1
|
La Chica Lhoëst MT, Martinez A, Claudi L, Garcia E, Benitez-Amaro A, Polishchuk A, Piñero J, Vilades D, Guerra JM, Sanz F, Rotllan N, Escolà-Gil JC, Llorente-Cortés V. Mechanisms modulating foam cell formation in the arterial intima: exploring new therapeutic opportunities in atherosclerosis. Front Cardiovasc Med 2024; 11:1381520. [PMID: 38952543 PMCID: PMC11215187 DOI: 10.3389/fcvm.2024.1381520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
In recent years, the role of macrophages as the primary cell type contributing to foam cell formation and atheroma plaque development has been widely acknowledged. However, it has been long recognized that diffuse intimal thickening (DIM), which precedes the formation of early fatty streaks in humans, primarily consists of lipid-loaded smooth muscle cells (SMCs) and their secreted proteoglycans. Recent studies have further supported the notion that SMCs constitute the majority of foam cells in advanced atherosclerotic plaques. Given that SMCs are a major component of the vascular wall, they serve as a significant source of microvesicles and exosomes, which have the potential to regulate the physiology of other vascular cells. Notably, more than half of the foam cells present in atherosclerotic lesions are of SMC origin. In this review, we describe several mechanisms underlying the formation of intimal foam-like cells in atherosclerotic plaques. Based on these mechanisms, we discuss novel therapeutic approaches that have been developed to regulate the generation of intimal foam-like cells. These innovative strategies hold promise for improving the management of atherosclerosis in the near future.
Collapse
Affiliation(s)
- M. T. La Chica Lhoëst
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - A. Martinez
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - L. Claudi
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - E. Garcia
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - A. Benitez-Amaro
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - A. Polishchuk
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - J. Piñero
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences (DCEXS), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - D. Vilades
- Department of Cardiology, Hospital de la Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB-SANTPAU), Universitat Autonoma de Barcelona, Barcelona, Spain
- Department of Cardiovascular, CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - J. M. Guerra
- Department of Cardiology, Hospital de la Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB-SANTPAU), Universitat Autonoma de Barcelona, Barcelona, Spain
- Department of Cardiovascular, CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - F. Sanz
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences (DCEXS), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - N. Rotllan
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Cardiovascular, CIBERDEM, Institute of Health Carlos III, Madrid, Spain
| | - J. C. Escolà-Gil
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Cardiovascular, CIBERDEM, Institute of Health Carlos III, Madrid, Spain
| | - V. Llorente-Cortés
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Cardiovascular, CIBERCV, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Yuan X, Jiang C, Xue Y, Guo F, Luo M, Guo L, Gao Y, Yuan T, Xu H, Chen H. KLF13 promotes VSMCs phenotypic dedifferentiation by directly binding to the SM22α promoter. J Cell Physiol 2024; 239:e31251. [PMID: 38634445 DOI: 10.1002/jcp.31251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 04/19/2024]
Abstract
Krüppel-like factor 13 (KLF13), a zinc finger transcription factor, is considered as a potential regulator of cardiomyocyte differentiation and proliferation during heart morphogenesis. However, its precise role in the dedifferentiation of vascular smooth muscle cells (VSMCs) during atherosclerosis and neointimal formation after injury remains poorly understood. In this study, we investigated the relationship between KLF13 and SM22α expression in normal and atherosclerotic plaques by bioanalysis, and observed a significant increase in KLF13 levels in the atherosclerotic plaques of both human patients and ApoE-/- mice. Knockdown of KLF13 was found to ameliorate intimal hyperplasia following carotid artery injury. Furthermore, we discovered that KLF13 directly binds to the SM22α promoter, leading to the phenotypic dedifferentiation of VSMCs. Remarkably, we observed a significant inhibition of platelet-derived growth factor BB-induced VSMCs dedifferentiation, proliferation, and migration when knocked down KLF13 in VSMCs. This inhibitory effect of KLF13 knockdown on VCMC function was, at least in part, mediated by the inactivation of p-AKT signaling in VSMCs. Overall, our findings shed light on a potential therapeutic target for treating atherosclerotic lesions and restenosis after vascular injury.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/metabolism
- Cell Dedifferentiation
- Cell Movement/genetics
- Cell Proliferation/genetics
- Cells, Cultured
- Kruppel-Like Transcription Factors/metabolism
- Kruppel-Like Transcription Factors/genetics
- Mice, Inbred C57BL
- Muscle Proteins/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima/metabolism
- Neointima/pathology
- Neointima/genetics
- Phenotype
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/genetics
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
- Cell Cycle Proteins
- Microfilament Proteins/genetics
Collapse
Affiliation(s)
- Xiaofan Yuan
- Department of General Practice, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chuan Jiang
- Department of Neurosurgery, The Southwest Medical University, Luzhou, Sichuan, China
| | - Yuzhou Xue
