1
|
Saadi S, Nacer NE, Saari N, Mohammed AS, Anwar F. The underlying mechanism of nuclear and mitochondrial DNA damages in triggering cancer incidences: Insights into proteomic and genomic sciences. J Biotechnol 2024; 383:1-12. [PMID: 38309588 DOI: 10.1016/j.jbiotec.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/02/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The attempt of this review article is to determine the impact of nuclear and mitochondrial damages on the propagation of cancer incidences. This review has advanced our understanding to altered genes and their relevant cancerous proteins. The progressive raising effects of free reactive oxygen species ROS and toxicogenic compounds contributed to significant mutation in nuclear and mitochondrial DNA where the incidence of gastric cancer is found to be linked with down regulation of some relevant genes and mutation in some important cellular proteins such as AMP-18 and CA-11. Thereby, the resulting changes in gene mutations induced the apparition of newly polymorphisms eventually leading to unusual cellular expression to mutant proteins. Reduction of these apoptotic growth factors and nuclear damages is increasingly accepted by cell reactivation effect, enhanced cellular signaling and DNA repairs. Acetylation, glycation, pegylation and phosphorylation are among the molecular techniques used in DNA repair for rectifying mutation incidences. In addition, the molecular labeling based fluorescent materials are currently used along with the bioconjugating of signal molecules in targeting disease translocation site, particularly cancers and tumors. These strategies would help in determining relevant compounds capable in overcoming problems of down regulating genes responsible for repair mechanisms. These issues of course need interplay of both proteomic and genomic studies often in combination of molecular engineering to cible the exact expressed gene relevant to these cancerous proteins.
Collapse
Affiliation(s)
- Sami Saadi
- Institute de la Nutrition, de l'Alimentation et des Technologies Agroalimetaires INATAA, Université des Frères Mentouri Constantine 1, Route de Ain El Bey, Constantine 25000, Algeria; Laboratoire de Génie Agro-Alimentaire (GeniAAl), INATAA, Université Frères Mentouri Constantine 1 UFC1, Route de Ain El Bey, Constantine 25000, Algeria.
| | - Nor Elhouda Nacer
- Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, Batna 05000, Algeria
| | - Nazamid Saari
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia
| | | | - Farooq Anwar
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia; Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; Honorary Research Fellow: Metharath University, 99 Moo 10, Bangtoey, Samkhok, Pathum Thani 12160, Thailand
| |
Collapse
|
2
|
Farrell CC, Khanna S, Hoque MT, Plaga A, Basset N, Syed I, Biouss G, Aufreiter S, Marcon N, Bendayan R, Kim YI, O'Connor DL. Low-dose daily folic acid (400 μg) supplementation does not affect regulation of folate transporters found present throughout the terminal ileum and colon of humans: a randomized clinical trial. Am J Clin Nutr 2024; 119:809-820. [PMID: 38157986 DOI: 10.1016/j.ajcnut.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Folic acid supplementation during the periconceptional period reduces the risk of neural tube defects in infants, but concern over chronic folic acid exposure remains. An improved understanding of folate absorption may clarify potential risks. Folate transporters have been characterized in the small intestine, but less so in the colon of healthy, free-living humans. The impact of folic acid fortification or supplementation on regulation of these transporters along the intestinal tract is unknown. OBJECTIVE The objective was to characterize expression of folate transporters/receptor (FT/R) and folate hydrolase, glutamate carboxypeptidase II (GCPII), from the terminal ileum and throughout the colon of adults and assess the impact of supplemental folic acid. METHODS In this 16-wk open-labeled randomized clinical trial, adults consumed a low folic acid-containing diet, a folate-free multivitamin, and either a 400 μg folic acid supplement or no folic acid supplement. Dietary intakes and blood were assessed at baseline, 8 wk, and 16 wk (time of colonoscopy). Messenger RNA (mRNA) expression and protein expression of FT/R and GCPII were assessed in the terminal ileum, cecum, and ascending and descending colon. RESULTS Among 24 randomly assigned subjects, no differences in dietary folate intake or blood folate were observed at baseline. Mean ± SD red blood cell folate at 16 wk was 1765 ± 426 and 911 ± 242 nmol/L in the 400 and 0 μg folic acid group, respectively (P < 0.0001). Reduced folate carrier, proton-coupled folate transporter, and folate-receptor alpha expression were detected in the terminal ileum and colon, as were efflux transporters of breast cancer resistance protein and multidrug resistance protein-3. Other than a higher mRNA expression of FR-alpha and GCPII in the 400 μg supplement group in the ascending colon, no treatment differences were observed (P < 0.02). CONCLUSIONS Folate transporters are present throughout the terminal ileum and colon; there is little evidence that a low dose of folic acid supplementation affects colonic absorption. This trial was registered at clinicaltrials.gov as NCT03421483.
