1
|
Colebank MJ, Oomen PA, Witzenburg CM, Grosberg A, Beard DA, Husmeier D, Olufsen MS, Chesler NC. Guidelines for mechanistic modeling and analysis in cardiovascular research. Am J Physiol Heart Circ Physiol 2024; 327:H473-H503. [PMID: 38904851 PMCID: PMC11442102 DOI: 10.1152/ajpheart.00766.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Computational, or in silico, models are an effective, noninvasive tool for investigating cardiovascular function. These models can be used in the analysis of experimental and clinical data to identify possible mechanisms of (ab)normal cardiovascular physiology. Recent advances in computing power and data management have led to innovative and complex modeling frameworks that simulate cardiovascular function across multiple scales. While commonly used in multiple disciplines, there is a lack of concise guidelines for the implementation of computer models in cardiovascular research. In line with recent calls for more reproducible research, it is imperative that scientists adhere to credible practices when developing and applying computational models to their research. The goal of this manuscript is to provide a consensus document that identifies best practices for in silico computational modeling in cardiovascular research. These guidelines provide the necessary methods for mechanistic model development, model analysis, and formal model calibration using fundamentals from statistics. We outline rigorous practices for computational, mechanistic modeling in cardiovascular research and discuss its synergistic value to experimental and clinical data.
Collapse
Affiliation(s)
- Mitchel J Colebank
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States
| | - Pim A Oomen
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States
| | - Colleen M Witzenburg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Anna Grosberg
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States
| | - Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Dirk Husmeier
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Mette S Olufsen
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States
| | - Naomi C Chesler
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States
| |
Collapse
|
2
|
Elijovich F, Kirabo A, Laffer CL. Salt Sensitivity of Blood Pressure in Black People: The Need to Sort Out Ancestry Versus Epigenetic Versus Social Determinants of Its Causation. Hypertension 2024; 81:456-467. [PMID: 37767696 PMCID: PMC10922075 DOI: 10.1161/hypertensionaha.123.17951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Race is a social construct, but self-identified Black people are known to have higher prevalence and worse outcomes of hypertension than White people. This may be partly due to the disproportionate incidence of salt sensitivity of blood pressure in Black people, a cardiovascular risk factor that is independent of blood pressure and has no proven therapy. We review the multiple physiological systems involved in regulation of blood pressure, discuss what, if anything is known about the differences between Black and White people in these systems and how they affect salt sensitivity of blood pressure. The contributions of genetics, epigenetics, environment, and social determinants of health are briefly touched on, with the hope of stimulating further work in the field.
Collapse
Affiliation(s)
- Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
3
|
Walia RS, Mankoff R. Impact of Socioeconomic Status on Heart Failure. J Community Hosp Intern Med Perspect 2023; 13:107-111. [PMID: 38596541 PMCID: PMC11000844 DOI: 10.55729/2000-9666.1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 04/11/2024] Open
Abstract
Heart failure has emerged as a substantial health burden in the United States in the last few decades. This study examined the hypothesis that socioeconomic factors such as education level, social position, employment status, and poverty have a strong confounding influence on the risk for heart failure. To access relevant data, 12 published studies were retrieved from MEDLINE, Google Scholar, and Web of Science. A cross-sectional analysis of the identified studies confirmed that the four socioeconomic factors predisposed individuals to an elevated risk of heart failure-related complications. Despite their interdependencies, educational level, employment status, social position, and poverty independently confounded cardiovascular risk among individuals. Notably, individuals from households with low education were at a higher risk of these diseases. At the same time, households without employed family members were less likely to report cases of heart failure than those with low socioeconomic status. Additionally, individuals from disadvantaged backgrounds faced a greater risk for heart failure complications. The findings from this study found a strong association between socioeconomic status and heart failure risks.