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| | - Fuqiang Guo
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Guo
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yang Gao
- Department of General Practice, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Tongling Yuan
- Department of General Practice, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hui Xu
- Department of General Practice, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hong Chen
- Department of General Practice, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Glaser SF, Brezski A, Baumgarten N, Klangwart M, Heumüller AW, Maji RK, Leisegang MS, Guenther S, Zehendner CM, John D, Schulz MH, Zarnack K, Dimmeler S. Circular RNA circPLOD2 regulates pericyte function by targeting the transcription factor KLF4. Cell Rep 2023; 42:112824. [PMID: 37481725 DOI: 10.1016/j.celrep.2023.112824] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/31/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
Circular RNAs are generated by backsplicing and control cellular signaling and phenotypes. Pericytes stabilize capillary structures and play important roles in the formation and maintenance of blood vessels. Here, we characterize hypoxia-regulated circular RNAs (circRNAs) in human pericytes and show that the circular RNA of procollagen-lysine,2-oxoglutarate 5-dioxygenase-2 (circPLOD2) is induced by hypoxia and regulates pericyte functions. Silencing of circPLOD2 affects pericytes and increases proliferation, migration, and secretion of soluble angiogenic proteins, thereby enhancing endothelial migration and network capability. Transcriptional and epigenomic profiling of circPLOD2-depleted cells reveals widespread changes in gene expression and identifies the transcription factor krüppel-like factor 4 (KLF4) as a key effector of the circPLOD2-mediated changes. KLF4 depletion mimics circPLOD2 silencing, whereas KLF4 overexpression reverses the effects of circPLOD2 depletion on proliferation and endothelial-pericyte interactions. Together, these data reveal an important function of circPLOD2 in controlling pericyte proliferation and capillary formation and show that the circPLOD2-mediated regulation of KLF4 significantly contributes to the transcriptional response to hypoxia.
Collapse
Affiliation(s)
- Simone Franziska Glaser
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590 Frankfurt, Germany; German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Andre Brezski
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Nina Baumgarten
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590 Frankfurt, Germany; German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Marius Klangwart
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590 Frankfurt, Germany
| | - Andreas W Heumüller
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590 Frankfurt, Germany
| | - Ranjan Kumar Maji
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590 Frankfurt, Germany; German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Matthias S Leisegang
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Stefan Guenther
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt, Germany; Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Christoph M Zehendner
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590 Frankfurt, Germany
| | - David John
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590 Frankfurt, Germany; German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Marcel H Schulz
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590 Frankfurt, Germany; German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590 Frankfurt, Germany; German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
4
|
Lee W, Jung K, Song H, Lee H, Park HE, Koh Y, Choi S, Park K. Clonal hematopoiesis with DNMT3A mutation is associated with lower white matter hyperintensity volume. CNS Neurosci Ther 2023; 29:1243-1253. [PMID: 36807865 PMCID: PMC10068463 DOI: 10.1111/cns.14114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/22/2022] [Accepted: 01/20/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Clonal hematopoiesis of indeterminate potential (CHIP) increases the risk of cerebrovascular events, while its association with cerebral white matter hyperintensity (WMH) is undemonstrated. We evaluated the effect of CHIP and its major driving mutations on cerebral WMH severity. METHODS From an institutional cohort of a routine health check-up program with a DNA repository database, subjects who were ≥50 years of age, with one or more cardiovascular risk factors but no central nervous system disorder, and performed brain MRI were included. Along with the presence of CHIP and its major driving mutations, clinical and laboratory data were obtained. WMH volume was measured in total, periventricular, and subcortical regions. RESULTS Among the total 964 subjects, 160 subjects were classified as CHIP positive group. CHIP was most frequently associated with DNMT3A mutation (48.8%), followed by TET2 (11.9%) and ASXL1 (8.1%) mutations. Linear regression analysis adjusting for age, sex, and conventional cerebrovascular risk factors suggested that CHIP with DNMT3A mutation was associated with the lower log-transformed total WMH volume, unlike other CHIP mutations. When classified according to variant allele fraction (VAF) value of DNMT3A mutation, higher VAF classes were associated with the lower log-transformed total WMH and the lower log-transformed periventricular WMH volume, but not with the log-transformed subcortical WMH volumes. CONCLUSIONS Clonal hematopoiesis with DNMT3A mutation is quantitatively associated with a lower volume of cerebral WMH, especially in the periventricular region. CHIP with DNMT3A mutation might have a protective role in the endothelial pathomechanism of WMH.