Collapse
Affiliation(s)
- Colleen C Farrell
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Siya Khanna
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Aneta Plaga
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nancy Basset
- Division of Gastroenterology, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Ishba Syed
- Division of Gastroenterology, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
| | - George Biouss
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Susanne Aufreiter
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Norman Marcon
- Division of Gastroenterology, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Young-In Kim
- Division of Gastroenterology, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Deborah L O'Connor
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Uebanso T, Shimohata T, Mawatari K, Takahashi A. Functional Roles of B‐Vitamins in the Gut and Gut Microbiome. Mol Nutr Food Res 2020; 64:e2000426. [DOI: 10.1002/mnfr.202000426] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/31/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| |
Collapse
|
4
|
A Cross-Sectional Study of the Gut Microbiota Composition in Moscow Long-Livers. Microorganisms 2020; 8:microorganisms8081162. [PMID: 32751673 PMCID: PMC7463576 DOI: 10.3390/microorganisms8081162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
The aim was to assess the gut microbiota of long-livers from Moscow. This study included two groups of patients who signed their consent to participate. The group of long-livers (LL) included 20 participants aged 97–100 years (4 men and 16 women). The second group included 22 participants aged 60–76 years (6 men) without clinical manifestations of chronic diseases (healthy elderly). Gut microbiota was studied by 16S rRNA sequencing. Long-livers underwent a complex geriatric assessment as well as expanded blood biochemistry. Gut microbiota composition in the cohorts was also compared with microbiome in long-livers from Japan and Italy. Russian long-livers’ microbiome contained more beneficial bacteria than healthy elderly including Ruminococcaceae, Christensenellaceae, Lactobacillaceae families. Conditional pathogens like Veillonellaceae, Mogibacteriaceae, Alcaligenaceae, Peptococcaceae, Peptostreptococcaceae were more abundant in the healthy elderly. Compared with Italian and Japanese microbiome LL, the Russian LL appeared to be more similar to the Italian cohort. Bifidobacterium/Coprococcus and Faecalibacterium/Coprococcus balances were associated with femoral and carotid intima–media thickness, respectively. Bifidobacterium/Coriobacteriaceae balance was assessed with the folic acid level and Faecalibacterium/Coriobacteriaceae_u the with Mini Nutritional Assessment score. Long-livers’ microbiome appeared to be unexpectedly balanced. The high representation of beneficial bacteria in long-livers may prevent them from low-grade inflammation and thus protect them from the development of atherosclerosis and other aging-associated conditions.
Collapse
|
5
|
Poupeau A, Garde C, Sulek K, Citirikkaya K, Treebak JT, Arumugam M, Simar D, Olofsson LE, Bäckhed F, Barrès R. Genes controlling the activation of natural killer lymphocytes are epigenetically remodeled in intestinal cells from germ-free mice. FASEB J 2018; 33:2719-2731. [PMID: 30303739 PMCID: PMC6338647 DOI: 10.1096/fj.201800787r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Remodeling of the gut microbiota is implicated in various metabolic and inflammatory diseases of the gastrointestinal tract. We hypothesized that the gut microbiota affects the DNA methylation profile of intestinal epithelial cells (IECs) which could, in turn, alter intestinal function. In this study, we used mass spectrometry and methylated DNA capture to respectively investigate global and genome-wide DNA methylation of intestinal epithelial cells from germ-free (GF) and conventionally raised mice. In colonic IECs from GF mice, DNA was markedly hypermethylated. This was associated with a dramatic loss of ten-eleven-translocation activity, a lower DNA methyltransferase activity and lower circulating levels of the 1-carbon metabolite, folate. At the gene level, we found an enrichment for differentially methylated regions proximal to genes regulating the cytotoxicity of NK cells (false-discovery rate < 8.9E−6), notably genes regulating the cross-talk between NK cells and target cells, such as members of the NK group 2 member D ligand superfamily Raet. This distinct epigenetic signature was associated with a marked decrease in Raet1 expression and a loss of CD56+/CD45+ cells in the intestine of GF mice. Thus, our results indicate that altered activity of methylation-modifying enzymes in GF mice influences the IEC epigenome and modulates the crosstalk between IECs and NK cells. Epigenetic reprogramming of IECs may modulate intestinal function in diseases associated with altered gut microbiota.—Poupeau, A., Garde, C., Sulek, K., Citirikkaya, K., Treebak, J. T., Arumugam, M., Simar, D., Olofsson, L. E., Bäckhed, F., Barrès, R. Genes controlling the activation of natural killer lymphocytes are epigenetically remodeled in intestinal cells from germ-free mice.
Collapse
Affiliation(s)
- Audrey Poupeau
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Garde
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karolina Sulek
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kiymet Citirikkaya
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Simar
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Mechanisms of Disease and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia; and
| | - Louise E Olofsson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Molecular and Clinical Medicine, Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Gomez A, Petrzelkova KJ, Burns MB, Yeoman CJ, Amato KR, Vlckova K, Modry D, Todd A, Jost Robinson CA, Remis MJ, Torralba MG, Morton E, Umaña JD, Carbonero F, Gaskins HR, Nelson KE, Wilson BA, Stumpf RM, White BA, Leigh SR, Blekhman R. Gut Microbiome of Coexisting BaAka Pygmies and Bantu Reflects Gradients of Traditional Subsistence Patterns. Cell Rep 2016; 14:2142-2153. [PMID: 26923597 DOI: 10.1016/j.celrep.2016.02.013] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 12/07/2015] [Accepted: 01/28/2016] [Indexed: 12/20/2022] Open
Abstract
To understand how the gut microbiome is impacted by human adaptation to varying environments, we explored gut bacterial communities in the BaAka rainforest hunter-gatherers and their agriculturalist Bantu neighbors in the Central African Republic. Although the microbiome of both groups is compositionally similar, hunter-gatherers harbor increased abundance of Prevotellaceae, Treponema, and Clostridiaceae, while the Bantu gut microbiome is dominated by Firmicutes. Comparisons with US Americans reveal microbiome differences between Africans and westerners but show western-like features in the Bantu, including an increased abundance of predictive carbohydrate and xenobiotic metabolic pathways. In contrast, the hunter-gatherer gut shows increased abundance of predicted virulence, amino acid, and vitamin metabolism functions, as well as dominance of lipid and amino-acid-derived metabolites, as determined through metabolomics. Our results demonstrate gradients of traditional subsistence patterns in two neighboring African groups and highlight the adaptability of the microbiome in response to host ecology.
Collapse
Affiliation(s)
- Andres Gomez
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, MN 55108, USA; Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, MN 55108, USA.
| | - Klara J Petrzelkova
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno 603 65, Czech Republic; Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 370 05, Czech Republic; Liberec Zoo, Liberec 460 01, Czech Republic
| | - Michael B Burns
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, MN 55108, USA; Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, MN 55108, USA
| | - Carl J Yeoman
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
| | - Klara Vlckova
- Faculty of Veterinary Medicine, Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Brno 612 42, Czech Republic
| | - David Modry
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 370 05, Czech Republic; Faculty of Veterinary Medicine, Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Brno 612 42, Czech Republic; CEITEC, Central European Institute for Technology, University of Veterinary and Pharmaceutical Sciences, Brno 612 42, Czech Republic
| | - Angelique Todd
- Dzanga-Sangha Protected Areas, World Wildlife Fund, Bayanga, Central African Republic
| | | | - Melissa J Remis
- Department of Anthropology, Purdue University, West Lafayette, IN 47907, USA
| | | | - Elise Morton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, MN 55108, USA; Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, MN 55108, USA
| | - Juan D Umaña
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Franck Carbonero
- Department of Food Science, University of Arkansas, Fayetteville, AK 72704, USA
| | - H Rex Gaskins
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Brenda A Wilson
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rebecca M Stumpf
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bryan A White
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Steven R Leigh
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Anthropology, University of Colorado, Boulder, CO 80309, USA.
