hand, we demonstrated that CSFV infection reduced the claudin-1 expression at both mRNA and protein levels; on the other hand, CSFV infection was enhanced after claudin-1 knockdown, but inhibited by claudin-1 overexpression in a dose-dependent manner. Furthermore, negative correlation was demonstrated between the claudin-1 expression and CSFV titer. In conclusion, claudin-1 might be a barrier for CSFV infection in PK-15 cells, while CSFV bypasses the barrier through lysosome mediated degradation of claudin-1, which could be repressed by bafilomycin A1. Although the elaborate mechanisms how claudin-1 plays its roles in CSFV infection require further investigations, this study may advance our understanding of the molecular host-pathogen interaction mechanisms underlying CSFV infection and suggests enhancement of porcine claudin-1 as a potential preventive or therapeutic strategy for CSF control.
Collapse
Affiliation(s)
- Xiangmin Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yu'ai Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xiaoying Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xiao Liu
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China; Department of Oncology-Pathology, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Xiaochun Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Libo Gao
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Chao Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Rui Lan
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Junlong Bi
- Institute of Science and Technology, Chuxiong Normal University, 546 Lucheng South Rd, Chuxiong, 675000, Yunnna, China
| | - Qian Zhao
- Center for Animal Disease Control and Prevention, Chuxiong, 675000, Yunnan, China
| | - Guishu Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jing Wang
- School of Clinical Medicine, Dali University, Dali, 671003, Yunnan, China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Jianping Liu
- School of Clinical Medicine, Dali University, Dali, 671003, Yunnan, China.
| | - Gefen Yin
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
17
|
Tight Junctions as a Key for Pathogens Invasion in Intestinal Epithelial Cells. Int J Mol Sci 2021; 22:ijms22052506. [PMID: 33801524 PMCID: PMC7958858 DOI: 10.3390/ijms22052506] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Tight junctions play a major role in maintaining the integrity and impermeability of the intestinal barrier. As such, they act as an ideal target for pathogens to promote their translocation through the intestinal mucosa and invade their host. Different strategies are used by pathogens, aimed at directly destabilizing the junctional network or modulating the different signaling pathways involved in the modulation of these junctions. After a brief presentation of the organization and modulation of tight junctions, we provide the state of the art of the molecular mechanisms leading to permeability breakdown of the gut barrier as a consequence of tight junctions’ attack by pathogens, including bacteria, viruses, fungi, and parasites.
Collapse
|
18
|
Analysis of Intestinal Mucosa Integrity and GLP-2 Gene Functions upon Porcine Epidemic Diarrhea Virus Infection in Pigs. Animals (Basel) 2021; 11:ani11030644. [PMID: 33804466 PMCID: PMC8000733 DOI: 10.3390/ani11030644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infects intestinal epithelial cells, destroys the intestinal mucosal barrier and then causes diarrhea in piglets. Glucagon-like peptide-2 (GLP-2) is a specific intestinal growth hormone that promotes the repair of damaged intestinal mucosa and improves the intestinal barrier. In this study, we investigated the functions of porcine GLP-2 gene in regulating PEDV infection. The intestinal tissues with damaged intestinal structures caused by PEDV infection were first confirmed and collected. Expression analysis indicated that the GLP-2 gene was expressed in the duodenum, jejunum and ileum tissues, and the mRNA level was significantly down-regulated in jejunum and ileum of piglets with damaged intestinal mucosa. Infection of PEDV to porcine small intestinal epithelial cells in vitro showed that GLP-2 gene was significantly decreased, which was consistent with the expression pattern in intestinal tissues. In addition, we silenced the GLP-2 gene by shRNA interfering and found that the copy numbers of PEDV were remarkably increased in the GLP-2 gene silencing cells. Our findings suggest that the GLP-2 gene was potentially involved in regulating PEDV infection and in maintaining the integrity of the intestinal mucosal barrier structure, which could contribute to our understanding of the mechanisms of PEDV pathogenesis and provide a theoretical basis for the identification and application of resistant genes in pig selective breeding for porcine epidemic diarrhea.
Collapse
|
19
|
Chang-Graham AL, Perry JL, Engevik MA, Engevik KA, Scribano FJ, Gebert JT, Danhof HA, Nelson JC, Kellen JS, Strtak AC, Sastri NP, Estes MK, Britton RA, Versalovic J, Hyser JM. Rotavirus induces intercellular calcium waves through ADP signaling. Science 2020; 370:370/6519/eabc3621. [PMID: 33214249 PMCID: PMC7957961 DOI: 10.1126/science.abc3621] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/16/2020] [Indexed: 01/14/2023]
Abstract
Rotavirus causes severe diarrheal disease in children by broadly dysregulating intestinal homeostasis. However, the underlying mechanism(s) of rotavirus-induced dysregulation remains unclear. We found that rotavirus-infected cells produce paracrine signals that manifested as intercellular calcium waves (ICWs), observed in cell lines and human intestinal enteroids. Rotavirus ICWs were caused by the release of extracellular adenosine 5'-diphosphate (ADP) that activated P2Y1 purinergic receptors on neighboring cells. ICWs were blocked by P2Y1 antagonists or CRISPR-Cas9 knockout of the P2Y1 receptor. Blocking the ADP signal reduced rotavirus replication, inhibited rotavirus-induced serotonin release and fluid secretion, and reduced diarrhea severity in neonatal mice. Thus, rotavirus exploited paracrine purinergic signaling to generate ICWs that amplified the dysregulation of host cells and altered gastrointestinal physiology to cause diarrhea.
Collapse
Affiliation(s)
- Alexandra L. Chang-Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Jacob L. Perry
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Melinda A. Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, USA,Department of Pathology, Texas Children’s Hospital, USA
| | - Kristen A. Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Francesca J. Scribano
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - J. Thomas Gebert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Joel C. Nelson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA
| | - Joseph S. Kellen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Alicia C. Strtak
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Narayan P. Sastri
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA,Department of Medicine, Gastroenterology and Hepatology, Baylor College of Medicine, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, USA,Department of Pathology, Texas Children’s Hospital, USA
| | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA,Corresponding author. Correspondence and requests for materials should be addressed to J.H.
| |
Collapse
|
20
|
Guerrero R, Guerrero C, Acosta O. Induction of Cell Death in the Human Acute Lymphoblastic Leukemia Cell Line Reh by Infection with Rotavirus Isolate Wt1-5. Biomedicines 2020; 8:E242. [PMID: 32722005 PMCID: PMC7460319 DOI: 10.3390/biomedicines8080242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022] Open
Abstract
Cancer is a major health problem that poses a great challenge to health care systems worldwide. Tools for cancer treatment have rapidly advanced in recent years, resulting in therapeutic strategies which are alternative and complementary to conventional treatment. To identify the cell surface receptors used by a tumor cell-adapted rotavirus and the cell death markers induced by its infection, we use Wt1-5, a rotavirus isolate recently adapted to tumor cells, to infect the human acute lymphoblastic leukemia cell line, Reh. The expression of cell surface receptors used by Wt1-5 was determined using flow cytometry and an antibody blocking assay to test for their implication in virus infection. Viral antigens and cell death markers induced by rotavirus infection were followed by flow cytometric analysis. The present study showed that rotavirus Wt1-5 was able to use cell surface proteins such as heat shock proteins (HSPs) 90, 70, 60 and 40, Hsc70, PDI and integrin β3. Rotavirus Wt1-5 induced cytotoxic effects including changes in cell membrane permeability, alteration of mitochondrial membrane potential, DNA fragmentation and activation of cell death signaling. Wt1-5 deserves to be further studied as a candidate oncolytic agent due to its ability to induce apoptosis in lymphoblastic leukemia-derived cells.