Collapse
Affiliation(s)
- Ranbir S. Walia
- Medical University of the Americas, 41 Petty Rd., Cranbury, NJ,
USA
| | - Robert Mankoff
- Medical University of the Americas, P.O. Box 701, Charlestown, Nevis, West Indies,
USA
| |
Collapse
|
4
|
Doumatey AP, Bentley AR, Akinyemi R, Olanrewaju TO, Adeyemo A, Rotimi C. Genes, environment, and African ancestry in cardiometabolic disorders. Trends Endocrinol Metab 2023; 34:601-621. [PMID: 37598069 PMCID: PMC10548552 DOI: 10.1016/j.tem.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
The past two decades have been characterized by a substantial global increase in cardiometabolic diseases, but the prevalence and incidence of these diseases and related traits differ across populations. African ancestry populations are among the most affected yet least included in research. Populations of African descent manifest significant genetic and environmental diversity and this under-representation is a missed opportunity for discovery and could exacerbate existing health disparities and curtail equitable implementation of precision medicine. Here, we discuss cardiometabolic diseases and traits in the context of African descent populations, including both genetic and environmental contributors and emphasizing novel discoveries. We also review new initiatives to include more individuals of African descent in genomics to address current gaps in the field.
Collapse
Affiliation(s)
- Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rufus Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training and Centre for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Neurology, University College Hospital, Ibadan, Nigeria
| | - Timothy O Olanrewaju
- Division of Nephrology, Department of Medicine, University of Ilorin & University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charles Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Tan K, Foo R, Loh M. Cardiomyopathy in Asian Cohorts: Genetic and Epigenetic Insights. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:496-506. [PMID: 37589150 DOI: 10.1161/circgen.123.004079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Previous studies on cardiomyopathies have been particularly valuable for clarifying pathological mechanisms in heart failure, an etiologically heterogeneous disease. In this review, we specifically focus on cardiomyopathies in Asia, where heart failure is particularly pertinent. There has been an increase in prevalence of cardiomyopathies in Asia, in sharp contrast with the decline observed in Western countries. Indeed, important disparities in cardiomyopathy incidence, clinical characteristics, and prognosis have been reported in Asian versus White cohorts. These have been accompanied by emerging descriptions of a distinct rare and common genetic basis for disease among Asian cardiomyopathy patients marked by an increased burden of variants with uncertain significance, reclassification of variants deemed pathogenic based on evidence from predominantly White cohorts, and the discovery of Asian-specific cardiomyopathy-associated loci with underappreciated pathogenicity under conventional classification criteria. Findings from epigenetic studies of heart failure, particularly DNA methylation studies, have complemented genetic findings in accounting for the phenotypic variability in cardiomyopathy. Though extremely limited, findings from Asian ancestry-focused DNA methylation studies of cardiomyopathy have shown potential to contribute to general understanding of cardiomyopathy pathophysiology by proposing disease and cause-relevant pathophysiological mechanisms. We discuss the value of multiomics study designs incorporating genetic, methylation, and transcriptomic information for future DNA methylation studies in Asian cardiomyopathy cohorts to yield Asian ancestry-specific insights that will improve risk stratification in the Asian population.
Collapse
Affiliation(s)
- Konstanze Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore (K.T., M.L.)
| | - Roger Foo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore (R.F.)
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore (R.F.)
| | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore (K.T., M.L.)
- Genome Institute of Singapore, Singapore (GIS), Agency for Science, Technology and Research (A*STAR) (M.L.)
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom (M.L.)
- National Skin Centre, Singapore (M.L.)