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, MN 55108, USA; Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, MN 55108, USA.
| |
Collapse
|
7
|
Cárdenas N, Laiño JE, Delgado S, Jiménez E, Juárez del Valle M, Savoy de Giori G, Sesma F, Mayo B, Fernández L, LeBlanc JG, Rodríguez JM. Relationships between the genome and some phenotypical properties of Lactobacillus fermentum CECT 5716, a probiotic strain isolated from human milk. Appl Microbiol Biotechnol 2015; 99:4343-53. [PMID: 25661998 DOI: 10.1007/s00253-015-6429-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
Abstract
Lactobacillus fermentum CECT 5716, isolated from human milk, has immunomodulatory, anti-inflammatory, and anti-infectious properties, as revealed by several in vitro and in vivo assays, which suggests a strong potential as a probiotic strain. In this work, some phenotypic properties of L. fermentum CECT 5716 were evaluated, and the genetic basis for the obtained results was searched for in the strain genome. L. fermentum CECT 5716 does not contain plasmids and showed neither bacteriocin nor biogenic amine biosynthesis ability but was able to produce organic acids, glutathione, riboflavin, and folates and to moderately stimulate the maturation of mouse dendritic cells. No prophages could be induced, and the strain was sensitive to all antibiotics proposed by European Food Safety Authority (EFSA) standards, while no transmissible genes potentially involved in antibiotic resistance were detected in its genome. Globally, there was an agreement between the phenotype properties of L. fermentum CECT 5716 and the genetic information contained in its genome.
Collapse
Affiliation(s)
- Nivia Cárdenas
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Ciudad Universitaria, Avda. Puerta de Hierro, s/n., 28040, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tappenden KA. Pathophysiology of short bowel syndrome: considerations of resected and residual anatomy. JPEN J Parenter Enteral Nutr 2014; 38:14S-22S. [PMID: 24500909 DOI: 10.1177/0148607113520005] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human small intestine is organized with a proximal-to-distal gradient of mucosal structure and nutrient processing capacity. However, certain nutrients undergo site-specific digestion and absorption, such as iron and folate in the duodenum/jejunum vs vitamin B12 and bile salts in the ileum. Intestinal resection can result in short bowel syndrome (SBS) due to reduction of total and/or site-specific nutrient processing areas. Depending on the segment(s) of intestine resected, malabsorption can be nutrient specific (eg, vitamin B12 or fat) or sweeping, with deficiencies in energy, protein, and various micronutrients. Jejunal resections are generally better tolerated than ileal resections because of greater postresection adaptive capacity than that of the jejunum. Following intestinal resection, energy scavenging and fluid absorption become particularly important in the colon owing to loss of digestive and absorptive surface area in the resection portion. Resection-induced alterations in enteroendocrine cell abundance can further disrupt intestinal function. For example, patients with end jejunostomy have depressed circulating peptide YY and glucagon-like peptide 2 concentrations, which likely contribute to the rapid intestinal transit and blunted intestinal adaptation observed in this population. SBS-associated pathophysiology often extends beyond the gastrointestinal tract, with hepatobiliary disease, metabolic bone disease, D-lactic acidosis, and kidney stone formation being chronic complications. Clinical management of SBS must be individualized to account for the specific nutrient processing deficit within the remnant bowel and to mitigate potential complications, both inside and outside the gastrointestinal tract.
Collapse
Affiliation(s)
- Kelly A Tappenden
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
9
|
Said HM. Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas. Am J Physiol Gastrointest Liver Physiol 2013; 305:G601-10. [PMID: 23989008 PMCID: PMC3840235 DOI: 10.1152/ajpgi.00231.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review focuses on recent advances in our understanding of the mechanisms and regulation of water-soluble vitamin (WSV) transport in the large intestine and pancreas, two important organs of the digestive system that have only recently received their fair share of attention. WSV, a group of structurally unrelated compounds, are essential for normal cell function and development and, thus, for overall health and survival of the organism. Humans cannot synthesize WSV endogenously; rather, WSV are obtained from exogenous sources via intestinal absorption. The intestine is exposed to two sources of WSV: a dietary source and a bacterial source (i.e., WSV generated by the large intestinal microbiota). Contribution of the latter source to human nutrition/health has been a subject of debate and doubt, mostly based on the absence of specialized systems for efficient uptake of WSV in the large intestine. However, recent studies utilizing a variety of human and animal colon preparations clearly demonstrate that such systems do exist in the large intestine. This has provided strong support for the idea that the microbiota-generated WSV are of nutritional value to the host, and especially to the nutritional needs of the local colonocytes and their health. In the pancreas, WSV are essential for normal metabolic activities of all its cell types and for its exocrine and endocrine functions. Significant progress has also been made in understanding the mechanisms involved in the uptake of WSV and the effect of chronic alcohol exposure on the uptake processes.