Collapse
Affiliation(s)
| | - Carlos Guerrero
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 30 No. 45-03 Bloque 47, Ciudad Universitaria, Bogotá 111321, Colombia; (R.G.); (O.A.)
| | | |
Collapse
|
21
|
Wang J, Ji H. Tight Junction Proteins in the Weaned Piglet Intestine: Roles and Regulation. Curr Protein Pept Sci 2019; 20:652-660. [PMID: 30678619 DOI: 10.2174/1389203720666190125095122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 12/24/2022]
Abstract
The intestinal epithelial barrier plays a crucial role in the health and growth of weaned piglets. Proper epithelial function mainly depends on tight junctions (TJs), which act as both ion channels and a barrier against noxious molecules. TJs are multiprotein complexes consisting of transmembrane and membrane-associated proteins. Because the intestine in piglets is immature and incomplete, its structure and function are easily impaired by various stresses, infections, and food-related factors. Certain nutrients have been demonstrated to participate in intestinal TJ regulation. Probiotics, amino acids, fibers, oligosaccharide, and certain micronutrients can enhance barrier integrity and counteract infections through elevated TJ protein expression and distribution. In this review, the distribution and classification of intestinal TJs is described, the factors influencing TJs after weaning are summarized, and the regulation of weaning piglet intestinal TJs by nutrients is discussed.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
22
|
Shimizu Y, Shirasago Y, Suzuki T, Hata T, Kondoh M, Hanada K, Yagi K, Fukasawa M. Characterization of monoclonal antibodies recognizing each extracellular loop domain of occludin. J Biochem 2019; 166:297-308. [PMID: 31077306 DOI: 10.1093/jb/mvz037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/29/2019] [Indexed: 01/13/2023] Open
Abstract
The tight junction protein occludin (OCLN) is a four-pass transmembrane protein with two extracellular loops (ELs), and also functions as a co-receptor for hepatitis C virus (HCV). Recently, we reported the establishment of monoclonal antibodies (mAbs) recognizing each intact EL domain of OCLN that can strongly prevent HCV infection in vitro and in vivo, and these mAbs were applicable for flow cytometric (FCM) analysis, immunocytochemistry (ICC) and cell-based enzyme-linked immunosorbent assay. In the present study, we further examined the application of these anti-OCLN mAbs and characterized their binding properties. All four mAbs were available for immunoprecipitation. The three first EL (EL1)-recognizing mAbs were applicable for immunoblotting, but the second EL (EL2)-recognizing one was not. Using site-directed mutagenesis, we also determined residues of OCLN critical for recognition by each mAb. Our findings showed that the small loop between two cysteines of the EL2 domain is essential for the binding to one EL2-recognizing mAb and that the recognition regions by three EL1-recognizing mAbs overlap, but are not the same sites of EL1. To obtain a deeper understanding of OCLN biology and its potential as a therapeutic target, specific mAbs to detect or target OCLN in intact cells should be powerful tools for future studies.
Collapse
Affiliation(s)
- Yoshimi Shimizu
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo, Japan
| | - Yoshitaka Shirasago
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Takeru Suzuki
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Tomoyuki Hata
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
23
|
Kar M, Khan NA, Panwar A, Bais SS, Basak S, Goel R, Sopory S, Medigeshi GR. Zinc Chelation Specifically Inhibits Early Stages of Dengue Virus Replication by Activation of NF-κB and Induction of Antiviral Response in Epithelial Cells. Front Immunol 2019; 10:2347. [PMID: 31632411 PMCID: PMC6779808 DOI: 10.3389/fimmu.2019.02347] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Zinc is an essential micronutrient which regulates diverse physiological functions and has been shown to play a crucial role in viral infections. Zinc has a necessary role in the replication of many viruses, however, antiviral action of zinc has also been demonstrated in in vitro infection models most likely through induction of host antiviral responses. Therefore, depending on the host machinery that the virus employs at different stages of infection, zinc may either facilitate, or inhibit virus infection. In this study, we show that zinc plays divergent roles in rotavirus and dengue virus infections in epithelial cells. Dengue virus infection did not perturb the epithelial barrier functions despite the release of virus from the basolateral surface whereas rotavirus infection led to disruption of epithelial junctions. In rotavirus infection, zinc supplementation post-infection did not block barrier disruption suggesting that zinc does not affect rotavirus life-cycle or protects epithelial barriers post-infection suggesting the involvement of cellular pathways in the beneficial effect of zinc supplementation in enteric infections. Zinc depletion by N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) inhibited dengue virus and Japanese encephalitis virus (JEV) infection but had no effect on rotavirus. Time-of-addition experiments suggested that zinc chelation affected both early and late stages of dengue virus infectious cycle and zinc chelation abrogated dengue virus RNA replication. We show that transient zinc chelation induces ER stress and antiviral response by activating NF-kappaB leading to induction of interferon signaling. These results suggest that modulation of zinc homeostasis during virus infection could be a component of host antiviral response and altering zinc homeostasis may act as a potent antiviral strategy against flaviviruses.
Collapse
Affiliation(s)
- Meenakshi Kar
- Clinical and Cellular Virology Lab, Translational Health Science and Technology Institute, Faridabad, India
| | - Naseem Ahmed Khan
- Clinical and Cellular Virology Lab, Translational Health Science and Technology Institute, Faridabad, India
| | - Aleksha Panwar
- Clinical and Cellular Virology Lab, Translational Health Science and Technology Institute, Faridabad, India
| | - Sachendra S Bais
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Renu Goel
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Shailaja Sopory
- Pediatric Biology Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Guruprasad R Medigeshi
- Clinical and Cellular Virology Lab, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
24
|
Rotavirus Calcium Dysregulation Manifests as Dynamic Calcium Signaling in the Cytoplasm and Endoplasmic Reticulum. Sci Rep 2019; 9:10822. [PMID: 31346185 PMCID: PMC6658527 DOI: 10.1038/s41598-019-46856-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023] Open
Abstract
Like many viruses, rotavirus (RV) dysregulates calcium homeostasis by elevating cytosolic calcium ([Ca2+]cyt) and decreasing endoplasmic reticulum (ER) stores. While an overall, monophasic increase in [Ca2+]cyt during RV infection has been shown, the nature of the RV-induced aberrant calcium signals and how they manifest over time at the single-cell level have not been characterized. Thus, we generated cell lines and human intestinal enteroids (HIEs) stably expressing cytosolic and/or ER-targeted genetically-encoded calcium indicators to characterize calcium signaling throughout RV infection by time-lapse imaging. We found that RV induces highly dynamic [Ca2+]cyt signaling that manifest as hundreds of discrete [Ca2+]cyt spikes, which increase during peak infection. Knockdown of nonstructural protein 4 (NSP4) attenuates the [Ca2+]cyt spikes, consistent with its role in dysregulating calcium homeostasis. RV-induced [Ca2+]cyt spikes were primarily from ER calcium release and were attenuated by inhibiting the store-operated calcium entry (SOCE) channel Orai1. RV-infected HIEs also exhibited prominent [Ca2+]cyt spikes that were attenuated by inhibiting SOCE, underlining the relevance of these [Ca2+]cyt spikes to gastrointestinal physiology and role of SOCE in RV pathophysiology. Thus, our discovery that RV increases [Ca2+]cyt by dynamic calcium signaling, establishes a new, paradigm-shifting understanding of the spatial and temporal complexity of virus-induced calcium signaling.