Collapse
Affiliation(s)
- Woo‐Jin Lee
- Department of NeurologySeoul National University Bundang HospitalSeongnam‐siSouth Korea
- Department of NeurologySeoul National University HospitalSeoulSouth Korea
| | - Keun‐Hwa Jung
- Department of NeurologySeoul National University HospitalSeoulSouth Korea
| | - Han Song
- Genome Opinion Inc.SeoulSouth Korea
| | - Heesun Lee
- Division of Cardiology, Department of Internal MedicineSeoul National University Healthcare System Gangnam CenterSeoulSouth Korea
- Department of Internal MedicineSeoul National University College of MedicineSeoulSouth Korea
| | - Hyo Eun Park
- Division of Cardiology, Department of Internal MedicineSeoul National University Healthcare System Gangnam CenterSeoulSouth Korea
- Department of Internal MedicineSeoul National University College of MedicineSeoulSouth Korea
| | - Youngil Koh
- Genome Opinion Inc.SeoulSouth Korea
- Division of Hemato‐oncology, Department of Internal MedicineSeoul National University HospitalSeoulSouth Korea
| | - Su‐Yeon Choi
- Division of Cardiology, Department of Internal MedicineSeoul National University Healthcare System Gangnam CenterSeoulSouth Korea
- Department of Internal MedicineSeoul National University College of MedicineSeoulSouth Korea
| | - Kyung‐Il Park
- Department of NeurologySeoul National University HospitalSeoulSouth Korea
- Department of NeurologySeoul National University Healthcare System Gangnam CenterSeoulSouth Korea
| |
Collapse
|
5
|
Chou EL, Chaffin M, Simonson B, Pirruccello JP, Akkad AD, Nekoui M, Cardenas CLL, Bedi KC, Nash C, Juric D, Stone JR, Isselbacher EM, Margulies KB, Klattenhoff C, Ellinor PT, Lindsay ME. Aortic Cellular Diversity and Quantitative Genome-Wide Association Study Trait Prioritization Through Single-Nuclear RNA Sequencing of the Aneurysmal Human Aorta. Arterioscler Thromb Vasc Biol 2022; 42:1355-1374. [PMID: 36172868 PMCID: PMC9613617 DOI: 10.1161/atvbaha.122.317953] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/16/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mural cells in ascending aortic aneurysms undergo phenotypic changes that promote extracellular matrix destruction and structural weakening. To explore this biology, we analyzed the transcriptional features of thoracic aortic tissue. METHODS Single-nuclear RNA sequencing was performed on 13 samples from human donors, 6 with thoracic aortic aneurysm, and 7 without aneurysm. Individual transcriptomes were then clustered based on transcriptional profiles. Clusters were used for between-disease differential gene expression analyses, subcluster analysis, and analyzed for intersection with genetic aortic trait data. RESULTS We sequenced 71 689 nuclei from human thoracic aortas and identified 14 clusters, aligning with 11 cell types, predominantly vascular smooth muscle cells (VSMCs) consistent with aortic histology. With unbiased methodology, we found 7 vascular smooth muscle cell and 6 fibroblast subclusters. Differentially expressed genes analysis revealed a vascular smooth muscle cell group accounting for the majority of differential gene expression. Fibroblast populations in aneurysm exhibit distinct behavior with almost complete disappearance of quiescent fibroblasts. Differentially expressed genes were used to prioritize genes at aortic diameter and distensibility genome-wide association study loci highlighting the genes JUN, LTBP4 (latent transforming growth factor beta-binding protein 1), and IL34 (interleukin 34) in fibroblasts, ENTPD1, PDLIM5 (PDZ and LIM domain 5), ACTN4 (alpha-actinin-4), and GLRX in vascular smooth muscle cells, as well as LRP1 in macrophage populations. CONCLUSIONS Using nuclear RNA sequencing, we describe the cellular diversity of healthy and aneurysmal human ascending aorta. Sporadic aortic aneurysm is characterized by differential gene expression within known cellular classes rather than by the appearance of novel cellular forms. Single-nuclear RNA sequencing of aortic tissue can be used to prioritize genes at aortic trait loci.