Collapse
Affiliation(s)
- Hamid M. Said
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
10
|
Involvement of Multiple Transporters-mediated Transports in Mizoribine and Methotrexate Pharmacokinetics. Pharmaceuticals (Basel) 2012; 5:802-36. [PMID: 24280676 PMCID: PMC3763673 DOI: 10.3390/ph5080802] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/25/2012] [Accepted: 08/07/2012] [Indexed: 12/19/2022] Open
Abstract
Mizoribine is administered orally and excreted into urine without being metabolized. Many research groups have reported a linear relationship between the dose and peak serum concentration, between the dose and AUC, and between AUC and cumulative urinary excretion of mizoribine. In contrast, a significant interindividual variability, with a small intraindividual variability, in oral bioavailability of mizoribine is also reported. The interindividual variability is mostly considered to be due to the polymophisms of transporter genes. Methotrexate (MTX) is administered orally and/or by parenteral routes, depending on the dose. Metabolic enzymes and multiple transporters are involved in the pharmacokinetics of MTX. The oral bioavailability of MTX exhibits a marked interindividual variability and saturation with increase in the dose of MTX, with a small intraindividual variability, where the contribution of gene polymophisms of transporters and enzymes is suggested. Therapeutic drug monitoring of both mizoribine and MTX is expected to improve their clinical efficacy in the treatment of rheumatoid arthritis.
Collapse
|
11
|
Folate malabsorption is associated with down-regulation of folate transporter expression and function at colon basolateral membrane in rats. Br J Nutr 2011; 107:800-8. [PMID: 21861943 DOI: 10.1017/s0007114511003710] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Folates, an essential component (important B vitamin) in the human diet, are involved in many metabolic pathways, mainly in carbon transfer reactions such as purine and pyrimidine biosynthesis and amino acid interconversions. Deficiency of this micronutrient leads to the disruption of folate-dependent metabolic pathways that lead to the development of clinical abnormalities ranging from anaemia to growth retardation. Folate deficiency due to alcohol ingestion is quite common, primarily due to malabsorption. The present study dealt with the mechanistic insights of folate malabsorption in colonic basolateral membrane (BLM). Wistar rats (n 12) were fed 1 g/kg body weight per d ethanol (20 %) solution orally for 3 months and folate transport was studied in the isolated colonic BLM. The folate exit across colon BLM shows characteristics of carrier-mediated process with the major involvement of reduced folate carrier (RFC). The chronic ethanol ingestion decreased the uptake by decreasing the affinity by 46 % (P < 0·01) and the number of transport molecules by 43 % (P < 0·001) at the colon BLM. The decreased uptake was associated with down-regulation of proton-coupled folate transporter (PCFT) and RFC expression at mRNA and protein levels. The extent of decrease was 44 % (P < 0·01) and 24 % (P < 0·05) for PCFT and 23 % (P < 0·01) and 57 % (P < 0·01) for RFC at mRNA and protein levels, respectively. Moreover, folate transporters were associated with lipid rafts (LR) of colon BLM, and chronic alcoholism decreased the association of these transporters with LR.
Collapse
|
12
|
Abstract
Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events.
Collapse
Affiliation(s)
- Hamid M Said
- School of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
13
|
Fekete K, Berti C, Cetin I, Hermoso M, Koletzko BV, Decsi T. Perinatal folate supply: relevance in health outcome parameters. MATERNAL & CHILD NUTRITION 2010; 6 Suppl 2:23-38. [PMID: 22296249 PMCID: PMC6860862 DOI: 10.1111/j.1740-8709.2010.00261.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The importance of physiological supply of folate is well recognized in human health; the crucial roles of folate in one-carbon metabolism for physiological DNA synthesis and cell division, as well as in the conversion of homocysteine (Hcy) to methionine, and subsequently, to S-adenosylmethionine, have been convincingly demonstrated. Improved folate status may reduce the risk of macrocytic anaemia, cardiovascular diseases, neuropsychiatric disorders and adverse pregnancy outcomes. Inadequate folate status results in a decrease in the methylation cycle and in increased blood levels of the neurotoxic Hcy. The aim of this review is to provide insight into the influence of folate status on pregnancy health outcomes, and to consider increasing evidence of a link between the extent of genome/epigenome damage and elevated risk for adverse obstetrical endpoints. Pregnant women are at risk for folate insufficiency because of the increased need for folate for rapid fetal growth, placental development and enlargement of the uterus. Inadequate folate status may cause fetal malformations, impaired fetal growth, pre-term delivery and maternal anaemia. Even some diseases of the placenta may arise from folate deficiencies. Fetal growth seems to be vulnerable to maternal folate status during the periconception period, because it has the potential to affect both the closure of the neural tube and several epigenetic mechanisms within the placenta and the fetus. Mainly on the basis of the well recognized link between maternal folate status and fetal neural tube defects, women are advised to receive folic acid supplement during the periconceptional period. Because an adequate folate supply seems to play an important role in the implantation and development of the placenta and in improving endothelial function, folic acid supplementation in the late first trimester or early second trimester might also be beneficial.
Collapse
Affiliation(s)
- Katalin Fekete
- Nutritional Research Unit, Department of Pediatrics, University of Pécs, Pécs H‐7623, Hungary
| | - Cristiana Berti
- Unit of Obstetrics and Gynecology, Department of Clinical Sciences Hospital ‘L. Sacco’, and Center for Fetal Research Giorgio Pardi, University of Milan, Milano I‐20157, Italy
- ‘Invernizzi Foundation’ Fellowship
| | - Irene Cetin
- Unit of Obstetrics and Gynecology, Department of Clinical Sciences Hospital ‘L. Sacco’, and Center for Fetal Research Giorgio Pardi, University of Milan, Milano I‐20157, Italy
| | - Maria Hermoso
- Division of Metabolic Diseases and Nutritional Medicine, Dr von Hauner Children's Hospital,Ludwig‐Maximilians‐University of Munich, Munich D‐80337, Germany and
| | - Berthold V. Koletzko
- Division of Metabolic Diseases and Nutritional Medicine, Dr von Hauner Children's Hospital,Ludwig‐Maximilians‐University of Munich, Munich D‐80337, Germany and
| | - Tamás Decsi
- Nutritional Research Unit, Department of Pediatrics, University of Pécs, Pécs H‐7623, Hungary
| |
Collapse
|
14
|
Kazemi A, Frazier T, Cave M. Micronutrient-related neurologic complications following bariatric surgery. Curr Gastroenterol Rep 2010; 12:288-295. [PMID: 20640946 DOI: 10.1007/s11894-010-0120-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nearly two thirds of American adults are either overweight or obese. Accordingly, bariatric surgery experienced explosive growth during the past decade. Current estimates place the worldwide volume of bariatric procedures at greater than 300,000 cases annually. Micronutrient deficiencies are well-described following bariatric surgery, and they may present with devastating and sometimes irreversible neurologic manifestations. Clinical symptoms range from peripheral neuropathy to encephalopathy, and are most commonly caused by thiamine, copper, and B(12) deficiencies.