Collapse
|
25
|
Shimizu Y, Yoneda K, Shirasago Y, Suzuki T, Tada M, Ishii-Watabe A, Sugiyama K, Suzuki T, Wakita T, Yagi K, Kondoh M, Fukasawa M. Human-rat chimeric anti-occludin monoclonal antibodies inhibit hepatitis C virus infection. Biochem Biophys Res Commun 2019; 514:785-790. [PMID: 31079928 DOI: 10.1016/j.bbrc.2019.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022]
Abstract
Occludin (OCLN), an integral tetra-spanning plasma membrane protein, is a host entry factor essential for hepatitis C virus (HCV) infection, making it a promising host-targeting molecule for HCV therapeutic intervention. We previously generated rat anti-OCLN monoclonal antibodies (mAbs) that strongly prevented HCV infection in vitro and in vivo. In the present study, we attempted to improve the druggability of the extracellular loop domain-recognizing anti-OCLN mAbs, namely clones 1-3 and 37-5, using genetic engineering. To avoid adverse reactions induced by antibody-dependent cellular cytotoxicity and enhance the antibody stability, we developed human-rat chimeric immunoglobulin G4 S228P mutant (IgG4m) forms of clones 1-3 and 37-5 (named Xi 1-3 and Xi 37-5, respectively) by grafting the variable regions of the light and heavy chains of each rat anti-OCLN mAb into those of human IgG4m. The constructed Xi 1-3 and Xi 37-5 chimeras demonstrated levels of affinity and specificity similar to each parental rat anti-OCLN mAb, and the Fcγ receptor Ⅲa was not activated by the antigen-bound chimeric mAbs, as expected. Both chimeric mAbs inhibited in vitro infection with various HCV genotypes. These results indicate that the IgG4m forms of human-rat chimeric anti-OCLN mAbs may be potential candidate molecules of host-targeting antivirals with pan-genotypic anti-HCV activity.
Collapse
Affiliation(s)
- Yoshimi Shimizu
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan; Department of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, 164-8530, Japan
| | - Kohei Yoneda
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Yoshitaka Shirasago
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Takeru Suzuki
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan; Department of Biological Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Minoru Tada
- Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Kanagawa, 210-9501, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Kanagawa, 210-9501, Japan
| | | | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Shizuoka, 431-3192, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| |
Collapse
|
26
|
Ahmed I, Roy BC, Raach RMT, Owens SM, Xia L, Anant S, Sampath V, Umar S. Enteric infection coupled with chronic Notch pathway inhibition alters colonic mucus composition leading to dysbiosis, barrier disruption and colitis. PLoS One 2018; 13:e0206701. [PMID: 30383855 PMCID: PMC6211731 DOI: 10.1371/journal.pone.0206701] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
Intestinal mucus layer disruption and gut microflora modification in conjunction with tight junction (TJ) changes can increase colonic permeability that allows bacterial dissemination and intestinal and systemic disease. We showed previously that Citrobacter rodentium (CR)-induced colonic crypt hyperplasia and/or colitis is regulated by a functional cross-talk between the Notch and Wnt/β-catenin pathways. In the current study, mucus analysis in the colons of CR-infected (108 CFUs) and Notch blocker Dibenzazepine (DBZ, i.p.; 10μmol/Kg b.w.)-treated mice revealed significant alterations in the composition of trace O-glycans and complex type and hybrid N-glycans, compared to CR-infected mice alone that preceded/accompanied alterations in 16S rDNA microbial community structure and elevated EUB338 staining. While mucin-degrading bacterium, Akkermansia muciniphila (A. muciniphila) along with Enterobacteriaceae belonging to Proteobacteria phyla increased in the feces, antimicrobial peptides Angiogenin-4, Intelectin-1 and Intelectin-2, and ISC marker Dclk1, exhibited dramatic decreases in the colons of CR-infected/DBZ-treated mice. Also evident was a loss of TJ and adherens junction protein immuno-staining within the colonic crypts that negatively impacted paracellular barrier. These changes coincided with the loss of Notch signaling and exacerbation of mucosal injury. In response to a cocktail of antibiotics (Metronidazole/ciprofloxacin) for 10 days, there was increased survival that coincided with: i) decreased levels of Proteobacteria, ii) elevated Dclk1 levels in the crypt and, iii) reduced paracellular permeability. Thus, enteric infections that interfere with Notch activity may promote mucosal dysbiosis that is preceded by changes in mucus composition. Controlled use of antibiotics seems to alleviate gut dysbiosis but may be insufficient to promote colonic crypt regeneration.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Badal C. Roy
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Rita-Marie T. Raach
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Sarah M. Owens
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Lijun Xia
- Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center Oklahoma City, Oklahoma, United States of America
| | - Shrikant Anant
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Venkatesh Sampath
- Division of Neonatology, Children’s Mercy Hospital, Kansas City, Missouri, United States of America
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
27
|
Rotavirus-Induced Early Activation of the RhoA/ROCK/MLC Signaling Pathway Mediates the Disruption of Tight Junctions in Polarized MDCK Cells. Sci Rep 2018; 8:13931. [PMID: 30224682 PMCID: PMC6141481 DOI: 10.1038/s41598-018-32352-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/06/2018] [Indexed: 02/02/2023] Open
Abstract
Intestinal epithelial tight junctions (TJ) are a major barrier restricting the entry of various harmful factors including pathogens; however, they also represent an important entry portal for pathogens. Although the rotavirus-induced early disruption of TJ integrity and targeting of TJ proteins as coreceptors are well-defined, the precise molecular mechanisms involved remain unknown. In the present study, infection of polarized MDCK cells with the species A rotavirus (RVA) strains human DS-1 and bovine NCDV induced a redistribution of TJ proteins into the cytoplasm, a reversible decrease in transepithelial resistance, and an increase in paracellular permeability. RhoA/ROCK/MLC signaling was identified as activated at an early stage of infection, while inhibition of this pathway prevented the rotavirus-induced early disruption of TJ integrity and alteration of TJ protein distribution. Activation of pMYPT, PKC, or MLCK, which are known to participate in TJ dissociation, was not observed in MDCK cells infected with either rotavirus strain. Our data demonstrated that binding of RVA virions or cogent VP8* proteins to cellular receptors activates RhoA/ROCK/MLC signaling, which alters TJ protein distribution and disrupts TJ integrity via contraction of the perijunctional actomyosin ring, facilitating virion access to coreceptors and entry into cells.