Collapse
Affiliation(s)
- Elizabeth L. Chou
- Division of Vascular and Endovascular Surgery,
Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
| | - Mark Chaffin
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
| | - Bridget Simonson
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
| | - James P. Pirruccello
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
- Demoulas Center for Cardiac Arrhythmias, Massachusetts
General Hospital, Boston, Massachusetts, USA
| | - Amer-Denis Akkad
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge,
MA, USA 02142
| | - Mahan Nekoui
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts
General Hospital, Boston, Massachusetts, USA
| | - Christian Lacks Lino Cardenas
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
| | - Kenneth C. Bedi
- Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA, USA 19104
| | - Craig Nash
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
| | - Dejan Juric
- Cancer Center, Massachusetts General Hospital, Boston,
Massachusetts, USA
| | - James R. Stone
- Department of Pathology, Massachusetts General
Hospital, Boston, Massachusetts, USA
| | - Eric M. Isselbacher
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Thoracic Aortic Center, Massachusetts General Hospital,
Boston, Massachusetts, USA
| | - Kenneth B. Margulies
- Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA, USA 19104
| | - Carla Klattenhoff
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge,
MA, USA 02142
| | - Patrick T. Ellinor
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
- Demoulas Center for Cardiac Arrhythmias, Massachusetts
General Hospital, Boston, Massachusetts, USA
| | - Mark E. Lindsay
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Thoracic Aortic Center, Massachusetts General Hospital,
Boston, Massachusetts, USA
| |
Collapse
|
6
|
Khachigian LM, Black BL, Ferdinandy P, De Caterina R, Madonna R, Geng YJ. Transcriptional regulation of vascular smooth muscle cell proliferation, differentiation and senescence: Novel targets for therapy. Vascul Pharmacol 2022; 146:107091. [PMID: 35896140 DOI: 10.1016/j.vph.2022.107091] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Vascular smooth muscle cells (SMC) possess a unique cytoplasticity, regulated by transcriptional, translational and phenotypic transformation in response to a diverse range of extrinsic and intrinsic pathogenic factors. The mature, differentiated SMC phenotype is physiologically typified transcriptionally by expression of genes encoding "contractile" proteins, such as SMα-actin (ACTA2), SM-MHC (myosin-11) and SM22α (transgelin). When exposed to various pathological conditions (e.g., pro-atherogenic risk factors, hypertension), SMC undergo phenotypic modulation, a bioprocess enabling SMC to de-differentiate in immature stages or trans-differentiate into other cell phenotypes. As recent studies suggest, the process of SMC phenotypic transformation involves five distinct states characterized by different patterns of cell growth, differentiation, migration, matrix protein expression and declined contractility. These changes are mediated via the action of several transcriptional regulators, including myocardin and serum response factor. Conversely, other factors, including Kruppel-like factor 4 and nuclear factor-κB, can inhibit SMC differentiation and growth arrest, while factors such as yin yang-1, can promote SMC differentiation whilst inhibiting proliferation. This article reviews recent advances in our understanding of regulatory mechanisms governing SMC phenotypic modulation. We propose the concept that transcription factors mediating this switching are important biomarkers and potential pharmacological targets for therapeutic intervention in cardiovascular disease.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
| | - Péter Ferdinandy
- Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Raffaele De Caterina
- Cardiovascular Division, Pisa University Hospital & University of Pisa, Via Paradisa, 2, Pisa 56124, Italy
| | - Rosalinda Madonna
- Cardiovascular Division, Pisa University Hospital & University of Pisa, Via Paradisa, 2, Pisa 56124, Italy; Division of Cardiovascular Medicine, Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Yong-Jian Geng
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| |
Collapse
|
7
|