Collapse
Affiliation(s)
- Ali Kazemi
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| | | | | |
Collapse
|
15
|
Basolateral efflux mediated by multidrug resistance-associated protein 3 (Mrp3/Abcc3) facilitates intestinal absorption of folates in mouse. Pharm Res 2010; 27:665-72. [PMID: 20148291 DOI: 10.1007/s11095-009-0047-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 12/27/2009] [Indexed: 12/21/2022]
Abstract
PURPOSE This study investigated the role of an ABC transporter, Mrp3/Abcc3 in intestinal folate absorption. METHODS Plasma concentrations of folic acid and leucovorin, given orally, were determined in wild-type and Mrp3 ( -/- ) mice. Mucosal-to-serosal transport was determined in the everted intestinal sacs. The plasma concentrations of endogenous 5-methyltetrahydrofolic acid, homocysteine and vitamin B(12), and mRNA levels of hepatic and intestinal folate metabolizing enzymes were compared between wild-type and Mrp3 ( -/- ) mice. RESULTS C ( max ) and area-under plasma concentration-time curve of folic acid were 3.0- and 2.3-fold lower in Mrp3 ( -/- ) mice compared with wild-type mice, whereas the total body clearance was unchanged. Absorption of leucovorin was significantly delayed in Mrp3 ( -/- ) mice. Mucosal-to-serosal transport of folic acid and leucovorin was significantly decreased in the duodenum of Mrp3 ( -/- ) mice, where their PS ( serosal ) was decreased to 6.3 and 22% of that in wild-type mice, respectively. PS ( serosal ) of 5-methyltetrahydrofolic acid was moderately decreased in Mrp3 ( -/- ) mice. There was no obvious abnormality in folate homeostasis in Mrp3 ( -/- ) mice. CONCLUSIONS Mrp3 accounts for the serosal efflux of folic acid and leucovorin, while it makes a moderate contribution to the serosal efflux of 5-methyltetrahydrofolic acid in mice. Mrp3 dysfunction does not disrupt folate homeostasis in mouse.
Collapse
|
16
|
Aimone AM, Connolly B, Chaudhary S, Lugtu-Pe J, Martinuzzi F, Pencharz P, O'Connor DL. A combination of pH-sensitive caplet coatings may be an effective noninvasive strategy to deliver bioactive substances, nutrients, or their precursors to the colon. Appl Physiol Nutr Metab 2010; 34:893-900. [PMID: 19935851 DOI: 10.1139/h09-090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We hypothesize that bacterially synthesized nutrients in the large intestine may significantly influence the nutritional status of humans and, specifically, that of the colonocytes. In vivo research with human subjects in this area has been extremely limited because of the absence of a noninvasive means to quantitatively deliver test doses of nutrients, or their precursors, to the colon. The purpose of this study was to design and test the effectiveness of a pH-dependent coating in delivering intact placebo caplets to the large intestine. Barium sulphate caplet cores (19.1 mm x 9.7 mm) were coated with 2 different pH-dependent acrylic copolymer products, Eudragit L100 and S100, in either a 1:0 ratio (100% Eudragit L100) or 3:1 ratio (75% Eudragit L100 and 25% S100). The disintegration profile of each formulation was determined through in vitro testing, then caplets were sequentially administered to 10 healthy volunteers, and monitored in vivo via serial abdominal fluoroscopic images. Test caplets with the 3:1 coating formulation had a 40% higher colon-targeting specificity compared with the 1:0-coated caplets, and tended to begin disintegrating at a later time after administration (p = 0.09). The total time from administration to complete disintegration was also significantly longer for the 3:1-coated caplets (p = 0.003). These results suggest that barium sulphate caplets with a 3:1 acrylic copolymer coating formulation ratio (Eudragit L100 and S100) may be a suitable delivery system for quantifying the biosynthesis of nutrients in the human large intestine and measuring their absorption across the colonic epithelium.
Collapse
Affiliation(s)
- Ashley M Aimone
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Yokooji T, Mori N, Murakami T. Site-specific contribution of proton-coupled folate transporter/haem carrier protein 1 in the intestinal absorption of methotrexate in rats. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.07.0010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Objectives
Methotrexate is reportedly a substrate for proton-coupled folate transporter/haem carrier protein 1 (PCFT/HCP1) and reduced folate carrier 1 (RFC1). In this study, we examined the contribution of PCFT/HCP1 and RFC1 in the intestinal absorption of methotrexate in rats.
Methods
Western blot analysis was carried out to evaluate the protein levels of PCFT/HCP1 and multidrug resistance-associated protein 2 in brush-border membrane of rat small intestine. Mucosal uptake of methotrexate was studied in the rat everted small intestine and an in-situ intestinal perfusion study of methotrexate was also carried out in rats.
Key findings
In transport studies using everted intestine, the mucosal methotrexate influx rate in proximal intestine at pH 5.5 was significantly greater than that at pH 7.4. Coadministration of folate or its analogues, such as folinate and 5-methyltetrahydrofolate, substrates for both PCFT/HCP1 and RFC1, significantly suppressed the methotrexate influx at pH 5.5, whereas thiamine pyrophosphate, an inhibitor for RFC1 alone, exerted no significant effect. Western blot analysis showed higher PCFT/HCP1 expression in proximal than distal small intestine. In distal small intestine, methotrexate influx rate was low and was not pH dependent. Also, folate and its analogues exerted no significant effect on methotrexate absorption.