Collapse
|
28
|
Matondo A, Kim SS. Targeted-mitochondria antioxidants therapeutic implications in inflammatory bowel disease. J Drug Target 2017; 26:1-8. [DOI: 10.1080/1061186x.2017.1339196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Abel Matondo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Saxena A, Lopes F, Poon KKH, McKay DM. Absence of the NOD2 protein renders epithelia more susceptible to barrier dysfunction due to mitochondrial dysfunction. Am J Physiol Gastrointest Liver Physiol 2017; 313:G26-G38. [PMID: 28450277 DOI: 10.1152/ajpgi.00070.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 01/31/2023]
Abstract
Irregular mitochondria structure and reduced ATP in some patients with IBD suggest that metabolic stress contributes to disease. Loss-of-function mutation in the nucleotide-binding oligomerization domain (NOD)-2 gene is a major susceptibility trait for IBD. Hence, we assessed if loss of NOD2 further impairs the epithelial barrier function instigated by disruption of mitochondrial ATP synthesis via the hydrogen ionophore dinitrophenol (DNP). NOD2 protein (virtually undetectable in epithelia under basal conditions) was increased in T84 (human colon cell line) cells treated with noninvasive Escherichia coli + DNP (16 h). Increased intracellular bacteria in wild-type (WT) and NOD2 knockdown (KD) cells and colonoids from NOD2-/- mice were mediated by reactive oxygen species (ROS) and the MAPK ERK1/2 pathways as determined by cotreatment with the antioxidant mitoTEMPO and the ERK inhibitor U0126: ROS was upstream of ERK1/2 activation. Despite increased E. coli in DNP-treated NOD2 KD compared with WT cells, there were no differences in the internalization of fluorescent inert beads or dead E. coli particles. This suggests that lack of killing in the NOD2 KD cells was responsible for the increased numbers of viable intracellular bacteria; a conclusion supported by evidence of reduced autophagy in NOD2 KD T84 epithelia. Thus, in a two-hit hypothesis, decreased barrier function due to dysfunctional mitochondrial is amplified by lack of NOD2 in transporting enterocytes: subsequently, greater numbers of bacteria entering the mucosa would be a significant inflammatory threat especially since individuals with NOD2 mutations have compromised macrophage and Paneth cell responses to bacteria.NEW & NOTEWORTHY Increased internalization of bacteria by epithelia with dysfunctional mitochondria (reduced ATP) is potentiated if the cells lack nucleotide-binding oligomerization domain 2 (NOD2), mutations in which are inflammatory bowel disease-susceptibility traits. Uptake of bacteria was dependent on reactive oxygen species and MAP-kinase activity, and the increased viable intracellular bacteria in NOD2-/- cells likely reflect a reduced ability to recognize and kill bacteria. Thus a significant barrier defect occurs with NOD2 deficiency in conjunction with metabolic stress that could contribute to inflammation.
Collapse
Affiliation(s)
- Alpana Saxena
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fernando Lopes
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karen K H Poon
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derek M McKay
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Tight Junction Protein Occludin Is a Porcine Epidemic Diarrhea Virus Entry Factor. J Virol 2017; 91:JVI.00202-17. [PMID: 28275187 DOI: 10.1128/jvi.00202-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), the causative agent of porcine epidemic diarrhea, has caused huge economic losses in pig-producing countries. Although PEDV was long believed to replicate in the intestinal epithelium by using aminopeptidase N as a receptor, the mechanisms of PEDV infection are not fully characterized. In this study, we found that PEDV infection of epithelial cells results in disruption of the tight junctional distribution of occludin to its intracellular location. Overexpression of occludin in target cells makes them more susceptible to PEDV infection, whereas ablation of occludin expression by use of small interfering RNA (siRNA) in target cells significantly reduces their susceptibility to virus infection. However, the results observed with occludin siRNA indicate that occludin is not required for virus attachment. We conclude that occludin plays an essential role in PEDV infection at the postbinding stages. Furthermore, we observed that macropinocytosis inhibitors blocked occludin internalization and virus entry, indicating that virus entry and occludin internalization are closely coupled. However, the macropinocytosis inhibitors could not impede virus replication once the virus had entered host cells. This suggests that occludin internalization by macropinocytosis or a macropinocytosis-like process is involved in the virus entry events. Immunofluorescence confocal microscopy showed that PEDV was trapped at cellular junctional regions upon macropinocytosis inhibitor treatment, indicating that occludin may serve as a scaffold in the vicinity of virus entry. Collectively, these data show that occludin plays an essential role in PEDV infection during late entry events. Our observation may provide novel insights into PEDV infection and related pathogenesis.IMPORTANCE Tight junctions are highly specialized membrane domains whose main function is to attach adjacent cells to each other, thereby forming intercellular seals. Here we investigate, for the first time, the role of the tight junction protein occludin in PEDV infection. We observed that PEDV infection induced the internalization of occludin. By using genetic modification methods, we demonstrate that occludin plays an essential role in PEDV infection. Moreover, PEDV entry and occludin internalization seem to be closely coupled. Our findings reveal a new mechanism of PEDV infection.
Collapse
|
31
|
Tongxinluo Regulates Expression of Tight Junction Proteins and Alleviates Endothelial Cell Monolayer Hyperpermeability via ERK-1/2 Signaling Pathway in Oxidized Low-Density Lipoprotein-Induced Human Umbilical Vein Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4198486. [PMID: 28400842 PMCID: PMC5376437 DOI: 10.1155/2017/4198486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/13/2017] [Accepted: 03/02/2017] [Indexed: 12/26/2022]
Abstract
Vascular hyperpermeability resulting from distortion of endothelial junctions is associated with a number of cardiovascular diseases. Endothelial tight junction regulates the paracellular permeability of macromolecules, a function of Human Umbilical Vein Endothelial Cells (HUVEC) monolayers that can be regulated by oxidized Low-density Lipoprotein (ox-LDL). However, the understanding of drug regulation of vascular hyperpermeability is so far limited. This study thus aimed to investigate the role of Tongxinluo (TXL) in the maintenance of the vascular endothelial paracellular permeability. Here, changes in permeability were determined by measuring the paracellular flux of FITC-dextran 40000 (FD40), while protein expression and intercellular distribution were examined by western blot and immunofluorescence assay, respectively. We found that TXL alleviated the ox-LDL-induced increase in flux of FD40 and then reduced the hyperpermeability. Moreover, ox-LDL-induced disruptions of ZO-1, occludin, and claudin1 were also restored. This is via the activation of ERK1/2 in the vascular endothelial cells. Our results provide insights into the molecular mechanism by which TXL alleviates ox-LDL-induced hyperpermeability and provide the basis for further investigations of TXL as regulators of vascular barrier function.
Collapse
|
32
|
Vlasova AN, Amimo JO, Saif LJ. Porcine Rotaviruses: Epidemiology, Immune Responses and Control Strategies. Viruses 2017; 9:v9030048. [PMID: 28335454 PMCID: PMC5371803 DOI: 10.3390/v9030048] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Rotaviruses (RVs) are a major cause of acute viral gastroenteritis in young animals and children worldwide. Immunocompetent adults of different species become resistant to clinical disease due to post-infection immunity, immune system maturation and gut physiological changes. Of the 9 RV genogroups (A–I), RV A, B, and C (RVA, RVB, and RVC, respectively) are associated with diarrhea in piglets. Although discovered decades ago, porcine genogroup E RVs (RVE) are uncommon and their pathogenesis is not studied well. The presence of porcine RV H (RVH), a newly defined distinct genogroup, was recently confirmed in diarrheic pigs in Japan, Brazil, and the US. The complex epidemiology, pathogenicity and high genetic diversity of porcine RVAs are widely recognized and well-studied. More recent data show a significant genetic diversity based on the VP7 gene analysis of RVB and C strains in pigs. In this review, we will summarize previous and recent research to provide insights on historic and current prevalence and genetic diversity of porcine RVs in different geographic regions and production systems. We will also provide a brief overview of immune responses to porcine RVs, available control strategies and zoonotic potential of different RV genotypes. An improved understanding of the above parameters may lead to the development of more optimal strategies to manage RV diarrheal disease in swine and humans.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Joshua O Amimo
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi 30197, Kenya.