Zou F, Li Y, Zhang S, Zhang J. DP1 (Prostaglandin D 2 Receptor 1) Activation Protects Against Vascular Remodeling and Vascular Smooth Muscle Cell Transition to Myofibroblasts in Angiotensin II-Induced Hypertension in Mice. Hypertension 2022; 79:1203-1215. [PMID: 35354317 DOI: 10.1161/hypertensionaha.121.17584] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) phenotype transition plays an essential role in vascular remodeling. PGD2 (Prostaglandin D2) is involved in cardiovascular inflammation. In this study, we aimed to investigates the role of DP1 (PGD2 receptor 1) on VSMC phenotype transition in vascular remodeling after Ang II (angiotensin II) infusion in mice. METHODS VSMC-specific DP1 knockout mice and DP1flox/flox mice were infused with Ang II for 28 days and systolic blood pressure was measured by noninvasive tail-cuff system. The arterial samples were applied to an unbiased proteome analysis. DP1f/f Myh11 (myosin heavy chain 11) CREERT2 R26mTmG/+ mice were generated for VSMC lineage tracing. Multiple genetic and pharmacological approaches were used to investigate DP1-mediated signaling in phenotypic transition of VSMCs in response to Ang II administration. RESULTS DP1 knockout promoted vascular media thickness and increased systolic blood pressure after Ang II infusion by impairing Epac (exchange protein directly activated by cAMP)-1-mediated Rap-1 (Ras-related protein 1) activation. The DP1 agonist facilitated the interaction of myocardin-related transcription factor A and G-actin, which subsequently inhibited the VSMC transition to myofibroblasts through the suppression of RhoA (Ras homolog family member A)/ROCK-1 (Rho associated coiled-coil containing protein kinase 1) activity. Moreover, Epac-1 overexpression by lentivirus blocked the progression of vascular fibrosis in DP1 deficient mice in response to Ang II infusion. CONCLUSIONS Our finding revealed a protective role of DP1 in VSMC switch to myofibroblasts by impairing the phosphorylation of MRTF (myocardin-related transcription factor)-A by ROCK-1 through Epac-1/Rap-1/RhoA pathway and thus inhibited the expression of collagen I, fibronectin, ED-A (extra domain A) fibronectin, and vinculin. Thus, DP1 activation has therapeutic potential for vascular fibrosis in hypertension.
Collapse
Affiliation(s)
- Fangdi Zou
- Department of Pharmacology, School of Basic Medical Sciences (F.Z., Y.L., S.Z., J.Z.), Tianjin Medical University, China.,School of Pharmacy (F.Z.), Tianjin Medical University, China
| | - Yong Li
- Department of Pharmacology, School of Basic Medical Sciences (F.Z., Y.L., S.Z., J.Z.), Tianjin Medical University, China
| | - Shijie Zhang
- Department of Pharmacology, School of Basic Medical Sciences (F.Z., Y.L., S.Z., J.Z.), Tianjin Medical University, China
| | - Jian Zhang
- Department of Pharmacology, School of Basic Medical Sciences (F.Z., Y.L., S.Z., J.Z.), Tianjin Medical University, China.,School of Pharmacy, East China University of Science and Technology, Shanghai, China (J.Z.)
| |
Collapse
|
8
|
Hannan RT, Miller AE, Hung RC, Sano C, Peirce SM, Barker TH. Extracellular matrix remodeling associated with bleomycin-induced lung injury supports pericyte-to-myofibroblast transition. Matrix Biol Plus 2021; 10:100056. [PMID: 34195593 PMCID: PMC8233458 DOI: 10.1016/j.mbplus.2020.100056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Of the many origins of pulmonary myofibroblasts, microvascular pericytes are a known source. Prior literature has established the ability of pericytes to transition into myofibroblasts, but provide limited insight into molecular cues that drive this process during lung injury repair and fibrosis. Fibronectin and RGD-binding integrins have long been considered pro-fibrotic factors in myofibroblast biology, and here we test the hypothesis that these known myofibroblast cues coordinate pericyte-to-myofibroblast transitions. Specifically, we hypothesized that αvβ3 integrin engagement on fibronectin induces pericyte transition into myofibroblastic phenotypes in the murine bleomycin lung injury model. Myosin Heavy Chain 11 (Myh11)-CreERT2 lineage tracing in transgenic mice allows identification of cells of pericyte origin and provides a robust tool for isolating pericytes from tissues for further evaluation. We used this murine model to track and characterize pericyte behaviors during tissue repair. The majority of Myh11 lineage-positive cells are positive for the pericyte surface markers, PDGFRβ (55%) and CD146 (69%), and display typical pericyte morphology with spatial apposition to microvascular networks. After intratracheal bleomycin treatment of mice, Myh11 lineage-positive cells showed significantly increased contractile and secretory markers, as well as αv integrin expression. According to RNASeq measurements, many disease and tissue-remodeling genesets were upregulated in Myh11 lineage-positive cells in response to bleomycin-induced lung injury. In vitro, blocking αvβ3 binding through cycloRGDfK prevented expression of the myofibroblastic marker αSMA relative to controls. In response to RGD-containing provisional matrix proteins present in lung injury, pericytes may alter their integrin profile.