Conclusions
Based on the present and our previous results, the site-specific contributions of various transporters including PCFT/HCP1 in methotrexate intestinal absorption were discussed. The variation in luminal pH and the involvement of multiple transporters in methotrexate absorption may cause variation in oral bioavailability among patients.
Collapse
Affiliation(s)
- Tomoharu Yokooji
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| | - Nobuhiro Mori
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| | - Teruo Murakami
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| |
Collapse
|
18
|
Hamid A, Kiran M, Rana S, Kaur J. Low folate transport across intestinal basolateral surface is associated with down-regulation of reduced folate carrier in in vivo model of folate malabsorption. IUBMB Life 2009; 61:236-43. [PMID: 19243012 DOI: 10.1002/iub.153] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The process of folate transport regulation across biological membranes is of considerable interest because of its ultimate role in providing one-carbon moieties for key cellular metabolic reactions and exogenous requirement of the vitamin in mammals. Although, intestinal folate malabsorption is established phenomena in alcoholism; however, there is no knowledge regarding the mechanism of folate exit across intestinal basolateral membrane (BLM) to circulation during alcohol associated malabsorption. In the present study, male Wistar rats were fed 1 g/kg body weight/day ethanol (20% solution) orally for 3 months and regulatory characteristics of folate transport at BLM surface were evaluated. The folate transport was found to be carrier mediated, saturable, with pH optima at 7.0, besides exhibiting Na(+) independence. The chronic alcohol ingestion resulted in alteration of transport kinetics, shifting the process to K(+) dependent one besides affecting the status of S--S linkage of the transport system. Importantly, chronic ethanol ingestion reduced the folate exit across the BLM by decreasing the affinity of transporter (high K(m)) for substrate and by decreasing the number of transporter molecules (low V(max)) on the surface. The decreased basolateral transport activity was associated with down-regulation of the reduced folate carrier (RFC) which resulted in decreased RFC protein levels in BLM in rat model of alcoholism. The study suggests that during alcohol ingestion, RFC mediated deregulated folate transport across BLM also attributes to folate malabsorption.
Collapse
Affiliation(s)
- Abid Hamid
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | |
Collapse
|
19
|
Jing M, Tactacan G, Rodriguez-Lecompte J, Kroeker A, House J. Molecular cloning and tissue distribution of reduced folate carrier and effect of dietary folate supplementation on the expression of reduced folate carrier in laying hens. Poult Sci 2009; 88:1939-47. [DOI: 10.3382/ps.2009-00032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Aufreiter S, Gregory JF, Pfeiffer CM, Fazili Z, Kim YI, Marcon N, Kamalaporn P, Pencharz PB, O'Connor DL. Folate is absorbed across the colon of adults: evidence from cecal infusion of (13)C-labeled [6S]-5-formyltetrahydrofolic acid. Am J Clin Nutr 2009; 90:116-23. [PMID: 19439459 PMCID: PMC6443296 DOI: 10.3945/ajcn.2008.27345] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Folate deficiency increases the risk of several human diseases. Likewise, high intakes of folate, particularly synthetic folic acid intake, may be associated with adverse health outcomes in humans. A more comprehensive understanding of the "input side" of folate nutrition may help to set dietary recommendations that strike the right balance between health benefits and risks. It is well known that the microflora in the colon produce large quantities of folate that approach or exceed recommended dietary intakes; however, there is no direct evidence of the bioavailability of this pool in humans. OBJECTIVE The objective was to determine whether, and to what extent, the natural folate vitamer 5-formyltetrahydrofolic acid is absorbed across the intact colon of humans. DESIGN During screening colonoscopy, 684 nmol (320 microg) [(13)C]glutamyl-5-formyltetrahydrofolic acid was infused directly into the cecum of 6 healthy adults. Three or more weeks later, each subject received an intravenous injection of the same compound (172 nmol). Blood samples were collected before and after each treatment. The ratio of labeled to unlabeled folates was determined in plasma by tandem mass spectrometry. RESULTS The apparent rate of folate absorption across the colon of a bolus dose of [(13)C]5-formyltetrahydrofolic acid infused into the cecum was 0.6 +/- 0.2 nmol/h, as determined by the appearance of [(13)C(5)]5-methyltetrahydrofolic acid in plasma. In comparison, the rate of appearance of [(13)C(5)]5-methyltetrahydrofolic acid after an intravenous injection of [(13)C(5)]5-formyltetrahydrofolate was 7 +/- 1.2 nmol/h. CONCLUSION Physiologic doses of natural folate are absorbed across the intact colon in humans.
Collapse
Affiliation(s)
- Susanne Aufreiter
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hamid A, Wani NA, Kaur J. New perspectives on folate transport in relation to alcoholism-induced folate malabsorption--association with epigenome stability and cancer development. FEBS J 2009; 276:2175-91. [PMID: 19292860 DOI: 10.1111/j.1742-4658.2009.06959.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Folates are members of the B-class of vitamins, which are required for the synthesis of purines and pyrimidines, and for the methylation of essential biological substances, including phospholipids, DNA, and neurotransmitters. Folates cannot be synthesized de novo by mammals; hence, an efficient intestinal absorption process is required. Intestinal folate transport is carrier-mediated, pH-dependent and electroneutral, with similar affinity for oxidized and reduced folic acid derivatives. The various transporters, i.e. reduced folate carrier, proton-coupled folate transporter, folate-binding protein, and organic anion transporters, are involved in the folate transport process in various tissues. Any impairment in uptake of folate can lead to a state of folate deficiency, the most prevalent vitamin deficiency in world, affecting 10% of the population in the USA. Such impairments in folate transport occur in a variety of conditions, including chronic use of ethanol, some inborn hereditary disorders, and certain diseases. Among these, ethanol ingestion has been the major contributor to folate deficiency. Ethanol-associated folate deficiency can develop because of dietary inadequacy, intestinal malabsorption, altered hepatobiliary metabolism, enhanced colonic metabolism, and increased renal excretion. Ethanol reduces the intestinal and renal uptake of folate by altering the binding and transport kinetics of folate transport systems. Also, ethanol reduces the expression of folate transporters in both intestine and kidney, and this might be a contributing factor for folate malabsorption, leading to folate deficiency. The maintenance of intracellular folate homeostasis is essential for the one-carbon transfer reactions necessary for DNA synthesis and biological methylation reactions. DNA methylation is an important epigenetic determinant in gene expression, in the maintenance of DNA integrity and stability, in chromosomal modifications, and in the development of mutations. Ethanol, a toxin that is consumed regularly, has been found to affect the methylation of DNA. In addition to its effect on DNA methylation due to folate deficiency, ethanol could directly exert its effect through its interaction with one-carbon metabolism, impairment of methyl group synthesis, and affecting the enzymes regulating the synthesis of S-adenosylmethionine, the primary methyl group donor for most biological methylation reactions. Thus, ethanol plays an important role in the pathogenesis of several diseases through its potential ability to modulate the methylation of biological molecules. This review discusses the underlying mechanism of folate malabsorption in alcoholism, the mechanism of methylation-associated silencing of genes, and how the interaction between ethanol and folate deficiency affects the methylation of genes, thereby modulating epigenome stability and the risk of cancer.