- Bioscience of Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi 30709, Kenya.
| | - Linda J Saif
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
33
|
Schweer WP, Pearce SC, Burrough ER, Schwartz K, Yoon KJ, Sparks JC, Gabler NK. The effect of porcine reproductive and respiratory syndrome virus and porcine epidemic diarrhea virus challenge on growing pigs II: Intestinal integrity and function. J Anim Sci 2016; 94:523-32. [PMID: 27065122 DOI: 10.2527/jas.2015-9836] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to determine if intestinal function and integrity is altered due to porcine reproductive and respiratory syndrome (PRRS) virus and porcine epidemic diarrhea (PED) virus infection in growing pigs. Forty-two gilts (16.8 ± 0.6 kg BW), naïve for PRRS and PED, were selected and randomly assigned to 1 of 4 treatments: 1) a control (CON; = 6), 2) PRRS virus challenge only (PRRS; = 12), 3) PED virus challenge only (; = 12), or 4) coinfection of PRRS + PED viruses (PRP; = 12). Treatments 2 and 4 were inoculated with a live field strain of PRRS virus on d 0 after inoculation. Treatments 3 and 4 were inoculated with PED virus on 14 d after inoculation (dpi) and all pigs were euthanized 7 d later (21 dpi). Infection with PRRS virus was determined by viremia and seroconversion. Fecal quantitative PCR was used to confirm PED virus infection. Control pigs remained PRRS and PED virus negative throughout the study. Compared with the CON, intestinal morphology was unaffected by PRRS. As expected, PED and PRP treatments resulted in duodenum, jejunum, and ileum villus atrophy compared with the CON treatment ( < 0.01). Ex vivo transepithelial electrical resistance (TER) did not differ between CON and PRRS pigs (P < 0.05) but was reduced by 40% in PED alone ( < 0.01). Interestingly, TER was increased ( < 0.01) in the PRP pigs. Active transport of glucose was increased in PRRS pigs over CON pigs ( < 0.01), whereas PED had pigs increased ( < 0.01) active glutamine transport over the CON pigs. Jejunum GLUT2 mRNA abundance and sucrase, maltase, and Na+/K+ adenosine triphosphatase activities tended to be increased in PRRS pigs compared with CON pigs ( < 0.06). The jejunum AA transporter, SLC6A14, and mucin 2 mRNA abundance tended to be increased in PED-only pigs ( < 0.10). These data suggest that PRRS infection supports a higher affinity for glucose uptake, whereas PED favors glutamine uptake. Interestingly, digestive machinery during PED challenge remained intact. Altogether, PED but not PRRS challenges alter intestinal morphology and integrity in growing pigs.
Collapse
|
34
|
Kashiba M, Terashima M, Sagawa T, Yoshimura S, Yamamoto Y. Prosaposin knockdown in Caco-2 cells decreases cellular levels of coenzyme Q10 and ATP, and results in the loss of tight junction barriers. J Clin Biochem Nutr 2016; 60:81-85. [PMID: 28366985 PMCID: PMC5370525 DOI: 10.3164/jcbn.16-32] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/02/2016] [Indexed: 11/22/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is a key component of the mitochondrial electron transfer chain and is one of the most important antioxidants. We previously found that glycoprotein prosaposin (Psap) binds CoQ10 in human cells. Although Psap is expressed in the intestines, its role in the gastrointestinal tract is not clear. To elucidate the role of Psap in the intestines, we established Psap knockdown (KD) Caco-2 cells, which are an intestinal epithelial cell line. Cellular CoQ10 levels decreased significantly in Psap KD Caco-2 cells as compared to parental Caco-2 cells. Cellular ATP levels also decreased significantly in Psap KD Caco-2 cells as compared to parental Caco-2 cells. Lower ATP levels in the intestines have been reported to result in the failure of tight junction formation. As expected, Psap KD Caco-2 monolayers did not produce transepithelial electrical resistance, while parental Caco-2 monolayers did. Moreover, a fluorescent dye, lucifer yellow, leaked out through Psap KD Caco-2 monolayers, whereas it did not through parental Caco-2 monolayers. These results indicate that Psap is essential to maintain cellular levels of CoQ10 and ATP, and consequently to form tight junctions in the gastrointestinal tract.
Collapse
Affiliation(s)
- Misato Kashiba
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji-shi, Tokyo 192-0982, Japan
| | - Masayuki Terashima
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji-shi, Tokyo 192-0982, Japan
| | - Tomofumi Sagawa
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji-shi, Tokyo 192-0982, Japan
| | - Shinichi Yoshimura
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji-shi, Tokyo 192-0982, Japan
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji-shi, Tokyo 192-0982, Japan
| |
Collapse
|
35
|
Colpitts CC, Baumert TF. Claudins in viral infection: from entry to spread. Pflugers Arch 2016; 469:27-34. [PMID: 27885488 DOI: 10.1007/s00424-016-1908-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022]
Abstract
Tight junctions are critically important for many physiological functions, including the maintenance of cell polarity, regulation of paracellular permeability, and involvement in signal transduction pathways to regulate integral cellular processes. Furthermore, tight junctions enable epithelial cells to form physical barriers, which act as an innate immune mechanism that can impede viral infection. Viruses, in turn, have evolved mechanisms to exploit tight junction proteins to gain access to cells or spread through tissues in an infected host. Claudin family proteins are integral components of tight junctions and are thought to play crucial roles in regulating their permeability. Claudins have been implicated in the infection process of several medically important human pathogens, including hepatitis C virus, dengue virus, West Nile virus, and human immunodeficiency virus, among others. In this review, we summarize the role of claudins in viral infections and discuss their potential as novel antiviral targets. A better understanding of claudins during viral infection may provide insight into physiological roles of claudins and uncover novel therapeutic antiviral strategies.
Collapse
Affiliation(s)
- Che C Colpitts
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hopitaux Universitaires de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
36
|
The presence of bacteria within tissue provides insights into the pathogenesis of oral lichen planus. Sci Rep 2016; 6:29186. [PMID: 27383402 PMCID: PMC4935860 DOI: 10.1038/srep29186] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/16/2016] [Indexed: 12/14/2022] Open
Abstract
Oral lichen planus (OLP) is a chronic T cell-mediated mucocutaneous disease of unknown etiopathogenesis. Although various antigens have been considered, what actually triggers the inflammatory response of T cells is unknown. In the present study, we propose that intracellular bacteria present within tissues trigger T cell infiltration and provide target antigens. Sections of OLP (n = 36) and normal (n = 10) oral mucosal tissues were subjected to in situ hybridization using a universal probe targeting the bacterial 16S rRNA gene and immunohistochemistry with anti-CD3, anti-CD4, anti-CD8, and anti-macrophage-specific antibodies. Bacteria were abundant throughout the epithelium and the lamina propria of OLP tissues, which exhibited positive correlations with the levels of infiltrated CD3(+), CD4(+), and CD8(+) cells. Furthermore, bacteria were detected within the infiltrated T cells. Pyrosequencing analysis of the mucosal microbiota from OLP patients (n = 13) and control subjects (n = 11) revealed a decrease in Streptococcus and increases in gingivitis/periodontitis-associated bacteria in OLP lesions. Using the selected bacterial species, we demonstrated that certain oral bacteria damage the epithelial physical barrier, are internalized into epithelial cells or T cells, and induce production of T cell chemokines CXCL10 and CCL5. Our findings provide insights into the pathogenesis of OLP.