| |
Collapse
|
6
|
Ivey Henry P, Spence Beaulieu MR, Bradford A, Graves JL. Embedded racism: Inequitable niche construction as a neglected evolutionary process affecting health. Evol Med Public Health 2023; 11:112-125. [PMID: 37197590 PMCID: PMC10184440 DOI: 10.1093/emph/eoad007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/11/2023] [Indexed: 05/19/2023] Open
Abstract
Racial health disparities are a pervasive feature of modern experience and structural racism is increasingly recognized as a public health crisis. Yet evolutionary medicine has not adequately addressed the racialization of health and disease, particularly the systematic embedding of social biases in biological processes leading to disparate health outcomes delineated by socially defined race. In contrast to the sheer dominance of medical publications which still assume genetic 'race' and omit mention of its social construction, we present an alternative biological framework of racialized health. We explore the unifying evolutionary-ecological principle of niche construction as it offers critical insights on internal and external biological and behavioral feedback processes environments at every level of the organization. We Integrate insights of niche construction theory in the context of human evolutionary and social history and phenotype-genotype modification, exposing the extent to which racism is an evolutionary mismatch underlying inequitable disparities in disease. We then apply ecological models of niche exclusion and exploitation to institutional and interpersonal racial constructions of population and individual health and demonstrate how discriminatory processes of health and harm apply to evolutionarily relevant disease classes and life-history processes in which socially defined race is poorly understood and evaluated. Ultimately, we call for evolutionary and biomedical scholars to recognize the salience of racism as a pathogenic process biasing health outcomes studied across disciplines and to redress the neglect of focus on research and application related to this crucial issue.
Collapse
Affiliation(s)
- Paula Ivey Henry
- Department of Social and Behavioral Sciences, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | - Angelle Bradford
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Joseph L Graves
- Department of Biology, North Carolina A&T State University, Greensboro, NC, USA
| |
Collapse
|
7
|
Chan MHM, Merrill SM, Konwar C, Kobor MS. An integrative framework and recommendations for the study of DNA methylation in the context of race and ethnicity. DISCOVER SOCIAL SCIENCE AND HEALTH 2023; 3:9. [PMID: 37122633 PMCID: PMC10118232 DOI: 10.1007/s44155-023-00039-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023]
Abstract
Human social epigenomics research is critical to elucidate the intersection of social and genetic influences underlying racial and ethnic differences in health and development. However, this field faces major challenges in both methodology and interpretation with regard to disentangling confounded social and biological aspects of race and ethnicity. To address these challenges, we discuss how these constructs have been approached in the past and how to move forward in studying DNA methylation (DNAm), one of the best-characterized epigenetic marks in humans, in a responsible and appropriately nuanced manner. We highlight self-reported racial and ethnic identity as the primary measure in this field, and discuss its implications in DNAm research. Racial and ethnic identity reflects the biological embedding of an individual's sociocultural experience and environmental exposures in combination with the underlying genetic architecture of the human population (i.e., genetic ancestry). Our integrative framework demonstrates how to examine DNAm in the context of race and ethnicity, while considering both intrinsic factors-including genetic ancestry-and extrinsic factors-including structural and sociocultural environment and developmental niches-when focusing on early-life experience. We reviewed DNAm research in relation to health disparities given its relevance to race and ethnicity as social constructs. Here, we provide recommendations for the study of DNAm addressing racial and ethnic differences, such as explicitly acknowledging the self-reported nature of racial and ethnic identity, empirically examining the effects of genetic variants and accounting for genetic ancestry, and investigating race-related and culturally regulated environmental exposures and experiences. Supplementary Information The online version contains supplementary material available at 10.1007/s44155-023-00039-z.