Collapse
Affiliation(s)
- Riley T. Hannan
- Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Andrew E. Miller
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Ruei-Chun Hung
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Catherine Sano
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, VA, United States
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Thomas H. Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| |
Collapse
|
9
|
Bulut GB, Alencar GF, Owsiany KM, Nguyen AT, Karnewar S, Haskins RM, Waller LK, Cherepanova OA, Deaton RA, Shankman LS, Keller SR, Owens GK. KLF4 (Kruppel-Like Factor 4)-Dependent Perivascular Plasticity Contributes to Adipose Tissue inflammation. Arterioscler Thromb Vasc Biol 2021; 41:284-301. [PMID: 33054397 PMCID: PMC7769966 DOI: 10.1161/atvbaha.120.314703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Smooth muscle cells and pericytes display remarkable plasticity during injury and disease progression. Here, we tested the hypothesis that perivascular cells give rise to Klf4-dependent macrophage-like cells that augment adipose tissue (AT) inflammation and metabolic dysfunction associated with diet-induced obesity (DIO). Approach and Results: Using Myh11-CreERT2 eYFP (enhanced yellow fluorescent protein) mice and flow cytometry of the stromovascular fraction of epididymal AT, we observed a large fraction of smooth muscle cells and pericytes lineage traced eYFP+ cells expressing macrophage markers. Subsequent single-cell RNA sequencing, however, showed that the majority of these cells had no detectable eYFP transcript. Further exploration revealed that intraperitoneal injection of tamoxifen in peanut oil, used for generating conditional knockout or reporter mice in thousands of previous studies, resulted in large increase in the autofluorescence and false identification of macrophages within epididymal AT as being eYFP+; and unintended proinflammatory consequences. Using newly generated Myh11-DreERT2tdTomato mice given oral tamoxifen, we virtually eliminated the problem with autofluorescence and identified 8 perivascular cell dominated clusters, half of which were altered upon DIO. Given that perivascular cell KLF4 (kruppel-like factor 4) can have beneficial or detrimental effects, we tested its role in obesity-associated AT inflammation. While smooth muscle cells and pericytes-specific Klf4 knockout (smooth muscle cells and pericytes Klf4Δ/Δ) mice were not protected from DIO, they displayed improved glucose tolerance upon DIO, and showed marked decreases in proinflammatory macrophages and increases in LYVE1+ lymphatic endothelial cells in the epididymal AT. CONCLUSIONS Perivascular cells within the AT microvasculature dynamically respond to DIO and modulate tissue inflammation and metabolism in a KLF4-dependent manner.
Collapse
Affiliation(s)
- Gamze B. Bulut
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Gabriel F. Alencar
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | | | - Anh T. Nguyen
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Santosh Karnewar
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Ryan M. Haskins
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Lillian K. Waller
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Olga A. Cherepanova
- Cardiovascular and Metabolic Sciences Lerner Research Institute, Cleveland Clinic
| | - Rebecca A. Deaton
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Laura S. Shankman
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Susanna R. Keller
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia
| | - Gary K. Owens
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| |
Collapse
|
10
|
Recent Discoveries on the Involvement of Krüppel-Like Factor 4 in the Most Common Cancer Types. Int J Mol Sci 2020; 21:ijms21228843. [PMID: 33266506 PMCID: PMC7700188 DOI: 10.3390/ijms21228843] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor highly conserved in evolution. It is particularly well known for its role in inducing pluripotent stem cells. In addition, KLF4 plays many roles in cancer. The results of most studies suggest that KLF4 is a tumor suppressor. However, the functioning of KLF4 is regulated at many levels. These include regulation of transcription, alternative splicing, miRNA, post-translational modifications, subcellular localization, protein stability and interactions with other molecules. Simple experiments aimed at assaying transcript levels or protein levels fail to address this complexity and thus may deliver misleading results. Tumor subtypes are also important; for example, in prostate cancer KLF4 is highly expressed in indolent tumors where it impedes tumor progression, while it is absent from aggressive prostate tumors. KLF4 is important in regulating response to many known drugs, and it also plays a role in tumor microenvironment. More and more information is available about upstream regulators, downstream targets and signaling pathways associated with the involvement of KLF4 in cancer. Furthermore, KLF4 performs critical function in the overall regulation of tissue homeostasis, cellular integrity, and progression towards malignancy. Here we summarize and analyze the latest findings concerning this fascinating transcription factor.