Collapse
|
37
|
Ramani S, Hu L, Venkataram Prasad B, Estes MK. Diversity in Rotavirus-Host Glycan Interactions: A "Sweet" Spectrum. Cell Mol Gastroenterol Hepatol 2016; 2:263-273. [PMID: 28090561 PMCID: PMC5042371 DOI: 10.1016/j.jcmgh.2016.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/08/2016] [Indexed: 12/17/2022]
Abstract
Interaction with cellular glycans is a critical initial step in the pathogenesis of many infectious agents. Technological advances in glycobiology have expanded the repertoire of studies delineating host glycan-pathogen interactions. For rotavirus, the VP8* domain of the outer capsid spike protein VP4 is known to interact with cellular glycans. Sialic acid was considered the key cellular attachment factor for rotaviruses for decades. Although this is true for many rotavirus strains causing infections in animals, glycan array screens show that many human rotavirus strains bind nonsialylated glycoconjugates, called histo-blood group antigens, in a strain-specific manner. The expression of histo-blood group antigens is determined genetically and is regulated developmentally. Variations in glycan binding between different rotavirus strains are biologically relevant and provide new insights into multiple aspects of virus pathogenesis such as interspecies transmission, host range restriction, and tissue tropism. The genetics of glycan expression may affect susceptibility to different rotavirus strains and vaccine viruses, and impact the efficacy of rotavirus vaccination in different populations. A multidisciplinary approach to understanding rotavirus-host glycan interactions provides molecular insights into the interaction between microbial pathogens and glycans, and opens up new avenues to translate findings from the bench to the human population.
Collapse
Key Words
- GlcNAc, N-acetylglucosamine
- Glycans
- HBGA, histo-blood group antigen
- HIE, human intestinal enteroid
- Histo-Blood Group Antigens
- LNT, lacto-N-tetraose
- LNnT, lacto-N-neotetraose
- LacNAc, N-acetyllactosamine
- Le, Lewis
- NMR, nuclear magnetic resonance
- Neu5Ac, N-acetylneuraminic acid
- Neu5Gc, N-glycolylneuraminic acid
- RBC, red blood cell
- Rotavirus
- Sia
- Sia, sialic acid
- VP, viral protein
- VP8*
Collapse
Affiliation(s)
- Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas,Correspondence Address correspondence to: Sasirekha Ramani, PhD, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030. fax: (713) 798-3586.Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexas 77030
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - B.V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
38
|
Novak EA, Mollen KP. Mitochondrial dysfunction in inflammatory bowel disease. Front Cell Dev Biol 2015; 3:62. [PMID: 26484345 PMCID: PMC4589667 DOI: 10.3389/fcell.2015.00062] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) represents a group of idiopathic disorders characterized by chronic or recurring inflammation of the gastrointestinal tract. While the exact etiology of disease is unknown, IBD is recognized to be a complex, multifactorial disease that results from an intricate interplay of genetic predisposition, an altered immune response, changes in the intestinal microbiota, and environmental factors. Together, these contribute to a destruction of the intestinal epithelial barrier, increased gut permeability, and an influx of immune cells. Given that most cellular functions as well as maintenance of the epithelial barrier is energy-dependent, it is logical to assume that mitochondrial dysfunction may play a key role in both the onset and recurrence of disease. Indeed several studies have demonstrated evidence of mitochondrial stress and alterations in mitochondrial function within the intestinal epithelium of patients with IBD and mice undergoing experimental colitis. Although the hallmarks of mitochondrial dysfunction, including oxidative stress and impaired ATP production are known to be evident in the intestines of patients with IBD, it is as yet unclear whether these processes occur as a cause of consequence of disease. We provide a current review of mitochondrial function in the setting of intestinal inflammation during IBD.
Collapse
Affiliation(s)
- Elizabeth A Novak
- Department of Surgery, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Kevin P Mollen
- Department of Surgery, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| |
Collapse
|
39
|
Tran CD, Grice DM, Wade B, Kerr CA, Bauer DC, Li D, Hannan GN. Gut permeability, its interaction with gut microflora and effects on metabolic health are mediated by the lymphatics system, liver and bile acid. Future Microbiol 2015; 10:1339-53. [PMID: 26234760 DOI: 10.2217/fmb.15.54] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is evidence to link obesity (and metabolic syndrome) with alterations in gut permeability and microbiota. The underlying mechanisms have been questioned and have prompted this review. We propose that the gut barrier function is a primary driver in maintaining metabolic health with poor health being linked to ‘gut leakiness'. This review will highlight changes in intestinal permeability and how it may change gut microflora and subsequently affect metabolic health by influencing the functioning of major bodily organs/organ systems: the lymphatic system, liver and pancreas. We also discuss the likelihood that metabolic syndrome undergoes a cyclic worsening facilitated by an increase in intestinal permeability leading to gut dysbiosis, culminating in ongoing poor health leading to further exacerbated gut leakiness.
Collapse
Affiliation(s)
- Cuong D Tran
- CSIRO Food & Nutrition Flagship, Adelaide, SA 5000, Australia
| | - Desma M Grice
- CSIRO Food & Nutrition Flagship, North Ryde, NSW 2113, Australia
| | - Ben Wade
- CSIRO Biosecurity Flagship, Geelong, VIC 3219, Australia
| | - Caroline A Kerr
- CSIRO Food & Nutrition Flagship, North Ryde, NSW 2113, Australia
| | - Denis C Bauer
- CSIRO Digital Productivity & Services Flagship, North Ryde, NSW 1670, Australia
| | - Dongmei Li
- CSIRO Food & Nutrition Flagship, North Ryde, NSW 2113, Australia
| | - Garry N Hannan
- CSIRO Food & Nutrition Flagship, North Ryde, NSW 2113, Australia
| |
Collapse
|
40
|
Tawar RG, Colpitts CC, Lupberger J, El-Saghire H, Zeisel MB, Baumert TF. Claudins and pathogenesis of viral infection. Semin Cell Dev Biol 2015; 42:39-46. [PMID: 25960372 DOI: 10.1016/j.semcdb.2015.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 01/06/2023]
Abstract
Since their discovery, tremendous progress has been made in our understanding of the roles of claudins in tight junction physiology. In addition, interactions between claudins and other cellular proteins have highlighted their novel roles in cell physiology. Moreover, the importance of claudins is becoming apparent in the pathophysiology of several diseases, including viral infections. Notable is the discovery of CLDN1 as an essential host factor for hepatitis C virus (HCV) entry, which led to detailed characterization of CLDN1 and its association with tetraspanin CD81 for the initiation of HCV infection. CLDN1 has also been shown to facilitate dengue virus entry. Furthermore, owing to the roles of claudins in forming anatomical barriers, several viruses have been shown to alter claudin expression at the tight junction. This review summarizes the role of claudins in viral infection, with particular emphasis on HCV.
Collapse
Affiliation(s)
- Rajiv G Tawar
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France; University of Strasbourg, Strasbourg, France
| | - Che C Colpitts
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France; University of Strasbourg, Strasbourg, France
| | - Joachim Lupberger
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France; University of Strasbourg, Strasbourg, France
| | - Hussein El-Saghire
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France; University of Strasbourg, Strasbourg, France
| | - Mirjam B Zeisel
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France; University of Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France; University of Strasbourg, Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
41
|
Ramani S, Atmar RL. Acute Gastroenteritis Viruses. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Construction of high-quality Caco-2 three-frame cDNA library and its application to yeast two-hybrid for the human astrovirus protein-protein interaction. J Virol Methods 2014; 205:104-9. [PMID: 24859048 DOI: 10.1016/j.jviromet.2014.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 11/24/2022]
Abstract
Human epithelial colorectal adenocarcinoma (Caco-2) cells are widely used as an in vitro model of the human small intestinal mucosa. Caco-2 cells are host cells of the human astrovirus (HAstV) and other enteroviruses. High quality cDNA libraries are pertinent resources and critical tools for protein-protein interaction research, but are currently unavailable for Caco-2 cells. To construct a three-open reading frame, full length-expression cDNA library from the Caco-2 cell line for application to HAstV protein-protein interaction screening, total RNA was extracted from Caco-2 cells. The switching mechanism at the 5' end of the RNA transcript technique was used for cDNA synthesis. Double-stranded cDNA was digested by Sfi I and ligated to reconstruct a pGADT7-Sfi I three-frame vector. The ligation mixture was transformed into Escherichia coli HST08 premium electro cells by electroporation to construct the primary cDNA library. The library capacity was 1.0×10(6)clones. Gel electrophoresis results indicated that the fragments ranged from 0.5kb to 4.2kb. Randomly picked clones show that the recombination rate was 100%. The three-frame primary cDNA library plasmid mixture (5×10(5)cfu) was also transformed into E. coli HST08 premium electro cells, and all clones were harvested to amplify the cDNA library. To detect the sufficiency of the cDNA library, HAstV capsid protein as bait was screened and tested against the Caco-2 cDNA library by a yeast two-hybrid (Y2H) system. A total of 20 proteins were found to interact with the capsid protein. These results showed that a high-quality three-frame cDNA library from Caco-2 cells was successfully constructed. This library was efficient for the application to the Y2H system, and could be used for future research.