Collapse
Affiliation(s)
- Meingold Hiu-ming Chan
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC Canada
- British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC Canada
| | - Sarah M. Merrill
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC Canada
- British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC Canada
| | - Chaini Konwar
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC Canada
- British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC Canada
| | - Michael S. Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC Canada
- British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC Canada
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
8
|
Krolevets M, Cate VT, Prochaska JH, Schulz A, Rapp S, Tenzer S, Andrade-Navarro MA, Horvath S, Niehrs C, Wild PS. DNA methylation and cardiovascular disease in humans: a systematic review and database of known CpG methylation sites. Clin Epigenetics 2023; 15:56. [PMID: 36991458 PMCID: PMC10061871 DOI: 10.1186/s13148-023-01468-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/19/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death worldwide and considered one of the most environmentally driven diseases. The role of DNA methylation in response to the individual exposure for the development and progression of CVD is still poorly understood and a synthesis of the evidence is lacking. RESULTS A systematic review of articles examining measurements of DNA cytosine methylation in CVD was conducted in accordance with PRISMA (preferred reporting items for systematic reviews and meta-analyses) guidelines. The search yielded 5,563 articles from PubMed and CENTRAL databases. From 99 studies with a total of 87,827 individuals eligible for analysis, a database was created combining all CpG-, gene- and study-related information. It contains 74,580 unique CpG sites, of which 1452 CpG sites were mentioned in ≥ 2, and 441 CpG sites in ≥ 3 publications. Two sites were referenced in ≥ 6 publications: cg01656216 (near ZNF438) related to vascular disease and epigenetic age, and cg03636183 (near F2RL3) related to coronary heart disease, myocardial infarction, smoking and air pollution. Of 19,127 mapped genes, 5,807 were reported in ≥ 2 studies. Most frequently reported were TEAD1 (TEA Domain Transcription Factor 1) and PTPRN2 (Protein Tyrosine Phosphatase Receptor Type N2) in association with outcomes ranging from vascular to cardiac disease. Gene set enrichment analysis of 4,532 overlapping genes revealed enrichment for Gene Ontology molecular function "DNA-binding transcription activator activity" (q = 1.65 × 10-11) and biological processes "skeletal system development" (q = 1.89 × 10-23). Gene enrichment demonstrated that general CVD-related terms are shared, while "heart" and "vasculature" specific genes have more disease-specific terms as PR interval for "heart" or platelet distribution width for "vasculature." STRING analysis revealed significant protein-protein interactions between the products of the differentially methylated genes (p = 0.003) suggesting that dysregulation of the protein interaction network could contribute to CVD. Overlaps with curated gene sets from the Molecular Signatures Database showed enrichment of genes in hemostasis (p = 2.9 × 10-6) and atherosclerosis (p = 4.9 × 10-4). CONCLUSION This review highlights the current state of knowledge on significant relationship between DNA methylation and CVD in humans. An open-access database has been compiled of reported CpG methylation sites, genes and pathways that may play an important role in this relationship.
Collapse
Affiliation(s)
- Mykhailo Krolevets
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Systems Medicine, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Vincent Ten Cate
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jürgen H Prochaska
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Steffen Rapp
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
| | - Stefan Tenzer
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Miguel A Andrade-Navarro
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
- Systems Medicine, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
9
|
Oeing CU, Pepin ME, Saul KB, Agircan AS, Assenov Y, Merkel TS, Sedaghat-Hamedani F, Weis T, Meder B, Guan K, Plass C, Weichenhan D, Siede D, Backs J. Indirect epigenetic testing identifies a diagnostic signature of cardiomyocyte DNA methylation in heart failure. Basic Res Cardiol 2023; 118:9. [PMID: 36939901 PMCID: PMC10027651 DOI: 10.1007/s00395-022-00954-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 03/21/2023]
Abstract
Precision-based molecular phenotyping of heart failure must overcome limited access to cardiac tissue. Although epigenetic alterations have been found to underlie pathological cardiac gene dysregulation, the clinical utility of myocardial epigenomics remains narrow owing to limited clinical access to tissue. Therefore, the current study determined whether patient plasma confers indirect phenotypic, transcriptional, and/or epigenetic alterations to ex vivo cardiomyocytes to mirror the failing human myocardium. Neonatal rat ventricular myocytes (NRVMs) and single-origin human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and were treated with blood plasma samples from patients with dilated cardiomyopathy (DCM) and donor subjects lacking history of cardiovascular disease. Following plasma treatments, NRVMs and hiPSC-CMs underwent significant hypertrophy relative to non-failing controls, as determined via automated high-content screening. Array-based DNA methylation analysis of plasma-treated hiPSC-CMs and cardiac biopsies uncovered robust, and conserved, alterations in cardiac DNA methylation, from which 100 sites were validated using an independent cohort. Among the CpG sites identified, hypo-methylation of the ATG promoter was identified as a diagnostic marker of HF, wherein cg03800765 methylation (AUC = 0.986, P < 0.0001) was found to out-perform circulating NT-proBNP levels in differentiating heart failure. Taken together, these findings support a novel approach of indirect epigenetic testing in human HF.