Collapse
|
11
|
Xia W, Zou C, Chen H, Xie C, Hou M. Immune checkpoint inhibitor induces cardiac injury through polarizing macrophages via modulating microRNA-34a/Kruppel-like factor 4 signaling. Cell Death Dis 2020; 11:575. [PMID: 32709878 PMCID: PMC7382486 DOI: 10.1038/s41419-020-02778-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy has become a well-established treatment option for some cancers; however, its use is hampered by its cardiovascular adverse effects. Immune checkpoint inhibitors (ICIs)-related cardiac toxicity took place in kinds of different forms, such as myocarditis, acute coronary syndrome, and pericardial disease, with high mortality rates. This study aimed to investigate the roles of programmed death-1 (PD-1) inhibitor, one of widespread used ICIs, in the development of murine cardiac injury. PD-1 inhibitor is known to transduce immunoregulatory signals that modulate macrophages polarization to attack tumor cells. Hence, this study explored whether the cardiovascular adverse effects of PD-1 inhibitor were related to macrophage polarization. MicroRNA-34a (miR-34a), which appears to regulate the polarization of cultured macrophages to induce inflammation, is examined in cardiac injury and macrophage polarization induced by the PD-1 inhibitor. As a target of miR-34a, Krüppel-like factor 4 (KLF4) acted as an anti-inflammation effector to take cardiac protective effect. Further, it investigated whether modulating the miR-34a/KLF4-signaling pathway could influence macrophage polarization. The PD-1 inhibitor markedly induced M1 phenotype macrophage polarization with impaired cardiac function, whereas miR-34a inhibitor transfection treatment reversed M1 polarization and cardiac injury in vivo. In vitro, PD-1 inhibitor-induced M1 polarization was accompanied by an increase in the expression of miR-34a but a decrease in the expression of KLF4. TargetScan and luciferase assay showed that miR-34a targeted the KLF4 3′-untranslated region. Either miR-34a inhibition or KLF4 overexpression could abolish M1 polarization induced by the PD-1 inhibitor. The findings strongly suggested that the PD-1 inhibitor exerted its effect in promoting M1 polarization and cardiac injury by modulating the miR-34a/KLF4-signaling pathway and inducing myocardial inflammation. These findings might help us to understand the pathogenesis of cardiac injury during immunotherapy, and provide new targets in ameliorating cardiac injury in patients with cancer receiving PD-1 inhibitor treatment.
Collapse
Affiliation(s)
- Wenzheng Xia
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changlin Zou
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hanbin Chen
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Congying Xie
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Meng Hou
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
12
|
Corliss BA, Ray HC, Doty RW, Mathews C, Sheybani N, Fitzgerald K, Prince R, Kelly-Goss MR, Murfee WL, Chappell J, Owens GK, Yates PA, Peirce SM. Pericyte Bridges in Homeostasis and Hyperglycemia. Diabetes 2020; 69:1503-1517. [PMID: 32321760 PMCID: PMC7306121 DOI: 10.2337/db19-0471] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 04/17/2020] [Indexed: 12/29/2022]
Abstract
Diabetic retinopathy is a potentially blinding eye disease that threatens the vision of one-ninth of patients with diabetes. Progression of the disease has long been attributed to an initial dropout of pericytes that enwrap the retinal microvasculature. Revealed through retinal vascular digests, a subsequent increase in basement membrane bridges was also observed. Using cell-specific markers, we demonstrate that pericytes rather than endothelial cells colocalize with these bridges. We show that the density of bridges transiently increases with elevation of Ang-2, PDGF-BB, and blood glucose; is rapidly reversed on a timescale of days; and is often associated with a pericyte cell body located off vessel. Cell-specific knockout of KLF4 in pericytes fully replicates this phenotype. In vivo imaging of limbal vessels demonstrates pericyte migration off vessel, with rapid pericyte filopodial-like process formation between adjacent vessels. Accounting for off-vessel and on-vessel pericytes, we observed no pericyte loss relative to nondiabetic control retina. These findings reveal the possibility that pericyte perturbations in location and process formation may play a role in the development of pathological vascular remodeling in diabetic retinopathy.