Collapse
|
43
|
Nelson VLB, Jiang YP, Dickman KG, Ballou LM, Lin RZ. Adipose tissue insulin resistance due to loss of PI3K p110α leads to decreased energy expenditure and obesity. Am J Physiol Endocrinol Metab 2014; 306:E1205-16. [PMID: 24691033 PMCID: PMC4025064 DOI: 10.1152/ajpendo.00625.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Adipose tissue is a highly insulin-responsive organ that contributes to metabolic regulation. Insulin resistance in the adipose tissue affects systemic lipid and glucose homeostasis. Phosphoinositide 3-kinase (PI3K) mediates downstream insulin signaling in adipose tissue, but its physiological role in vivo remains unclear. Using Cre recombinase driven by the aP2 promoter, we created mice that lack the class 1A PI3K catalytic subunit p110α or p110β specifically in the white and brown adipose tissue. The loss of p110α, not p110β, resulted in increased adiposity, glucose intolerance and liver steatosis. Mice lacking p110α in adipose tissue exhibited a decrease in energy expenditure but no change in food intake or activity compared with control animals. This low energy expenditure is a consequence of low cellular respiration in the brown adipocytes caused by a decrease in expression of key mitochondrial genes including uncoupling protein-1. These results illustrate a critical role of p110α in the regulation of energy expenditure through modulation of cellular respiration in the brown adipose tissue and suggest that compromised insulin signaling in adipose tissue might be involved in the onset of obesity.
Collapse
Affiliation(s)
- Victoria L B Nelson
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York
| | - Ya-Ping Jiang
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York
| | - Kathleen G Dickman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York; Department of Medicine, Stony Brook University, Stony Brook, New York; and
| | - Lisa M Ballou
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York
| | - Richard Z Lin
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York; Department of Veterans Affairs Medical Center, Northport, New York
| |
Collapse
|
44
|
Yu C, Achazi K, Möller L, Schulzke JD, Niedrig M, Bücker R. Tick-borne encephalitis virus replication, intracellular trafficking, and pathogenicity in human intestinal Caco-2 cell monolayers. PLoS One 2014; 9:e96957. [PMID: 24820351 PMCID: PMC4018392 DOI: 10.1371/journal.pone.0096957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/13/2014] [Indexed: 12/27/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is one of the most important vector-borne viruses in Europe and Asia. Its transmission mainly occurs by the bite of an infected tick. However, consuming milk products from infected livestock animals caused TBEV cases. To better understand TBEV transmission via the alimentary route, we studied viral infection of human intestinal epithelial cells. Caco-2 cells were used to investigate pathological effects of TBEV infection. TBEV-infected Caco-2 monolayers showed morphological changes including cytoskeleton rearrangements and cytoplasmic vacuolization. Ultrastructural analysis revealed dilatation of the rough endoplasmic reticulum and further enlargement to TBEV containing caverns. Caco-2 monolayers maintained an intact epithelial barrier with stable transepithelial electrical resistance (TER) during early stage of infection. Concomitantly, viruses were detected in the basolateral medium, implying a transcytosis pathway. When Caco-2 cells were pre-treated with inhibitors of cellular pathways of endocytosis TBEV cell entry was efficiently blocked, suggesting that actin filaments (Cytochalasin) and microtubules (Nocodazole) are important for PI3K-dependent (LY294002) virus endocytosis. Moreover, experimental fluid uptake assay showed increased intracellular accumulation of FITC-dextran containing vesicles. Immunofluorescence microscopy revealed co-localization of TBEV with early endosome antigen-1 (EEA1) as well as with sorting nexin-5 (SNX5), pointing to macropinocytosis as trafficking mechanism. In the late phase of infection, further evidence was found for translocation of virus via the paracellular pathway. Five days after infection TER was slightly decreased. Epithelial barrier integrity was impaired due to increased epithelial apoptosis, leading to passive viral translocation. These findings illuminate pathomechanisms in TBEV infection of human intestinal epithelial cells and viral transmission via the alimentary route.
Collapse
Affiliation(s)
- Chao Yu
- Centre for Biological Threats and Special Pathogens, ZBS 1: Highly Pathogenic Viruses, Robert Koch Institute, Berlin, Germany
| | - Katharina Achazi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Lars Möller
- Centre for Biological Threats and Special Pathogens, ZBS 4: Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Joerg D. Schulzke
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Division of Nutritional Medicine, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, German
- * E-mail:
| | - Matthias Niedrig
- Centre for Biological Threats and Special Pathogens, ZBS 1: Highly Pathogenic Viruses, Robert Koch Institute, Berlin, Germany
| | - Roland Bücker
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Division of Nutritional Medicine, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, German
| |
Collapse
|
45
|
Li Y, Wang X, Wang R, Bo M, Fan E, Duan S, Zhang L. The expression of epithelial intercellular junctional proteins in the sinonasal tissue of subjects with chronic rhinosinusitis: a histopathologic study. ORL J Otorhinolaryngol Relat Spec 2014; 76:110-9. [PMID: 24801627 DOI: 10.1159/000362246] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate the expression of five epithelial intercellular junctional proteins in the sinonasal tissue of subjects with chronic rhinosinusitis (CRS). METHODS Forty-one samples of nasal polyp tissue of CRS patients with nasal polyps (wNP), 20 ethmoid sinus mucosa of CRS patients without nasal polyps (sNP) and 19 nasal mucosa of controls were collected and assessed for the expression of zonulae occludens (ZO-1), claudin-1, E-cadherin and desmoglein-1 and -2 (DSG1, DSG2) using immunohistochemical staining. Interleukin (IL)-5, IL-6 and IL-8 concentrations in the tissues were also measured using ELISA. RESULTS The expression of ZO-1, claudin-1, DSG1 and DSG2 in the CRSwNP patient group and the expression of claudin-1, DSG1 and DSG2 of the CRSsNP patient group was significantly lower compared to that of the control group. Furthermore, the expression of DSG1 in the CRSwNP patient group was also significantly lower than in the CRSsNP patient group. In contrast, the expression of E-cadherin in the CRSwNP and the CRSsNP patient groups was significantly greater compared to the controls. The assessment of associations between the expression of the intercellular junctional proteins and cytokines demonstrated negative correlations between IL-5 and claudin-1, IL-6 and claudin-1, IL-6 and DSG2, IL-8 and DSG1, and IL-8 and DSG2. In contrast, a positive correlation was found between IL-8 and E-cadherin. CONCLUSIONS Differences in the expression of epithelial intercellular junctional proteins may play an important role in the pathogenesis of CRS.