Collapse
Affiliation(s)
- Christian U Oeing
- Institute of Experimental Cardiology, University Hospital Heidelberg, University of Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
- Department of Internal Medicine and Cardiology, Charité University Medicine, DZHK (German Center for Cardiovascular Research), Partner site Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Mark E Pepin
- Institute of Experimental Cardiology, University Hospital Heidelberg, University of Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Kerstin B Saul
- Institute of Experimental Cardiology, University Hospital Heidelberg, University of Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Ayça Seyhan Agircan
- Institute of Experimental Cardiology, University Hospital Heidelberg, University of Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Yassen Assenov
- Cancer Epigenomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Tobias S Merkel
- Institute of Experimental Cardiology, University Hospital Heidelberg, University of Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Farbod Sedaghat-Hamedani
- Department of Cardiology, University of Heidelberg, DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Tanja Weis
- Department of Cardiology, University of Heidelberg, DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Benjamin Meder
- Department of Cardiology, University of Heidelberg, DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Medical Centre Dresden, Dresden, Germany
| | - Christoph Plass
- Cancer Epigenomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Dieter Weichenhan
- Cancer Epigenomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Dominik Siede
- Institute of Experimental Cardiology, University Hospital Heidelberg, University of Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, University Hospital Heidelberg, University of Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.
| |
Collapse
|
10
|
Meloni M, Moll T, Issaka A, Kuzawa CW. A biosocial return to race? A cautionary view for the postgenomic era. Am J Hum Biol 2022; 34:e23742. [PMID: 35275433 PMCID: PMC9286859 DOI: 10.1002/ajhb.23742] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/20/2022] [Indexed: 12/21/2022] Open
Abstract
Recent studies demonstrating epigenetic and developmental sensitivity to early environments, as exemplified by fields like the Developmental Origins of Health and Disease (DOHaD) and environmental epigenetics, are bringing new data and models to bear on debates about race, genetics, and society. Here, we first survey the historical prominence of models of environmental determinism in early formulations of racial thinking to illustrate how notions of direct environmental effects on bodies have been used to naturalize racial hierarchy and inequalities in the past. Next, we conduct a scoping review of postgenomic work in environmental epigenetics and DOHaD that looks at the role of race/ethnicity in human health (2000-2021). Although there is substantial heterogeneity in how race is conceptualized and interpreted across studies, we observe practices that may unwittingly encourage typological thinking, including: using DNA methylation as a novel marker of racial classification; neglect of variation and reversibility within supposedly homogenous racial groups; and a tendency to label and reify whole groups as pathologized or impaired. Even in the very different politico-economic and epistemic context of contemporary postgenomic science, these trends echo deeply held beliefs in Western thinking which claimed that different environments shape different bodies and then used this logic to argue for essential differences between Europeans and non-Europeans. We conclude with a series of suggestions on interpreting and reporting findings in these fields that we feel will help researchers harness this work to benefit disadvantaged groups while avoiding the inadvertent dissemination of new and old forms of stigma or prejudice.