Collapse
Affiliation(s)
- Abid Hamid
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research Chandigarh, India
| | | | | |
Collapse
|
22
|
Abou-Donia MB, El-Masry EM, Abdel-Rahman AA, McLendon RE, Schiffman SS. Splenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:1415-29. [PMID: 18800291 DOI: 10.1080/15287390802328630] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Splenda is comprised of the high-potency artificial sweetener sucralose (1.1%) and the fillers maltodextrin and glucose. Splenda was administered by oral gavage at 100, 300, 500, or 1000 mg/kg to male Sprague-Dawley rats for 12-wk, during which fecal samples were collected weekly for bacterial analysis and measurement of fecal pH. After 12-wk, half of the animals from each treatment group were sacrificed to determine the intestinal expression of the membrane efflux transporter P-glycoprotein (P-gp) and the cytochrome P-450 (CYP) metabolism system by Western blot. The remaining animals were allowed to recover for an additional 12-wk, and further assessments of fecal microflora, fecal pH, and expression of P-gp and CYP were determined. At the end of the 12-wk treatment period, the numbers of total anaerobes, bifidobacteria, lactobacilli, Bacteroides, clostridia, and total aerobic bacteria were significantly decreased; however, there was no significant treatment effect on enterobacteria. Splenda also increased fecal pH and enhanced the expression of P-gp by 2.43-fold, CYP3A4 by 2.51-fold, and CYP2D1 by 3.49-fold. Following the 12-wk recovery period, only the total anaerobes and bifidobacteria remained significantly depressed, whereas pH values, P-gp, and CYP3A4 and CYP2D1 remained elevated. These changes occurred at Splenda dosages that contained sucralose at 1.1-11 mg/kg (the US FDA Acceptable Daily Intake for sucralose is 5 mg/kg). Evidence indicates that a 12-wk administration of Splenda exerted numerous adverse effects, including (1) reduction in beneficial fecal microflora, (2) increased fecal pH, and (3) enhanced expression levels of P-gp, CYP3A4, and CYP2D1, which are known to limit the bioavailability of orally administered drugs.
Collapse
Affiliation(s)
- Mohamed B Abou-Donia
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27708, USA.
| | | | | | | | | |
Collapse
|
23
|
Vinogradov SV, Zeman AD, Batrakova EV, Kabanov AV. Polyplex Nanogel formulations for drug delivery of cytotoxic nucleoside analogs. J Control Release 2005; 107:143-57. [PMID: 16039001 PMCID: PMC1357595 DOI: 10.1016/j.jconrel.2005.06.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/06/2005] [Accepted: 06/08/2005] [Indexed: 11/30/2022]
Abstract
Hydrophilic nanosized particles consisting of the cross-linked cationic polymer network (Nanogels) are suggested as a drug delivery system for nucleoside analog 5'-triphosphates, an active form of cytotoxic anticancer drugs. Preparation, properties, and cellular effects of several polyplex Nanogel formulations with the 5'-triphosphate of cytotoxic 5-fluoroadenine arabinoside (fludarabine) (FATP) were examined and discussed here. The polyplexes have formed spontaneously by mixing solutions of FATP and Nanogels because of ionic interactions between protonated polyethylenimine (PEI) chains in Nanogel network with polyphosphate groups of the drug. Subsequent compaction of the flexible Nanogel network has resulted in an encapsulation of the FATP/PEI complex in a dense core surrounded by hydrophilic poly(ethylene glycol) (PEG) envelope. This structure has provided a sustained release of the drug, as well as an efficient protection of FATP against enzymatic degradation. The drug loading could reach up to 33% by weight of the drug-Nanogel formulation. In vitro 35% of loaded drug has released from Nanogel formulations during the first 24 h, and a slower additional release was observed during the next 2 days. Nanogels have protected 90% of the encapsulated FATP from enzymatic dephosphorylation during the first 60 min of incubation in vitro. The drug-Nanogel formulation compared to the drug has demonstrated a significantly enhanced cytotoxicity in cultured cancer cells. Cancer cell-targeting molecules, such as folate, could be easily attached to Nanogels and this modification has resulted in a strong 10-fold increase of the carrier's internalization in human breast carcinoma MCF-7 cells. Moreover, transcellular transport of the folate-Nanogel polyplexes was found to be 4 times more effective compared to the drug alone using Caco-2 cell monolayers as an in vitro intestinal model. The data demonstrate that this carrier-based approach to delivery of cytotoxic drugs may enhance tumor specificity and significantly reduce side effects related to systemic toxicity usually observed during cancer chemotherapy.