Collapse
Affiliation(s)
- Ying Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Vllasaliu D, Falcone FH, Stolnik S, Garnett M. Basement membrane influences intestinal epithelial cell growth and presents a barrier to the movement of macromolecules. Exp Cell Res 2014; 323:218-231. [PMID: 24582861 DOI: 10.1016/j.yexcr.2014.02.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/14/2014] [Accepted: 02/18/2014] [Indexed: 12/14/2022]
Abstract
This work examines the potential drug delivery barrier of the basement membrane (BM) by assessing the permeability of select macromolecules and nanoparticles. The study further extends to probing the effect of BM on intestinal epithelial cell attachment and monolayer characteristics, including cell morphology. Serum-free cultured Caco-2 cells were grown on BM-containing porous supports, which were obtained by prior culture of airway epithelial cells (Calu-3), shown to assemble and deposit a BM on the growth substrate, followed by decellularisation. Data overall show that the attachment capacity of Caco-2 cells, which is completely lost in serum-free culture, is fully restored when the cells are grown on BM-coated substrates, with cells forming intact monolayers with high electrical resistance and low permeability to macromolecules. Caco-2 cells cultured on BM-coated substrates displayed strikingly different morphological characteristics, suggestive of a higher level of differentiation and closer resemblance to the native intestinal epithelium. BM was found to notably hinder the diffusion of macromolecules and nanoparticles in a size dependent manner. This suggests that the specialised network of extracellular matrix proteins may have a significant impact on transmucosal delivery of certain therapeutics or drug delivery systems.
Collapse
Affiliation(s)
- Driton Vllasaliu
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Franco H Falcone
- Division of Molecular and Cellular Science, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Snjezana Stolnik
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Martin Garnett
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
47
|
Istrate C, Hagbom M, Vikström E, Magnusson KE, Svensson L. Rotavirus infection increases intestinal motility but not permeability at the onset of diarrhea. J Virol 2014; 88:3161-9. [PMID: 24371070 PMCID: PMC3957942 DOI: 10.1128/jvi.02927-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 12/20/2013] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The disease mechanisms associated with onset and secondary effects of rotavirus (RV) diarrhea remain to be determined and may not be identical. In this study, we investigated whether onset of RV diarrhea is associated with increased intestinal permeability and/or motility. To study the transit time, fluorescent fluorescein isothiocyanate (FITC)-dextran was given to RV-infected adult and infant mice. Intestinal motility was also studied with an opioid receptor agonist (loperamide) and a muscarinic receptor antagonist (atropine). To investigate whether RV increases permeability at the onset of diarrhea, fluorescent 4- and 10-kDa dextran doses were given to infected and noninfected mice, and fluorescence intensity was measured subsequently in serum. RV increased transit time in infant mice. Increased motility was detected at 24 h postinfection (h p.i.) and persisted up to 72 h p.i in pups. Both loperamide and atropine decreased intestinal motility and attenuated diarrhea. Analysis of passage of fluorescent dextran from the intestine into serum indicated unaffected intestinal permeability at the onset of diarrhea (24 to 48 h p.i.). We show that RV-induced diarrhea is associated with increased intestinal motility via an activation of the myenteric nerve plexus, which in turn stimulates muscarinic receptors on intestinal smooth muscles. IMPORTANCE We show that RV-infected mice have increased intestinal motility at the onset of diarrhea, and that this is not associated with increased intestinal permeability. These new observations will contribute to a better understanding of the mechanisms involved in RV diarrhea.
Collapse
Affiliation(s)
- Claudia Istrate
- Grupo de Virologia, Unidade de Microbiologia Médica, Centro de Malária e outras Doenças Trópicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, University of Linköping, Linköping, Sweden
| | - Marie Hagbom
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, University of Linköping, Linköping, Sweden
| | - Elena Vikström
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, University of Linköping, Linköping, Sweden
| | - Karl-Eric Magnusson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, University of Linköping, Linköping, Sweden
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, University of Linköping, Linköping, Sweden
| |
Collapse
|
48
|
Liu Y, Chiu GNC. Dual-Functionalized PAMAM Dendrimers with Improved P-Glycoprotein Inhibition and Tight Junction Modulating Effect. Biomacromolecules 2013; 14:4226-35. [DOI: 10.1021/bm401057c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuanjie Liu
- Department
of Pharmacy, Faculty
of Science, National University of Singapore, Block S4, 18 Science Drive 4, Singapore 117543
| | - Gigi N. C. Chiu
- Department
of Pharmacy, Faculty
of Science, National University of Singapore, Block S4, 18 Science Drive 4, Singapore 117543
| |
Collapse
|
49
|
Che P, Tang H, Li Q. The interaction between claudin-1 and dengue viral prM/M protein for its entry. Virology 2013; 446:303-13. [PMID: 24074594 DOI: 10.1016/j.virol.2013.08.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/18/2013] [Accepted: 08/09/2013] [Indexed: 02/04/2023]
Abstract
Dengue disease is becoming a huge public health concern around the world as more than one-third of the world's population living in areas at risk of infection. In an effort to assess host factors interacting with dengue virus, we identified claudin-1, a major tight junction component, as an essential cell surface protein for dengue virus entry. When claudin-1 was knocked down in Huh 7.5 cells via shRNA, the amount of dengue virus entering host cells was reduced. Consequently, the progeny virus productions were decreased and dengue virus-induced CPE was prevented. Furthermore, restoring the expression of claudin-1 in the knockdown cells facilitated dengue virus entry. The interaction between claudin-1 and dengue viral prM protein was further demonstrated using the pull-down assay. Deletion of the extracellular loop 1 (ECL1) of claudin-1 abolished such interaction, so did point mutations C54A, C64A and I32M on ECL1. These results suggest that the interaction between viral protein prM and host protein claudin-1 was essential for dengue entry. Since host and viral factors involved in virus entry are promising therapeutic targets, determining the essential role of claudin-1 could lead to the discovery of entry inhibitors with attractive therapeutic potential against dengue disease.
Collapse
Affiliation(s)
- Pulin Che
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; University of Alabama at Birmingham, Department of Medicine, Division of Infectious Diseases, BBRB 562, 845 19th Street South, Birmingham, AL 35294, United States
| | | | | |
Collapse
|
50
|
Lu Z, Ding L, Lu Q, Chen YH. Claudins in intestines: Distribution and functional significance in health and diseases. Tissue Barriers 2013; 1:e24978. [PMID: 24478939 PMCID: PMC3879173 DOI: 10.4161/tisb.24978] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 02/08/2023] Open
Abstract
Intestines are organs that not only digest food and absorb nutrients, but also provide a defense barrier against pathogens and noxious agents ingested. Tight junctions (TJs) are the most apical component of the junctional complex, providing one form of cell-cell adhesion in enterocytes and playing a critical role in regulating paracellular barrier permeability. Alteration of TJs leads to a number of pathophysiological diseases causing malabsorption of nutrition and intestinal structure disruption, which may even contribute to systemic organ failure. Claudins are the major structural and functional components of TJs with at least 24 members in mammals. Claudins have distinct charge-selectivity, either by tightening the paracellular pathway or functioning as paracellular channels, regulating ions and small molecules passing through the paracellular pathway. In this review, we have discussed the functions of claudin family members, their distribution and localization in the intestinal tract of mammals, their alterations in intestine-related diseases and chemicals/agents that regulate the expression and localization of claudins as well as the intestinal permeability, which provide a therapeutic view for treating intestinal diseases.
Collapse
Affiliation(s)
- Zhe Lu
- Department of Basic Medicine; Hangzhou Normal University, Hangzhou, PR China ; Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Lei Ding
- Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA ; Department of Oncology; Beijing Shijitan Hospital; Capital Medical University; Beijing, PR China
| | - Qun Lu
- Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| |
Collapse
|