Collapse
Affiliation(s)
- Maurizio Meloni
- Alfred Deakin Institute for Citizenship and GlobalisationDeakin University, Geelong Waurn Ponds CampusWaurn PondsVictoriaAustralia
| | - Tessa Moll
- Alfred Deakin Institute for Citizenship and GlobalisationDeakin University, Geelong Waurn Ponds CampusWaurn PondsVictoriaAustralia
- School of Public Health, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Ayuba Issaka
- School of Health and Social Development, Faculty of HealthDeakin University, Geelong Waurn Ponds CampusWaurn PondsVictoriaAustralia
| | - Christopher W. Kuzawa
- Department of Anthropology and Institute for Policy ResearchNorthwestern UniversityEvanstonIllinoisUSA
| |
Collapse
|
11
|
Jiang C, Li S. Editorial: DNA Methylation Dynamics and Human Diseases. Front Cell Dev Biol 2022; 10:956286. [PMID: 35813216 PMCID: PMC9260264 DOI: 10.3389/fcell.2022.956286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chunjie Jiang
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Chunjie Jiang, ; Shengli Li,
| | - Shengli Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Chunjie Jiang, ; Shengli Li,
| |
Collapse
|
12
|
Vijayakumar KA, Cho GW. Pan-tissue methylation aging clock: Recalibrated and a method to analyze and interpret the selected features. Mech Ageing Dev 2022; 204:111676. [PMID: 35489615 DOI: 10.1016/j.mad.2022.111676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/29/2022] [Accepted: 04/23/2022] [Indexed: 11/29/2022]
Abstract
The abundance of the biological data and the rapid evolution of the newer machine learning technologies have increased the epigenetics research in the last decade. This has enhanced the ability to measure the biological age of humans and different organisms via their omics data. DNA methylation array data are commonly used in the prediction of methylation age. Horvath clock has been adopted in various aging studies as a DNA methylation age predicting clock due to its higher accuracy and multi tissue prediction potential. In the current study, we have developed a pan tissue methylation-aging clock by using the publicly available illumina 450k and EPIC array methylation datasets. In doing that, we developed a highly accurate epigenetic clock, which predicts the age of multiple tissues with higher accuracy. We have also analyzed the selected probes for their biological relevance. Upon analyzing the selected features further, we found out evidences, which support the Antagonistic pleiotropy theory of aging.
Collapse
Affiliation(s)
- Karthikeyan A Vijayakumar
- Department of Biology, College of Natural Science, Chosun University, Gwangju 501-759, South Korea; BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 501-759, South Korea
| | - Gwang-Won Cho
- Department of Biology, College of Natural Science, Chosun University, Gwangju 501-759, South Korea; BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 501-759, South Korea.
| |
Collapse
|
13
|
The Myth of the Genetically Sick African. GENEALOGY 2022. [DOI: 10.3390/genealogy6010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Western medicine has an unfortunate history where it has been applied to address the health of African Americans. At its origins, it was aligned with the objectives of colonialism and chattel slavery. The degree to which medical “science” concerned itself with persons of African descent was to keep them alive for sale on the auction block, or to keep them healthy as they toiled to generate wealth for their European owners. Medicine in early America relied upon both dead and live African bodies to test its ideas to benefit Europeans. As medicine moved from quackery to a discipline based in science, its understanding of human biological variation was flawed. This was not a problem confined to medicine alone, but to the biological sciences in general. Biology had no solid theoretical basis until after 1859. As medicine further developed in the 20th century, it never doubted the difference between Europeans and Africans, and also asserted the innate inferiority of the latter. The genomic revolution in the latter 20th century produced tools that were deployed in a biomedical culture still mired in “racial” medicine. This lack of theoretical perspective still misdirects research associated with health disparity. In contrast to this is evolutionary medicine, which relies on a sound unification of evolutionary (ultimate) and physiological, cellular, and molecular (proximate) mechanisms. Utilizing the perspectives of evolutionary medicine is a prerequisite for an effective intervention in health disparity and finally dispelling the myth of the genetically sick African.
Collapse
|
14
|
Pinzon Cortes JA, El-Osta A. Distinguishable DNA methylation defines disease susceptibility influenced by race and ethnicity. Clin Epigenetics 2021; 13:189. [PMID: 34635160 PMCID: PMC8507373 DOI: 10.1186/s13148-021-01180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jairo A Pinzon Cortes
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
15
|
Bunsawat K, Robinson AT. Delineating racial and socioeconomic-related health disparities in end-stage heart failure: insight from cardiac DNA methylation. Am J Physiol Heart Circ Physiol 2021; 320:H2031-H2033. [PMID: 33834867 DOI: 10.1152/ajpheart.00186.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kanokwan Bunsawat
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Austin T Robinson
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama
| |
Collapse
|