Collapse
Affiliation(s)
- Serguei V Vinogradov
- Center for Drug Delivery and Nanomedicine and College of Pharmacy, Department of Pharmaceutical Sciences, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, United States.
| | | | | | | |
Collapse
|
24
|
Bisseling TM, Steegers EAP, van den Heuvel JJM, Siero HLM, van de Water FM, Walker AJ, Steegers-Theunissen RPM, Smits P, Russel FGM. Placental folate transport and binding are not impaired in pregnancies complicated by fetal growth restriction. Placenta 2004; 25:588-93. [PMID: 15135243 DOI: 10.1016/j.placenta.2003.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2003] [Revised: 11/21/2003] [Accepted: 11/27/2003] [Indexed: 11/22/2022]
Abstract
Maternal folate deficiency is associated with fetal growth restriction, however, transfer of folate across placentae of pregnancies complicated by fetal growth restriction has never been investigated. We studied whether maternal to fetal 5-methyltetrahydrofolate (5MTF) transport in the ex vivo dually perfused isolated cotyledon, binding of [(3)H] folate (PteGlu) to the syncytial microvillous membrane, and protein expression of folate receptor alpha (FR-alpha) and reduced folate carrier (RFC) in these placentae are disturbed. Placental clearance of 5MTF from the maternal perfusate appeared to be non-saturable over a range of 50 to 500 nm, independent of albumin and flow-independent. No statistically significant differences between placentae complicated with fetal growth restriction and uncomplicated pregnancies were observed. Binding characteristics of [(3)H-]PteGlu to microvillous membranes of fetal growth restriction versus control placentae were similar: B(max)of 3.9+/-2.0 (mean+/-s.d.) versus 4.0+/-1.6 pmol/mg protein and a K(d)of 0.037+/-0.010 versus 0.040+/-0.018 nm. Expression of FR-alpha and RFC were not different in placentae of both groups studied. In conclusion, fetal growth restriction appears not to be associated with impaired maternal to fetal placental folate transport, placental receptor binding, or expression of FR-alpha and RFC.
Collapse
Affiliation(s)
- T M Bisseling
- Department of Pharmacology and Toxicology, University Medical Centre Nijmegen, 233, University Medical Centre Nijmegen/NCMLS, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang Y, Rajgopal A, Goldman ID, Zhao R. Preservation of folate transport activity with a low-pH optimum in rat IEC-6 intestinal epithelial cell lines that lack reduced folate carrier function. Am J Physiol Cell Physiol 2004; 288:C65-71. [PMID: 15385270 DOI: 10.1152/ajpcell.00307.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intestinal folate transport has been well characterized, and rat small intestinal epithelial (IEC-6) cells have been used as a model system for the study of this process on the cellular level. The major intestinal folate transport activity has a low-pH optimum, and the current paradigm is that this process is mediated by the reduced folate carrier (RFC), despite the fact that this carrier has a neutral pH optimum in leukemia cells. The current study addressed the question of whether constitutive low-pH folate transport activity in IEC-6 cells is mediated by RFC. Two independent IEC-6 sublines, IEC-6/A4 and IEC-6/PT1, were generated by chemical mutagenesis followed by selective pressure with antifolates. In IEC-6/A4 cells, a premature stop resulted in truncation of RFC at Gln(420). A green fluorescent protein (GFP) fusion with the truncated protein was not stable. In IEC-6/PT1 cells, Ser(135) was deleted, and this alteration resulted in the failure of localization of the GFP fusion protein in the plasma membrane. In both cell lines, methotrexate (MTX) influx at neutral pH was markedly decreased compared with wild-type IEC-6 cells, but MTX influx at pH 5.5 was not depressed. Transient transfection of the GFP-mutated RFC constructs into RFC-null HeLa cells confirmed their lack of transport function. These results indicate that in IEC-6 cells, folate transport at neutral pH is mediated predominantly by RFC; however, the folate transport activity at pH 5.5 is RFC independent. Hence, constitutive folate transport activity with a low-pH optimum in this intestinal cell model is mediated by a process entirely distinct from that of RFC.
Collapse
Affiliation(s)
- Yanhua Wang
- Department of Medicine, Albert Einstein College of Medicine, and the Albert Einstein Cancer Research Center, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
26
|
Boulware MJ, Subramanian VS, Said HM, Marchant JS. Polarized expression of members of the solute carrier SLC19A gene family of water-soluble multivitamin transporters: implications for physiological function. Biochem J 2003; 376:43-8. [PMID: 14602044 PMCID: PMC1223768 DOI: 10.1042/bj20031220] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Humans lack biochemical pathways for the synthesis of the micro-nutrients thiamine and folate. Cellular requirements are met through membrane transport activity, which is mediated by proteins of the SLC19A gene family. By using live-cell confocal imaging methods to resolve the localization of all SLC19A family members, we show that the two human thiamine transporters are differentially targeted in polarized cells, establishing a vectorial transport system. Such polarization decreases functional redundancy between transporter isoforms and allows for independent regulation of thiamine import and export pathways in cells.
Collapse
Affiliation(s)
- Michael J Boulware
- Department of Pharmacology, 321 Church Street SE, University of Minnesota Medical School, MN 55455, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Water-soluble vitamins are required as enzyme cofactors in a wide variety of metabolic reactions. Riboflavin, niacin, and vitamin C are essential in redox reactions; thiamine and biotin are involved in macronutrient metabolism; and folate, vitamin B12, pyridoxine, and riboflavin play important roles in the regulation of S-adenosylmethionine production and DNA synthesis. Each of the water-soluble vitamins appears to require its own membrane transport process for absorption across the enterocyte. The absorption of vitamin B12, or cobalamin (Cbl), is unique in requiring multiple processes from the stomach to the ileum that involve at least four different binding proteins. Whereas all water-soluble vitamins are absorbed from the small intestine, folate, biotin, and riboflavin can be transported across colonic epithelial cells, with uncertain clinical significance. This article reviews recent studies on the requirement, metabolism, and deficiency state of each water-soluble vitamin, followed by a discussion of current knowledge on the regulation of its intestinal absorption.
Collapse
Affiliation(s)
- Charles H Halsted
- School of Medicine, University of California Davis, Davis, California 95616, USA.
| |
Collapse
|