Collapse
Affiliation(s)
- Bruce A Corliss
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - H Clifton Ray
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Richard W Doty
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Corbin Mathews
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Natasha Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Kathleen Fitzgerald
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Remi Prince
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Molly R Kelly-Goss
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Walter L Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - John Chappell
- Fralin Biomedical Research Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA
| | - Paul A Yates
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
- Department of Ophthalmometry, University of Virginia School of Medicine, Charlottesville, VA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
- Department of Ophthalmometry, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
13
|
Corliss BA, Mathews C, Doty R, Rohde G, Peirce SM. Methods to label, image, and analyze the complex structural architectures of microvascular networks. Microcirculation 2019; 26:e12520. [PMID: 30548558 PMCID: PMC6561846 DOI: 10.1111/micc.12520] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/31/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022]
Abstract
Microvascular networks play key roles in oxygen transport and nutrient delivery to meet the varied and dynamic metabolic needs of different tissues throughout the body, and their spatial architectures of interconnected blood vessel segments are highly complex. Moreover, functional adaptations of the microcirculation enabled by structural adaptations in microvascular network architecture are required for development, wound healing, and often invoked in disease conditions, including the top eight causes of death in the Unites States. Effective characterization of microvascular network architectures is not only limited by the available techniques to visualize microvessels but also reliant on the available quantitative metrics that accurately delineate between spatial patterns in altered networks. In this review, we survey models used for studying the microvasculature, methods to label and image microvessels, and the metrics and software packages used to quantify microvascular networks. These programs have provided researchers with invaluable tools, yet we estimate that they have collectively attained low adoption rates, possibly due to limitations with basic validation, segmentation performance, and nonstandard sets of quantification metrics. To address these existing constraints, we discuss opportunities to improve effectiveness, rigor, and reproducibility of microvascular network quantification to better serve the current and future needs of microvascular research.
Collapse
Affiliation(s)
- Bruce A. Corliss
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Corbin Mathews
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Richard Doty
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Gustavo Rohde
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Shayn M. Peirce
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| |
Collapse
|
14
|
Hess DL, Kelly-Goss MR, Cherepanova OA, Nguyen AT, Baylis RA, Tkachenko S, Annex BH, Peirce SM, Owens GK. Perivascular cell-specific knockout of the stem cell pluripotency gene Oct4 inhibits angiogenesis. Nat Commun 2019; 10:967. [PMID: 30814500 PMCID: PMC6393549 DOI: 10.1038/s41467-019-08811-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/31/2019] [Indexed: 12/23/2022] Open
Abstract
The stem cell pluripotency factor Oct4 serves a critical protective role during atherosclerotic plaque development by promoting smooth muscle cell (SMC) investment. Here, we show using Myh11-CreERT2 lineage-tracing with inducible SMC and pericyte (SMC-P) knockout of Oct4 that Oct4 regulates perivascular cell migration and recruitment during angiogenesis. Knockout of Oct4 in perivascular cells significantly impairs perivascular cell migration, increases perivascular cell death, delays endothelial cell migration, and promotes vascular leakage following corneal angiogenic stimulus. Knockout of Oct4 in perivascular cells also impairs perfusion recovery and decreases angiogenesis following hindlimb ischemia. Transcriptomic analyses demonstrate that expression of the migratory gene Slit3 is reduced following loss of Oct4 in cultured SMCs, and in Oct4-deficient perivascular cells in ischemic hindlimb muscle. Together, these results provide evidence that Oct4 plays an essential role within perivascular cells in injury- and hypoxia-induced angiogenesis.
Collapse
Affiliation(s)
- Daniel L Hess
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Molly R Kelly-Goss
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908, USA
- Department of Biomedical Engineering, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Olga A Cherepanova
- Lerner Research Institute, 9500 Euclid Avenue, NB50, Cleveland, OH, 44195, USA
| | - Anh T Nguyen
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908, USA
| | - Richard A Baylis
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Svyatoslav Tkachenko
- Lerner Research Institute, 9500 Euclid Avenue, JJN3-01, Cleveland, OH, 44195, USA
| | - Brian H Annex
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908, USA
- Department of Medicine, Cardiovascular Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Shayn M Peirce
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908, USA
- Department of Biomedical Engineering, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|